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Abstract—We consider chordal RCC-8 networks and show that
we can check their consistency by enforcing partial path consis-
tency with weak composition. We prove this by using the fact
that RCC-8 networks with relations from the maximal tractable
subsets Ĥ8, C8, and Q8 of RCC-8 have the patchwork property.
The use of partial path consistency has important practical
consequences that we demonstrate with the implementation of the
new reasoner PyRCC85, which is developed by extending the
state of the art reasoner PyRCC8. Given an RCC-8 network with
only tractable RCC-8 relations, we show that it can be solved very
efficiently with PyRCC85 by making its underlying constraint
graph chordal and running path consistency on this sparse graph
instead of the completion of the given network. In the same way,
partial path consistency can be used as the consistency checking
step in backtracking algorithms for networks with arbitrary
RCC-8 relations resulting in very improved pruning for sparse
networks while incurring a penalty for dense networks.

I. INTRODUCTION

The Region Connection Calculus (RCC) is the dominant
Artificial Intelligence approach for representing and reasoning
about topological relations [1]. RCC can be used to describe
regions that are non-empty regular subsets of some topological
space by stating their topological relations to each other. Most
of the published work in this area deals with a subset of
RCC, namely, RCC-8. RCC-8 considers the following 8 bi-
nary topological relations: disconnected (DC), externally con-
nected (EC), equal (EQ), partially overlapping (PO), tangential
proper part (TPP), tangential proper part inverse (TPPi), non-
tangential proper part (NTPP), and non-tangential proper part
inverse (NTPPi).

The state of the art qualitative spatial reasoners (QSRs)
for RCC-8 [2]–[4] implement efficient algorithms to decide
whether a given set of RCC-8 relations between regions are
consistent and infer new information from them. For these
two problems, all well-known reasoners use some form of
path consistency with weak composition1 in the case that
we have tractable RCC-8 networks and backtracking-based
algorithms for the general case. In this paper, we concentrate
on the consistency checking problem and make the following
contributions:
• We consider RCC-8 networks with chordal constraint

graphs and show that we can check their consistency
by enforcing partial path consistency (PPC). PPC was
originally introduced for finite domain CSPs [6] and it

1The literature suggests the term algebraic closure, but this is equivalent
to path consistency with weak composition (denoted by the symbol �) [5], so
we will use this more traditional term throughout the paper.

was most recently used in the case of Interval Algebra
(IA) networks [7]. These two previous applications of
chordality and partial path consistency consider convex
finite-domain CSPs in [6] and pre-convex Interval Al-
gebra networks in [7]. The same ideas can be applied
to RCC-8 due to a recent result that shows that RCC-
8 networks with relations from the maximal tractable
subsets Ĥ8, C8, and Q8 of RCC-8 [8] have the patchwork
property [9].

• We demonstrate the practical applicability of our re-
sults with the implementation of a new reasoner, called
PyRCC85. Given a network with only tractable RCC-
8 relations, PyRCC85 can solve it very efficiently by
making its underlying constraint graph chordal and run-
ning path consistency on this sparse graph instead of the
completion of the given network. In the same way, it uses
partial path consistency as a consistency checking step
in backtracking algorithms for networks with arbitrary
RCC-8 relations resulting in very improved pruning for
sparse networks while incurring a penalty for dense
networks.

• We make the case for a new generation of RCC-8 reason-
ers implemented in Python, a general-purpose, interpreted
high-level programming language which enables rapid
application development, and making use of advanced
Python environments, such as PyPy2, utilizing trace-based
just-in-time (JIT) compilation techniques [10], [11]. We
present such a reasoner, called PyRCC8, and compare it
to other well-known reasoners from the literature [2]–[4].
PyRCC85 is then developed by extending PyRCC8 and
it is compared experimentally with it.

The organization of this paper is as follows. Section II
introduces PyRCC8, our implementation of a state of the art
QSR. Section III introduces PPC and applies it to chordal
RCC-8 networks. In Section IV we evaluate the reasoner
PyRCC85 experimentally. Finally, in Section V we give a
brief overview of related work, and in Section VI we conclude
and give directions for future research.

We assume that the reader is familiar with the following
concepts that are not defined explicitly in this paper due to
space constraints: constraint networks and their corresponding
constraint graphs, relation algebra, composition, weak compo-
sition, algebraic closure (a-closure), various notions of local
consistency, and the details of RCC-8 [5], [12].

2http://pypy.org/

http://pypy.org/


II. PYRCC8 - A STATE OF THE ART QSR

In this section we present PyRCC83, an open source,
efficient QSR for RCC-8 written in Python, that serves as the
basis for the reasoner for chordal RCC-8 networks that we
discuss in Section III. PyRCC8 is implemented using PyPy, a
fast, compliant implementation of the Python 2 language. To
the best of our knowledge, PyRCC8 is the first implementation
of a QSR on top of a trace-based JIT compiler. Previous
implementations have used either static compilers, e.g., Renz’s
solver [2] and GQR [3], or method-based JIT compilers, e.g.,
the RCC-8 reasoning module of the description logic reasoner
PelletSpatial [4]. The advantage of trace-based JIT compilers
is that they can discover optimization opportunities in common
dynamic execution paths, that are not apparent to a static
compiler or a method-based JIT compiler [10], [11].

PyRCC8 offers a path consistency algorithm for solving
tractable RCC-8 networks and a backtracking-based algorithm
for general networks. Both algorithms draw on the original
ideas of [2], but offer some more interesting features that we
discuss below.

The path consistency algorithm processes arcs in a strict
FIFO manner. This functionality is based on the implementa-
tion of a hybrid queue data structure that comprises a double-
ended queue and a set. This allows pushing, popping, and
membership checking of an arc to be achieved in O(1) time.

The path consistency algorithm can also handle weighted
arcs according to their restrictiveness. Most restrictive arcs are
processed first because they restrict other arcs more and, thus,
render them less prone to be processed again. Two weighting
schemes are being used: (i) exact weighting of arcs [2], and
(ii) approximate weighting of arcs, using the approach by
Van Beek and Manchak [13]. This functionality is based on
the implementation of a priority queue data structure that
comprises a heap and a hash map. This allows pushing, and
popping of an arc to be achieved in O(log(n)) time, and
membership checking of an arc to be achieved in O(1) time.

Both our hybrid queue and priority queue data structure
implementations are more advanced than the queue data
structures found in Renz’s solver, GQR, and PelletSpatial (e.g.,
Renz’s solver uses a n×n matrix as a queue). Furthermore, our
path consistency algorithm processes only meaningful arcs,
i.e., arcs that do not correspond to the universal relation4, thus,
doing also fewer consistency checks.

Regarding concistency of general RCC-8 networks,
PyRCC8 is the only reasoner we know that offers an it-
erative counterpart of the recursive backtracing algorithm.
Additionaly, PyRCC8 precomputes the converse of relations
to avoid time consuming and exhaustive repetition of converse
computations for large datasets.

Finally, regarding heuristics, the classic weight and cardinal-
ity heuristics [13] are implemented and used in the selection
of sub-relations and the ordering of variables. PyRCC8 offers

3http://pypi.python.org/pypi/PyRCC8/
4The result of the composition of any relation with the universal relation

is the universal relation.
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Fig. 2. Comparison of different PC algorithms using the admingeo dataset

static and dynamic reasoning as in [2] and also considers
heuristic criteria based on the scope (local or global) of
constraints.

A. Comparing PyRCC8 to other QSRs

Since PyRCC8 is a new reasoner, we compared its perfor-
mance with that of Renz’s solver [2], GQR [3], and PelletSpa-
tial [4], with their best performing heuristics enabled. At this
point we should mention that PelletSpatial has no backtracking
algorithm for general RCC-8 networks, and offers only a path
consistency algorithm. Additionaly, it receives as input spatial
relations expressed in RDF/OWL. Since PelletSpatial proved
to be highly inefficient and could not meet our expectations,
we left it out in most of our experimental comparisons.

The experiments were carried out on a computer with an
Intel Xeon 4 Core X3220 processor with a CPU frequency
of 2.40 GHz, 8 GB RAM, and the Debian Lenny x86 64
OS. Renz’s solver and GQR were compiled with gcc/g++

http://pypi.python.org/pypi/PyRCC8/


4.4.3. PelletSpatial was run with OpenJDK 6 build 19, which
implements Java SE 6. PyRCC8 was run with PyPy 1.8, which
implements Python 2.7.2. Only one of the CPU cores was used
for the experiments.

a) Path Consistency: The performance of the path con-
sistency algorithm is crucial for the overall performance of
a qualitative reasoner, since path consistency can be used
to solve tractable networks, can be run as a preprocessing
step, and as the consistency checking step of any backtracking
algorithm. For our first experiment, we compared PyRCC8’s
path consistency implementation to that of Renz’s solver and
GQR. We considered network sizes between 1000 and 9000
nodes. For each size, 30 networks were generated using all
RCC-8 relations. Additionaly, networks were generated with
an average degree (the number of non-universal constraints
of a node) of 9.5, because this degree belongs to the phase
transition of RCC-8 relations, and, hence, guarantees hard and
more time consuming, in terms of solubility, instances for the
path consistency algorithm [2]. The results of this experiment
are shown in Figure 1. The corresponding graph shows that
PyRCC8 outperforms GQR and Renz’s solver in terms of path
consistency checking. In fact, as constraint networks grow
larger, PyRCC8 becomes about 3 times faster than GQR and
steadily opens the gap with Renz’s solver.

For our second experiment we compared PyRCC8’s path
consistency implementation to that of Renz’s solver, GQR, and
PelletSpatial, using the administrative geography (admingeo)
of Great Britain dataset [14]. The admingeo dataset is a real
dataset published by Ordnance Survey which encodes RCC-8
base relations between geographic entities in Great Britain.5

Since the data is encoded in RDF/OWL we had to translate
it to match the input format of PyRCC8, Renz’s solver, and
GQR. The admingeo dataset is very large and very sparse,
posing a challenge of scalability to any path consistency
algorithm implementation. It comprises a consistent constraint
network of over 10000 nodes and nearly 80000 relations. For
our experiment we created constraint networks of different
size, by taking into account a minimum number of relations
from the initial dataset and increasing it at every next step.
Of course, the whole dataset was used as a final step. The
results of the path consistency experiment using the admingeo
dataset are shown in Figure 2. Again, PyRCC8 outperforms
significantly all other reasoners, with the exception of Renz’s
solver when the whole dataset is considered at the final step,
where both reasoners are very close to each other. At the final
step, the existence of some identity relations in the network,
cause our queue to expand dramatically to retain candidate
arcs for revision. Therefore, the advantage of starting with a
compact queue of meaningful arcs disappears. We believe this
is also the case with GQR. Notice that there is no experimental
results for PelletSpatial after the step where 60000 relations
were considered. At that point, PelletSpatial went into swap
after having run for over 30 hours.

5http://www.ordnancesurvey.co.uk/ontology/AdministrativeGeography/v2.
0/AdministrativeGeography.rdf
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Fig. 3. Comparison of different consistency algorithms

To the best of our knowledge, this is the first set of
experiments with QSRs where a real dataset has been used.
We hope that this trend will continue given the interest of
the community6 and the use of qualitative spatial relations in
publicly available datasets today, e.g., linked data [15], [16].

b) Consistency: To assess the speed of the backtracking
search, we considered network sizes between 100 and 900
nodes. For each size, 30 networks were generated using
all RCC-8 relations. Again, networks were generated with
an average degree of 9.5, to ensure the hardness of our
instances. The results of the consistency experiment are shown
in Figure 3. PyRCC8 outperforms GQR and comes close to
the performance of Renz’s solver in terms of consistency
checking. The latter result is due to more abstract coding
of heuristics in PyRCC8 as opposed to Renz’s solver, which
affects the execution speed.

The excellent experimental results of PyRCC8 presented
above demonstrate the advantages of this particular implemen-
tation, but also the potential benefits of trace-based JITs over
static compilers. The above graph shows that as constraint
networks grow larger the trace-based JIT kicks in and makes
PyRCC8 behave in a more scalable and robust manner as
opposed to the statically compiled QSRs.

III. SOLVING CHORDAL RCC-8 NETWORKS

In this section, we introduce chordal graphs and networks,
and partial path consistency. Since we deal with RCC-8
networks, we will use partial path consistency with weak
composition as [7] have done for IA networks. We will call this
5-path consistency for clarity. Similarly to the PPC algorithm
defined in [6], 5-path consistency considers only triangles
of nodes in the chordal graph corresponding to a constraint
network, and restricts consistency checking to these triangles.

The state of the art QSRs, including PyRCC8 presented
earlier in Section II, consider complete graphs when checking

6http://qsr.informatik.uni-freiburg.de/ijcai11-bench/
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the consistency of an input network. The techniques of this
section will show how to make this task more efficient using
5-path consistency if the underlying constraint graphs are
chordal or by turning them into chordal if they are not.

A. Chordal Graphs

In this section we list some definitions and theorems from
graph theory that are essential in understanding the discus-
sion to follow, and the new algorithms to be presented in
Section III-C. The interested reader may find more results
regarding chordal graphs, and graph theory in general, in [17].

Definition III.1. Let G = (V,E) be an undirected graph. The
following are well-known concepts from graph theory:
• The neighborhood of a vertex v ∈ V is N(v) = {v′ 6=
v | (v, v′) ∈ E}. The neighborhood of a set of vertices
S is N(S) =

⋃
s∈S N(s) \ S.

• If S ⊂ V is a set of vertices of G, G(S) denotes the
subgraph induced by S.

• A subset of vertices S ⊆ V is a minimal separator iff
G(V \S) has at least two connected components C1 and
C2 such that N(V (C1)) = N(V (C2)) = S.

• If (v1, v2, . . . , vk, vk+1 = v1) with k > 3 is a cycle,
then any edge on two nonadjacent vertices vi, vj with
1 < j − i < k − 1 is a chord of this cycle.

• G is chordal or triangulated if every cycle of length
greater than 3 has a chord.

• A clique is a set of vertices which are pairwise adjacent.
A clique is maximal if it is not a subset of a larger clique.

• A vertex v ∈ V is simplicial if the set of its neighbors
N(v) induces a clique, i.e., if ∀s, t ∈ N(v)⇒ (s, t) ∈ E.

• Let d = (vn, . . . , v1) be an ordering of V . Also, let Gi

denote the subgraph of G induced by Vi = {v1, . . . , vi};
note that Gn = G. The ordering d is a perfect elimination
ordering of G if every vertex vi with n ≥ i ≥ 1 is a
simplicial vertex of the graph Gi.

Theorem III.1. Let G = (V,E) be an undirected chordal
graph. The following statements are equivalent and charac-
terize G :
• G admits a perfect elimination ordering.
• Every minimal separator of G is a clique.
• There exists a tree T , called a clique tree of G, whose

vertex set is the set of maximal cliques of G and whose
edge set is the set of minimal separators of G.

Chordality checking can be done in linear time, since testing
whether an ordering is a perfect elimination ordering can be
performed in linear time with the lexicographic breadth-first
search algorithm or the maximum cardinality search algorithm
[18]. Both algorithms have time complexity O(|V |+ |E|) for
a given graph G = (V,E).

If a graph is not chordal, it can be made so by the addition
of a set of new edges, called fill edges. This process is usually
called triangulation of the given graph. The fill edges can be
found by eliminating the vertices one by one and connecting
all vertices in the neighborhood of each eliminated vertex,
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thus making it simplicial in the elimination graph. This process
constructs a perfect elimination ordering as a byproduct. If the
graph was already chordal, following its perfect elimination
ordering during triangulation has the result that no fill edges
are added.

In general, it is desirable to achieve chordality with as few
fill edges as possible. However, obtaining an optimum graph
triangulation is known to be NP-hard [18]. For this purpose
several advanced heuristic algorithms have been developed to
aid the approximation of a good triangulation [19]. In our
implementation we use the simple minimum degree heuristic
to obtain an elimination ordering of the set of vertices V .
The minimum degree heuristic, whenever applied, chooses
the vertex with the smallest number of neighbors which
consequently produces a clique of minimal size.

In the rest of the paper, the concepts of chordal graphs
introduced above will be applied to the constraint graph of a
given RCC-8 network. If such a graph is not chordal, it will
be made into one by introducing fill edges that correspond to
the universal relation.

B. 5-Path Consistency and Patchwork

We now show that5-path consistency is sufficient to decide
the consistency of a network with relations from the maximal
tractables subsets Ĥ8, C8, and Q8 of RCC-8. The proof of our
result makes use of the patchwork property of RCC-8 networks
originally defined in [20] and more recently used in [9]. This
property, which we define below, allows to “patch” a number
of satisfiable RCC-8 networks into a bigger network (their
union) which is also satisfiable, assuming that the networks
“agree” on their common part.

Let C be a constraint network from a given constraint
satisfaction problem (CSP). We will use VC to refer to the
set of variables of C. If V is any set of variables, CV will
be the constraint network that results from C by keeping only
the constraints which involve variables of V .

Definition III.2. We will say that a CSP has the patchwork
property if for any finite satisfiable constraint networks C and
C ′ of the CSP such that CVC∩VC′ = C ′VC∩VC′ , the constraint
network C ∪ C ′ is satisfiable [9].



Proposition III.2. The three CSPs for path consistent Ĥ8, C8,
and Q8 networks, respectively, all have patchwork [9].

Proposition III.3. Let C be an RCC-8 constraint network
with relations from Ĥ8, C8, and Q8 on its edges. Let G be the
chordal graph that results from triangulating the associated
constraint graph of C, and T a clique tree of G. Let C ′ denote
the constraint network corresponding to G (C ′ is C plus some
universal relations corresponding to fill edges). C is consistent
if all the networks corresponding to the nodes of T are path
consistent.

Proof: Let T = (V,E), where V = {V1, V2, . . . , Vn} is
the set of all maximal cliques of G. We enforce path consis-
tency on C ′. For every complete subgraph Gi of G induced
by Vi, path consistency can decide the satisfiability of the
corresponding subnetwork C ′i of C ′, because we have relations
from the maximal tractable subsets Ĥ8, C8, and Q8 of RCC-8.
If all C ′i’s are satisfiable then for any two networks C ′j and C ′k
with 1 ≤ j < k ≤ n we have that C ′jVC′

j
∩VC′

k

= C ′kVC′
j
∩VC′

k

.

Thus, it follows from Proposition III.2 that
⋃n

i=1 C
′
i = C ′

is satisfiable. Since C ′ is at least as restrictive as C, C is
satisfiable.

An example of Proposition III.3 is shown in Figure 4.
The constraint graph of the initial network C is shown in
(a). Then, we triangulate this graph by adding edge (v2, v3)
that is depicted in red colour in (b). Finally, we obtain a
decomposition of this graph that consists of maximal cliques
{v1, v2, v3}, {v2, v3, v4}, and {v2, v4, v5}, and is separated by
minimal separators {v2, v3} and {v2, v4} (as viewed in the
clique tree in (c)). Path consistency can be enforced upon the
corresponding subnetworks, and given that they are satisfiable,
they can be “patched” back together into a satisfiable network.

C. 5-Path Consistency and 5-Consistency

In this section, we give an algorithm to decide the con-
sistency problem of a network of RCC-8 by using maximal
tractable subsets Ĥ8, C8, and Q8 of RCC-8 and consistency
checking restricted to triangles of the chordal network. This
algorithm will be presented in the context of our PyRCC85
chordal reasoner.

First, we consider function 5-path consistency, shown in
Figure 5, which takes as parameters a network C, and its
corresponding chordal constraint graph G = (V,E) which is
obtained by triangulating the constraint graph corresponding
to C. The objective of 5-path consistency is to enforce path
consistency to all triangles of relations in G. Notice that
this will result in path consistent complete networks that
correspond to the nodes of a clique tree T of G. Thus, it
follows from Proposition III.3 that5-path consistency decides
the consistency of network C, assuming that C contains
relations from maximal tractable subsets Ĥ8, C8, and Q8 of
RCC-8. By denoting δ the maximum degree of a vartex of G,
we have for each arc (i, j) selected at line 3, at most δ vertices
of G corresponding to index k such that vi, vj , vk forms a
triangle. Additionaly, there exist |E| arcs in the network and

5-Path-Consistency(C, G)
Input: A constraint network C and its chordal graph G
Output: True or False

1: Q ← {(i, j) | (i, j) ∈ E } // Initialize the queue
2: while Q is not empty do
3: select and delete an (i, j) from Q
4: foreach k such that (i, k), (k, j) ∈ E do
5: t ← Cik ∩ (Cij � Cjk )
6: if t 6= Cik then
7: if t = ∅ then return False
8: Cik ← t
9: Cki ← t̆

10: Q ← Q ∪ {(i, k)}
11: t ← Ckj ∩ (Cki � Cij )
12: if t 6= Ckj then
13: if t = ∅ then return False
14: Ckj ← t
15: Cjk ← t̆
16: Q ← Q ∪ {(k, j)}
17:return True

Fig. 5. 5-Path-Consistency Algorithm

5-Consistency(C, G)
Input: A constraint network C and its chordal graph G
Output: A refined constraint network C’ if C is satisfiable or None

1: if not 5-Path-Consistency(C, G) then
2: return None
3: if no constraint can be split then
4: return C
5: else
6: choose unprocessed constraint xiRxj ;

split R into S1, ..., Sk ∈ S: S1 ∪ ... ∪ Sk = R
7: Values ← {Sl | 1 ≤ l ≤ k}
8: foreach V in Values do
9: replace xiRxj with xiV xj in C

10: result = 5-Consistency(C, G)
11: if result 6= None then
12: return result
13: return None

Fig. 6. Recursive 5-Consistency Algorithm

one can remove at most |B| values from any relation that
corresponds to an arc, where B refers to the set of base
relations of RCC-8. It results that the time complexity of 5-
path consistency is O(δ · |E| · |B|).

For the general case of RCC-8 networks, we have a back-
tracking algorithm, called 5-Consistency, which is presented
in Figure 6. The algorithm splits a relation R into relations that
belong to some tractable set of relations S (line 6). Then, each
of these relations is instantiated accordingly to the constraint
network C (line 9) and the 5-path consistency algorithm is
reapplied. Notice, however, that except for the first step, the
5-path consistency algorithm only has to be run for the paths
that are possibly affected by each prior instantiation, which
takes Θ(δ · |B|) intersections and compositions. This detail is
not included in Figure 6. PyRCC85 also offers an additional
algorithm, which is the iterative counterpart of the recursive
chronological backtracking algorithm.
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IV. EXPERIMENTAL RESULTS

We compare the performance of PyRCC85 with that of
PyRCC8 performing experiments that target both path con-
cistency and consistency implementations. We don’t use other
QSRs in our experiments, because our main point is to show
how partial path consistency is compared to path consistency.
For this purpose, having two very similar in their core compo-
nents implementations, is not only sufficient, but necessary for
avoiding confusion and obtaining clear results. Both reasoners
were configured for best performance. The experiments were
carried out on the same machine as described in Section II-A,
and both Python implementations were run with PyPy 1.8.
Only one of the CPU cores was used for the experiments.

c) 5-Path Consistency: Regarding path consistency, we
used the administrative geography (admingeo) of Great Britain
dataset [14]. We performed the experiment in the same way as
described in Section II-A. The results of the path consistency
experiment using the (consistent) admingeo dataset are shown
in Figure 7.

The path consistency implementation of PyRCC85, viz.
5-path consistency, outperforms the path consistency imple-
mentation of PyRCC8 by a very large scale. When the whole
dataset is considered at the final step, PyRCC8 decides the
consistency of the constraint network in about 5 hours on the
Lenny machine, whereas PyRCC85 requires less than 40 min-
utes for the same task. In fact, PyRCC85 runs significantly
faster than PyRCC8 for all different network sizes. This comes
as no surprise. Completing a network of more than 10000
nodes results in about 50 million edges that PyRCC8 has to
consider. On the other hand, triangulating the network with an
initial count of nearly 80000 edges, resulted in a total of only
4 million edges for PyRCC85 to consider.

The number of edges in a network inevitably affects the
number of revisions of arcs that different path consistency
algorithm implementations have to perform. A diagrammatic
comparison on the number of arcs that each algorithm pro-
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cesses is shown in Figure 8. The result is again overwhelm-
ing. When the whole dataset is considered at the final step,
PyRCC8 revises about 40 million arcs, whereas PyRCC85
revises only 2.5 million arcs. Every revision of an arc results
in several composition and intersection operations that we will
refer to as consistency checks. A diagrammatic comparison on
the number of consistency checks that each algorithm performs
is shown in Figure 9. At the final step, PyRCC8 performs
around 500 billion consistency checks, whereas PyRCC85
performs only 10 billion consistency checks.

A summary on the results that is based on the average of
the different parameters used for comparing our PC algorithms
follows. The percentage decrease is shown in the last column.

PyRCC8 PyRCC85 %
CPU time 1825.129s 289.203s 84.15%

revised arcs 4834133.78 373080.28 92.28%
consistency checks 3.606e + 10 1.181e + 09 96.72%
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Fig. 10. Comparison diagram of consistency algorithms on CPU time

It is clear that for large sparse spatial networks, graph
triangulation offers a great advantage over graph completion
and, thus, 5-path consistency is the better choice. Similar
results are obtained for randomly generated sparse networks.
However, path consistency implementations of the state of the
art QSRs deal very easily with randomly generated instances,
even if they are in the phase transition region, as the ones used
in Section II-A. We considered the admingeo dataset to be a
much more interesting case, since it proved to really strain the
different implementations.

d) 5-Consistency: To assess the speed of the back-
tracking search, we considered network sizes of 100 nodes
for an average degree d varying from 3 to 15 with a step
of 0.5. For each series, 300 networks were generated using
all RCC-8 relations. The hardest instances are located in
an interval where the average degree ranges from 8 to 11
and the phase transition occurs. The main objective of our
experimentation is to compare the efficiency of the different
consistency algorithms. For this purpose we use the same
parameters as with the path consistency experiment, that is,
CPU time, number of revised arcs, and number of consistency
checks. The results of the consistency experiment based on
the CPU time of execution are shown in Figure 10.

PyRCC85 outperforms PyRCC8 for as long as relatively
sparse constraint networks are considered. Significant gains in
the performance of PyRCC85 are noted in the phase transition
region where the hardest and more time consuming, in terms
of solubility, instances appear. However, the performance of
PyRCC85 deteriorates when constraint networks of average
degree d > 12 are considered. RCC-8 networks with an
average degree d > 12 are overconstrained, dense, and soluble
with a very low probability, thus, they are often easy to
decide [2]. As networks become more dense, PyRCC85
tries to simulate the behavior of PyRCC8, by considering
more and more initial edges. This has a straight impact in
PyRCC85’s computational complexity. A chordal constraint
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Fig. 12. Comparison diagram of consistency algorithms on # of consistency
checks

graph in PyRCC85 is represented as a dictionary, an un-
ordered set of key:value pairs where every key is a vertex
of the graph and its value is the set of its neighbors. When an
arc (i, j) is processed we compute the intersection between
vertex’s i and vertex’s j sets of neighbors to obtain all
triangles of relations that arc (i, j) is part of. In the average
case, the time complexity for this operation in Python is
O(min(len(neighborsOf(i)), len(neighborsOf(j)))). It is
clear that a big average degree of the initial network results
in a bigger average degree of its chordal constraint graph and,
thus, time complexity rises. Of course, one could precompute
and store all triangles of relations, but for large datasets this
would lead to large space requirements.

We continue our analysis with a diagrammatic compari-
son on the number of arcs that each consistency algorithm
processes, shown in Figure 11. Again, the difference in the
performance of PyRCC85 and PyRCC8 is bigger in the phase



transition region. Finally, since every revision of an arc results
in several consistency checks, likewise to the path consistency
experiment, we provide a diagrammatic comparison on the
number of consistency checks that each algorithm performs,
shown in Figure 12.

A summary on the results that is based on the average of
the different parameters used for our comparisons follows. The
percentage decrease is shown in the last column.

PyRCC8 PyRCC85 %
CPU time 0.524s 0.509s 2.80%

revised arcs 1300.681 801.204 38.40%
consistency checks 105751.173 74864.985 29.21%

One would expect that since our consistency algorithm
implementations are strongly dependent on the underlying path
consistency algorithms, performance results of our consistency
experiment would reflect those of our path consistency exper-
iment. This is true up to the point when dense graphs are con-
sidered. Our experimental results show that the performance of
PyRCC85 is deteriorating, with respect to the performance of
PyRCC8, when dealing with dense graphs. However, overall
the performance of PyRCC85 is much better, especially for
network instances in the phase transition region that are the
most difficult to solve. We used the maximal tractable subset
Ĥ8 of RCC-8 as a split set (line 6 in Figure 6), since it best
decomposes RCC-8 relations [2]. The performance gain in the
phase transition region would be more apparent if we had
opted for a tractable set of relations with a bigger average
branching factor (e.g., the set of RCC-8 base relations B) [21].

V. RELATED WORK

Bliek and Sam-Haroud were the first to study chordal graphs
in the context of finite domain CSPs [6]. In [6] they show
that for convex CSPs with a chordal graph G, strong PC is
equivalent to strong PC on the completion of G. Our result for
RCC-8 is weaker, since the chordal graphs we construct are
equivalent only with respect to consistency. A similar research
effort on the consistency of chordal networks is [7], where
Chmeiss et al. introduce partial �-consistency and apply it to
decide consistency of pre-convex IA networks. In [22] Li et al.
speed up consistency checking in sparse atomic IA networks,
by recursively decomposing the networks in a divide-and-
conquer approach and eliminating the need for examining
triangles across subnetworks when enforcing path consistency.
In [23] Bodirsky et al. introduce the notion of tree decompo-
sition for constraint networks, and define the amalgamation
property for atomic RCC-8 networks, that allows satisfiable
subnetworks to be glued together in a tree-like manner. Finally,
in [9], Huang shows that the patchwork property, in the
presence of compactness, holds for IA and RCC-8 networks,
for all maximal tractable subsets of the respective calculi,
thus, significantly stregthening all previous results regarding
IA, RCC-8, and their fragments and extensions.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced 5-path consistency for RCC-
8 networks. Based on the patchwork property defined in [9],

we showed that 5-path consistency is sufficient to decide the
consistency problem for the maximal tractable subsets Ĥ8, C8,
and Q8 of RCC-8. Further, we gave an algorithm to solve
networks of RCC-8 and presented extensive experimental
results accompanied by a detailed summary.

Future work consists of using other methods of triangulation
and comparing the behavior of our algorithm for these different
methods. We also plan to perform experiments with other
possible real datasets, such as GADM7, a spatial database of
the location of the world’s administrative areas.
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