
I!%i?!ConferenceCompanion‘ CHI’94* Boston,MassachusettsUSA* April2428,1994 ShortPapers

OPOSSUM: A FLEXIBLE SCHEMA
VISUALIZATION AND EDITING TOOL

Eben M. Haber, Yannis E. Ioannidis, and kfiron Livny

Department of Computer Sciences
University of Wisconsin, Madison

1210 Dayton Street, Madison, WI 53706
E-Mail: {haber,yannis,miron} @cs.wise.edu

ABSTRACT

In the spirit of interdependence of the different areas of CHI
research, we present a description of OPOSSUM, a visual-
ization tool inspired by concepts from heterogeneous data-
bases. OPOSSUM is a tool for visualizing and editing
structured data; we use it to view and modify object-
oriented database schemas. OPOSSUM is based on a
formalism that allows declarative descriptions of the
following: 1) a model describing the schema to be
visualized, 2) a model describing visualizations, and 3) a
mapping between the two models. The formal approach
makes OPOSSUM very flexible, and promises solutions to
several problems of schema visualization.

KEYWORDS

Model-based Interface Tools, Metaphors, Database, Schema
Visualization

INTRODUCTION

This paper describes OPOSSUM (Obtaining Presentations
Of Semantic Schemas Using Metaphors), a structured data
visualization and editing tool currently under development.
OPOSSUM’s role is visualization of object-oriented data-
base schemas, although it works with other structured
information. OPOSSUM is based on a formalism that
describes visualization; the formalism was inspired by the
concept of schema mapping from the field of heterogeneous
databases [3]. This formalism defines visualizations
through three declarative descriptions: a data model that
describes the schemas to be visualized, a visual model that
describes visualizations, and a metaphor mapping between
the two models. OPOSSUM now in prototype form; it
allows a schema to be edited through manipulation of the
schema’s visualization.

OVERVIEW OF OUR FORMALISM

OPOSSUM is based on a formalism that describes
transformations of structured information between abstract
and visual forms. This formalism is fully described in [1].
We developed the formalism to improve visualization flexi-

Permissmn to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication e“d its date appear, end wati=e is Siven

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

andkw specifio permission.

CH194 Companion-4/94 Boston, Massachusetts USA

01994 ACM 0-89791 -651 -4/94 /0321 . ..$3.50

bility; there are several different useful visualizations for
any given schema, thus flexibility is required.

Database schemas are instances of the data mc~del used by a
database system. For example, each schema in a relational
database is an instance of the relational data model. In
general, a schema is an instance of some information
model. The process of visualizing a data model schema
(i.e., converting an instance of a data model to a visual
form) is similar to schema mapping in a heterogeneous
database (i.e., transforming an instance of one data model to
an instance of another data model) [3]. Our formalism grew
from this idea; instead of mapping schemas between differ-
ent data models, it maps data model schemas to schemas of
a visual model, A visual model is distinguished in that
visual model schemas define an appearance for themselves.
For example, one might want to map a relational schema to
a visual model schema formed of boxes, text, and lines.

Information models are defined declaratively in terms of
types of primitives in the model, attributes of the prim-
itives of those types, allowed values of the a~ttributes, and
constraints that must be satisfied by schemas of the model.
For example, the relational data model has two types of
primitives: relation and attribute, the former having the
attribute name, and the latter having the attributes name,
type, and a relation with which it is associated. Meta-
phors are defined as the union of three functions that map
from: 1) visual model types of primitives to data model
types of primitives, 2) visual model attributes to data model
attributes, and 3) visual model values to data model values.
For example, one type of visual model primitive could be
defined to be a Ibex with a piece of text inside. A metaphor
could specify that this type of primitive corresponds with
relation in the above data model, and that the text field
corresponds with the relation name. Given a metaphor
between a data and a visual model, it is possible to induce a
mapping between schemas of the two models. Metaphors
ensure a structural correspondence between schemas of the
two models sulch that, when users view a visual model

schema, they can (with knowledge of the metaphor) infer
the corresponding data model schema. The metaphor
defines the meaning of visual model features ‘with respect to
data model features. Metaphor mappings may be many-to-

one, indicating that several visual model features have the

same meaning ‘with respect to the data model; this provides

representation choice (two types of primitives or attriute

321

ShortPapers CHI’94- “CelebratingInterdependence”o ConferenceCompanion

values that may be used interchangeably) or redundancy
(two attributes representing the same information).

Metaphors may be tested for correctness. In this context,
correctness means that any data model schema can be
unambiguously mapped to a visual model schema and back
again. In addition, the formalism allows metaphors to be
composed, forming new, richer metaphors with increased
choice or redundancy.

OPOSSUM, A FORMALISM BASED TOOL

OPOSSUM is designed as the core of a graphical user
interface for an object-oriented scientific database system.
Its first role is to allow schema display and editing via
direct manipulation of a schema visualization, though it
may be extended in the future to support visual querying
and data display. It is implemented in C++ and

InterViews/Unidraw, running with X-windows on a Unix
workstation. Currently, OPOSSUM permits schema
definition and editing for any models and metaphors
supported by our formalism.

OPOSSUM is very flexible in order to work with arbitrary
models and metaphors. Descriptions of models and
metaphors are maintained as data structures in main
memory, though they are saved to disk between sessions.
The OPOSSUM interface consists of one or more windows,
each associated with a particular visual model (and usually
a corresponding data model and metaphor). Each window
includes tools for creating primitives of the associated
visual model. In addition, there is a general attribute
editing tool that pops up a menu of modifiable attributes for
any primitive; when an attribute is selected from the menu,
a dialog box allows the user to edit the attribute’s value.

In the OPOSSUM prototype, model and metaphor data
structures must be created by hard-coded routines. Visual
editing of models and metaphors is currently being implem-
ented. We have used the formalism to support this: a data
model describing data and visual models (i.e., a meta-
model) has been hard-coded. Data structures describing
models and metaphors can be converted to and from
schemas in the meta-model. A meta-model schema can be
mapped to a visual meta-model (which visualizes models as
a directed graph), and edited like any other schema. This
allows any data model, visual model, or metphor to be
edited (except for the meta-model itself). This demonstrates
that our formalism is sufficiently expressive to describe
models and metaphors.

Visualization of large schemas often presents problems. For

example, the meta-model schema describing the data and

visual models from our own database has approximately

1400 elements, the majority describing the visual model,

The display of large schemas like this present several prob-

lems: it is difficult to see both details and gross structure,

and edges in the graph stretch for long distances across the

schema, Our formalism suggests several solutions to these

problems, including different and more compact visual rep-

resentations. For example, the metaphor could offer choice

of visual primitives so that a long edge could be
equivalently represented as two independent pieces.
Limited space precludes a more detailed description here.

RELATED WORK

Other systems have taken a formal approach to
visualization. User interface tools that are based on formal
models include Chiron [6], Humanoid [5], and UIDE [4].
These provide various means for defining data and visual
models. These systems, however, capture metaphors
procedurally and/or as part of the visual model. Another
related formal approach is that of Kuhn and Frank [2], who
use algebraic mappings to examine user interface behavior.
For example, they compare the behavior of a real desktop to
that of a computer desktop metaphor. They do not consider
data visualization, however,

CONCLUSIONS AND FUTURE WORK

In this paper, we have described an idea from the area of
databases (schema mapping) applied to a problem in the
area of interfaces (visualization). The result is a formalism
and a tool that are beneficial to both areas. The implem-
entation of the tool, OPOSSUM, is still in progress, but it
has already demonstrated some of the power of our formal
approach. Future work on OPOSSUM includes completing
model and metaphor editing, enhancing the constraint
language, and integrating OPOSSUM with a database
system. In addition, we intend to test OPOSSUM empir-
ically, as real users will provide the best feedback to gauge
the problems and pitfalls of our approach.

REFERENCES

1. Haber, E.M., Ioannidis, Y., and Livny, M. Foundations
of Visual Metaphors for Schema Display. To appear in
the Journal of Intelligent Information Systems, Special

Issue on Visual Information Systems, Summer 1994.

2. Kuhn, W., and Frank, A,U. A Formalization of Meta-

3.

4,

5.

6.

phors and Image-Schemas in User Interfaces. Cognitive
and Linguistic Aspects of Geographic Space, pp. 419-
434. Khtwer Academic Pub., Amsterdam, 1991.

Miller, R., Ioannidis, Y.E., and Ramakrishnan, R. The
use of information capacity in schema integration and
translation. Proc. 19th Int. VLDB Conference, pp. 120-
133 Dublin, Ireland, August, 1993.

Sukavariaya, P. ‘Noi’, Foley, J.D., and Griffith, T. A
Second Generation User Interface Design Environment:
The Model and Runtime Architecture. In Proc. of

INTERCHI ’93, pp. 375-382, Amsterdam, April 1993.

Szekely, P., Luo, P., and Neches, R. Beyond Interface
Builders: Model Based Interface Tools. In Proc. of
INTERCHI ’93, pp. 383-390, Amsterdam, April 1993.

Taylor, R. N., and Johnson, G.F. Separation of Concerns
in the Chiron- 1 User Interface Development and
Management System. In Proc. of INTERCHI ’93, pp.
367-374, Amsterdam, April 1993.

322

