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Abstract 

The notion of when two schemas are equivalent is fimda- 
mental to database design, schema integration, and data 
model translation. An important notion of schema equiv- 
alence, query equivalence was introduced in [3], and used 
to evaluate the correctness of schema transformations. The 
logically equivalent notion of calculous equivalence, as well 
as three progressively weaker notions of schema equivalence 
were introduced in 1984 by Hull [9, lo], who showed that 
two schemas with no dependencies are equivalent (under all 
four notions of equivalence) if and only if they are identical 
(up to renaming and re-ordering of attributes and relations). 
Hull also conjectured that the same result holds for schemas 
with primary keys. In this work, we resolve the conjecture 
in the affirmative for the case of query equivalence based on 
mappings using conjunctive relational queries with equality 
selections. 

1 Introduction 

A fundamental concept in database theory is that of schema 
equivalence. Informally, two schemas are equivalent if ei- 
ther one can simulate the other in terms of their capacities 
to store database instances and support queries. An un- 
derstanding of schema equivalence is important for schema 
integration in heterogeneous multidatabase systems, [4, 161, 
where two schemas with dependencies describing the seman- 
tics of the data are given, and one would like to integrate the 
schemas. Because the schemas to be integrated may have 
semantic incompatibilities, it may be necessary to transform 
one or both of the schemas to equivalent schemas in prepa- 
ration for integration. 

For example, suppose one wants to integrate the follow- 
ing two relational schemas with key dependencies and refer- 
ential integrity constraints. Key attributes are marked with 
an asterisk, and referential integrity constraints are shown 
using standard inclusion dependency notation. 
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employee(ss*, eName, salary, depId) 
department(deptId*, deptName, mgr) 
salespeople(ss*, yearsExp) 

employee[depId] E department[deptId] 
salespeople[ss] C employee[ss] 
employee[ss] 5 salespeople[ss] 

Schema 1 

empl(ssn*, ename, sal, dep, yrsExp) 
dept(departId*, dName, manager) 

empl[dep] C dept[departId] 

Schema 2 

Assume it is desirable to integrate the two schemas by 
integrating the employee relation in the first schema with 
the empl relation in the second schema to form a unified 
employee relation, and to integrate the department relation 
from the first schema with the dept relation in the second 
schema to form a unified department relation. In thin caoe, 
there is a semantic incompatibility in that the yearsExp at- 
tribute of an employee is stored in a separate relation, aaleo- 
people, so that a fully general integration of the employee 
relation and empl relation is not posssible. 

However, it can be shown that the f?.r& schema could be 
transformed into an equivalent schema in which the incom- 
patibility is removed. Such a schema, Schema l’, is shown 
here with Schema 2. 

employee(ss*, eName, salary, depId, yearsExp) 
department(deptId*, deptName, mgr) 
salespeople(ss*) 

employee[depId] C department[deptId] 
salespeople[ss] s employee[ss] 
employee[ss] C_ salespeople[ss] 

Schema 1’ 

empl(ssn*, ename, sal, dep, yrsExp) 
dept(departId*, dName, manager) 

empl[dep] C dept[departId] 

Schema 2 



Note that in the absence of the inclusion dependencies 
specified, Schema 1 and Schema 1’ would not be equivalent. 
With the dependencies that hold on Schema 1, however, the 
transformation is equivalence preserving, so that Schema 1 
and Schema 1’ are equivalent, and the incompability has 
been removed. The employee and empl reIations now can 

be integrated into a unified relation. Syntactic character- 
izations of equivalence of relational schemas with various 
families of dependencies, such as primary keys, referential 
integrity constraints, functional dependencies, are needed. 
In particular, one would like to have a set of transforma- 
tions for which all schemas equivalent to a given schema can 
be generated by applying some sequence of transformations 
from the set. 

The notion of schema equivalence also is important in 
database design [5,8,11,17] where, given a schema proposed 
for some application, one may want to choose an equivalent 
schema that satisfies one or more desirable normal forms. In- 
deed, schema equivalence was f&t proposed in this context 
by Codd [8], wherein two schemas are considered equivalent 
if they can support the same queries. Subsequently, a notion 
of schema equivalence was proposed in which two schemas, 
both of which are decompositions of the same universal rela- 
tion, are equivalent if the set of instances of the universal re- 
lation for which the decomposition is lossless is the same for 
both schemas [6, 121. That is, either schema can represent 
the same set of universal instances. This notion of equiva- 
lence was used for database design, but has the limitation 
that it only applies to pairs of schemas both of which are pro- 
jections of the same universal relation scheme. In general, 
such an assumption is not possible in multidatabase schema 
integration. Moreover, closed-form characterizations of this 
form of equivalence are not available, although an algorithm 
to test for such equivalence is given in [S]. Similar notions 
of equivalence were defined in [2, 141. 

Another notion of equivalence that has been proposed 
considers two schemas to be equivalent if there is a bijection 
between the set of database instances of one schema and 
the set of instances of the other [13, 151. However, this 
simply means that the set of instances of one schema has 
the same cardinality as the set of instances of the other 
schema. Moreover, if the domain of values available to store 
in a database is infinite, then ah schemas are equivalent. 

The limitations of these notions of equivalence are over- 
come by the notion of query equivalence that was introduced 
in [3], and studied by Hull, who also introduced three pro- 
gressively less restrictive notions of equivalence, Z-generic 
equivalence, Z-internal equivalence, and absolute equivalence, 
and provided a rich foundation of theoretical results con- 
cerning schema equivalence [lO]. Hull also showed that for 
relational schemas with no dependencies, all four notions of 
schema equivalence are logically equivalent, and that two re- 
lational schemas with no dependencies are equivalent if and 
only if they are identical, up to renaming and re-ordering of 
attributes and relations. Thus a characterization of schema 
equivalence for relational schemas with no dependencies is 
available, 

Hull conjectured that this should generalize to relational 
schemas with primary keys, that is, that they are equiva- 
lent if and only if they are identical, up to renaming and 
re-ordering of attributes and relations. We resolve this con- 
jecture in the aifirmative for conjunctive query equivalence, 
where instance mappings are conjunctive relational algebra 
queries with equality selections. (Query equivalence in [lo] 
uses the full relational algebra for such mappings.) 

Such a result demonstrates that two keyed schemas sup- 

port the same conjunctive queries if and only if there are 
identical, up to renaming and re-ordering of attributes and 
relations. This is a negative result about the existence of 
equiva&ence-preserving transformations for schemas having 
only primary keys, which suggests that other dependencies 
are important for transforming schemas in meaningful ways. 
Indeed, the example above shows that for schemas having 
both primary key dependencies and referential integrity con- 
straints, there are non-trivial schema transformations that 
preserve equivalence. 

A characterization of equivalence for schemas with only 
primary keys is critical to obtaining similar characteriza- 
tions for schemas with other dependencies. For instance, 
when schemas with primary keys and referential integrity 
constraints are considered, a schema with only primary keys 
is a degenerate case where it happens that no referential in- 
tegrity constraints have been specified. Thus, it would be 
impossible to characterize equivalence of schemas with pri- 
mary keys and referential integrity constraints without char- 
acterizing equivalence of sclxemas with only primary keys. 

The present report is an extended abstract of a full paper 
that includes complete proofs as well as additional motiva- 
tional material for the results stated here [l]. The rest of 
this abstract is organized in the following manner. Section 2 
presents precise formal definitions of standard concepts per- 
taining to the relational model of data as well as definitions 
of other concepts used or introduced in this work. Section 3 
states various results concerning conjunctive queries in gen- 
eral as well as the central results of this work that pertain to 
conjunctive query dominance and equivalence of relational 
schemas. Con&ding remarks are given in Section 4. 

2 Preliminaries 

In this section, we formalize what is meant by a schema 
and d&e various concepts and notation. We assume that 
the reader is familiar with the relational model of data [7]. 
A domain is a countably infinite set of atomic values. A 
collection of atttibute types over some domain D is a finite 
collection of disjoint subsets of D. Attribute types are also 
(countably) infinite. A.n atttibute is a pair consisting of a 
name (called the name of the attribute) and an attribute 
type (called the type of the attribute). A relation scheme 
consists of a name (name of the relation) and an ordered 
list of attributes, generally written R[Al, AZ, . . . . Ak]. R is 
the name of the relation. If for each i, IV; is the type of 
attribute A;, then an instance r of relation R is just some 
subset of the cross-product Nr x Ns x . . . x .I&. The tuple 
(NI, Nz, . . . . NJJ is called the type of the relation R. 

The set of all instances of R, written i(R), is defined as 
the power set of the cross-product of attribute types in the 
scheme. A relational database schema is a tuple of reIation 
schemes. A database instance of the schema is a tuple of 
instances of each relation scheme in the schema. We write 
i(S) for the set of all instances of schema S. 

A superkey dependency on a relation is a declared sub- 
set of attributes of the relation. The subset of attributes is 
called a superkey. A superkey dependency on some relation 
is satisfied by an instance of the relation if any pair of dis- 
tinct tuples in the instance have different values for at least 
one of the attributes in the superkey. If no proper subset 
of some superkey of a relation is also a superkey, then the 
superkey is called a key, and the associated dependency is 
called a key dependency. A keyed schema is one where a 
single key is specified for each relation in the schema, and 
no other dependencies are specified to hold in the schema. 

. 
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A schema for which no dependencies are specified is called 
an unkeyed schema. 

A functional dependency on a schema is a pair of at- 
tribute sets. If X and Y are the two sets of attributes, the 
dependency is usually written X + Y. If all of the at- 
tributes in both X and Y belong to the same relation, then 
an instance of that relation is said to satisfy dependency 
if every pair of tuples of the relation which differ on some 
attribute in Y also differ on some attribute in X. Other- 
wise, the dependency fails for the given relation instance. 
An instance of the schema satisfies some functional depen- 
dency X + Y if all of the attributes in both X and Y 
belong to the same relation, and the instance of this rela- 
tion in the database instance satisfies the dependency. If all 
of the attributes in X and Y do not belong to the same re- 
lation, then the functional dependency fails for any instance 
of the schema. Note that allowing functional dependencies 
to be expressed in this way differs from the usual formal- 
ization where a functional dependency is only de&red using 
attributes from a single relation, but this trivial extension 
allows for a concise statement of some of the results below. 

A uieur over a schema S is a pair (V, q), where V is a 
relation scheme and q : i(S) + i(V) maps each instance of 
S to an instance of V. The mapping q is called a query. If 

44 = a for some database d, and a is an instance of V, 
then a is called the answer to the query 4 for database d. 
The type of the view, as well as the type of the query, is just 
the type of V. A query language consists of a set of queries 
together with a syntax capable of specifying any query in 
the set. 

Definition: Given some schema S on which two queries 
q : i(S) + i(V) and q’ : i(S) + i(V) having the same type 
are defined, we say that q is contained in q’, written q _C q’, 
if for every instance d E i(S), q(d) E q’(d). H 

Definition: We say that q is equiualent to q’, written q s q’, 
if q C q’ and q’ g q. 1 

DeRnjtion: 

;l ‘2, R,2, ..-I 

Given schemas Sl = (R:, R.& . . . . &) and Sz 
Rf,J, and a query language, L, then a = 

, . . . . urn) iS a query mapping from sl to &! if each Vk 
is ,’ view over Sr defined using queries in L, and the type of 
vk is the same as the type of Ri for each k. m 

For each instance of Sl, the query mapping defines an 
instance of Ss, since each tlk defines an instance of RE. we 
write u : i(S1) + i(S2). If a is a query mapping from 
the keyed schema Sl to the keyed schema Ss, then we say 
that a is valid if it maps each instance of S1 satisfying the 
key dependencies for Sl to an instance of Ss satisfying the 
key dependencies for Ss. Query mappings between u&eyed 
schemas are always valid. 

Definition: Let Sl and S2 be two keyed schemas, and let 
L be a query language. Then we say that SZ L-dominates 
Sl, written Sl $, SZ, if there are valid query maps 
CY : i(Sl) + i(S2) ando : i(S2) + i(&) such that Soar is the 
identity map on i(Sr). To indicate the query mappings that 
establish the dominance we sometimes write Sr -& Sr by 

(%P)* I 

Definition: If Sr 5~ Ss and Sr 3~ Sr, then we say 
that the two schemas are L-equivalent, written Sl E& S2. u 

The notions of L-dominance and L-equivalence were in- 
troduced in [3]. We sometimes write Sl 5 S2, or Sl 2 S2, 
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when the particular language L is clear from the context, 
The following result is proved in [lo]. 

Theorem (Hull 1986) If L is the relational algebm, 5’1 and 
Sz ure schemas with no dependencies, then St SL S2, if 
and only if S1 and SZ are identical up to renaming and re- 
ordering of attributes and relations. m 

Hull also conjectured that this result holds for keyed achemao, 
but this conjecture remains open. 

Definition: A conjunctive query is a relational algebra 
query that can be expressed using only the operntionn of 
select, project, join, and Cartesian product. 1 

A conjunctive query view (V, q) is specified using a nyn- 
tactic style borrowed from Datalog. However, the syntax 
used here is more restrictive than Datalog, allowing only dio- 
tinct variables as placeholders in columns of relations, with 
all selection and join conditions occurring in a separate list 
of equality predicates included in the conjunct: 

V(A1, Aa, . . . . A,) : - RI (Xi, . . . . X&), . . ..Rk(X., . . . . Xi”,), 

equality - list. 

Each & is a relation, and each Xi is a distinct variable oerv- 
ing as a placeholder. The A;‘s are (not necessarily distinct) 
variables that occur among the Xi variables to signify thin 
variable is in the result of the query. Other variables might 
be dummy placeholders to signify attributes in the RI thnt 
are projected out of the result, or variables participating in 
joins or selections whose columns do not appear in the Anal 
result. 

As in Datalog, a comma between two relations signifiee 
a join or cross-product. The equality list is a list of equality 
predicates with form either X = Y or X = a. In the flret 
case, the two variables X and Y are being equated. If both 
X and Y are used as placeholders in the same relation, then 
this is a column selection. If the two variables occur in dif- 
ferent relations, then this corresponds to a join condition, 
For the equality predicate X = a, the column of the rela- 
tion containing the variable X as a placeholder in the query 
has a selection condition, selecting tuples with value for that 
attribute equal to the constant a. Constants may occur ex- 
plicitly among the A;. All variables occurring in equality 
predicates in the equality list must also occur as a place- 
holder for some attribute in some relation occurring in the 
body of the query. Note that all conjunctive relational al- 
gebra queries with equality selections can be expressed with 
the syntax just described. For the remainder of this paper, 
“conjunctive query” means “conjunctive query with equal- 
ity selections”. 

Definition: For any attribute A assigned from a column 
in the result of a conjunctive query, we say that A receives 
attribute B from relation R if in the representation of the 
query, A is assigned from a variable that occurs at or is 
equated to a variable at the location of attribute B in R. 
If an attribute A is assigned by a constant symbol, then we 
say that attribute A receives the constant. m 

Thus, in the query: 

WC Y 2) : - P(X, Y), Q(T, Z), Y = T. 

the second attribute of relation R receives from P the second 
attribute listed in the scheme of P, and it also receives from 



Q the first attribute listed in the scheme of Q. On the other 
hand, in the query: 

R(% Y, x> : - P(X,Y). 

the fust attribute of relation I2 receives the constant a. An 
attribute can receive multiple, distinct attributes, as shown 
in the first example. 

Definition: An instance cl of some schema is attribute- 
specific if, for any two distinct attributes A and B in the 
schema, TA(d) fl?~~(d) = 8. 1 

Definition: In a conjunctive query, a join is an identity 
join if all of the relations participating in the join are the 
same relation, and every join condition equates an attribute 
in one occurrence of the relation in the query body to the 
same attribute in another occurrence of the same relation in 
the query body. m 

For example, in the query: 

Q(X, Y, 2) : -R(X, Z), R(Y, T), 2 = 2’. 

the join condition is an identity join. This is because the 
join is of a relation with itself, and the only join condition 
equates the second attribute of relation R to itself. On the 
other hand, in the query: 

Q(X Y, 4 : -R(X, y, Z), R(T, U, V), Y = T, Z = V. 

there is a self-join that is not an identity join. In this case, 
the join condition Y = T equates two different attributes of 
relation R. A cross-product. of a relation with itself (some 
number of times) is a degenerate identity join. 

Definition: A relation R occurring in the body of a con- 
junctive query is ij-saturated if no occurrence of R in the 
query participates in a selection condition, all join condi- 
tions involving R are identity joins, and all possible identity 
join conditions for R can be inferred from the equality con- 
ditions specified. 1 

Thus, R is ij-saturated in the following query: 

Q(X, Y) : - R(X, Y), R(A, B), R(C, D), X = A, 
X=C,Y=B,Y=D. 

The join condition A = C is inferred by transitivity from 
X = A and X = C. But R is not. ij-saturated in the query: 

This is because neither Y = D nor B = D can be inferred 
from the list of join conditions. 

Definition: A conjunctive query is ij-saturated if every re- 
lation oc curring in its body is ij-saturated. n 

Note that given any conjunctive query 4 that has no se- 
lection conditions and no join conditions other than identity 
joins, we can construct an ij-saturated query 4 that has the 
same number of occurrences of relations among its literals 
as the original query q, but with the extra identity join con- 
ditions added so each relation is ij-saturated. For example, 
given the query: 

Q(X, Y) : - R(X, Y), R(A, B), R(C, D), X = A, 
X=C,A=C,Y=B. 

we can construct the ij-saturated query: 

Q’(X, Y) : - R(X, Y), R(A, B), R(C, D), X = A,X = C, 
A=C,Y=B,Y=D,B=D. 

Note that 4 C q always holds because 4 is just q with extra 
join conditions added. 

Definition: A conjunctive query is a product query if there 
are no selection or join conditions, and every relation OC- 
curring in the body of the query occurs only once. That is, 
a product. query can consist. of only a single relation, or a 
cross-product of distinct relations. m 

3 Results 

In this section, we show that Hull’s result. stated in the pre- 
vious section can be generalized to keyed schemas for query 
equivalence by conjunctive relational algebra with equality 
selections. For ease of presentation, we write Si 2 Sz by 
(a,@) to mean that Sz dominates SI by the conJunctive 
query mappings a and p, throughout this section. 

The following two lemmas demonstrate some basic prop- 
erties of conjunctive queries, and their proofs are straight- 
forward. 

Lemma 1 Every ij-saturated query is equivalent to a pma- 
uct query having the same relations in its body as the ij- 
saturated query. 

Lemma 2 Given a conjunctive query q dejined over some 
schema S such that q has no selection conditions nor any 
join conditions that are not identity joins, there ezists a 
product query 2 satisfying the following conditions: 

a)dLq; 
b) for every d E i(S), any finctionaZ dependency that holds 
on q(d) also holds on a(d); 
r$fF;every d E i(S), ifq(d) is non-empty, then i(a) is non- 

a) aI1 ‘of the relations occurring in the body of q also occur 
in the body of 8. 

The next three lemmas present some properties of con- 
junctive query maps that establish dominance. 

Lemma 3 rf Sl 5 Sz by (a,@) then for every attribute A 
occurring in & there is some attribute B in Ss such that A 
is received by B under a, and B is received by A under fi. 

Lemma 4 If S1 5 SZ, by (a,@) and B is an attribute in Sz, 
then if B is received by some attribute A in SI under fl, then 
A mwt be received by attribute B under a. 

Lemma 5 Let Sl 5 Sz by (a,@) and Zet B be an attribute 
in Sz that receives some attribute A under a. If B is received 
by some attribute in S1 under /3, then B must be received by 
A under p. 

The following theorem shows when functional dependen- 
cies in one schema can be inferred from functional dependen- 
cies that hold in a schema that dominates the first schema, 
and can be used to infer key dependencies in a schema that 
is dominated by another schema. 

Theorem 6 Let SI and Sz be keyed schema3 such that Sl -( 
SZ by (a,fi) for conjunctive query mappings a and j3. Sup- 
pose that Y -+ B holds in some relation R in schema S2 for 
attribute B and attribute set Y. Suppose B is received by 
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some attribute A under p, and every attribute in Y is re- 
ceived by an attribute in some set X of attributes in Sl under 
/3. Then it follows that the functional dependency X + A 
must hold in schema SI . 

The following lemma shows that when Sr 5 Se, all of the 
data values for the key attributes in 5’1 are encoded by LY 
in key attributes in Sa, although they also may be mapped 
extraneously to other non-key attributes. 

Lemma 7 lj & and Sz are keyed schemas, and & 3 S2 
by (u,@), then if some non-key attribute B in some relation 
in 5’2 receives some key attribute K in some relation in SI 
under a, and either B is received by K under fl, or B is 
involved in a join or selection condition in the body of some 
query in /3, then: 
a) K is received by some key attribute K’ in Sz under a with 
ri“ in the same relation as B; and 
b) for any database instance in the range of a, K’ and B 
have the same value in each tuple of the relation containing 
them. 

Definition: If S is a keyed schema, n(S) is the u&eyed 
schema that can be obtained by deleting all non-key at- 
tributes from each relation scheme, and dropping the key 
dependencies. Thus, for each relation scheme R in S, there 
is a relation scheme R’ in K(S) whose scheme consists only 
of the key, attributes of R. H 

Definition: If S is a keyed schema, and d is a database 
instance of S, then r&(d) is the database instance of K(S) 
that corresponds to projecting all of the non-key attributes 
out of the database instance d. m 

Let Si and S, be keyed schemas with 5’1 5 Sa by (a,/3) 
for coniunctive auerv maw c11 and B. We would like to con- 
struct query maps & &d /3& such that s(&) 5 rc(Sz) by 
([Ye,&). If A is the collegtion of attribute types and D the 
domain of values for the schema Sr, then let f : A + D 
be some fixed, arbitrary map such that f(T) E T for each 
T E A. That is, the mapping f is a choice function that as- 
sociates each attribute type with a constant value belonging 
to that attribute type. 

We will defme mappings 7 and 5 so that cr, is given by 
or, o OL o 7, and /SK is given by rK o p o 8. The mapping rela- 
tionships are shown in the following figure. 

First we define the mapping 7 : i(lc(Si)) + i(&) as 
follows. The mapping 7 is a conjunctive query mapping 
such that for any relation R in SI having n key attributes 
and m non-key attributes, the query in 7 to define R from 
~(5’1) is given by: 
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I?(&, Ka, . . . . Kn,cl,ca, . . . . cm) : -R’(Kl, Ka, ..a, K,), 

where R’ is the relation in rc(&) corresponding to R but 
with non-key attributes projected out. We m-e nsouming 
without loss of generality that the key attributes of relation 
R are ordered so as to correspond to the leftmost n variablea 
of R, and that the attributes of R’ obey the same order. A 
similar assumption will be made in the definition of d below. 
Each c; is a constant symbol, and c; = f(T) where T is the 
type of the attribute corresponding to the position of c; in 
R. Note that x,($&J) = d,, for any database instance d, 
of K(&). 

Given an arbitrary database instance d of n(&), define 
a,(d) = r,(a($d))). Note that LYE is a conjunctive query 
mapping from n(Sr ) to n(Ss), since the conjunctive rules for 
a, can be constructed by simple query substitution of each 
query in 7 for the relations appearing in the body of a. 

To define the mapping &, we first define the mapping 6 : 
i(tc(S2)) + i(S ) s as o f 11 ows. The mapping 6 is a conjunctive 
query mapping, such that for any relation R in Ss having n 
key attributes and m non-key attributes, the query in 6 to 
define R from K(&) is given by: 

R(KI, Ka, . . . . Kn, h, ta, . . . . tm) : -R’(KI, Ka, . ..I Kn), 

where R’ is the relation in K(&) corresponding to R but 
with non-key attributes projected out. Each t; either is a 
constant symbol or variable, and is defined as follows. Let 
attribute B have type T and let it be the attribute of relation 
R whose placeholder in the conjunctive query is ti. 
1. If attribute B receives some constant b under a, then tr 
is just the constant b. 
2. If attribute B receives a non-key attribute N from Sr 
under a, then i$ is just the constant f(T). 
3. If attribute B receives a key attribute K from Sr under 
a, and either B is received by K under j3, or B is involved in 
a join or selection condition in the body of some query in p, 
then ti is just Kj, where Kj is the variable in the position of 
the key attribute K’ in R that is guaranteed by Lemma 7 to 
receive attribute K and have the same value as B in every 
tuple in R. 
4. Otherwise, t; is just the constant f(T). 

Given any database instance e of KC(&), the mapping fin 
is defined by pK(e) = ?r#(S(e))). Clearly & is a conjunc- 
tive query map since each conjunctive query in 6 CM be 
substituted for the appropriate relations in the body of each 
W-Y in P. 

The mapping flI( must map a database instance in the 
range of a, back to its pre-image under 01~ (recoverying the 
original database instance). Recall that a= creates values 
for the non-key attributes that are projected out of some 
instance of K(&), and applies the map u to the resulting 
instance of Sr. This results in an instance of Se for which 
the non-key attributes are then projected out to form the 
result of the map a,. 

The map 6 above re-creates these non-key attribute val- 
ues that were projected out. While there typically is not 
sufficient information in the key attributes to re-create the 
missing non-key attribute values precisely, the next lemma 
shows that 6 re-creates the values accurately for any non-key 
attributes that can affect the result of applying the map /3 
to the resulting instance with the values re-created. 

Lemma 8 Let S1 and Sz be keyed schemas. 1f e is an in- 
stance of .C& such that there is some instance d, of K(&) 
satisfying e = a(~(&)), then p(J(r,Je)) = p(e). 



The following theorem is central to establishing the main 
result of the paper, but also is of independent interest, since 
it establishes an important property of conjunctive query 
dominance. In particular, it shows that for one schema to 
be dominated by a second schema, its key set must be dom- 
inated by the key set of the second schema. This result is 
important because given some keyed schema S, n(S) is an 
m&eyed schema, so this result allows results concerning un- 
keyed schemas to be used in reasoning about keyed schemas. 
For instance, if one wanted to show that some schema Sr 
were not dominated by some other schema Ss, it would suf- 
fice to show that n(Sl) was not dominated by rc(Ss), which 
in turn might be demonstrated using techniques concerning 
u&eyed schemas. 

Theorem 9 If S1 and Sa are keyed schemas, and Sl 5 Sz, 
then n(Sl) 5 IC(&). 

The following three lemmas demonstrate some additional 
properties of conjunctive query maps that establish schema 
dominance, and can be proved in a straightforward manner. 

Lemma 10 Let 5’1 and 5’2 be keyed schemas, and suppose 
that & 5 Sa by (q/3). Then there cannot be two distinct 
attributes in Sl that receive the same attribute in 5’2 under 

P. 

Lemma 11 Let Sl and Sz be keyed schemas, and suppose 
that S1 3 Sz by (a,fi). If, for every attribute type T, the 
number of attributes in Sl of type T is the same as the num- 
ber of attributes in Sa of type T, then every attribute in S2 
is received by some attribute in & under /3. 

Lemma 12 Let Sl and Sa be keyed schemas, and suppose 
that .?I 5 Sz by (a,p). If, for every attribute type T, the 
number of attributes in S1 of type T is the same as the num- 
ber of attributes in Sa of type T, then there cannot be two 
distinct attributes in S2 that are received by the same at- 
tribute in S1 under f3. 

We now are ready to state the central result of the pa- 
per, namely that keyed schemas can be conjunctive query 
equivalent if and only if they are the same, up to renamings 
and re-orderings. 

Theorem 13 If Sl and S2 are keyed schemas, then Sl E Sa 
if and only if Sl and So are identical up to renaming and 
re-ordering of relations or attributes. 

4 Conclusions 

Schema equivalence is a fundamental property of relational 
database schemas, and is of critical importance for such 
problems as database design, data model translation, and 
multidatabase schema integration. Yet, while the notion of 
schema equivalence has been known for many years, there 
are surprisingly few results to characterize the equivalence 
of relational schemas. 

For example, a thorough understanding of database de- 
sign or multidatabase schema integration would require, at 
a minimum, characterizations of schema equivalence for var- 
ious classes of dependencies, such as primary keys, primary 
keys plus referential integrity constraints, as well as other 
families of dependencies of interest. However, these prob- 
lems remain open. 

In this work, we have provided a number of results con- 
cerning conjuctive query equivalence of relational schemas 

with primary keys, including having shown that two re- 
lational schemas with primary keys are conjunctive query 
equivalent if and only if they are identical (up to renaming 
and re-ordering of attributes and relations). 

These results make substantial progress toward a charac- 
terization of the equivalence of schemas with primary keys 
(where the full relational algebra is available for schema 
mappings), and develop techniques that may be applicable 
to the solution of other problems concerning schema equiv- 
alence. 
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