
Query Optimization
YANNIS E. IOANNIDIS

Computer Sciences Department, University of Wisconsin, Madison ^yannis@cs.wisc.edu&

Given a query, there are many access
plans that a database management sys-
tem (DBMS) can follow to process it and
produce its answer. All plans are equiv-
alent in terms of their final output but
vary in their cost, that is, the amount of
time that they need to run. This cost
difference can be several orders of mag-
nitude large. Thus all DBMSs have a
module that examines “all” alternatives
and chooses the plan that needs the
least amount of time. This module is
called the query optimizer.
Query optimization is a large area

within the database field and has been
surveyed extensively [Jarke and Koch
1984; Mannino et al. 1988]. This short
paper emphasizes optimization of a sin-
gle select-project-join query in a central-
ized relational DBMS.
An abstraction of the query optimiza-

tion process, divided into a rewriting
and a planning stage, is shown in Fig-
ure 1.1 The functionality of each module
in Figure 1 is described in the following.

Rewriter. This module applies trans-
formations to a given query and pro-
duces equivalent queries intended to be
more efficient, for example, standard-
ization of the query form, replacement
of views by their definition, flattening
out of nested queries, and the like. The
transformations performed by the Re-
writer depend only on the declarative,

that is, static, characteristics of queries
and do not take into account the actual
query costs for the specific DBMS and
database concerned.

Planner. This is the main module of
the ordering stage. It employs a search
strategy that explores the space of ac-
cess plans determined by the Algebraic
Space and the Method-Structure Space
modules for each query produced in the
previous stage. It compares these plans
based on estimates of their cost derived
by the Cost Model and the Size-Distri-
bution Estimator modules and selects
the overall cheapest one to be used to
generate the answer to the original
query.

There are several types of search
strategies that the Planner may employ
for its exploration. By far the most im-
portant one is based on dynamic pro-
gramming. It was first proposed in the
context of the System R prototype [Sel-
inger et al. 1979] and is currently used
(in various forms) by essentially all
commercial systems. It constructs all
alternative access plans by iterating on
the number of relations joined so far,
always pruning plans known to be sub-
optimal. The memory requirements and
running time of dynamic programming
grow exponentially with query size (i.e.,
number of joins) in the worst case. Most
queries seen in practice, however, in-
volve less than 10 joins, and the algo-
rithm has proved to be very effective in
such contexts. For really large queries,
which appear in various novel database
applications, several other algorithms

1 Figure 1 is essentially a modular architecture of
a query optimizer. Although one could build an
optimizer based on this architecture, in real sys-
tems, the modules shown do not always have such
clear-cut boundaries.

This work was partially supported by the National Science Foundation under Grants IRI-9113736 and
IRI-9157368 (PYI Award), by Lockheed as part of an MDDS contract, and by grants from IBM, DEC,
HP, AT&T, Informix, and Oracle.
Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



have been proposed. Of these, random-
ized algorithms, for example, simulated
annealing, iterative improvement, and
two-phase optimization, appear very
promising [Ioannidis and Kang 1990;
Swami and Gupta 1988].

Algebraic Space. This module deter-
mines the orderings of the necessary
operators to be considered by the Plan-
ner for each query sent to it. These are
usually represented in relational alge-
bra as formulas or in tree form. For a
complicated query, the number of all
orderings may be enormous. To reduce
the size of the space that the search
strategy must explore, DBMSs usually
impose various restrictions. Typical ex-
amples include: never generating un-
necessary intermediate relations (i.e.,
selections and projections are processed
on the fly); never forming unnecessary
cross products; and never having an in-
termediate result as the inner operand
of a join (i.e., it should always be a
database relation).

Method-Structure Space. This mod-
ule determines the implementation
choices that exist for the execution of
each operator ordering specified by the
Algebraic Space. These choices are re-
lated to the available join methods for
each join (e.g., nested loops, merge scan,
and hash join), if supporting data struc-
tures are built on the fly, if/when dupli-
cates are eliminated, and other imple-

mentation characteristics of this sort,
which are predetermined by the DBMS
implementation. They are also related
to the available indices for accessing
each relation, which are determined by
the physical schema of each database.
Given an algebraic formula or tree from
the Algebraic Space, this module pro-
duces all corresponding complete access
plans that specify the implementation
of each algebraic operator and the use of
any indices.

Cost Model. This module specifies the
arithmetic formulas used to estimate
the cost of access plans. For every dif-
ferent join method, different index-type
access, and in general for every distinct
kind of step that can be found in an
access plan (as prescribed by the Method-
Structure Space), there is a formula
that gives an (often approximate) cost
for it.

Size-Distribution Estimator. This
module estimates the sizes of the re-
sults of (sub)queries and the frequency
distributions of values in attributes of
these results, which are needed by the
Cost Model. Several techniques have
been proposed in the literature to esti-
mate query result sizes and frequency
distributions [Mannino et al. 1988], for
example, sampling or using polynomial
or statistical approximations. Most com-
mercial DBMSs, however, base their es-

Figure 1. Query optimizer architecture.

122 • Yannis E. Ioannidis

ACM Computing Surveys, Vol. 28, No. 1, March1996



timation on histograms. A histogram is
formed by partitioning the domain of an
attribute into buckets and assuming a
uniform distribution within each bucket
(i.e., all attribute values in the bucket
having the same frequency). Commer-
cial systems typically use equi-width
histograms [Kooi 1980], in which buck-
ets are associated with equal-sized
ranges of the domain of the attribute.
Although not yet used commercially,
several other histogram types have been
proposed that produce better estimates,
for example, equi-depth [Kooi 1980;
Piatetsky-Shapiro and Connell 1984]
and serial/end-biased [Ioannidis and
Poosala 1995].
Despite all the work that has been

done on query optimization, in every
single module of the architecture of Fig-
ure 1, there are many questions for
which we do not have complete answers,
even for the most simple, single-query,
relational optimizations. Moreover, sev-
eral advanced query optimization issues
are active topics of research. These in-
clude parallel, distributed, semantic,
global, parametric, dynamic, nested,
rule-based, object-oriented, heteroge-
neous, recursive, and aggregate query
optimization, as well as query optimizer
generators, optimization with material-
ized views, optimization with expensive
selection predicates, and query opti-
mizer validation. Despite its age, query
optimization remains an exciting field.

REFERENCES

IOANNIDIS, Y. AND KANG, Y. 1990. Randomized
algorithms for optimizing large join queries.
In Proceedings of the 1990 ACM-SIGMOD
Conference on the Management of Data (At-
lantic City, NJ, May) 312–321.

IOANNIDIS, Y. AND POOSALA, V. 1995. Balancing
histogram optimality and practicality for
query result size estimation. In Proceedings of
the 1995 ACM-SIGMOD Conference on the
Management of Data (San Jose, CA, May)
233–244.

JARKE, M. AND KOCH, J. 1984. Query optimiza-
tion in database systems. ACM Comput. Surv.
16, 2 (June), 111–152.

KOOI, R. P. 1980. The optimization of queries in
relational databases. Case Western Reserve
University, Ph.D. Thesis, Sept.

MANNINO, M. V., CHU, P., AND SAGER, T.
1988. Statistical profile estimation in data-
base systems. ACM Comput. Surv. 20, 3,
(Sept.), 192–221.

PIATETSKY-SHAPIRO, G. AND CONNELL, C.
1984. Accurate estimation of the number of
tuples satisfying a condition. In Proceedings
of the 1984 ACM-SIGMOD Conference on the
Management of Data (Boston, MA, June),
256–276.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN, D.
D., LORIE, R. A., AND PRICE, T. G.
1979. Access path selection in a relational
database management system. In Proceedings
of the ACM SIGMOD International Sympo-
sium on Management of Data, (Boston, MA,
June), 23–34.

SWAMI, A. AND GUPTA, A. 1988. Optimization of
large join queries. In Proceedings of the 1988
ACM-SIGMOD Conference on the Manage-
ment of Data, (Chicago, IL, June), 8–17.

Query Optimization • 123

ACM Computing Surveys, Vol. 28, No. 1, March1996


