
*
-_I .-. _i-.x . .’ -’ ‘1--G. -..--.a--.. . . . I ‘L

Conjunctive Query Equivalence of Keyed Relational Schemas

(Extended Abstract)

Joseph Albert* Yannis Ioannidis* Raghu Ramakrishnan’
Computer Science Dept.

Portland State University

P.O. Box 751

Portland, OR 97210

jalbertQacm.org

Computer Sciences Dept.

University of Wisconsin

1210 W. Dayton St.

Madison, WI 53706

yannisQcs.wisc.edu

Computer Sciences Dept.

University of Wisconsin

1210 W. Dayton St.

Madison, WI 53706

raghuQcs.wisc.edu

Abstract

The notion of when two schemas are equivalent is fimda-
mental to database design, schema integration, and data
model translation. An important notion of schema equiv-
alence, query equivalence was introduced in [3], and used
to evaluate the correctness of schema transformations. The
logically equivalent notion of calculous equivalence, as well
as three progressively weaker notions of schema equivalence
were introduced in 1984 by Hull [9, lo], who showed that
two schemas with no dependencies are equivalent (under all
four notions of equivalence) if and only if they are identical
(up to renaming and re-ordering of attributes and relations).
Hull also conjectured that the same result holds for schemas
with primary keys. In this work, we resolve the conjecture
in the affirmative for the case of query equivalence based on
mappings using conjunctive relational queries with equality
selections.

1 Introduction

A fundamental concept in database theory is that of schema
equivalence. Informally, two schemas are equivalent if ei-
ther one can simulate the other in terms of their capacities
to store database instances and support queries. An un-
derstanding of schema equivalence is important for schema
integration in heterogeneous multidatabase systems, [4, 161,
where two schemas with dependencies describing the seman-
tics of the data are given, and one would like to integrate the
schemas. Because the schemas to be integrated may have
semantic incompatibilities, it may be necessary to transform
one or both of the schemas to equivalent schemas in prepa-
ration for integration.

For example, suppose one wants to integrate the follow-
ing two relational schemas with key dependencies and refer-
ential integrity constraints. Key attributes are marked with
an asterisk, and referential integrity constraints are shown
using standard inclusion dependency notation.

‘This is a Massive Digital Data Systems (MDDS) project spon-
sored by the Advanced Research and Development Committee of the
Community Management Staff.

Permission to m&e di&sVhard copies of all or part of this material for
personal or cbwroom use is granted without fee provided that the copies
are not mnde or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date app&,u, and notice is
gven that copyright is by permission oflhe ACM, Inc. To copy otherwise.
to republish, to post on servers or to redistribute to lists, requires specitic
permission and/or fee
PODS ‘97 Tucson Arizona USA
Copyright 1997 ACM 0-89791-910-G/97/05 ..$3.50

44

employee(ss*, eName, salary, depId)
department(deptId*, deptName, mgr)
salespeople(ss*, yearsExp)

employee[depId] E department[deptId]
salespeople[ss] C employee[ss]
employee[ss] 5 salespeople[ss]

Schema 1

empl(ssn*, ename, sal, dep, yrsExp)
dept(departId*, dName, manager)

empl[dep] C dept[departId]

Schema 2

Assume it is desirable to integrate the two schemas by
integrating the employee relation in the first schema with
the empl relation in the second schema to form a unified
employee relation, and to integrate the department relation
from the first schema with the dept relation in the second
schema to form a unified department relation. In thin caoe,
there is a semantic incompatibility in that the yearsExp at-
tribute of an employee is stored in a separate relation, aaleo-
people, so that a fully general integration of the employee
relation and empl relation is not posssible.

However, it can be shown that the f?.r& schema could be
transformed into an equivalent schema in which the incom-
patibility is removed. Such a schema, Schema l’, is shown
here with Schema 2.

employee(ss*, eName, salary, depId, yearsExp)
department(deptId*, deptName, mgr)
salespeople(ss*)

employee[depId] C department[deptId]
salespeople[ss] s employee[ss]
employee[ss] C_ salespeople[ss]

Schema 1’

empl(ssn*, ename, sal, dep, yrsExp)
dept(departId*, dName, manager)

empl[dep] C dept[departId]

Schema 2

Note that in the absence of the inclusion dependencies
specified, Schema 1 and Schema 1’ would not be equivalent.
With the dependencies that hold on Schema 1, however, the
transformation is equivalence preserving, so that Schema 1
and Schema 1’ are equivalent, and the incompability has
been removed. The employee and empl reIations now can

be integrated into a unified relation. Syntactic character-
izations of equivalence of relational schemas with various
families of dependencies, such as primary keys, referential
integrity constraints, functional dependencies, are needed.
In particular, one would like to have a set of transforma-
tions for which all schemas equivalent to a given schema can
be generated by applying some sequence of transformations
from the set.

The notion of schema equivalence also is important in
database design [5,8,11,17] where, given a schema proposed
for some application, one may want to choose an equivalent
schema that satisfies one or more desirable normal forms. In-
deed, schema equivalence was f&t proposed in this context
by Codd [8], wherein two schemas are considered equivalent
if they can support the same queries. Subsequently, a notion
of schema equivalence was proposed in which two schemas,
both of which are decompositions of the same universal rela-
tion, are equivalent if the set of instances of the universal re-
lation for which the decomposition is lossless is the same for
both schemas [6, 121. That is, either schema can represent
the same set of universal instances. This notion of equiva-
lence was used for database design, but has the limitation
that it only applies to pairs of schemas both of which are pro-
jections of the same universal relation scheme. In general,
such an assumption is not possible in multidatabase schema
integration. Moreover, closed-form characterizations of this
form of equivalence are not available, although an algorithm
to test for such equivalence is given in [S]. Similar notions
of equivalence were defined in [2, 141.

Another notion of equivalence that has been proposed
considers two schemas to be equivalent if there is a bijection
between the set of database instances of one schema and
the set of instances of the other [13, 151. However, this
simply means that the set of instances of one schema has
the same cardinality as the set of instances of the other
schema. Moreover, if the domain of values available to store
in a database is infinite, then ah schemas are equivalent.

The limitations of these notions of equivalence are over-
come by the notion of query equivalence that was introduced
in [3], and studied by Hull, who also introduced three pro-
gressively less restrictive notions of equivalence, Z-generic
equivalence, Z-internal equivalence, and absolute equivalence,
and provided a rich foundation of theoretical results con-
cerning schema equivalence [lO]. Hull also showed that for
relational schemas with no dependencies, all four notions of
schema equivalence are logically equivalent, and that two re-
lational schemas with no dependencies are equivalent if and
only if they are identical, up to renaming and re-ordering of
attributes and relations. Thus a characterization of schema
equivalence for relational schemas with no dependencies is
available,

Hull conjectured that this should generalize to relational
schemas with primary keys, that is, that they are equiva-
lent if and only if they are identical, up to renaming and
re-ordering of attributes and relations. We resolve this con-
jecture in the aifirmative for conjunctive query equivalence,
where instance mappings are conjunctive relational algebra
queries with equality selections. (Query equivalence in [lo]
uses the full relational algebra for such mappings.)

Such a result demonstrates that two keyed schemas sup-

port the same conjunctive queries if and only if there are
identical, up to renaming and re-ordering of attributes and
relations. This is a negative result about the existence of
equiva&ence-preserving transformations for schemas having
only primary keys, which suggests that other dependencies
are important for transforming schemas in meaningful ways.
Indeed, the example above shows that for schemas having
both primary key dependencies and referential integrity con-
straints, there are non-trivial schema transformations that
preserve equivalence.

A characterization of equivalence for schemas with only
primary keys is critical to obtaining similar characteriza-
tions for schemas with other dependencies. For instance,
when schemas with primary keys and referential integrity
constraints are considered, a schema with only primary keys
is a degenerate case where it happens that no referential in-
tegrity constraints have been specified. Thus, it would be
impossible to characterize equivalence of schemas with pri-
mary keys and referential integrity constraints without char-
acterizing equivalence of sclxemas with only primary keys.

The present report is an extended abstract of a full paper
that includes complete proofs as well as additional motiva-
tional material for the results stated here [l]. The rest of
this abstract is organized in the following manner. Section 2
presents precise formal definitions of standard concepts per-
taining to the relational model of data as well as definitions
of other concepts used or introduced in this work. Section 3
states various results concerning conjunctive queries in gen-
eral as well as the central results of this work that pertain to
conjunctive query dominance and equivalence of relational
schemas. Con&ding remarks are given in Section 4.

2 Preliminaries

In this section, we formalize what is meant by a schema
and d&e various concepts and notation. We assume that
the reader is familiar with the relational model of data [7].
A domain is a countably infinite set of atomic values. A
collection of atttibute types over some domain D is a finite
collection of disjoint subsets of D. Attribute types are also
(countably) infinite. A.n atttibute is a pair consisting of a
name (called the name of the attribute) and an attribute
type (called the type of the attribute). A relation scheme
consists of a name (name of the relation) and an ordered
list of attributes, generally written R[Al, AZ, Ak]. R is
the name of the relation. If for each i, IV; is the type of
attribute A;, then an instance r of relation R is just some
subset of the cross-product Nr x Ns x . . . x .I&. The tuple
(NI, Nz, NJJ is called the type of the relation R.

The set of all instances of R, written i(R), is defined as
the power set of the cross-product of attribute types in the
scheme. A relational database schema is a tuple of reIation
schemes. A database instance of the schema is a tuple of
instances of each relation scheme in the schema. We write
i(S) for the set of all instances of schema S.

A superkey dependency on a relation is a declared sub-
set of attributes of the relation. The subset of attributes is
called a superkey. A superkey dependency on some relation
is satisfied by an instance of the relation if any pair of dis-
tinct tuples in the instance have different values for at least
one of the attributes in the superkey. If no proper subset
of some superkey of a relation is also a superkey, then the
superkey is called a key, and the associated dependency is
called a key dependency. A keyed schema is one where a
single key is specified for each relation in the schema, and
no other dependencies are specified to hold in the schema.

.

45

A schema for which no dependencies are specified is called
an unkeyed schema.

A functional dependency on a schema is a pair of at-
tribute sets. If X and Y are the two sets of attributes, the
dependency is usually written X + Y. If all of the at-
tributes in both X and Y belong to the same relation, then
an instance of that relation is said to satisfy dependency
if every pair of tuples of the relation which differ on some
attribute in Y also differ on some attribute in X. Other-
wise, the dependency fails for the given relation instance.
An instance of the schema satisfies some functional depen-
dency X + Y if all of the attributes in both X and Y
belong to the same relation, and the instance of this rela-
tion in the database instance satisfies the dependency. If all
of the attributes in X and Y do not belong to the same re-
lation, then the functional dependency fails for any instance
of the schema. Note that allowing functional dependencies
to be expressed in this way differs from the usual formal-
ization where a functional dependency is only de&red using
attributes from a single relation, but this trivial extension
allows for a concise statement of some of the results below.

A uieur over a schema S is a pair (V, q), where V is a
relation scheme and q : i(S) + i(V) maps each instance of
S to an instance of V. The mapping q is called a query. If

44 = a for some database d, and a is an instance of V,
then a is called the answer to the query 4 for database d.
The type of the view, as well as the type of the query, is just
the type of V. A query language consists of a set of queries
together with a syntax capable of specifying any query in
the set.

Definition: Given some schema S on which two queries
q : i(S) + i(V) and q’ : i(S) + i(V) having the same type
are defined, we say that q is contained in q’, written q _C q’,
if for every instance d E i(S), q(d) E q’(d). H

Definition: We say that q is equiualent to q’, written q s q’,
if q C q’ and q’ g q. 1

DeRnjtion:

;l ‘2, R,2, ..-I

Given schemas Sl = (R:, R.& &) and Sz
Rf,J, and a query language, L, then a =

, urn) iS a query mapping from sl to &! if each Vk
is ,’ view over Sr defined using queries in L, and the type of
vk is the same as the type of Ri for each k. m

For each instance of Sl, the query mapping defines an
instance of Ss, since each tlk defines an instance of RE. we
write u : i(S1) + i(S2). If a is a query mapping from
the keyed schema Sl to the keyed schema Ss, then we say
that a is valid if it maps each instance of S1 satisfying the
key dependencies for Sl to an instance of Ss satisfying the
key dependencies for Ss. Query mappings between u&eyed
schemas are always valid.

Definition: Let Sl and S2 be two keyed schemas, and let
L be a query language. Then we say that SZ L-dominates
Sl, written Sl $, SZ, if there are valid query maps
CY : i(Sl) + i(S2) ando : i(S2) + i(&) such that Soar is the
identity map on i(Sr). To indicate the query mappings that
establish the dominance we sometimes write Sr -& Sr by

(%P)* I

Definition: If Sr 5~ Ss and Sr 3~ Sr, then we say
that the two schemas are L-equivalent, written Sl E& S2. u

The notions of L-dominance and L-equivalence were in-
troduced in [3]. We sometimes write Sl 5 S2, or Sl 2 S2,

46

when the particular language L is clear from the context,
The following result is proved in [lo].

Theorem (Hull 1986) If L is the relational algebm, 5’1 and
Sz ure schemas with no dependencies, then St SL S2, if
and only if S1 and SZ are identical up to renaming and re-
ordering of attributes and relations. m

Hull also conjectured that this result holds for keyed achemao,
but this conjecture remains open.

Definition: A conjunctive query is a relational algebra
query that can be expressed using only the operntionn of
select, project, join, and Cartesian product. 1

A conjunctive query view (V, q) is specified using a nyn-
tactic style borrowed from Datalog. However, the syntax
used here is more restrictive than Datalog, allowing only dio-
tinct variables as placeholders in columns of relations, with
all selection and join conditions occurring in a separate list
of equality predicates included in the conjunct:

V(A1, Aa, A,) : - RI (Xi, X&),Rk(X., Xi”,),

equality - list.

Each & is a relation, and each Xi is a distinct variable oerv-
ing as a placeholder. The A;‘s are (not necessarily distinct)
variables that occur among the Xi variables to signify thin
variable is in the result of the query. Other variables might
be dummy placeholders to signify attributes in the RI thnt
are projected out of the result, or variables participating in
joins or selections whose columns do not appear in the Anal
result.

As in Datalog, a comma between two relations signifiee
a join or cross-product. The equality list is a list of equality
predicates with form either X = Y or X = a. In the flret
case, the two variables X and Y are being equated. If both
X and Y are used as placeholders in the same relation, then
this is a column selection. If the two variables occur in dif-
ferent relations, then this corresponds to a join condition,
For the equality predicate X = a, the column of the rela-
tion containing the variable X as a placeholder in the query
has a selection condition, selecting tuples with value for that
attribute equal to the constant a. Constants may occur ex-
plicitly among the A;. All variables occurring in equality
predicates in the equality list must also occur as a place-
holder for some attribute in some relation occurring in the
body of the query. Note that all conjunctive relational al-
gebra queries with equality selections can be expressed with
the syntax just described. For the remainder of this paper,
“conjunctive query” means “conjunctive query with equal-
ity selections”.

Definition: For any attribute A assigned from a column
in the result of a conjunctive query, we say that A receives
attribute B from relation R if in the representation of the
query, A is assigned from a variable that occurs at or is
equated to a variable at the location of attribute B in R.
If an attribute A is assigned by a constant symbol, then we
say that attribute A receives the constant. m

Thus, in the query:

WC Y 2) : - P(X, Y), Q(T, Z), Y = T.

the second attribute of relation R receives from P the second
attribute listed in the scheme of P, and it also receives from

Q the first attribute listed in the scheme of Q. On the other
hand, in the query:

R(% Y, x> : - P(X,Y).

the fust attribute of relation I2 receives the constant a. An
attribute can receive multiple, distinct attributes, as shown
in the first example.

Definition: An instance cl of some schema is attribute-
specific if, for any two distinct attributes A and B in the
schema, TA(d) fl?~~(d) = 8. 1

Definition: In a conjunctive query, a join is an identity
join if all of the relations participating in the join are the
same relation, and every join condition equates an attribute
in one occurrence of the relation in the query body to the
same attribute in another occurrence of the same relation in
the query body. m

For example, in the query:

Q(X, Y, 2) : -R(X, Z), R(Y, T), 2 = 2’.

the join condition is an identity join. This is because the
join is of a relation with itself, and the only join condition
equates the second attribute of relation R to itself. On the
other hand, in the query:

Q(X Y, 4 : -R(X, y, Z), R(T, U, V), Y = T, Z = V.

there is a self-join that is not an identity join. In this case,
the join condition Y = T equates two different attributes of
relation R. A cross-product. of a relation with itself (some
number of times) is a degenerate identity join.

Definition: A relation R occurring in the body of a con-
junctive query is ij-saturated if no occurrence of R in the
query participates in a selection condition, all join condi-
tions involving R are identity joins, and all possible identity
join conditions for R can be inferred from the equality con-
ditions specified. 1

Thus, R is ij-saturated in the following query:

Q(X, Y) : - R(X, Y), R(A, B), R(C, D), X = A,
X=C,Y=B,Y=D.

The join condition A = C is inferred by transitivity from
X = A and X = C. But R is not. ij-saturated in the query:

This is because neither Y = D nor B = D can be inferred
from the list of join conditions.

Definition: A conjunctive query is ij-saturated if every re-
lation oc curring in its body is ij-saturated. n

Note that given any conjunctive query 4 that has no se-
lection conditions and no join conditions other than identity
joins, we can construct an ij-saturated query 4 that has the
same number of occurrences of relations among its literals
as the original query q, but with the extra identity join con-
ditions added so each relation is ij-saturated. For example,
given the query:

Q(X, Y) : - R(X, Y), R(A, B), R(C, D), X = A,
X=C,A=C,Y=B.

we can construct the ij-saturated query:

Q’(X, Y) : - R(X, Y), R(A, B), R(C, D), X = A,X = C,
A=C,Y=B,Y=D,B=D.

Note that 4 C q always holds because 4 is just q with extra
join conditions added.

Definition: A conjunctive query is a product query if there
are no selection or join conditions, and every relation OC-
curring in the body of the query occurs only once. That is,
a product. query can consist. of only a single relation, or a
cross-product of distinct relations. m

3 Results

In this section, we show that Hull’s result. stated in the pre-
vious section can be generalized to keyed schemas for query
equivalence by conjunctive relational algebra with equality
selections. For ease of presentation, we write Si 2 Sz by
(a,@) to mean that Sz dominates SI by the conJunctive
query mappings a and p, throughout this section.

The following two lemmas demonstrate some basic prop-
erties of conjunctive queries, and their proofs are straight-
forward.

Lemma 1 Every ij-saturated query is equivalent to a pma-
uct query having the same relations in its body as the ij-
saturated query.

Lemma 2 Given a conjunctive query q dejined over some
schema S such that q has no selection conditions nor any
join conditions that are not identity joins, there ezists a
product query 2 satisfying the following conditions:

a)dLq;
b) for every d E i(S), any finctionaZ dependency that holds
on q(d) also holds on a(d);
r$fF;every d E i(S), ifq(d) is non-empty, then i(a) is non-

a) aI1 ‘of the relations occurring in the body of q also occur
in the body of 8.

The next three lemmas present some properties of con-
junctive query maps that establish dominance.

Lemma 3 rf Sl 5 Sz by (a,@) then for every attribute A
occurring in & there is some attribute B in Ss such that A
is received by B under a, and B is received by A under fi.

Lemma 4 If S1 5 SZ, by (a,@) and B is an attribute in Sz,
then if B is received by some attribute A in SI under fl, then
A mwt be received by attribute B under a.

Lemma 5 Let Sl 5 Sz by (a,@) and Zet B be an attribute
in Sz that receives some attribute A under a. If B is received
by some attribute in S1 under /3, then B must be received by
A under p.

The following theorem shows when functional dependen-
cies in one schema can be inferred from functional dependen-
cies that hold in a schema that dominates the first schema,
and can be used to infer key dependencies in a schema that
is dominated by another schema.

Theorem 6 Let SI and Sz be keyed schema3 such that Sl -(
SZ by (a,fi) for conjunctive query mappings a and j3. Sup-
pose that Y -+ B holds in some relation R in schema S2 for
attribute B and attribute set Y. Suppose B is received by

47

some attribute A under p, and every attribute in Y is re-
ceived by an attribute in some set X of attributes in Sl under
/3. Then it follows that the functional dependency X + A
must hold in schema SI .

The following lemma shows that when Sr 5 Se, all of the
data values for the key attributes in 5’1 are encoded by LY
in key attributes in Sa, although they also may be mapped
extraneously to other non-key attributes.

Lemma 7 lj & and Sz are keyed schemas, and & 3 S2
by (u,@), then if some non-key attribute B in some relation
in 5’2 receives some key attribute K in some relation in SI
under a, and either B is received by K under fl, or B is
involved in a join or selection condition in the body of some
query in /3, then:
a) K is received by some key attribute K’ in Sz under a with
ri“ in the same relation as B; and
b) for any database instance in the range of a, K’ and B
have the same value in each tuple of the relation containing
them.

Definition: If S is a keyed schema, n(S) is the u&eyed
schema that can be obtained by deleting all non-key at-
tributes from each relation scheme, and dropping the key
dependencies. Thus, for each relation scheme R in S, there
is a relation scheme R’ in K(S) whose scheme consists only
of the key, attributes of R. H

Definition: If S is a keyed schema, and d is a database
instance of S, then r&(d) is the database instance of K(S)
that corresponds to projecting all of the non-key attributes
out of the database instance d. m

Let Si and S, be keyed schemas with 5’1 5 Sa by (a,/3)
for coniunctive auerv maw c11 and B. We would like to con-
struct query maps & &d /3& such that s(&) 5 rc(Sz) by
([Ye,&). If A is the collegtion of attribute types and D the
domain of values for the schema Sr, then let f : A + D
be some fixed, arbitrary map such that f(T) E T for each
T E A. That is, the mapping f is a choice function that as-
sociates each attribute type with a constant value belonging
to that attribute type.

We will defme mappings 7 and 5 so that cr, is given by
or, o OL o 7, and /SK is given by rK o p o 8. The mapping rela-
tionships are shown in the following figure.

First we define the mapping 7 : i(lc(Si)) + i(&) as
follows. The mapping 7 is a conjunctive query mapping
such that for any relation R in SI having n key attributes
and m non-key attributes, the query in 7 to define R from
~(5’1) is given by:

48

I?(&, Ka, Kn,cl,ca, cm) : -R’(Kl, Ka, ..a, K,),

where R’ is the relation in rc(&) corresponding to R but
with non-key attributes projected out. We m-e nsouming
without loss of generality that the key attributes of relation
R are ordered so as to correspond to the leftmost n variablea
of R, and that the attributes of R’ obey the same order. A
similar assumption will be made in the definition of d below.
Each c; is a constant symbol, and c; = f(T) where T is the
type of the attribute corresponding to the position of c; in
R. Note that x,($&J) = d,, for any database instance d,
of K(&).

Given an arbitrary database instance d of n(&), define
a,(d) = r,(a($d))). Note that LYE is a conjunctive query
mapping from n(Sr) to n(Ss), since the conjunctive rules for
a, can be constructed by simple query substitution of each
query in 7 for the relations appearing in the body of a.

To define the mapping &, we first define the mapping 6 :
i(tc(S2)) + i(S) s as o f 11 ows. The mapping 6 is a conjunctive
query mapping, such that for any relation R in Ss having n
key attributes and m non-key attributes, the query in 6 to
define R from K(&) is given by:

R(KI, Ka, Kn, h, ta, tm) : -R’(KI, Ka, . ..I Kn),

where R’ is the relation in K(&) corresponding to R but
with non-key attributes projected out. Each t; either is a
constant symbol or variable, and is defined as follows. Let
attribute B have type T and let it be the attribute of relation
R whose placeholder in the conjunctive query is ti.
1. If attribute B receives some constant b under a, then tr
is just the constant b.
2. If attribute B receives a non-key attribute N from Sr
under a, then i$ is just the constant f(T).
3. If attribute B receives a key attribute K from Sr under
a, and either B is received by K under j3, or B is involved in
a join or selection condition in the body of some query in p,
then ti is just Kj, where Kj is the variable in the position of
the key attribute K’ in R that is guaranteed by Lemma 7 to
receive attribute K and have the same value as B in every
tuple in R.
4. Otherwise, t; is just the constant f(T).

Given any database instance e of KC(&), the mapping fin
is defined by pK(e) = ?r#(S(e))). Clearly & is a conjunc-
tive query map since each conjunctive query in 6 CM be
substituted for the appropriate relations in the body of each
W-Y in P.

The mapping flI(must map a database instance in the
range of a, back to its pre-image under 01~ (recoverying the
original database instance). Recall that a= creates values
for the non-key attributes that are projected out of some
instance of K(&), and applies the map u to the resulting
instance of Sr. This results in an instance of Se for which
the non-key attributes are then projected out to form the
result of the map a,.

The map 6 above re-creates these non-key attribute val-
ues that were projected out. While there typically is not
sufficient information in the key attributes to re-create the
missing non-key attribute values precisely, the next lemma
shows that 6 re-creates the values accurately for any non-key
attributes that can affect the result of applying the map /3
to the resulting instance with the values re-created.

Lemma 8 Let S1 and Sz be keyed schemas. 1f e is an in-
stance of .C& such that there is some instance d, of K(&)
satisfying e = a(~(&)), then p(J(r,Je)) = p(e).

The following theorem is central to establishing the main
result of the paper, but also is of independent interest, since
it establishes an important property of conjunctive query
dominance. In particular, it shows that for one schema to
be dominated by a second schema, its key set must be dom-
inated by the key set of the second schema. This result is
important because given some keyed schema S, n(S) is an
m&eyed schema, so this result allows results concerning un-
keyed schemas to be used in reasoning about keyed schemas.
For instance, if one wanted to show that some schema Sr
were not dominated by some other schema Ss, it would suf-
fice to show that n(Sl) was not dominated by rc(Ss), which
in turn might be demonstrated using techniques concerning
u&eyed schemas.

Theorem 9 If S1 and Sa are keyed schemas, and Sl 5 Sz,
then n(Sl) 5 IC(&).

The following three lemmas demonstrate some additional
properties of conjunctive query maps that establish schema
dominance, and can be proved in a straightforward manner.

Lemma 10 Let 5’1 and 5’2 be keyed schemas, and suppose
that & 5 Sa by (q/3). Then there cannot be two distinct
attributes in Sl that receive the same attribute in 5’2 under

P.

Lemma 11 Let Sl and Sz be keyed schemas, and suppose
that S1 3 Sz by (a,fi). If, for every attribute type T, the
number of attributes in Sl of type T is the same as the num-
ber of attributes in Sa of type T, then every attribute in S2
is received by some attribute in & under /3.

Lemma 12 Let Sl and Sa be keyed schemas, and suppose
that .?I 5 Sz by (a,p). If, for every attribute type T, the
number of attributes in S1 of type T is the same as the num-
ber of attributes in Sa of type T, then there cannot be two
distinct attributes in S2 that are received by the same at-
tribute in S1 under f3.

We now are ready to state the central result of the pa-
per, namely that keyed schemas can be conjunctive query
equivalent if and only if they are the same, up to renamings
and re-orderings.

Theorem 13 If Sl and S2 are keyed schemas, then Sl E Sa
if and only if Sl and So are identical up to renaming and
re-ordering of relations or attributes.

4 Conclusions

Schema equivalence is a fundamental property of relational
database schemas, and is of critical importance for such
problems as database design, data model translation, and
multidatabase schema integration. Yet, while the notion of
schema equivalence has been known for many years, there
are surprisingly few results to characterize the equivalence
of relational schemas.

For example, a thorough understanding of database de-
sign or multidatabase schema integration would require, at
a minimum, characterizations of schema equivalence for var-
ious classes of dependencies, such as primary keys, primary
keys plus referential integrity constraints, as well as other
families of dependencies of interest. However, these prob-
lems remain open.

In this work, we have provided a number of results con-
cerning conjuctive query equivalence of relational schemas

with primary keys, including having shown that two re-
lational schemas with primary keys are conjunctive query
equivalent if and only if they are identical (up to renaming
and re-ordering of attributes and relations).

These results make substantial progress toward a charac-
terization of the equivalence of schemas with primary keys
(where the full relational algebra is available for schema
mappings), and develop techniques that may be applicable
to the solution of other problems concerning schema equiv-
alence.

Acknowledgements

The authors would like to thank Rick Hull for the insight-
ful commentary that he provided on an earlier draft of this
Paw.

References

[l] J. AIbert, Y. Ioannidis, and R. Flamakrishnan. Con-
junctive query equivalence of keyed relational schemas.
Technical Report Dept. of Computer Science, TR-1341,

PI

[31

[41

PI

PI

VI

PI

PI

PO1

WI

PI

University of Wisconsin-Madison, 1997.

A.K. Arora and C.R. Carlson. The information preserv-
ing properties of relational database transformations.
In Proc. of the Int’l VLDB Conf., 1979.

P. Atzeni, G. Aussiello, C. Batini, and M. Moscarini.
Inclusion and equivalence between relational database
schemes. Theoretical Computer Science, 19:267-285,
1982.

C. Bath& M. Lenzerini, and S. B. Navathe. A com-
parative analysis of methodologies for database schema
integration. ACM Computing Surveys, 18(4):323-364,
December 1986.

C. Beeri, P. A. Bernstein, and N. Goodman. A sophis-
ticate’s introduction to database normalization theory.
In Proc. of the Int7 VLDB Conf., pages 113-124,1978.

C. Beer-i, A.O. Mendelzon, Y. Sagiv, and J.D. TJ&
man. Equivalence of relational database schemes. SIAM
Journal on Computing, 10(2):352-370, May 1981.

/

E. F. Codd. A relational model of data for large shared
data banks. Communications of the ACM, 1970.

E.F. Codd. Further normalization of the data base rela-
tional model. In R. Rustin, editor, Data Base Systems,
pages 33-64. Prentice-Hall, Englewood Cliffs, NJ, 1972.

R. Hull. Rdative information capacity of simple rela-
tional database schemata. In Proc. of the ACM Conf.
on Principles of Database Systems, pages 97-109, Wa-
terloo, April 1984.

R. Hull. Relative information capacity of simple rela-
tional database schemata. SIAM Journal on Comput-
ing, 15(3):846-886, August 1986.

T.-W. Ling, F.W. Tompa, and T. Kameda. An im-
proved third normal form for relational databases.
ACM TODS, 6(2), 1981.

D. Maier, A.O. Mendelson, F. Sadri, and J.D. Ullman.
Adequacy of decompositions of relational databases. J.
of Computer and System Sciences, 21(3):368-379, De-
cember 1980.

49

[13] R. J. Miller, Y. E. Ioannidis, and R. Hamakrishnan.
The use of information capacity in schema integration
and translation. In Proc. of the Int’l VLDB Conf.,
Dublin, September 1993.

[14] J. Hissanen. On equivalences of database schemes. In
Proc. of the ACM Conf. on Principles of Database Sys-
tems, Los Angeles, CA, March 1982.

[15] A. Rosenthal and D. Reiner. Theoretically sound trans-
formations for practical database design. In Salva-
tore T. March, editor, Proc. of the Int’l Conf on the
Entity-Relationship Approach, pages 115-131, NYC,
NY, 1987. Elsevier Science Publishers B. V. (North-
Holland).

[16] A. P. Sheth and J. A. Larson. Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys,
22(3):183-236, 1990.

[17] C. Zaniolo. A new normal form for the design of rela-
tional database schemata. ACM TODS, 7(3):489-499,
1982.

50

IL--- ------- , ,. -i -.a., _,., . . c. . >. / .” .,,. i\._T 2._ . . I”. I;,-.. . , ._.. ~- ._--.--~ ---

