
Transitive Closure Algorithms
Based on Graph Traversal

YANNIS IOANNIDIS, RAGHU RAMAKRISHNAN, AND LINDA WINGER

University of Wisconsin

Several graph-based algorithms have been proposed in the literature to compute the transitive

closure of a directed graph. We develop two new algorithms (Baslc_TC and Global _DFTC) and

compare the performance of their implementations in a disk-based enwronment with a well-

known graph-based algorithm proposed by Schmitz. Our algorithms use depth-first search to

traverse a graph and a technique called markzng to avoid processing some of the arcs in the

graph. They compute tbe closure by processing nodes in reverse topological order, building

descendent sets by adding the descendent sets of children While the detads of these algorithms

differ considerably, one important difference among them is the time at which descendent set

additions are performed Basic _ TC performs a separate depth-first traversal to obtain the

topological order of nodes and does additions m a second pass. Global_ DFTC performs additions

whenever two sets that must be added are in memory, thereby eliminating the need to bring

these sets in again later. The Schmitz algorithm is intermediate in thm respect, deferring the

addition of the descendent set of a chdd to that of a parent until the root of the strong component

containing the parent is Identified. Contrary to our expectations, deferrmg additions as much as

possible, as in Basic_TC, results in superior performance. The first reason is that early

additions result in larger descendent set sizes on the average over the duration of the execution,

thereby causing more 1/0; very often this turns out to more than offset the gains of not having to

fetch certain sets again to add them The second reason is that reformation collected in the first

pass can be used to apply several optimization in the second pass, To the extent possible, we

also adapt these algorithms to perform path computations. Again, our performance comparison

confirms the trends seen m reachability queries Taken m conjunction with another performance

study our results indicate that all graph-based algorithms slgmficantly outperform other types of

algorithms such as Semmaive and Warren,

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs

and Features—recurston: D.4.2 [Operating Systems]: Storage Management—main memory,

secondary storage, swapping; E. 1 [Data]: Data Structures—graphs, trees: H.2,4 [Database

Some of the results in this paper appeared m a preliminary form in “Efficient Transitive Closure

Algorithms,” in Proceedings of the I-itk International VLDB Conference (Long Beach, Calif., Aug.

1988). With respect to that paper, most of the algorithms haw been revised, and the performance

analysis has been replaced by the results of an implementation-based performance evaluation.

Y. Ioanmdis was partially supported by the National Science Foundation under grant IRI-8703592

and a grant from IBM. R. Ramakrlshan was partially supported by the National Science

Foundation under grant IRI-8804319 and a Presidential Young Investigator Award, by a David

and Lucile Packard Foundation Fellowship in Science and Engineering, by a grant from IBM,

and an IBM Faculty Development Award.

Authors’ address: Computer Sciences Department, University of Wisconsin, Madison, WI 53706.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for du-ect commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computmg Machinery. To copy otherwise, or to republish, reqmres a fee and/or

specific permission,

@ 1993 ACM 0362–5915/93/0900–0512 $01.50

ACM Transactions on Database Systems, Vol. 18, No. 3. September 1993, Pages 512-576

Transitive Closure Algorithms . 513

Management]: Systems—query processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Depth-first search, node reachability, path computations,

transitive closure

1. INTRODUCTION

Several transitive closure algorithms have been presented in the literature.

These include the Warshall and Warren algorithms [28, 29], which use a

bit-matrix representation of the graph, the Schmitz [25], the Ebert [10] and

the Eve and Kurki-Suonio algorithms [11], which use Tarjan’s algorithm [26]

to identify strong components in reverse topological order, the Seminaive [5]

and Smart/Logarithmic algorithms [12, 27], which view the graph as a

binary relation and compute the transitive closure by a series of relational

joins, and recently, a hybrid algorithm combining matrix-based algorithms

and graph-based algorithms [1]. We develop two new algorithms based on

depth-first traversal, and compare their performance in a disk-based environ-

ment with the well-known graph-based algorithm proposed by Schmitz.

Basic_TC is the simplest of our algorithms and consists of a first pass that

yields a topological sort of the nodes in the graph, and a second pass that

iteratively processes nodes in reverse topological order and builds their

descendent sets by adding the descendent sets of children. Global _DFTC is

the second of our algorithms and seeks to combine the two passes of Basic_TC

by adding two descendent sets that must be added whenever they are

simultaneously in memory during the first pass, instead of waiting until the

second pass to do so. Hereafter, we refer to these algorithms as BTC and

GDFTC, respectively. Specialized versions of the algorithms that are applica-

ble on acyclic graphs only are named Dag_BTC and Dag–DFTC, respec-

tively, where the prefix “Dag_” stands for “Directed acyclic graph.

We have implemented several versions of our algorithms and the Schmitz

algorithm, and compared their performance over randomly generated graphs.

The result of this comparison is rather surprising, given the following charac-

teristic difference among the algorithms: GDFTC performs additions as soon

as possible, BTC performs them as late as possible, and Schmitz performs

them at an intermediate stage. Counter to the intuition that early additions

are better (since descendent sets that have been added together need not be

brought back into memory for this addition later), BTC outperforms both

Schmitz and GDFTC. The first reason is that early additions result in

working with larger descendent sets for a longer time during the execution of

the algorithm, and this results in buffers being filled up quicker, thereby

leading to more 1/0. Overall, the two effects—avoiding extra retrievals for

additions and faster growth of sets—appear to balance out, with the faster
growth of sets being perhaps a little more dominant. The second reason is

that information collected in the first pass can be used to apply several

optimizations in the second pass.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

514 . Y. Ioannldls et al.

We have adapted BTC to compute a number of related queries such as the

set of nodes reachable from a given node, or queries posed over the set of

paths in the transitive closure such as the shortest path between each pair of

nodes. We have also adapted GDFTC and Schmitz to compute such path

queries, but only for acyclic graphs. (For these queries, GDFTC and Schmitz

are applicable only for acyclic graphs since they do not maintain path

information within a strong component. Indeed, an important optimization of

BTC, which has the effect of merging nodes in a strong component for

reachability, is also inapplicable.) We compare the performance of BTC,

GDFTC, and Schmitz for path queries over acyclic graphs, and show that the

results for reachability extend to this case as well. We also present a

comparison of the various versions of BTC for path computations on cyclic

graphs.

This paper differs in many respects from its preliminary version [13]. First,

the algorithms have been revised and presented differently, and full proofs of

correctness have been included. Second, we have increased the emphasis on

BTC due to its simplicity and superior performance.1 The most important

difference, however, is that the analysis presented in the preliminary version

has been replaced by a performance evaluation based upon actual implemen-

tations of the algorithms. Indeed, this has caused us to revise some of our

conclusions about the relative merits of the algorithms. The performance

evaluation brought out the fact that the algorithms were affected signifi-

cantly by the impact on buffer management of the growth of descendent sets.

This was not reflected in our analysis, which made the assumption that all

strategies were affected similarly (due to the assumption that only “minimal”

buffer space was available). Thus, the analysis was for worst-case perfor-

mance, whereas based upon our implementation and performance evaluation,

the behavior for the average case differs considerably. Also, by implementing

the algorithms, we were able to experiment with specialized data organiza-

tions, which could not be captured in the analysis.

The paper is organized as follows. We introduce some notation and present

a summary of the new and the existing graph-based algorithms in Section 2.

Section 3 presents the new algorithms in detail, starting with some simple

versions and subsequently refining them. We describe the implementation of

the algorithms in Section 4, and the testbed for performance evaluation in

Section 5. We present a performance comparison for reachability queries in

Section 6 (acyclic graphs) and Section 7 (cyclic graphs). Path queries are

considered in Section 8, and the algorithms presented earlier are adapted to
compute them. In Section 9, we present a performance comparison of the

algorithms for path queries. We discuss selection queries in Section 10.

Graph-based algorithms are compared to nongraph-based ones in Section 11.

Finally, our conclusions are presented in Section 12.

1In fact, we have deleted one of the algorithms in that paper, called DFTC. The algorithm, which

we did implement for reachability y queries, performed uniformly worse than BTC and GDFTC,

and did not present any points of additional interest,

ACM TransactIons on Database Systems, Vol 18, No 3, September 1993

Transitive Closure Algorithms . 515

2. GRAPH-BASED ALGORITHMS

A large body of literature exists for main-memory based algorithms for

transitive closure. Recently, with the realization of the importance of recur-

sion in new database applications, transitive closure has been revisited and

reexamined in a data intensive environment. In this section, we concentrate

on graph-based algorithms, i.e., ones that take into account the graph struc-

ture and its properties and compute the transitive closure by traversing the

graph. Almost all such algorithms have the following common characteristics:

(a) they are based on a depth-first traversal of the graph, (b) they identify the
strong components of the graph using Tarjan’s algorithm [26], and (c) they

take advantage of the fact that nodes in the same component have exactly the

same descendants and that they are descendants of each other. Based on (c),

graph-based algorithms can compute the transitive closure of a graph so that

only a pointer is associated with each node in a strong component pointing to

a common descendent set. In this section, we discuss graph-based algorithms

by Purdom [20], Ebert [10], Schmitz [25], and Eve and Kurki-Suonio [11] and

compare them with our algorithms. The focus is on algorithms that have been

proposed for reachability computation of entire graphs, and so graph-based

algorithms that have been primarily proposed for partial transitive closure,

e.g., [14], or path computations are not being discussed. We first present some

notation and basic definitions.

2.1 Notation and Basic Definitions

In this paper we use the term graph to refer to a directed graph, since we do

not discuss undirected ones at all. We assume that the graph G is specified as

follows: for each node i in the graph, there is a set of children E, = {jl(i, j) is

an arc of G}. Without loss of generality, we assume that G has no self-loops,

i.e., for all nodes i, i @ E,. For an arc (i, j), node i is called the source or tail

and node j is called the destination or head of the arc. We denote the

transitive closure of a graph G by G*. The children of i in G* are the

descendants of i in G. The strongly connected component (or strong compo-

nent) of node i is defined as V, = {i} U {jl(i, j) ~ G* and (~, i) G G*)}. The

component V is nontrivial if V, + {i}. The condensation graph of G, G, O., has

the strong components of G as its nodes. There is an arc from V, to Vj in the

condensation graph if and only if there is a path from i to j in G. The set of

descendants in the transitive closure for a node i is S, = {jl(i, j) is an arc of

G*}.

As mentioned in point (a) above, most graph-based algorithms perform a

depth-first traversal of graphs, so we review some definitions relevant to it.

Depth-first traversal induces a spanning forest on the graph based on the

order in which nodes are visited. If we assume that the main routine in

depth-first traversal is visit(i) for a node i, then there is an arc (i, j) in the

spanning forest if there is a call to visit(j) during the execution of the call
visit(i). An arc (i, j) in the graph G is called a tree arc, if it belongs in the

spanning forest. An arc (i, j) in the graph G but not in the spanning forest is

called a forward arc, a back arc, or a cross arc, if in the spanning forest, j is

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

516 . Y. Ioannidis et al,

a descendant of i, j is an ancestor of i, or j is not related to i with an

ancestor-descendant relationship, respectively. For every strong component,

its node r on which visit(z-) is first called is the root of the strong component.

2.2 Summary of Algorithms

The goal of this subsection is not to present any algorithm in detail but

rather to give an abstract description so that the main differences among

them and their implications on performance can be understood. Algorithms

BTC and GDFTC are described in detail in later sections of the paper.

Detailed expositions of the remaining algorithms can be found by the inter-

ested reader in the original references. In the descriptions that follow, one

should pay special attention to the fact that BTC and GDFTC are two

extreme points in a spectrum of possibilities for when descendent sets of

children are added to those of parents, with Schmitz somewhere in the

middle. This is important because it allows the conclusions of a performance

evaluation of these three algorithms to be used as a basis for a qualitative

understanding for how the other graph-based algorithms are likely to per-

form as well.

BZ’C. This algorithm uses Tarjan’s algorithm as a first pass to construct a

topological ordering of nodes and to identify the strong components of the

graph. Additionally, that pass can be used to physically cluster the relation in

reverse topological order with nodes in descendent sets arranged in topologi-

cal order. This improves the performance of a second pass when the descen-

dants of all nodes are found in reverse topological order. An optimization

called “marking” is used to avoid the addition of a descendent set in many

cases where earlier set additions are guaranteed to have added all nodes in

the given descendent set. Because of the two-pass structure of the algorithm,

set additions are deferred as much as possible.

GDFTC. This algorithm defines the opposite end of the spectrum from

BTC in that descendent set additions are performed as early as possible.

When returning from a child along a tree arc or an intercomponent cross-arc,

the child’s descendent set is added to the parent’s set immediately, thereby

eliminating the need to retrieve these sets subsequently to perform this

addition. A rather complicated stack mechanism ensures that, for all nodes in

a strong component, when returning from a child (along a forward or inter-

component cross-arc), the child’s descendent set is added to the set of a
representative of the strong component. Thus, additions are never deferred.

Pzwdom. Purdom proposed an algorithm that is similar to BTC [20]. It is

based upon computing a topological sort of the condensation graph prior to

computing the closure. The main difference with respect to BTC is the

absence of marking; the implementation of BTC also incorporates some

important optimizations that increase the effectiveness of marking and take

advantage of the topological sort for physical clustering.

ACM TransactIons on Database Systems, Vol 18, No 3, September 1993,

Transitive Closure Algorithms . 517

Eve and Kurki-Suonio. Eve and Kurki-Suonio observed that on returning

to a node i after processing a child j, node j is still on the stack if and only if

i and j are in the same strong component [11]. Further, after processing all

the children of the root of a strong component, the nodes on the stack that are

above the root comprise the nodes in the strong component. They proposed

the following modifications to Tarjan’s algorithm in order to compute the

transitive closure. First, if i and j are in different strong components, the

descendants of j are added to the descendants of i after visiting j from i

(similarly to GDFTC). Second, when the root of a strong component is
identified, the descendants of each node in the strong component are added to

the descendants of the root (similarly to Schmitz). There are two potential

redundancies in the algorithm that affect performance. First, the algorithm

propagates descendent sets even when returning from forward arcs although

this is unnecessary. Second, if there is an arc (j, k) such that j is in a

nontrivial strong component and k is in a different component, k is added to

S1, by the first modification above, and also to the descendent set constructed

for the root of j’s strong component, via the addition of S1, by the second

modification above.

Ebert. Ebert suggested another modification of Tarjan’s algorithm: a

depth-first traversal of the graph is performed to identify strong components,

but when returning from a child, if the arc is a tree arc or an intercomponent

cross arc, the descendants of the child are added to the descendants of the

parent [10]. This algorithm improves upon Eve and Kurki-Suonio by perform-

ing no additions on forward arcs. For acyclic graphs, the Ebert algorithm is

identical to Dag _ DFTC. For cyclic graphs, however, there are many redun-

dant operations in Ebert in that descendent sets are propagated after return-

ing from every tree arc in the component until they are eventually propa-

gated to the descendent set of the root.

Schmitz. Schmitz’s modification of Tarjan’s algorithm is based upon the

fact that strong components are identified in reverse topological order, and

that all nodes in the strong component are on the stack above the root node

when the root is identified [25]. The modification to compute the transitive

closure is essentially to construct the descendent set of the root by adding the

descendent sets of all children of nodes in the strong component when the

root is identified. Schmitz’s algorithm also detects forward arcs and ignores

them; thus, the first redundancy of Eve and Kurki-Suonio’s algorithm is

avoided. Finally, Schmitz uses an optimization that is similar to marking

over the condensation graph, although it is not in general as flexible as

marking in 13TC, due to the two-pass nature of BTC versus Schmitz’s

one-pass structure. Further, since no additions are made to the descendent

sets of nodes in a strong component until the root is identified, the second

redundancy of that algorithm is also avoided as well as the redundancy of

Ebert’s algorithm. Like Eve and Kurki-Suonio’s algorithm, however, Schmitz
has the potential cost of retrieving descendent sets that may not be in

memory. For Schmitz, these are sets of children of nodes on the stack above

the root node; for Eve and Kurki-Suonio, these are sets of nodes on the stack

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

518 . Y. Ioannidis et al

above the root. Thus, both algorithms are intermediate between GDFTC and

BTC in terms of when descendent sets are added: additions are not done

eagerly, but they are not deferred to a second pass either. Instead, they are

deferred until the entire strong component containing the node is identified.

Schmitz also proposed a variant of his algorithm in which what he refers to

as an arc basis of the graph is computed and used, i.e., a minimal subset of

arcs such that their transitive closure is equal to that of the original graph.

We have not explicitly studied this variant. Nevertheless, one of the tech-

niques used in the implementation of BTC achieves essentially the same

effect. Thus, an upper bound on the cost improvement of this variant over the

basic Schmitz algorithm can still be derived indirectly (Section 6.1).

2.3 Comparison of Algorithms

BTC can be seen as a refinement of Purdom’s seminal algorithm. Both the

marking optimization and the physical clustering that we propose are seen to

yield significant improvements; BTC clearly dominates Purdom’s algorithm.

The Eve and Kurki-Suonio algorithm performs all the additions performed

by the Schmitz algorithm and usually more, and it is almost identical to it in

terms of when additions are carried out. We therefore expect that the

Schmitz algorithm is uniformly superior. (A comparison by Schmitz in terms

of vector operations and run-times for a main memory implementation cor-

roborates this observation.)

The Ebert algorithm is identical to Dag_DFTC (and thus GDFTC) for

acyclic graphs. For cyclic graphs, it does strictly more work than GDFTC in

terms of additions. While it is not clear how Ebert and GDFTC compare in

terms of CPU time for cyclic graphs (since GDFTC uses more complex stack

operations), we expect that the 1/0 performance of GDFTC is uniformly

better than that of Ebert.

Based on the above observations, we have limited ourselves to a compre-

hensive comparison of the performance of BTC, GDFTC, and Schmitz only.

The detailed results of this comparison are presented in Sections 6 and 7.

3. THE NEW TRANSITIVE CLOSURE ALGORITHMS

In this section we present in detail several new transitive closure algorithms

based upon depth-first graph traversal.

3.1 A Marking Algorlthm

We first present a simple transitive closure algorithm that introduces a

technique called marking. Intuitively, if a descendent set contains a marked

node, it also contains the children (but not necessarily all descendants) of that

node. In the following, descendent set S, is partitioned in two sets M, and U,
that can be thought of as the marked and unmarked subsets of S,.

proc Closure (G)

Input: A graph G represents by children sets E,, 1 = 1 to n.

ACM Transactions on Database Systems, Vol. 18, No 3, September 1993

Transitive Closure Algorithms . 519

Output: S, = M, (U, = 0), i = 1 to n, denoting G+.

(1) {for i = 1 to n do U; := Ei; M, := 0 od

(2) fori=l tondo

(3) while there is a node j s U, – {i}
do M,:= ML UMJU{j}; ~:= ULUUJ –M, od

(4) od}

LEMMA 3.1. ~ G ~, * El cM, u UL.

PROOF. Whenever a node j is added to M,, Ml u Uj is also added to

M, U Q. The claim follows from the observation that initially M, = 0 and

U, = E,, and that for all i, M, U U, is monotonically increasing. ❑

THEOREM 3.2. Algorithm Closure correctly computes the transitive closure

of a graph G.

PROOF. If ~ G Ml u U,, then j ● Ei or there is some node k such that

k e El and j ● Mh U Uk. It follows that only nodes that are reachable from i

are in M, U u,. To see that all such nodes are in Mi U U,, we note that when

the algorithm terminates, for all i, U, = @. The proof is completed by noting

that initially U, = .?3, and that Ml U U, is monotonically increasing for all i,

and by applying Lemma 3.1. ❑

We note that Schmitz’s algorithm contains an optimization that achieves

the effect of marking over the condensation graph. (For the interested reader,

this is the optimization that derives from Lemma 2 of [25].)

3.2 Depth-First Traversal to Number Nodes

In the algorithms that we introduce in the following sections, we need to

obtain a numbering of the graph nodes with the property that all descendants

of a node numbered m have a lower number than m, i.e., a topological order

numbering. In the presence of cycles, an approximation to such a numbering

is obtained, by ignoring back arcs. That is, in the acyclic graph obtained from

G by ignoring back arcs, all descendants of a node numbered m have a lower

number than m. The depth-first numbering algorithm is presented below.

proc Number (G)

Input: A graph G represented by children sets E,, i = 1 to n.

Output: Graph G with nodes numbered. The numbering is stored in a global

(1)

(2)

(3)

(4)
(5)

(6)

(7)

array popped[].

{vis = 1;

for i = 1 to n do uisited[i] := O; popped[i] := O od

while there is some node i s.t. uisited[i] = O do visit(i) od

}
proc visit(i)
{Ukited[i] := 1;

while there is j G E, s.t. visited[j] = O do visit(j) od

popped[i] Z= uis; vis := vis + 1;
}

ACM Transactions on Database Systems, Vol. 18, No 3, September 1993

520 . Y. Ioann/dls et al.

The following lemma identifies an important property of the spanning forest

induced by algorithm Number.

LEMMA 3.3 [4]. Let GI be a strong component of a graph G. Then, the

vertices of GI together with those of its arcs that are common to the spanning

forest form a tree.

Note that the node in the strong component that is the root of this tree is

the root of the strong component. Tarjan’s algorithm for identifying the

strong components of a graph [26] is easily modified to compute the array

popped, and it can also identify the root (of the strong component of) each

node in the graph, for example, in another array root. While we have

presented the simpler algorithm Number for ease of exposition, in the sequel,

we use Tarjan’s algorithm, suitably modified, to compute the arrays popped

and root. We refer to this modified algorithm as Modified_ Tarjan.

3.3 Algorithm BTC

A simple-minded version of our first algorithm is a straightforward combina-

tion of the two ideas presented in the previous sections; algorithm Closure is

simply run after numbering the nodes in reverse topological order (modulo

back arcs). This version is denoted by BTC’.Z For ease of presentation, we

assume the existence of a procedure called node _popped(i), which looks at

the global array popped constructed by Modified_ Tarjan when applied on a

graph G and returns the node k such that popped[k] = i, Note that, when

Closure is run on an acyclic graph G following the popped ordering, after a

descendent set S1 is added to a set S,, the equalities S1 = Ml and ~ = 0

hold. This is not true, however, when Closure is run on a cyclic graph

following such an ordering. For example, when SJ is added to S, and (i, j) is a

back arc, there exists a node k such that k E U] and k is an ancestor of i in

the spanning forest imposed by Number.

proc BTC’ (G)

Input: A graph G represented by children sets E,, i = 1 to n.

Output: S, = M, (Uz = (23), i = 1 to n, denoting G*.

(1) {Modified _Tarjan(G); / * First Pass*/

(2) fori=lto ndo UL=Ez; ML=0 od / * Second Pass*/

(3) fori=l tondo

(4) I = node_ popped(i);

(5) while there is a node ,i ● UI – {1}
do M1=MIUM,U {j]; U1:=UIUU, –Mlod

(6) Od}

Modified_ Tarjan also computes the array root, which enables an impor-

tant optimization: since all nodes in a strong component have the same set of

descendants, we can construct the descendent set for the root node alone.

‘In our earlier paper on these algorithms [13], we referred to algorithm Closure as algorithm

BTC, and proposed the use of algorithm number to order the nodes appropriately; the resulting

algorlthm is essentially what we have presented above as algorithm BTC’. The only difference is
the use of algorithm Modified _Tarjan rather than algorithm Number.

ACM Transactions on Database Systems, VO1 18, No 3. September 1993

Transitive Closure Algorithms . 521

Consider the processing of a node 1 in the algorithm above. Instead of adding

the descendent set of a child j and the child itself (i.e., Mj U U~ U {j}) to SI,

we can add it to S, OO~[I1.This addition is carried out in BTC’ when j ~ UI – 1;

by excluding j = 1, we avoid the addition of descendent set to itself. After

processing a root node (a node 1 such that 1 = root[I]), we copy its descen-

dent set to all nodes in its strong component.

If we carry out the addition of a child j and its descendent set for j = 1

also, an additional optimization is made possible: we can ignore the

marked/unmarked distinction for nodes in a descendent set.3 In essence,

whenever we add a descendent set S~ to another, the set 11~is either empty or

can be ignored, based upon the following observations. In considering a child

j of node 1, if j and 1 are in different strong components, j must have already

been processed; thus S~ = M~ and Uj = Q1. If j is in the same strong compo-

nent as 1, the nodes in Uj are all in the same component too. Further, every

nonroot node in the strong component is processed before the root, and is

therefore in the marked subset of the root’s descendent set when we process

the root. The root node itself is reachable from some node in the strong

component, and is added to the marked subset of the root’s descendent set

when we process the first such node. Thus, the addition of U~ has no effect on

the descendent set computed for the root, which is subsequently propagated

to all nodes in the strong component. The only other use for unmarked

subsets of descendent sets is to control the while loop; i.e., to determine for

what nodes j the addition is to be carried out. Here, we can use EI – M,OOt[~1

instead of Ur since UI is initialized to EI and is not added to (based upon the

preceding discussion), and all nodes for which the addition has already been

carried out are included in M,OOfr ~1.

We refer to the above changes collectively as the “root optimization”; they

can improve performance significantly. For reachability computations, we

henceforth consider only algorithm BTC, presented below, which is BTC’

with the root optimization. Based on the above observations, Si is used

directly in the algorithm, since there is no need to distinguish between its

subsets M, and Uz. On the contrary, for path computations, nodes in a strong

component cannot be treated identically, and the root optimization is not

applicable. Thus, when we consider path computations, we adapt BTC’,

rather than BTC (Section 8).

proc BTC (G)

Input: A graph G represented by children sets E,, i = 1 to n.
Output: S,, i = 1 to n, denoting G*.

(1) {Modified_ Tarjan(G); / *First Pass*/

(2) fori=ltondo S,:=00d / * Second Pass*\

(3) fori=l tondo

(4) I := node _popped(i);

‘This results in adding the descendent set of the root to itself for nontrivial strong components or

singleton strong components with self-arcs. This unnecessary addition can be avoided, but we

have chosen to keep the presentation simple instead.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

522 . Y. Ioannldls et al.

(5) while there is a node ~ ~ EI – S,,,.,[~1

do S –sr’oot[I] “— ,out[ll U S, U {j} od

(6) if I = root[Il then for all h + 1 s.t. root[rl] = I do Sk = SI od
od}

Note that in the above algorithm, S~ is empty in line (5) whenever j is a

nonroot node in the same component as 1; further, SJ contains all descen-

dants of j if j and I are in different components.

THEOREM 3.4. Algorithm Basic _ TC computes the transitive closure of a

directed graph G.

PROOF. we prove the theorem by showing that upon termination of execu-

tion of the algorithm, for each node m in every strong component, S,.

contains all descendants of m in the transitive closure of G. Note that a node

may constitute a trivial strong component by itself. The proof is by induction

upon popped[r], where r is the root of a strong component.

Basis. Consider the strong component with root r such that popped[r] is

the least over all strong components. If this is a trivial strong component, i.e.,

r is the only node in it, the initial value of S, = @, which is not modified by

the algorithm. Thus, the inductive claim holds.

If r is the root of a nontrivial strong component, every node k that is

reachable from a node in the component must also be in the component;

otherwise, k would belong to a strong component with a root 1 such that

popped[1] < popped~ r]. In addition, every node in the component, including

the root, is a child of some other node in the component. By definition of the

root of the strong component, popped[r] > popped[m] for any node m + r in

its strong component. Thus, after processing the while loop for 1 = r in the

algorithm, every node in the strong component has taken the role of j in

statement (5) at least once since the beginning of execution. Hence, S,

contains every node m in the strong component, and by statement (6), this

set is propagated to every node m + r in the strong component. Thus, the

inductive claim holds for this case as well.

Induction Step. Consider a strong component with root r such that

popped[r] = P, and let the claim hold for all strong components with root r’

such that popped[r’] < P. As in the basis proof, we must examine two cases.

If this is a trivial strong component, every child of r is in a strong component

with a root that has a popped number less than P. By the induction
hypothesis, the descendent set for each child m of r is contained in Sm. By

statement (5), this set is added to S, while processing 1 = r. Thus, the

inductive claim holds.

If r is the root of a nontrivial strong component, we can show as in the

basis proof that after processing the while loop for I = r, S, contains all

nodes in its strong component. Further, if node k is not in the strong

component but is a child of a node j in the strong component, S, contains

Sh U {k}. The reason is that the root of the strong component containing k is

processed before j, which is processed before r. Since k is in a strong

ACM TransactIons on Database Systems, Vol. 18, No. 3, September 1993

Transitive Closure Algorithms . 523

component with root r’ such that popped[r’] < N, by the induction hypothe-

sis, Sk includes all descendants of k when we process node j. Thus, Sk U {h}

is added to SrOO~[dl, i.e., to S,, when j is processed. This concludes the proof of

the theorem. ❑

3.4 Algorithm Dag_DFTC

In algorithm BTC, we numbered the nodes in a first pass before computing

the closure. In this and the following subsection, we attempt to improve

performance by combining some of the work from the two passes, i.e., by

adding the appropriate descendent sets when they are simultaneously in

memory during the numbering pass. The following simple algorithm illus-

trates the idea, although it only works for acyclic graphs.

proc Dag DFTC (G)

Input: Ar-acyclic graph G represented by children sets E,, i = 1 to n.

Output: S,, i = 1 to n, denoting G*,

(1) {for i = 1 ton do uisited[i] := O; S1 = 0 od

(2) while there is some node i s.t. uisitecl[i] = O do visit(i) od

}

(3) proc visit (i)

(4) {uisitecl[i] := 1;

(5) while there is some .j e E, – S,
do if uisited[j] = O then visit(j); S, := S, U SJ U {j} od

}

We state the following simple theorem without proof.

THEOREM 3.5. Algorithm Dag_DFTC computes the transitive closure of an

acyclic graph G.

The basic intuition in the above algorithm is that, when we pop up from a

tree arc, the descendent set of the child is complete and must be added to the

descendent set of the parent, and moreover both descendent sets are in

memory. If the descendent set of the parent is paged out during the process-

ing of the child, we must nonetheless retrieve it to identify the next child to

visit, if any. Hence, by performing this addition at that time, we avoid

possibly fetching one or both of these descendent sets later, in the second

phase of BTC, to perform the addition. The above intuition is used to derive

an “eager addition” algorithm for arbitrary graphs as well, which is presented

in the next subsection.

3.5 Algorithm GDFTC

In this section we develop an algorithm that generalizes Dag_DFTC to work

on arbitrary graphs. Like BTC, it avoids duplication of effort by essentially

generating the descendants of only one of the nodes in a strong component.

Subsequently, the sets of all the other nodes are updated, if any. In this

version of the algorithm, a stack mechanism4 is used to construct the

‘Our stack differs from the stacks used in other graph-based algorithms for transitive closure in

that it is a stack of descendent sets of nodes in nontrivial strong components, as opposed to a

stack of nodes.

ACM Transactions on Database Systems, Vol 18, No. 3, September 1993

524 . Y. Ioannidis et al.

descendent set for (the root of) a strong component. During the process of the

algorithm, each stack frame is associated with some nontrivial strong compo-

nent, If we discover that some of these (potentially distinct) “components” are

in fact part of the same component, then stack frames are merged to reflect

this. Every stack frame f maintains two sets of nodes. The set nodes[f]

contains nodes that are known to be members of the strong component

associated with f’. The set list[~] contains nodes that do not belong in

nodes[f] and are descendants of the members of nodes[f]. When the root is

identified, list[top] is assigned to all the nodes in nodes[top] and the stack is

popped, concluding the processing of the corresponding strong component.

The algorithm works roughly as follows. It traverses the graph in depth-first

order, visiting each node once. The action on each traversed arc (i, j) depends

on its type with respect to the spanning tree of calls to the visit() routines,

i.e., on whether it is a tree, cross, or back arc (forward arcs are ignored). The

arc type is identified with the help of the values of visited[1 and popped[1 for

i and j. (Note that the array visited contains integer elements in this

algorithm.) In all cases, however, action is differentiated based on two

additional pieces of information: first, whether i and j are in the same or

different strong components, and second, in case they are in the same

(nontrivial) component, whether j is the first child of i to pass the informa-

tion to the latter that it is part of a nontrivial strong component. Both

questions are resolved based on the values of root[] for i and j. For any node

i, root[i] < n while i is known to be part of a strong component whose

processing has not finished yet, whereas root[i] = n + 1 otherwise. Thus, for

the first question, the value of root[j] should be equal to n + 1 if i and j are

in different strong components (processing of the component of j is over). For

the second question, the value of root[i] should be equal to n + 1 if i is not

known to be in a strong component.

Based on the specific case identified from the above pieces of information,

the algorithm takes the following actions. For all tree and cross arcs, if i and

j are in different strong components, the descendants of j are propagated to

the descendants of i. This is the action when operating on acyclic parts of the

graph and is straightforward. The bulk of the algorithm, which involves stack

manipulation, addresses the case when i and j are in the same strong

component. Tree arcs are the most interesting in this case. The top stack

frame always corresponds to j. If j is the first child of i through which i is

detected to be part of a strong component, then i is incorporated in the top

stack frame. Otherwise, the second stack frame from the top corresponds to i
and is merged with the top frame. In both cases, root[i] is updated appropri-

ately. Cross and tree arcs are treated almost identically. If j is the first child

of i through which i is detected to be part of a strong component, then a new

stack frame is pushed on the stack and becomes associated with i. Otherwise,

only root[i] is updated appropriately (the top stack frame is the one corre-

sponding to i), in slightly different ways for cross and back arcs.

Algorithm GDFTC is given below. The notation LI := LIoLZ is used to

indicate that list Lz is concatenated to list LI by switching a pointer, at 0(1)

ACM Transactions on Database Systems, Vol 18, No 3, September 1993

Transitive Closure Algorithms . 525

cost. For the special case when LI is 0 (that is, when list Lz is to be assigned

to the empty list Ll) we use the notation LI ‘= ●Lz. In contrast, the notation

LI Z= LI u Lz is used to denote that a copy of Lz is inserted into L1.

proc GDFTC(G)

Input: A graph G represented by children sets E,, i = 1 to n.

Output: S,, i = 1 to n, denoting G*.
/.

/.

/“
/.

/.

/“

(1)

(2)

(3)

(4)
(5)

(6)

(7)

(8)
(9)

(lo)

(11)

(12)
(13)

(14)

(15)

(16)
(17)

(18)

(19)

list[f] descendants of nodes in the strong comp. of stack frame f.

*/
nodes[f] nodes in the strong comp. of stack frame f. */
top pointer to the top of the stack. */
uisited[i] order in which visit(i) is called. */
root[i] potential root of the strong comp. in which i belongs. “/
popped[i] 1 if the call to visit(i) has returned. +/

{vis := 1; top := O; uisited[n + 1]:=n + 1;

for i := 1 to n do uisited[i] := popped[i] := O; root[i] = n + 1;list[i] :=
nodes[i] := S, := @ od

while there is some i s.t. visited[i] = O do visit(i) od}

proc visit(i)

{visited[i] = uis; vis Z= uis + 1;

for each j ~ Et do

/ * each j considered exactly once.*/

if j g S, then

/ *body of loop not executed when j E S,*/

if visited[j] = O then {

/*(i, j)is a tree arc.*/

visit(j);

if root[j] = n + 1 then S, := S, u S~ U {j}

/ * i, j in different strong components. * /

elseif root[i] = n + 1

/*firstdetection of i being in a strong comp. (through j) * /

then add_in_top_frame(i, .j)

else merge _top _two_frames(i, j)}

elseif popped[j] = 1 then

/*(i, j) is a cross arc.*/

if root[j] = n + 1 then S, := S, U SJ U {j}

/ *i, j in different strong components.*/

else {if root[i] = n + 1 then push_ new_ stack_ frame(i, j);

/ * first detection of i being in a strong comp. * /

update_ root _non_back(i, j)}

elseif popped[j] = O then {

/*(i, j)is aback arc.*\
if root[i] = n + 1 then push _new _ stack _frame(i, j);

/ *first detection of i being in a strong comp. * /
update_ root_ back(i, -i)}

od

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

526 . Y. Ioannidis et al.

Fig. 1. A strongly connected graph.
G-

d g

(20) if i = root[i] then {

/ *Propagate descendants of root to the rest

of the nodes in the strong comp. */

(21) root[?] ,= n + 1;

for each j = noci?es[top]

do S, := S,”nOdeS[tOp]; root[j] = n + 1 od:

top = top – 1}

(22) popped[i] := 1

}
proc add_in _ top_ frame(i, j)

(23) {lzst[top] ;= list[top] u S,; S, = ~list[top];

(24) nodes[top] ‘= nodes[top] u {i); root[i] = root[.jl;}

proc merge _top_two_frames(z, j)

(25) {list[top – 1] = list[top – 1]u lz’st[top];

(26) nodes[top – 11 = rzodes[top – ll*nodes[top]; top = top – 1;

(27) update –root_non_back(i, j)}
proc push _new _ stack _frame(i, j)

(28) (top = top + 1; lisd top] = OS1; nodes[topl ‘= {i}}
proc update _root _non_back(i, j)

(29) {if znsifed[root[j]] < cisited[root[ill then rood i] = root[jl}
proc update _root _back(z, j)

(30) {if cisited[j] < viszteo![root[i]] then root[i] = j}

We prove that GDFTC is correct in an appendix. As mentioned above, an

important aspect of the algorithm is that duplication of effort is avoided by

constructing the descendent list of just one node (the root) of a strong

component and subsequently copying this list for each node in the component.

One of the reasons for the complexity of this algorithm is the need to keep

track of strong component information while constructing descendent lists on

the fly. We illustrate the operation of the algorithm on an example in which a

single strong component is discovered in a piecemeal fashion. Figure 1 shows

the input graph. The whole graph is one strong component. Assume that the

nodes are visited in the order a, b, c, d, e, f, g, and h. Thus, the back arcs

(d, b) and (g, e) are discovered before (h, a) is. This results in two potentially
independent components to be pushed on the stack, namely, {b, c, d} and

{e, f, g}. After (h, a) is discovered, a third level is added to the stack, because

there is no way of knowing that all of the nodes belong to the same

component. This is discovered when we pop up back to f again, statement

(12) in the algorithm is executed, and the two frames at the top (correspond-
ing to a and e respectively) are merged into one. When c is reached, similar

actions are taken, so that when a, the root, is reached, all its descendants are

correctly found in the top list.

ACM TransactIons on Database Systems. Vol 18, No 3, September 1993

Transitive Closure Algorithms . 527

4. IMPLEMENTATION OF ALGORITHMS

This section describes the main aspects of our implementation of the algo-

rithms, analyzing the specific choices that we made when multiple alterna-

tives were available so that the results of a performance evaluation may be

clearly interpreted. These aspects include storage structures for graphs,

physical clustering of descendent lists, memory management, and duplicate

elimination. Some of the techniques that we present below, or closely related

ones, have also been used by others for implementing transitive closure

algorithms [3, 14, 22].

4.1 Storage Structures

We represent and store graphs in several forms. First, both the input and

output graphs of the algorithms are stored in a plain tuple format, as

compactly as possible. Tuples with the same source attribute (arcs with the

same tail) are stored consecutively in the file, but otherwise no special

structure is assumed.

Second, during the course of the execution of all algorithms, graphs are

represented as descendent lists. The restructuring from arc-tuples to descen-

dent lists occurs as part of the first pass of BTC, whereas it is the first step of

all other algorithms, and we refer to it as the restructuring phase. To

accommodate descendent lists, every page is divided into some number of

blocks. Each block can store a constant number of node names (equal to the

blocking factor), representing arcs from a common source to the stored nodes.

There is a pointer to an additional block if there are more arcs with a

common source than the blocking factor. In addition, each page contains an

array index with one entry for each block; the entry contains the common

source of arcs in the block, and a bit indicating whether the block is empty or

not. Given a fixed size page, increasing the blocking factor implies that fewer

blocks can be stored in a page. Thus, choosing the perfect blocking factor

depends on the following trade-offl a high blocking factor saves space for a

long descendent list, since its source is factored out and stored only once for

each set of descendants that fit in each block; on the other hand, a high

blocking factor wastes space for a short descendent list, since a large portion

of a block remains empty and unused. This trade-off will become clear from

the results of our experiments.

Third, whenever a descendent list is processed in memory, i.e., whenever

nodes are copied from it or into it, its contents are also replicated in the form

of an adjacency vector. The vector has an entry for every node in the graph,

which is equal to 1 if the corresponding node has been identified as a

descendent of the source of the corresponding descendent list and is equal to

O otherwise. This allows for fast duplicate elimination, since the descendent

list does not have to be searched before adding a node to it: a straight lookup
at the adjacency vector is enough (Section 4.4). The size of the adjacency

vectors is calculated in” the first steps of each algorithm, when the graph is

ACM Transactions on Database Systems, Vol. 18, No, 3, September 1993.

528 . Y, Ioannidis et al

transformed from tuples to descendent lists, at which time the number of

nodes is counted.

In addition to the above, an array containing some useful information is

maintained in memory, with an entry for each node in the graph. Each such

entry contains the following items: (a) the outdegree of the node, (b) the root

of the strong component to which the corresponding node belongs, (c) the

rank of the node in the topological order obtained by the depth-first traversal

of the graph, (d) an indication of whether the node has been visited and

processed or not, (e) a pointer to adjacency vector of the node (if it is memory),

and (f) the page number of the file on disk where the descendent list of the

node is stored. For leaves, the last entry is equal to a particular reserved

value, making it unnecessary to store empty descendent lists for them, thus

saving space and also many useless accesses to disk.

4.2 Descendent List Ordering

In the implementation of the BTC algorithm, we take advantage of its two

pass structure and use much information from the first pass to expedite the

second pass, in which the transitive closure is computed. This is not possible

with the remaining algorithms that we have considered. For cyclic graphs,

their strong components are identified in the first pass, and this allows us to

essentially compute the transitive closure of the condensation graph, improv-

ing performance significantly. The effect of computing the closure of the

condensation graph is also achieved by Schmitz and GDFTC, in other ways.

Inter- and intradescendent list ordering are the two other important opti-

mization made possible by the ordering of nodes obtained in the first pass of

BTC. These result in significant performance improvements, and for the most

part, their effect cannot be realized by Schmitz or GDFTC. We elaborate on

these optimizations below.

In BTC, the descendent lists of a graph are constructed during the first

pass. At that time, of course, they only contain the children of each node. We

store the descendent lists in the reverse topological order of their source

nodes. This has the effect that many nodes that are close together in that

order, and are therefore likely to be close in the graph as well, have their

descendent lists stored on the same page. For example, a parent and its

children are often on the same page. Also, since nodes are processed in

reverse topological order, nodes processed consecutively are likely to be on

the same page as well. Hence, the above interdescendent list ordering results

in very high hit ratios in the buffer pool and thus in less 1/0. The above

technique does not help when the number of children of each node in the
graph is so large that only one children list or less fits on a page.

Another benefit of the first pass of BTC is that the topological ordering of

the nodes can be used to reduce the production of duplicates. Specifically,

consider an arc (i, k) in G and assume that there is also a path between i and

k whose first arc is (i, j). Clearly, the inequalities i < j < k hold in the

topological order of G. If j is processed before k when dealing with the

children list of i (statement (5) of BTC), then k will be found in S, when its

turn comes, and no action will be taken on it. If k is processed first, however,

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993

Transitive Closure Algorithms . 529

then j will have to be processed as well, and the descendants of k will

essentially be derived twice for i. To avoid this unnecessary computation, the

nodes in each descendent list produced by the first pass of BTC are stored

(and processed) in topological order, i.e., j is stored first in the above example.
This intradescendent list ordering has a considerable effect on 1/0 and CPU

performance. The above ordering has also been used by Agrawal and Ja-

gadish in their Hybrid algorithm [3].

As we mentioned earlier, the above data orderings cannot be used in

Schmitz or GDFTC, because of their “on-the-fly” type of processing before the

necessary information is available. The effect of the intradescendent list

ordering, however, can also be achieved by computing the arc basis of a graph

and using that for the actual transitive closure computation. As mentioned in

Section 2, Schmitz proposed that as a variant of his algorithm. Such a

preprocessing step, however, adds some nontrivial cost to the overall execu-

tion, as opposed to the intradescendent list ordering of BTC, whose cost is

negligible, since it is a by-product of the first pass of the algorithm (and is

accounted for in the numbers that we present). We should also note that

adding the first pass of BTC to either Schmitz or GDFTC is not very

meaningful: the added complexity of these algorithms with respect to the

second pass of BTC gains nothing, and potentially costs more.

4.3 Memory Management

Several data structures are assumed to remain in main memory throughout

the execution of all algorithms. The most important such structure is the

array mentioned in Section 4.1. This is in addition to the buffer pool, which is

used to store the following: (a) arc-tuples, for the initial input and final

output of the algorithms, (b) descendent lists and (c) adjacency vectors. For

all algorithms, depending on the execution phase, a buffer pool of size M is

divided among the above types of data as follows.

Restructuring

M – 1 pages for input arc-tuples

1 page for the constructed descendent lists

Main algorithm

1 page for output arc-tuples

M-2 pages for descendent lists

1 page for adjacency vectors

During restructuring, LRU is used as the page replacement policy among

the arc-tuple pages. During the main algorithm, LRU is used among the

adjacency vectors to manage the space in the single page devoted to them.

With respect to the pages storing descendent lists, we have experimented

with two replacement algorithms: LRU and a specialized algorithm that we

introduce below called Least Unprocessed Node Degree (LUND).
LUND works as follows. The descendent lists that are in main memory at

any point are divided into two classes. The first class contains lists, called

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

530 . Y Ioannidls et al.

complete lists, whose source is a node that has been processed already, i.e., all

its descendants have been found. Clearly, any future reference to such a list

S~ is via an arc pointing to j, with the goal of copying S] into the list of the

source of that arc. The second class contains all the other lists, called

incomplete lists, i.e., those whose source is either still being processed or has

not yet started being processed. Future references to such a list can be due to

both arcs coming into the node and arcs going out of the node. (For every

outgoing arc, the list is requested once so that the descendants of the head of

the arc are added to the list. For every incoming arc, the list is requested once

so that it can be added to the descendants of the tail of the arc.) In LUND, the

candidate pages for replacement in the buffer pool are chosen from among

those that contain only complete lists and a fraction f of the least recently

used pages with incomplete lists. For each list on a candidate page, its

Unprocessed Node Degree (UND) is computed as the sum of the in- and

out-degree of the source node for the list minus the number of times that the

list has already been requested. Thus, the UND of a list is the number of

requests for the list that are yet to be made, or equivalently, the number of

unprocessed arcs incident on the corresponding node. LUND adds the UNDS

for all lists in each page and then chooses the page with the Ieast sum as the

victim for replacement. The intuition behind the LUND policy is twofold.

First, the most recently used incomplete lists are likely to be needed in

memory again soon, and should not be paged out. These are included in the

fraction of incomplete lists that are not considered for replacement. Second,

among candidate lists, without any further information about the graph

structure, the algorithm assumes that the fewer the arcs that need to be

processed for the source of a list, the further away in the future that list will

be requested. This algorithm has been justified by the results of several

experiments, some of which are discussed in Section 6.2.2.

A final issue to consider is related to page splits. If all blocks of a page are

occupied and one of them is full and needs to be expanded, the page must

split into two pages. At that point, a decision must be made on how descen-

dent lists will be divided between the new pages. We have experimented with

two approaches. The first one is to randomly divide them between the pages;

the second one is to take into account the UND of the source nodes of the lists

in the original page and separate those with small UND from those with

large UND. The specific criterion for the UND-based separation is not

important—we have experimented with several of them with no major effects

on the performance. The intuition behind the second approach is that nodes
with high UND are expected to be accessed frequently in the future. Hence,

combining all of them together in a page increases the chances that the page

will stay in main memory long enough for much of the processing of these

lists to be done without additional 1/0. Results of some initial experiments

showed that the first approach is the preferred one when using LRU, whereas

as expected, the second approach is the preferred one when using LUND.

Therefore, all experiments presented in the results sections are for these

combinations.

ACM TransactIons on Database Systems, Vol 18, No 3, September 1993

Transitive Closure Algorithms . 531

4.4 Duplicate Elimination

In this section, we briefly describe the algorithm that is used for duplicate

elimination at linear CPU cost. As mentioned in Section 4.1, when copying

nodes from a descendent list S~ to another list S,, adjacency vectors for both

lists exist in main memory. For every node k in Sj, the corresponding entry

in the adjacency vector of S, is checked: if it is equal to O, then k is added to

S, and the bit is switched to 1; otherwise no action is taken on k, since it

already exists in S,. This corresponds to 0(1) cost for each node in S1, i.e., to a

cost that is linear in the length of S~. The cost of constructing the adjacency

vectors is also linear in the length of the lists, so duplicate elimination is very

efficient.

5. PERFORMANCE EVALUATION TESTBED

We implemented several versions of all three algorithms BTC, GDFTC, and

Schmitz, using C on a VAXstation 3200 under UNIX. The file page size and

the buffer page size in our implementation were chosen to be 2 Kbytes to

match with the corresponding sizes of the machine. With this size, each page

can fit 256 arc-tuples for the input and output representation of graphs, and

30 and 72 blocks with block size 15 and 5, respectively, for the descendent list

representation.

Although all experiments have been run with no other users on the

machine, since we do our own buffer management the UNIX-provided elapsed

times are not meaningful. In our experiments, we relied on UNIX-provided

CPU times and our own counting of 1/0 based on the implemented page

replacement strategy and the amount of available memory in each case. For

all graph-based algorithms, there is an option in writing the output: the

descendent set of the root of a strong component can be copied once for each

node in the component, or a single copy can be written out, with pointers to it

from each node in the strong component. We assume that the same choice is

made by all the algorithms; this means that the cost of reading the input and

writing the output are the same for all algorithms, and unavoidable. With

respect to 1/0 cost, therefore, the numbers presented in this paper do not

include the initial cost of reading in the original graph once and the final cost

of writing out the transitive closure once. (The only exception is in Section

11.3, where we compare graph-based algorithms with nongraph-based algo-

rithms.) All other reads and writes performed during the execution are

included in the numbers presented.

There are several interesting parameters that affect the performance of the

algorithms. They can be divided into parameters of the implementations of

the algorithms and parameters of the data. They are discussed in the

following two subsections. The third subsection explains how our input

graphs were generated.

5,1 Parameters of Algorithm Implementations

There are three interesting parameters of the algorithm implementations:

the number of buffer pages, the buffer replacement policy, and the blocking

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

532 . Y. Ioannidis et al,

Table I. Parameters of Algorithm Implementations and their Tested Values

Parameter Symbol Values

Buffer size (pages) M 02050
Buffer replacement policy - :RU Ad LUND @O.25)
Blocking factor B 5 and 15

factor. The buffer size (denoted by M) was varied considerably. In the results

sections, the only values discussed are M = 10, 20, and 50, because all

algorithms need at least 10 pages of memory to run, and no interesting

phenomena occur beyond 50 pages (the 1/0 cost drops sharply, as expected).

A minimum of ten pages are necessary because all algorithms require that at

least two descendent lists can fit in memory at the same time. For 2000 node

graphs, this accounts for eight pages in the worst case. In addition, two more

pages are needed, one for the adjacency vectors and one for input or output

arc-tuples. We experimented with several buffer replacement policies, in

particular, LRU and four versions of LUND with the fraction f being equal

to f = 0.25, 0.5, 0.75, and 1.0, respectively. Among these versions of LUND,

the one with f = 0.25 was almost always either the best or close to it. Hence,

we show the results for LRU and LUND with f’ = 0.25 only. In each case, the

presented costs are for the best of the two policies for that case. Finally, we

experimented with two blocking factors, B = 5 and 15. The effect of the value

of B depended on the input graph type. This is discussed in detail in Section

6.2.3. However, the relative performance of the algorithms remained unaf-

fected by B, so the results in all other sections are for B = 15. The above

space of parameters and tested values is summarized in Table I.

5.2 Parameters of Data

All relations used in our experiments contained integer node identifiers,

which represent the best case for efficiency. This is without any loss of

generality, however, because even if a given relation is not in this form, it can

be transformed to it by a single pass over its tuples. In addition, the integers

used were random numbers in a specific range, so that the actual values that

represented the nodes would not bias the performance of the algorithms.

Also, for any specific setting of the values of the parameters described below,

all algorithms under comparison were run on the same input graph, so that

no differences in the specific choice of node identifiers or other secondary
characteristics could affect the results.

We show results for both acyclic and arbitrary graphs below. We also

experimented with trees, but since those tests did not offer any additional

insights beyond what was observed for acyclic graphs, we do not present

them. The following are the parameters that were used to characterize

graphs, with the symbols that denote them in parentheses: the number of

nodes (N), the outdegree or branching factor of each node (b), and the depth

(d). Preliminary experiments with several values of IV showed that the main

conclusions of this study seem to be unaffected by lV. Hence, we only present

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993,

Transitive Closure Algorithms . 533

results for the value N = 2000. (We also studied a complete suite of graphs

with J/ = 1000, with values of other parameters being varied exhaustively as

with IV = 2000. The trends and analysis for IV = 1000 are identical to those

for IV = 2000.) We experimented with five values of b, in particular 1< b <5,

and we present results for all of them. Higher values of b were not tested ex-

tensively, because in many cases, the generated graphs have transitive clo-

sures that are almost complete, and such extremes are rather uninteresting.

Finally, the depth of a graph is defined to be equal to the maximum length

of any simple path in the graph. Its importance in our study can be under-

stood as follows. Consider some point during the execution of an algorithm

and let the nodes for which processing has started for computing their

descendent lists but has not finished yet to be the active nodes at that point

in time. For example, in GDFTC, the active nodes are those for which visit()

has been called but has not yet returned. The number of active nodes has a

direct influence on performance, because if there is not enough memory to

hold the descendent lists for all these nodes, some of them have to be paged

out and brought back in again in the future. The importance of depth stems

from the fact that it represents the maximum number of nodes that can ever

be simultaneously active. However, depending on the order in which nodes

are processed, the actual maximum number of simultaneously active nodes

that is encountered may be much smaller than the depth. This “operational”

parameter is called the observed depth and is clearly more helpful than the

actual graph depth in understanding the performance of algorithms. Of

course, the two parameters are in general closely related, and high (low)

values in one are usually related to high (low) values in the other. Hence, in

the rest of this paper, we use the observed depth instead of the actual depth

as one of the main graph parameters that affect performance. For simplicity,

however, we continue to use the term depth. In attempting to experiment

with a range of possible graph depths, we realized that we were not aware of

any way to generate random graphs with a specific value of d. Hence, we

used another parameter, called locality factor and denoted by 1, that gave us

the ability to generate and experiment with both shallow and deep graphs.

The definition of 1 is better understood in conjunction with the algorithm

used to generate the graphs for our experiments, so it is presented in the next

subsection.

Table II summarizes the above space of parameters and tested values,

including 1 for completeness. For every set of values of these parameters

examined in our experiments, five graphs with the corresponding characteris-

tics were generated and tested. In all cases, the results presented in subse-

quent sections represent averages of those five graphs.

5.3 Graph Generation Process

For all experiments, graphs were generated randomly based on values of
their parameters. As mentioned above, the specific values representing the

nodes were chosen randomly as well. In all cases an arbitrary ordering was

imposed on the nodes. For an acyclic graph, the children of the ith node in

ACM Transactions on Database Systems, Vol. 18, No 3, September 1993.

534 . Y. Ioannidis et al

Table II. Parameters of Data and their Tested Values

Parameter I Symbol Values

Number of nodes II N] 1000 and 2000

Outdegree b 1,2,3,4,5

Locality factor 1 N/100 and N

that order were generated by randomly choosing b nodes among those whose

rank in the order was in the range [i + 1, min(i + 1, N)]. There are several

comments that need to be made on the above. Acyclicity is achieved by the

fact that nodes are always connected to ones that are further down in the

ordering, which is essentially some topological order of the generated graph.

Also, note that the locality factor is defined as the size of the subset of nodes

from which neighbors are chosen (except for the boundary conditions, where

nodes are too close to the end of the ordering). Clearly, 1 can range up to the

total number of nodes, in which case a truly random graph is generated. For

the same number of nodes and outdegree, the smaller the locality factor is,

the greater the depth of the graph. In our experiments, the locality parameter

affected the depth of the graph in precisely this way. Note that the locality

factor captures a characteristic of the graph itself, as opposed to the

homonymic parameter of Agrawal and Jagadish [2], which captures a charac-

teristic of the integer values assigned to the graph nodes.

For a cyclic graph, the children of the i th node in the arbitrary order

mentioned above were generated by randomly choosing b nodes among those

whose rank in the order was in the range [max(l, i – 1), min(i + Z, IV)].

Given the above range, the possibility for cycles should be clear. In this case,

however, the locality factor does not affect the depth of graphs as in the

acyclic case. To a large extent, the depth remains unaffected by the value of 1.

Hence, we mostly concentrated on the results that were obtained with a

single locality factor for cyclic graphs.

6. COMPUTING THE TRANSITIVE CLOSURE OF ACYCLIC GRAPHS

In this section, we present the results of the performance evaluation of the

studied algorithms on acyclic graphs. The first section presents the results for

a typical example and discusses the general trends that were observed

throughout the experiment. The following two subsections elaborate on the

details of how the various parameters of the algorithm implementations and
of the graphs affect the performance of the algorithms. For reasons that will

become clear later, we present numbers for two versions of BTC. The second

version is called BTC- and is like BTC except that it does not use the inter-

and intradescendent list orderings that were described in Section 4.2 to store

the data for the second pass. In the next subsection only, we also present

numbers for a third version of BTC, called BTC- +, which is between BTC

and BTC-, in the sense that it uses inter- but does not use intradescendent

list orderings. We should emphasize again that the numbers presented in this

paper do not include the initial cost of reading in the original graph once and

ACM TransactIons on Database Systems, Vol. 18, No. 3, September 1993

Transitive Closure Algorithms .

Table III. Performance Results on Acyclic Graphs with N = 2000, b = 5, and d = 14

I/o cost I/O Ratio CPU Time CPU Time Ratio
Algorithm (pages) over winner (See) over winner

BTC 6685 1.00 61.5 1.00
BTC-+ 7294 1.09 67.6 1.10

BTC- 10872 1.63 68.3 1.11
GDFfC 10506 1.57 68.4 1.11
Schmitz 10761 1.61 69.8 1.13

535

the final cost of writing out the transitive closure once, which are the same

for all algorithms.

6.1 General Trends

Table III shows a typical example of the number of 1/0 operations and CPU

time (in seconds) of all the algorithms. The specific setup has B = 15 and

M = 50, and the numbers represent the best buffer replacement strategy

between LRU and LUND. The corresponding graph parameters are N = 2000,

b = 5, and d = 14, which was generated by using 1 = 2000. Each graph with

these characteristics contains approximately 5000 arcs, and its transitive

closure contains approximately 667000 arcs.

This example is typical of the relative performance of the algorithms on

acyclic graphs and indicates the following trends. With respect to 1/0, BTC is

the clear winner. This was observed throughout the experiments, for all types

of graphs and with all setups examined. This came as a surprise in the

beginning, because BTC is the simplest of all algorithms and the expectation

was that it would be the poorest performer. As we can see, however, from the

difference between the cost of BTC and BTC-, the performance is affected

significantly by the proper inter- and intradescendent list ordering that is

possible after the first pass of BTC.

If we ignore the advantage of such orderings, i.e., consider BTC-, the

performance is very similar to both Schmitz and GDFTC. This was again

another observation that was evident throughout most of our experiments,

with all three of these algorithms having relatively close 1/0 costs and being

interchanged in superiority depending on the graph characteristics. What

primarily distinguishes BTC-, Schmitz, and GDFTC is the different timing of

the addition of nodes to descendent lists. As mentioned in earlier sections, the

three algorithms fall on a spectrum, where BTC- delays additions until the

whole graph has been explored in the first pass and all strong components

have been identified, Schmitz is a bit more eager and does additions after

each strong component has been identified, whereas GDFTC is the most

eager of all and does additions every time an arc is explored. In all other

major respects, the algorithms are identical, e.g., they all use depth-first
traversal to explore the graph and generate a single descendent list for each

strong component. As can be seen from the results, however, their sole

significant difference does not have any major effect on performance. The

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

536 . Y Ioannidis et al

earlier additions to descendent lists are made, the higher the chances that

the relevant lists are in main memory, but also the larger the lists that need

to be manipulated for a large part of an algorithm’s execution. There seems to

be a mutual balance between these two conflicting trade-offs, which results in

the similar performance observed for the three algorithms. On the other

hand, taking advantage of the first pass of BTC to order the data appropri-

ately has a significant payoff.

A comparison of the costs of BTC and BTC- + identifies the benefits of the

intradescendent list orderings that allow BTC to take the maximum possible

advantage of the marking optimization. It can be seen that with respect to

both CPU and 1/0 cost, BTC is about 10% more expensive if these orderings

are not used. For other algorithms, e.g., Schmitz, computing the arc basis

would have the same effect with respect to maximizing the set of arcs that

can be ignored. Hence, since Schmitz would have the additional overhead of

computing the arc basis, the difference between the costs of BTC- and BTC- +

provides an upper bound for the improvement in Schmitz’s algorithm through

computing the arc basis. As we mentioned earlier, the sole purpose for the

introduction of BTC- + was the analysis in this paragraph; we discuss this

version of BTC nowhere else in the paper.

With respect to CPU time, there is no major difference among the algo-

rithms, with BTC again being slightly more efficient than the remaining

algorithms, primarily because of the intradescendent list ordering that it

employs, which allows it to avoid traversing several arcs in the graph. In

addition, even assuming a relatively fast disk with 25msec page access time,

all algorithms are heavily 1/0 bound. Again, both of these observations held

throughout the experiments. Hence, we are mostly concerned with the 1/0

cost for the rest of the section.

6.2 Effect of Parameters of Algorithm Implementations

In the subsections below, we discuss how the performance of the various

algorithms is affected by the buffer pool size M, the buffer replacement

policy, and the blocking factor B.

6.2.1 Number of Available Buffers. Figure 2 shows a typical example of

the 1/0 cost of the examined algorithms as a function of the number of

available buffers M. This is for acyclic graphs with N = 2000, b = 5, and

depth d = 14, which were again generated using 1 = 2000, i.e., for the same

data discussed in Section 6.1. Thus, the minima exhibited by each algorithm
in Figure 2 correspond to the results presented in Table 111.

As expected, for all algorithms, the I\O cost decreases as the buffer size

increases. An interesting observation is that both versions of BTC benefit

from an increase in the buffer size much more than GDFTC or Schmitz. This

becomes apparent when we compare the results for M = 10 and M = 50. In

the first case, BTC is slightly less expensive than GDFTC and Schmitz,

whereas BTC- is slightly more expensive than them. In the second case, BTC

is considerably cheaper than GDFTC and Schmitz, whereas the cost of BTC-

has dropped to almost that of the other algorithms. Breaking the algorithm

ACM Transactions m Database Systems, Vol 18, No. 3, September 1993

Transitive Closure Algorithms . 537

GDFTC +--------+

Schmitz b - — +

BTC- —

BTC —

o 10 20 30 40 50
Buffer Size (Pages)

Fig. 2. 1/0 cost as a function of buffer size when the algorithms are applied on acyclic graphs.

into two passes seems to be the main reason for this sensitivity. In each pass,

BTC has to deal with smaller amounts of data than the other two algorithms.

Hence when the buffer size increases, maintaining all necessary information

in memory at any point is easier than with the other algorithms.

6.2.2 Buffer Replacement Policy. All algorithms have exhibited very simi-

lar patterns of behavior when experimenting with the two buffer replacement

policies studied. For the same graph, almost always, the same policy was the

preferred one for all algorithms. Figure 3 shows the winning regions for the

two policies in the space of the parameters that characterize graphs, i.e.,

outdegree and depth (number of nodes does not affect the relative ranking of

the policies). Two separate figures are shown, one for a small and one for a

large buffer size.

From Figure 3, one concludes that both policies are good, each one having

its strengths and weaknesses. In general, LRU is better in large and deep

graphs, whereas LUND is better in smaller and shallower graphs. For BTC,

this can be explained as follows, but similar arguments hold for the other

algorithms as well. With respect to the graph depth, cross arcs are much

more likely to have their ends being far apart in the reverse topological order
in a deep graph than in a shallow one. The reason is that in deep graphs,

there tend to be longer paths in the spanning forest imposed by the depth-first

traversal, which implies that cross arcs into a node from nodes in other

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

538 . Y. Ioannidis et al.

high

DEGREE DEGREE LUND-0.25

LUND-O.25

low
shwow DEPTH dIXP wow DE~H deep

SMALL MEMORY L4RGE MEMORY

Fig. 3. Winning regions of LRU and LUND in the space of b and d of acychc graphs.

branches of the forest are processed much later than the node itself. Hence,

nodes that are deep in such a graph and have not been accessed for some

time are good candidates for having their descendent lists be replaced, even if

they still have arcs pointing to them that have not been processed, because

these will likely be processed quite far in the future. LRU will indeed favor

pages with such lists for replacement and therefore perform better than

LUND, which will try to keep them in memory if their UNDS are high. The

opposite argument holds for shallow graphs, for which LUND is the preferred

policy. With respect to the graph size, increasing the outdegree of nodes

slightly increases the graph depth but also the number of cross arcs. Hence,

the problem mentioned above is intensified in larger graphs, which is why

LRU wins in those, but loses in smaller ones.

The relative performance of the two policies is also affected by the size of

the buffer pool. As one can see from Figure 3, as the buffer pool size

increases, the performance of LUND improves as well and eventually domi-

nates LRU for all graph sizes and depths that we tried. This is again related

to the above argument. With a larger buffer pool, more descendent lists can

be held in memory, which implies that the list of a not recently used node

with high UND becomes a better candidate for being kept in memory,

because the chances that it will be accessed are higher. Therefore, LRU loses

its appeal and LUND dominates.

In addition to the previous analysis, we would also like to mention that in

terms of actual cost, the difference between LRU and LUND is never dra-
matic (except for a few cases with small graphs). Hence, even if a system does

not implement LUND, which is a specialized algorithm, but adopts the

straightforward LRU, its performance will not suffer much, and the conclu-

sions of this paper are still valid. To illustrate the above, we present two

examples in Table IV with the 1/0 cost of BTC for the two different policies.

The first example is for deep graphs (d = 124– 129) with a small number of

buffers (M = 10), which should favor LRU. The second one is for shallow
graphs (d = 8– 14) with a larger number of buffers (M = 50), which should

favor LUND. The remaining parameters are B = 15 and N = 2000, whereas

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

Transitive Closure Algorkhms . 539

Table IV. Comparison of LRU and LUND on Shallow and Deep Acyclic Graphs with N = 2000

LRU LUND

Depth and I/ocost 1/0 Ratio 1/0 Cost 1/0 Cost Ratio
Number of Buffers Outdegree (pages) over winner (pages) over winner

Deep and 1 1797 1.020 1762 1.000
M=lo 2 12477 1.008 12373 1.00Q

3 18050 1.000 18140 1.005
4 21055 1.000 21312 1.012
5 22145 1.000 22411 1.012

Shallow and 1 171 1.336 128 1.000
M=50 2 2289 1.225 1868 1.000

3 3882 1.059 3666 1.000
4 5222 1.012 5161 1.000
5 6764 1.012 6685 1.(D3

the node outdegree varies from b = 1 to 5. Note that, if the case of small

shallow graphs is excluded, the worst policy is always within 6% of the best

one, which should be considered an insignificant difference. Nevertheless,

LUND proves to be the best algorithm overall, being superior in most cases,

and losing by no more than l’% when it is inferior to LRU.

6.2.3 Blocking Factor. The effect of blocking factor on performance is very

similar for all algorithms. Hence, for clarity of presentation, we only present

actual numbers for BTC in this section. Figure 4 shows a typical example of

the 1/0 cost of BTC as a function of the node outdegree for the two different

values of blocking factor that we tested, i.e., B = 5 and 15. Again, this is with

M = 50 buffers and for acyclic graphs with N = 2000 and depth that varies

from d = 10 to 14 (locality factor 1 = 2000). The results presented in the

figure offer no surprises. Depending on whether the average descendent list

in the transitive closure is large or small, B = 15 and B = 5 is the preferred

value for the blocking factor, respectively. In Figure 3, small descendent lists

are found in the graphs with outdegree b = 1, whereas large ones are found

in the graphs with b > 2. Likewise, in the experiments with graphs gener-

ated with a small locality factor, the graphs are much deeper, which results

in large descendent lists even for outdegree b = 1 and renders B = 15 the

preferred value for all graphs tested in that case.

6.3 Effect of Parameters of Data

Recall that for comparing the various transitive closure algorithms, the

important graph parameters are b and d, since differences in N have shown

no influence on the major conclusions of this study. Each of the following

sections discusses the effect that one of b and d has on performance.

6.3.1 Outdegree. The effect of b on the behavior of the algorithms when N

and d remain relatively constant is shown in Figure 5. The specific setup has
B = 15 and M = 50. The graphs have IV = 2000 and d varying between 10

and 14, while the size of the corresponding transitive closures grows from

approximately 14000 arcs to 667000 arcs. As expected, as b increases, all

ACM Transactions on Database Systems. Vol 18, No. 3, September 1993.

540 . Y Ioannidis et al,

10ooo-

7500-

N
u

?
e

r 5000-

?

t

2500 -

B=5 M

B=15 —

0? ,
0 1 2 3 4 5

Node Outdegree

Fig. 4. 1/0 cost as a function of node outdegree when BTC uses different blocking factors on

acyclic graphs.

algorithms need to deal with larger graphs, so both their 1/0 and CPU costs

increase as well. With respect to CPU cost, all algorithms have very similar

costs, so we do not discuss this any further. With respect to 1/0 cost, BTC is

superior to all other algorithms by a large margin, whose absolute value

increases and its relative value decreases with b. Again, a comparison of BTC

and BTC- shows that the main factor for the algorithm’s superiority is the

inter- and intradescendent list ordering that is possible after the first pass.

BTC-, Schmitz, and GDFTC have very similar costs, with BTC- being always

the worst and GDFTC being always the best. The reasons for this are

explained in the following section, when the effect of the graph depth on the

performance of algorithms is discussed.

6.3.2 Depth. The effect of d on the behavior of the algorithms when N

and b remain relatively constant is seen when comparing Figure 6 with

Figure 5 from the previous section. For the results of Figure 6, the specific

setup has B = 15 and M = 50. The graphs have N = 2000 and d varying

between 124 and 129, which was generated by using 1 = 20, while the size of

the corresponding transitive closures grows from approximately 183000 arcs

to 1971000 arcs. Note the dramatic increase in the depth and the transitive

closure size compared to the graphs of the previous section. The increase in

the cost of all algorithms with b, the similarity of CPU costs among all

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993

Transitive Closure Algorithms . 541

0

ACM Transactions on Database Systems, Vol, 18, No,3, September 1993.

542 . Y. Ioannidiset al.

m

o

ACM Transactions on Database Systems, Vol, 18, N0, 3, September 1993,

Transitive Closure Algorithms . 543

algorithms, and the clear superiority of BTC in 1/0 cost hold for these deep

graphs just as for the shallow graphs corresponding to Figure 5. Thus, we

comment no further on these aspects, but concentrate on two issues that are

affected by the graph depth.

First, it is clear that both the 1/0 and the CPU costs of all algorithms

increase with depth. This is primarily due to two facts. The first fact is that,

with deep graphs, the time between two requests for the same descendent list

is in general longer, which increases the chances of the corresponding page

being paged out. This has a direct effect on the 1/0 cost but also an indirect

effect on the CPU cost, since the increased paging of descendent lists results

in an increase in the adjacency vector calculations and descendent list

traversals. The second fact is that with deep graphs, the size of descendent

lists is in general much larger. This increases the 1/0 cost because it reduces

the number of lists that can remain in memory at any one time and also

increases the CPU cost because longer lists need to be manipulated.

Second, although BTC-, Schmitz, and GDFTC again have very similar 1/0

costs, their performance order is reversed compared to what it was for

shallow graphs. That is, it appears that for shallow graphs it pays off to add

descendent lists eagerly (as GDFTC does), whereas for deep graphs it pays off

to delay that addition as much as possible (as BTC- does). The reason is that

in deep graphs the descendent lists tend to be larger than in shallow graphs,

e.g., the descendants of the root of a deep path are the descendants of all the
nodes on the path. Thus, eagerly adding nodes into descendent lists for deep

graphs fills up pages quickly and results in poor performance. For such

graphs, the approach of BTC- is the best. For shallow graphs, the situation is

reversed and the approach of GDFTC is the best.

7. COMPUTING THE TRANSITIVE CLOSURE OF GRAPHS WITH CYCLES

In this section, we present the results of our performance evaluation of the

studied algorithms on graphs with cycles. Again, the first section presents the

results for a typical example, whereas the remaining sections elaborate on

how the various parameters of the algorithm implementations and the graphs

affect performance.

7.1 General Trends

Table V shows a typical example of the number of 1/0 operations and CPU

time (in seconds) of all the algorithms. The only difference here from the

typical case presented for acyclic graphs is that the buffer pool size is much

smaller: M = 10. The reason is that for larger sizes, BTC is at least an order

of magnitude faster than the other algorithms, and such a large difference

can be misleading. Thus, the specific setup for the results presented has

B = 15 and M = 10, whereas the corresponding graph parameters are iV =

2000, b = 5. Also, although the graphs were generated with the same value of
1 = 2000 as before, the resulting depths were approximately d = 1390, which

is much larger than in the acyclic case. This also had the effect that the size

of the complete transitive closure was much higher, containing approximately

ACM Transactions on Database Systems, Vol. 18, No, 3, September 1993.

544 . Y. Ioannidis et al,

Table V. Performance Results on Graphs with Cycles with N = 2000, b = 5, and c1 = 1390

Algorithm

BTC

BTC-

GDFf’C
Schmitz

Number of I/O

4321
6745
5640
6661 *

1/0 Ratio CPU Time
over winner (see)

1.00 5.1
1.56 25.3

1.31 38.4
1.54 21.8

CPU Time Ratio
over winner

1.15
1.16

1.76
1.00

3946000 arcs. In spite of the extremity of the values of some of these

parameters, the example is typical of the relative performance of the algo-

rithms on graphs with cycles.

As for acyclic graphs, BTC is the clear winner with respect to 1/0, for the

same reasons. Unlike for acyclic graphs, however, there are significant differ-

ences among the remaining three algorithms, BTC-, Schmitz, and GDFTC,

with each performing better than the others for some setups and graphs. The

details of these differences in behavior are discussed in the individual sec-

tions that deal with the effect of the various parameters on performance.

With respect to CPU time, cyclic graphs behave differently from acyclic

ones. For cyclic graphs, Schmitz is always the best performer, with the two

versions of BTC being slightly more expensive, and GDFTC being signifi-

cantly more expensive. The reason for the latter is the excessive stack

manipulations that are necessary in GDFTC when it identifies strong compo-

nents in a piece-meal fashion. All algorithms, however, are heavily 1/0

bound for cyclic graphs as well. Hence, most of the forthcoming discussions

are concerned with 1/0 cost only.

7.2 Effect of Parameters of Algorithm Implementations

The effect of the buffer replacement policy and the blocking factor on the

performance of algorithms is not discussed in this section, because the

conclusions for cyclic graphs and their explanations are exactly the same as

for acyclic ones. Hence, we concentrate on the effect of the number of buffer

pages M.

Figure 7 shows a typical example of the 1/0 cost of the examined algo-

rithms applied on graphs with cycles as a function of the number of available

buffers M. The specific graphs have the same characteristics as those in

Section 7.1, and therefore, the maxima exhibited by each algorithm in Figure
7 correspond to the results presented in Table V.

Most conclusions that can be drawn from Figure 7 are not very different

from what holds for acyclic graphs. The only noteworthy observation that is

different for graphs with cycles is that GDFTC benefits much less from an

increase in the buffer pool size than Schmitz. This is due to the extensive

stack manipulations that GDFTC performs, which occasionally result in

several stack frames being brought into memory for merging. Avoiding

excessive 1/0 for such operations requires much more memory than the

corresponding operations in Schmitz, which are the consecutive additions of

ACM Transactions on Database Systems, Vol. 18, No 3, September 1993

Transitive Closure Algorithms . 545

GDITC +--------+

Sctiltz - – — +

BTC- —

BTC —

8000-

6000-

N
●. .

-.
u . .

r
e

r 4000-

?

i

2000-

or 1

0 10 20 30 40 50
Buffer Size (Pages)

Fig. 7. 1/0 cost as a function of buffer size when the algorithms are applied on graphs with

cycles.

nodes to the descendent list of the root of a strong component after that is

discovered.

7.3 Effect of Parameters of Data

As for acyclic graphs, the number of nodes does not affect the main character-

istics of the behavior of any of the algorithms when applied on acyclic graphs,

and so we concentrate on b and d. The results presented in this section are

for a setup that has B = 15 and M = 10 and for graphs that have IV= 2000

and outdegree that varies from b = 1 to 5. As b grows, however, so does the

depth d (from 66 to 1389) and the corresponding transitive closure size (from

109000 arcs to 3946000 arcs). This is an important difference between acyclic

graphs and graphs with cycles, and prevents us from treating the outdegree

and depth independently in this case.

The effect of b (and indirectly of d as well) on the behavior of the

algorithms is shown in Figure 8. There are several very interesting observa-

tions to be made. First, with respect to CPU cost, Schmitz is always the

cheapest algorithm, whereas GDFTC is always much more expensive than all
others, for reasons explained in Section 7.1. Second, with respect to 1/0 cost,

BTC remains superior to all other algorithms, as with acyclic graphs, for the

same reasons.

ACM TransactIons on Database Systems, Vol. 18. No. 3, September 1993.

546 . Y. Ioannldls et al.

{\

/:

(,’

‘\
+

0

ACM Transactions on Database Systems, Vol. 18. No. 3, September 1993

Transitive Closure Algorithms . 547

Table VI. Number of Strong Components and their Sizes for Graphs

with Cycles having N = 2000

Outdegree l! Number of Strong Components Size of Strong Components (Number)
1 1953 41 (1) 6 (1) 3 (1) 1 (1950)
2 531 1470 (1) 1 (530)
3 158 1843 (1) 1 (157)
4 61 1940 (1) 1 (60)
5 26 1975 (1) 1 (25)

Third, all algorithms present a local maximum in their cost for b = 2. This

can be explained based on random graph theory and the formation of strong

components. As a point of reference, the number of strong components and

their sizes are given in Table VI for a representative graph among those

tested in our experiments for each value of b.

As the outdegree of nodes increases, very quickly most of them become part

of a single huge strong component, whereas the remaining nodes are scat-

tered among very small components. It is quite clear from Table VI that a

large strong component is already formed when b = 2. In addition, the size of

that component has a big increase when moving from graphs with b = 2 to

b = 3, whereas beyond that point it absorbs the remaining nodes relatively

slowly. Since all algorithms generate a single descendent list for each strong

component, which is later propagated to all the nodes in it, the significant

drop in the number of the components between b = 2 and b = 3 results in a

drop in the overall 1/0 cost. The even more dramatic increase in the large

strong component size experienced between b = 1 and b = 2 does not have

the same effect, because graphs with b = 1 tend to have many strong

components that are mutually disconnected, e.g., at least all nontrivial strong

components. Therefore, for such graphs, descendent lists tend to be small and

processing takes a small amount of time. On the other hand, beyond b = 3,

since the increase in the size of the large strong component is minimal, the

1/0 cost increases simply because of the increase in the number of arcs that

must be manipulated.

Fourth, as b grows, the first pass cost of BTC and BTC- becomes quite high

because of the associated growth in d. With deep graphs and only 10 buffers,

tuples of nodes visited early in the depth-first traversal are paged out very

often, and this results in a poor buffer hit ratio. Fifth, for the small buffer size

that was used for these experiments, in general GDFTC is less expensive

than Schmitz, despite the fact that most of the tested graphs are very deep.

Apparently the cost paid by Schmitz of revisiting the descendent lists of all

the children of the nodes in a strong component is much higher than the cost

paid by GDFTC of merging stack frames excessively. As discussed in Section
7.2, however, for a large buffer size, the trade-off is reversed and Schmitz is

less expensive.

ACM Transactions on Database Systems, Vol. 18, No, 3, September 1993.

548 . Y. Ioannidis et al.

8. PATH COMPUTATIONS

8.1 Path Algebras

We have considered how to compute the transitive closure of a graph. In this

section, we consider how to compute several properties that are specified over

the set of paths in the graph. We call such properties aggregate properties,

and we refer to the computation of such a property as a path computation.

We use the path algebra formalism developed by Carre [6], and subse-

quently refined by Rosenthal et al. [24] and Agrawal et al. [1], which we

present below. There is a label L,~ associated with each arc (i, j). A path p,~

from node i to node j is an ordered set of arcs {(sourcek, destination)],

k = 1, ..., n, such that i = sourcel, destination = sourcez, destination.

= j. We sometimes specify a path by the sequence of nodes on it. A label can

be associated with the path p,j. Intuitively, this path label is computed as a

function, called CON (for concatenate), of the sequence of labels of the arcs in

p,]. A label can be associated with a path set P as well. This path set label is

computed as a function, called AGG (for aggregate), of the path labels of the

paths in P.

Formally, AGG and CON are defined as binary functions over path labels.

We now introduce several conditions over AGG and CON that enable us to

characterize the problems for which a path algorithm is applicable. We begin

by presenting a set of core requirements that we assume to hold henceforth:

CON must be associative (condition (l)), AGG must be associative and

commutative (conditions (2) and (3)), and there must be identities for both

CON and AGG (condition (4)). The identity for CON is denoted by (I and that

for AGG is denoted by +. CON is required to distribute over AGG (condition

(5)). To summarize, for all labels Ll, Lz and L~:

(1) CON(LI, CON(L,, L,)) = CON(CON(L1, L,), Q,

(2) AGG(L1, AGG(L,, LJ) = AGG(AGG(LI, L,), LJ,

(3) AGG(L1, L,) = AGCKL,, L,),

(4) AGG(@, L,) = L,; CON(O, L1) = CON(LI, 0) = Ll, and

(5) AGG(CON(L1, ~,), CON(L1, -L~)) = CON(LI, AGG(L,, La)).

Conditions (1)–(4) allow us to view AGG and CON as functions over

multisets of path labels and sequences of path labels, respectively. The

motivation behind condition (5), proposed by Agrawal et al. [1] and Carre [6],

is that it permits efficient path computations. Consider the case where there

are two paths p ~ and pz from node j to node k with associated labels LI and
Lz, respectively. Let there also be a path pa from node i to node j with label

L. Let P be the set of paths from i to k. The problem is to compute AGG for

this set. We would like to do this without explicitly enumerating both paths

PS”P 1 and P3”P2. In particular, suppose that AGG is applied to P 1 and P2,

and the label L = AGG(LI, L2) is simply recorded with the ordered pair

(j, k), instead of LI and L2. In this case, instead of both paths from i to k,
only a single path is generated, with the label CON(L, L’). If AGG and CON

are distributive, then this is indeed the correct path set label for the set of

paths from i to k.

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993

Transitive Closure Algorithms . 549

When considering cyclic graphs, we will require absorptiveness, which is an

additional condition that allows us to ignore cyclic paths. Absorptiveness is

defined as

(6) AGG(LI, O) = O.

Dar has points out that the above six conditions together imply idempotence

of AGG [8], which is defined as

AGG(LI, LI) = L1.

Thus, when (6) holds, we can view AGG as a function over sets of path labels

rather than as a function over multisets. Finally, we also introduce the

following condition, called choice, which enables the marking technique to be

used to further optimize the computation:

(7) For every pair of labels Ll, Lz, AGG(L1, Lz) = LI or Lz.

As the following example due to Dar illustrates [8], condition (7) does not

follow from (l)–(6). Consider the domain of (positive) natural numbers aug-

mented with the special value IYJ,with CON = Multiply, AGG = GCD, 0 = 1

and @ = CO.It is straightforward to verify that this algebra satisfies condi-

tions (l)-(6), but not (7).

Conditions (1)-(7) form the entire framework with which we study path

computations. We should note that Cruz and Norvell [7] have independently

proposed a different framework for the same purpose. Dar has noted that

conditions (l)–(7) above are equivalent to their notion of maximizing semi-

rings [8].

Table VII shows how several familiar problems can be described in this

terminology [1, 7]. The path set in each of the above definitions is the set of

all paths in the graph. Note that Critical Path and Bill of Materials do not

have absorptive AGG functions; the latter does not even have an idempotent

AGG. However, these problems are typically ill-defined over cyclic graphs.

A path problem can also be formulated using matrices. A graph can be

defined using an adjacency matrix A where A,J = L,~, for each arc (i, j). Let

Ak denote the k th power of A. Then, L~j denotes the label for the set of paths

from i to j of length at most k. For a path problem to be well-defined, A

must be stable, that is, for some k, Ak = Ak + 1. If (G, AGG, CON) is absorp-

tive, then (the adjacency matrix associated with) it is stable [6].

8.2 Algorithm Path_ BTC

The distributive property is easily exploited to generalize transitive closure

algorithms presented earlier to also do path computations. First, we must

augment the descendent set representation to also record labels. Consider

descendent set S,, and let j be a node in it. There is a label L,~ associated

with this node. Initially, when the set of descendent lists denotes the graph
G, this is the label associated with the arc (i, j) in G. After the path

computation is completed, this is the path set label associated with the set of

all paths from node i to node j. Next, we must modify the algorithms.

Algorithms GDFTC and Schmitz cannot be used, however, since they lose

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

550 . Y. Ioannldls et al.

Table VII, Formulation of Several Problems as Path Computations

Problem

Reachability

Shortest Pa&
Critical (Longest) Path
Maximum Capacity Path
Most Reliable Path
Bill of Materials

Set of Labels

{0,1)
IR+ u (m]
R u (-~,-)
R+ u (~)
[0,1]
lR+ u (m) -L

Add Min
Add Max
Min Max
Multiply Max
Multiply Add II

0

10
Om
o -a)

co o
10
10

path information in strong components; similarly, the root optimization is not

applicable for algorithm BTC, and thus we must consider BTC’ instead,

We present algorithm Path_BTC, which is a straightforward adaptation of

BTC’ to do path computations. To simplify the presentation, we make the

following assumption: if S, does not contain node h, the label L,k is taken to

be the label ~. One obvious difference in the path version of BTC is that we

now have to compute path labels as we add descendent sets. Another, much

more important difference, however, stems from the fact that each node in a

descendent set now carries a label. Thus, we must be concerned with not just

the membership of a node in a descendent set, but also whether the value of

the associated label changes with a given descendent set addition. (The

addition of a node to a descendent set for the first time can be thought of as a

special case that promotes the label from the worst-case value ~, which

intuitively denotes nonreachability.) The difference can be understood in

terms of the marking technique. If node k appears in a descendent list S,, let

us refer to the addition of all children of k to S, as a one-step expansion (or

just expansion) of k in S,. For reachability, if node k appeared marked in S,,

this meant that a one-step expansion of k had been carried out in S1. For

path computations, it is possible that sometime after such a one-step expan-

sion is carried out, a better value is found for k in S,. Specifically, we could

add descendent set SJ, containing node k, to S,, also containing j. The new

label, which takes into account the path from i to ~ through j, could be

different. When this happens, we have to examine the children of k again to

see if their labels (in S,) also change, due to the new label for k. This means

that k should be unmarked in S, when we compute a different label for it.

However, if k was marked in S,l, it can be marked in S, after the addition

as well, provided that condition (7) is also satisfied. Intuitively, this condition

ensures that AGG essentially just keeps the “best” label values; since the
label changed, the label CON(L,j, Lj~) is the “best” label found so far from i

to k. For example, if we are computing shortest paths, AGG just retains the

shortest path; all other path label information is irrelevant. Since k is

marked in SJ, the children of k are in Sj, and therefore, the labels computed

for them in the addition of S~ to S, take into account the new “best” label for

the path from i to k via j. The labels, however, that are associated with old

paths from i to k are not explicitly considered; thus, k cannot be treated as

marked in S, unless condition (7), which allows us to consider just the “best”

path, holds.

ACM Transactions on Database Systems, Vol 18, No 3, September 1993

Transitive Closure Algorithms . 551

The complete algorithm, including the optimization that takes advantage of

condition (7), is given below.

proc Path_ BTC(G)

Input: A graph G represented by children sets E,, i = 1 to n, with labels.

Output: S, = ill, u U, (UZ = 0 or {i}), i = 1 to n, denoting G*, with correct path
labels.

(1) {Modified_ Tarjan(G);

(2) fori=lto ndo~,=El; M,,=@od

(3) fori=l tondo

(4) I = node_ popped(i);

(5) while there is a node j = U1 – {1} do

(6) MI ,= MI U {j}; UI = UI – {j};

(7) for all k ● SJ – {j} do

(8) fi~~~ := LI~ ; LI~ := AGG(LIk , CON(LI~, Lj~));

(9) if L~~d + LIh

(10) then if k ● M, then {MI := MI U {~}; UI = UI – {k}}

(11) else {UI := UI u {k}; MI = MI – {k}}

od

(12) od

(13) od}

We use the following notation. If P is some path (set of paths), L(P)

denotes the set of associated path label(s). L,~ denotes the label associated

with arc (i, k), and L~~ denotes the initial value of this label (i.e., the label for

the arc from i to k). We begin by establishing an important property of nodes

in a marked set.

LEMMA 8.1. If (G, AGG, CON) satisfies conditions (l)–(7), the following

invariant holds after each iteration of the while loop of Path _BTC: if

k = iWI, then for each 1 G Eh, LIl = AGG(L), where L is a set of path labels

that includes the label CON(LIk, L; ~).

PROOF. The while loop is iterated several times for each value of 1, in

general. We number iterations of the while loop over the entire execution of

the algorithm. For example, if there are five iterations for 1 = popped(l), the

first iteration for 1 = popped(2) is iteration number 6. The proof is by

induction over the iteration number.

Basis. Initially, M, is empty, for all i, and so the claim holds trivially.

Induction Step. Suppose that the claim holds after iteration T-1. We show

that the claim is preserved after iteration T. There are two ways in which a

node can be added to MI in iteration T. First, the node is the child j of I

being processed in iteration T. In this case, the execution of the for loop

ensures that the lemma holds with respect to node j, since for each child k of

j, LIh is updated to reflect CON(LIJ, LJh). In particular, assume that the old

value of label LIh is equal to AGG(L) for some set of labels L. Then, from

conditions (2)–(4) and (6), which allow us to treat AGG as a function over sets

of labels, statement (8) ensures that the new value of Ll~ is equal to

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

552 . Y. Ioannidis et al,

AGG(L u {CON(LIJ, LJ~)}). Since L~~ was initially AGCK{Llh }, +), this further
implies that LIh = AGG(L’) where Z includes CON(LI~, L~h).

The second way in which a node can be added to MI is if a node k is found

in MJ such that there is a change in the value computed for LIh in statement

(8). We must show that for every child 1 of k, L,. = AGG(L) where Lisa set

of path labels that includes CON(LIh, L: ~). We observe that since L~l cannot

be altered in the current iteration, and k is in Ml, by the induction hypothe-

sis, Lll = AGG(L’), where L’ includes CON(L:~, L~l). Further, since 1 E S~,

after iteration T, by statement (8), LIl will be equal to AGG(E’), where Z’

includes the label CON(LI~, Lll). Since AGG can be viewed as a function over

sets of labels, by conditions (2)–(4) and (6), this implies that E’ includes the

label CON(LIj, CON(L~h, L~[)), and thus, by condition (1’), the label

CON(CON(L1j, Lj~), L; ~). As we showed in the previous paragraph, LIh =

AGG(L U CON(LII, LJfi)). Further, this value is different from AGG(L). By

condition (7), it follows that LIh = CON(LIJ, Lj~). Therefore, L“ includes the

label CON(LIA, L~ ~). This concludes the proof of the lemma. ❑

THEOREM 8.2. If (G, AGG, CON) satisfies conditions (l)-(7), algorithm

Path _BTC terminates with ill, U u, equal to the set of all descendants of i,

and Ll~ = AGG(L(P,I)), where Pl~ is the set of paths from i to j, for all pairs of

nodes i, j.

PROOF. The algorithm terminates, since by the conditions on statement (5)

and (7), cyclic paths are never extended. Further, when the algorithm termi-

nates, for all i, the only node in U,, if any, is node i. It remains to be shown

that, for any pair of nodes i and k, L, ~ = AGG(L), where L is the set of

labels of all paths from i to k. Since we assume that (G, AGG, CON) is

absorptive, condition (6), we only need to show that L includes the labels of

all acyclic paths.

Let D be a parameter that represents path lengths. We prove by induction

on D that for any pair of nodes i and k, L,k = AGG(L), where L is the set of

labels of all paths from i to k of length less than or equal to D.

Basis. For D = 1, we need only consider arcs in the input graph, and the

claim holds trivially.

Induction Step. Let the claim hold for all paths of length less than D.

Consider a path p of length D from i to k; without loss of generality, let

(j, k) be the last arc on the path p. From Lemma 8.1, since j ● M, when the
algorithm terminates, L, ~ = AGG(L’), where L’ includes CON(L,~, L~h). By

the induction hypothesis, L,j = AGG(U), where L!’ is the set of labels of all

paths from i to j of length less than D. In particular, it includes the label

L({P,J}), where P,j is the prefix of path p from i to ~. From the properties of

AGG and CON, it follows that L’ includes CON(L({p,l}), L~~), which is the

label for path p. D

Note that algorithm Path_BTC only computes labels for sets of all paths

from some node i to some node j. However, by subsequently applying AGG to

the set of all labels, it is also possible to compute the path set label for the set

ACM Transactions on Database Systems, Vol 18, No, 3, September 1993

Transitive Closure Algorithms . 553

of all paths in the transitive closure. Thus, for example, we can find the

longest path in a graph. (In this case, CON would be concatenation and AGG

would be the function that picks the longer path.)

We also remark that the following condition, called pairwise label extensi-

bility (or just extensibility), can be used to derive condition (7), given condi-

tions (l)-(6):

(7’) For every pair of labels Ll, Lz, there exists some label L~ such that

LI = CON(LZ, L~) or Lz = CON(LI, L~).

Indeed, substituting L~ = O in condition (5) and simplifying by using condi-

tions (4) and (6) yields, for all Ll, Lz, the following:

AGG(CON(L1, Lz), Ll) = L1.

From condition (7’), for any LI there is some L~ such that LI = CON(LZ, L3)

(or symmetrically La = CONLI, LJ). Therefore, the following holds:

AGG(L1, Lz) = AGG(CON(L2 , L~), Lz) = Lz

or AGG(L1, Lz) = AGG(L1, CON(LI, L3)) = LI

Extensibility appears to be a simple property, independent of AGG, and is

satisfied by all the problems listed in Table VII. Condition (6), however, does

not hold for Critical Path and Bill of Materials; therefore, extensibility cannot

be used to establish condition (7), choice, for these problems. As it happens,

condition (7) does not hold for Bill of Materials, but it does hold for Critical

Path. We note that extensibility does not follow from conditions (l)-(7).

We now present a variant of Path_BTC that works correctly even when

condition (7) does not hold, although it is less efficient than Path BTC when

condition (7) also holds. The modification to Path_BTC is as foliows. Lines

(9)-(11) should be replaced by the following:

if L~~d # LI~ then {UI Z= UI U {k}; MI ‘= MI – {k}}

This variant of Path_BTC in fact works even if condition (6) does not hold as

long as the data is acyclic.

THEOREM 8.3. lf (G, AGG, CON) satisfies conditions (l)–(6), or condi-

tions (1)–(5) and G is acyclic, algorithm Path –BTC with the modification

described above terminates with M, U U, equal to the set of all descendants of

i, and L,~ = AGG(L(P,j)), where P,l is the set of paths from i to j, for all pairs
of nodes i, j.

PROOF OUTLINE. The proof is similar to that of Theorem 8.3; however, we

need to prove a lemma equivalent to Lemma 8.1, but without assuming

conditions (6) for acyclic graphs and (7) in general. The proof of such a lemma

is identical to the proof of Lemma 8.1, with the following additional observa-

tions: (a) The proof of Lemma 8.1 dealt with two ways in which a node can be

added to MI in iteration T. A node can now be added in only the first way

discussed in the proof of Lemma 8.1, given the modification to lines (9)-(11)

of the algorithm. (b) Condition (7) was used in the proof of Lemma 8.1 only in

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993

554 . Y. Ioannidis et al,

the case that a node was added in the second way discussed there. (c) For

acyclic graphs, since condition (6) may not hold, idempotence may not hold

either, so we have to treat AGG as a function over multisets of labels;

associated with a path set, we now have a multiset of labels, with the

cardinality of a label equal to the number of times it appears as a label of a

path in the path set. Examining the proof of the lemma, we see that

essentially the same argument as before still serves. The key observation is

that each path from a node 1 to a node k is constructed in exactly one

way—by extending some path from I to a node j with an arc from j to k. The

label for this path is considered when the path is constructed. If this results

in a new label for the set of paths from 1 to k, then extensions of this path

obtained by appending some arc going out of k must be considered; therefore,

k must be unmarked in S,, and this is indeed done, by modified line (9). If the

label of the new path from 1 to k does not change the label of the set of paths

from I to k, by condition (5), we need not reconsider paths obtained by

extending the new path from I to k.

The proof of the theorem itself is again similar to the corresponding proof

in Theorem 8.2. The only additional observation is observation (c) above. ❑

We now turn to the behavior of Algorithm Path_ BTC on acyclic graphs.

Since condition (6) was only used to exclude cyclic paths from consideration,

it is easy to see that it is not required for acyclic graphs. In that case,

idempotence may not hold either, but this was only simplified proofs by

allowing us to treat AGG as a function over sets. If condition (7) holds,

however, AGG can still be treated as a set since a single label is always

selected when we apply AGG; the cardinality of labels in the input to AGG

does not matter. Thus, we have the following corollary of Theorem 8.2:

GOROLLARY 8.4. If (G, AGG, CON) satisfies conditions (l)-(5) and (7), on

acyclic graphs algorithm Path _BTC terminates with Ml ~ U, equal to the set

of all descendants of i, and L,l = AGG(L(P,~)), where P,l is the set of paths

from i to j, for all pairs of nodes i, j.

The above result allows us to apply Path_ BTC to compute critical paths

over acyclic graphs. However, it is not applicable to problems like Bill of

Materials, even on acyclic graphs. We must use Path_ BTC! with the modifica-

tions described above for lines (9)–(1 1) of the algorithm.

8.3 Algorithm Path_ Dag _ DFTC

We can also adapt algorithm Dag_DFTC to do path computations. We will

only consider the extension under the assumption that conditions (1)–(5) and

(7) hold. Since we consider only acyclic graphs, the difference with respect to
Dag_DFTC can be explained very simply. If El – S, contains node k, it can

be moved to S, through the addition of S] to S, only if k = S7 and the new

label for k in S, is better than the old label. The reason is that, for path

computations, if k ~ S,, the children of k also appear in S, and their labels

reflect the path from i to k that resulted in the latest change to the label of k

in S,. (Recall that we discussed this point in the previous section as we

ACM Transactions on Database Systems, Vol 18, No 3, September 1993

Transitive Closure Algorithms . 555

developed algorithm Path _BTC.) In terms of the marking technique, we note

that, as in the reachability case, all nodes in S’j are marked, with marking

interpreted as for path computations. It is straightforward to establish that

this algorithm computes the transitive closure of G with correct labels; we

omit a formal claim and proof of correctness.

proc Path_ Dag_DFTC(G)

INput: A graph G represented by children sets E,, i = 1 to n, with labels.

output: S’l, i = 1 to n, denoting G*, with correct path labels.

(1) {for I = 1 to n do uisiteci[i] := O; S, := ~ od

(2) while there is some node i s.t. uisited[i] = O do visit(i) od

}
(3) proc visit(i)

(4) {uisitecl[i] := 1;

(5) while there is some j = E, – S, do
(6) if uisited[j] = O then visit(j);

(7) for all k E Sj do

(8) Ljd ,= L,h; L,k = AGG(L,k, CON(L,J, L,~));

(9) if L~~d # L,~ then S, := S, U {~}

od

od

1

We note that since algorithms Dag_DFTC and GDFTC behave identically

on acyclic graphs, the above path algorithm can be seen as an adaptation of

both of these algorithms.

8.4 Algorithm Path_ Dag_Schmitz

Like GDFTC, the Schmitz algorithm loses path information in strong compo-

nents and cannot be adapted to do path computations on cyclic graphs. Also,

recall that the Schmitz algorithm contains an optimization that is essentially

equivalent to marking for acyclic graphs. Below we present

Path _Dag _ Schmitz, which is an adaptation of Schmitz that works for acyclic

graphs, under the assumption that conditions (l)-(5) and (7) hold. We
observe that this algorithm differs from Path_ Dag _ DFTC in only the follow-

ing minor respect: all children of a node are visited before any of their

descendent lists is added to the parent’s list. Again, since it is straightfor-

ward to establish that this algorithm computes the transitive closure of G

with correct labels, we omit a formal claim and proof of correctness.

proc Path_ Dag_Schmitz(G)

Input: A graph G represented by children sets E,, i = 1 to n, with labels.

Output: Si, i = 1 to n, denoting G*, with correct path labels.

(1) {for i = 1 ton do uisited[i] := O; S, := 0 od

(2) while there is some node i s.t. visited[i] = O do visit(i) od

}
(3) proc visit(i)
(4) {uisited[i] := 1;

ACM Transactions on Database Systems, Vol. 18, No 3, September 1993.

556 . Y. Ioannidis et al.

(5) for all j ● EL do if uisited[j] = O then visit(j) od

(6) while there is some J c E, – S, do
(7) for all k = SJ do

(8) L?$:= L,h; L,~ ,= AGG(L,h, CON(L,,, L,k));

(9) if L~~~ # L,h then S, := S, U {k}

od

od

1

9. PERFORMANCE EVALUATION OF ALGORITHMS FOR PATH

COMPUTATIONS

Several algorithms for path computations have been proposed in the litera-

ture, e.g., [1, 7, 15]. We have not attempted to conduct a comprehensive

performance evaluation of all these algorithms. Instead, we have studied the

performance of the algorithms presented in the previous section, so that we

can evaluate how the original reachability algorithms behave when adapted

for path computations.

9.1 Implementation and Performance Evaluation Testbed

We have implemented Path _BTC, Path _Dag_Schmitz, and

Path _Dag_DFTC for path computations on acyclic graphs. Path _BTC- has

also been implemented so that the effect of inter- and intradescendent list

orderings on performance can be measured. Below, we present the main

results of our experiments, focusing on the issues where there are differences

between path computations and reachability. These results show that, in this

case as well, Path_ BTC dominates all other algorithms in terms of perfor-

mance. For this reason, we have implemented only Path_BTC and
Path _BTC- for path computations on graphs with cycles, since the former

appears to be the algorithm of choice for the whole range of computations.

Some results on the performance of these algorithms are presented at the end

of this section as well. We have not implemented the variant of Path_ BTC
that does not take advantage of condition (7). However, based upon some

preliminary experiments with a variant of Path_ BTC that utilized condition

(7) only partially, we expect that the improvement due to utilizing this
condition is significant, perhaps resulting in a reduction of 1/0 by a small

integer factor.

All the important features of the implementations of the algorithms for

reachability have been maintained in their versions for path computations as

well. These include the external and internal storage structures, the inter-

and intradescendent list orderings employed at the end of the first pass of

Path_BTC, and the memory management techniques. The only difference in

the above is that, in all structures, every arc is associated with a label that

may be updated during the course of the execution. Another important

difference is that, for path computations, duplicate arcs are not eliminated,

but instead their labels are compared appropriately and one of them is chosen

as the optimal one for the arc. Even this process, however, takes advantage of

ACM Transactions on Database Systems, Vol 18, No 3, September 1993.

Transitwe Closure Algorithms . 557

the adjacency vectors constructed for descendent lists and only costs O(1)

time for each node in a list that is merged into another one.

In our experiments with path computations, the exact same testbed was

used as with reachability. Due to the increased cost of the algorithms,

however, we mostly applied the algorithms on smaller graphs than before,

i.e., we extensively tested acyclic graphs with at most N = 1000 nodes and

graphs with cycles with at most Al = 200 nodes. Nevertheless, our limited

experiments with larger graph sizes showed that our conclusions do not

depend on the specific sizes chosen. For all our tests, we used the shortest

path problem as our path computation. The arc labels were generated ran-

domly from a uniform distribution in the range between 1 and 10.

9.2 Computing the Shortest Paths between Nodes of Acyclic Graphs

In this section, we present the results of our performance evaluation of the

studied algorithms when computing shortest paths between nodes of acyclic

graphs. Our analysis is not as detailed as for reachability, because as

mentioned above, most of the conclusions for that case carry over for path

computations as well. Our focus is on the effect of outdegree and depth.

9.2.1 Outdegree. Figure 10 shows typical examples of the number of 1/0

operations and CPU time (in seconds) of all the algorithms as a function of

the outdegree b of the graph nodes. It corresponds to the usual setup, i.e.,

B = 15 and 34 = 50, and contains numbers for acyclic graphs with N = 1000

nodes and depth that varies between d = 8 and 13, which were generated by

using 1 = 1000. As b grows from 1 to 5, the transitive closure size for these

graphs grows from 6600 to 193000. For comparison, we also show the

corresponding diagrams for reachability in Figure 9.

The only noteworthy difference between reachability and path computa-

tions is the significant increase in the absolute value of the 1/0 and CPU

costs of all algorithms. This is to be expected, due to the presence of the labels

that occupy a large percentage of the used space and require considerably

more manipulation than the simple duplicate eliminations and list mergings

of reachability. Given that the space overhead incurred by the labels is about

50%, the observed increase of about a factor of 2 in 1/0 cost was to be

expected. The relative performance of algorithms with respect to 1/0 remains

as before. Path_ BTC is the most efficient algorithm to be used for path

computations, primarily due to its ability for appropriate inter- and intrade-

scendent list orderings. The other three algorithms have almost identical 1/0

costs. On the other hand, the CPU cost is dominated by the label computa-

tions, and so all four algorithms are almost identical in that respect.

9.2.2 Depth. In this section we present the results of the same experi-

ment as in the previous one, with the only difference that locality factor

1 = 10 was used to generate deeper graphs, i.e., with depths ranging from
d = 86 to 90. Figure 11 presents the associated results. Most major conclu-

sions that can be drawn are identical to the reachability case. We espe-

cially want to emphasize that the trade-offs on 1/0 cost between making

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

558 . Y. Ioannldis et al,

v-)

0

cd

z~~xlo. 0- HQ

ACM TransactIons on Database Systems,Vol 18, No 3, September 1993,

Transitive Closure Algorithms . 559

o

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993

560 . Y. Ioannidiset al.

v-)

. ~?g-ak O* UQ

ACM TransactIons on Database Systems,Vol. 18, No. 3, September 1993

+0
o

Transitive Closure Algorithms . 561

s
.5
i=

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993

562 . Y, loannidis et al.

descendent additions eager versus lazy are exactly the same for path compu-

tations as they were for reachability. This becomes clear when one compares

Path_ BTC-, Path_ Dag_Schmitz, and Path _Dag_DFTC in Figures 10 and

11. In the former, for relatively shallow graphs, the three algorithms have

almost identical costs, indicating a balance between the two opposing trends.

In the latter, for deep graphs, Path_ BTC- is clearly the most efficient and

Path_ Dag _ DFTC is the least efficient, indicating again that for the more

complex graphs, Iaz y additions are the preferred approach. Another interest-

ing observation is the extreme increase in the CPU cost of the algorithms,

compared to the shallow graphs. The number of potential paths are so many

in this case, that the label comparisons dominate the cost and the algorithms

become CPU-bound.

9.3 Computing the Shortest Paths between Nodes of Graphs with Cycles

In this section we present the results of our experiments with Path_ BTC and

Path_ BTC- on graphs with cycles. As mentioned above, due to the expense of

such computations, we only present results for graphs with iV = 200 nodes.

Figure 12 shows the 1/0 and CPU costs of the two algorithms as a function of

the node outdegree b, for a setup that has B = 15 and M = 10 and for

graphs that have N = 200. As b grows, the depth d grows as well from 19 to

142.

There are two points that need to be emphasized about the results in

Figure 12. First, the increase in the cost of the algorithms compared to

reachability is dramatic. As a point of comparison, the cost of Path_ BTC for

the tested 200 node graphs is almost twice as high as the cost of BTC for

similar graphs with 2000 nodes (Figure 8)! This is because, unlike for acyclic

graphs, nodes can become unmarked, and in the worst case, every single path

in the graph may need to be examined. This results in the observed increase

in the cost. Second, unlike in the case of reachability, there is no local

maximum in the cost presented for b = 2. The reason is that in path

computations, the strong component optimization of Section 3.3 does not

apply, and therefore, the number of strong components does not affect the

cost of the algorithms. Hence, increasing the outdeag-ee of nodes, monotoni-

cally increases the size of the graph and the number of paths in it, which

results in a monotonically increasing cost as well.

10. SELECTIONS

In this section we briefly describe how our path algorithms can be adapted to

compute selections for both reachability and path computations. We present

the algorithms below as adaptations of Closure or BTC, our simplest algo-

rithms. However, they can also be viewed as special cases of some other

algorithms.

10.1 Reachability

When a selection of the form “columnl = c“ is specified, no numbering of

nodes is necessary, and so algorithm Closure can be run directly on the

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993,

Transitive Closure Algorithms . 563

original graph. Furthermore, its first loop is no longer necessary; the inner

loop (line (3)) can simply start executing from the selected node c. We observe

that il!f~ is always empty, and so marking does not yield any improvements in

this case.

On the other hand, a selection of the form “column2 = c“, which requests

all tuples in the transitive closure of the form (?, c), requires that the graph

be first transformed so that it is represented using predecessor sets. The

algorithm above can then be used.

Finally, consider a selection of the form “columnl = c1 and column2 = Cz”,

which simply requests to test if (cl, Cz) is in the transitive closure. This can

be processed as in the case of selection “columnl = cl”, with the difference

that the algorithm can stop when Cz is added to S,l.

10.1.1 Multisource Reachability. A variant on the selection problem is to

ask for the sets of nodes reachable from each of a given set of source nodes.

(We only consider selections on the first column in this section.) If the source
set is small, it is probably best to simply run the selection algorithm repeat-

edly, at the potential cost of some duplicate computation for subgraphs that

are reachable from more than one source node. This problem has been

studied by Jiang [14], who has presented an interesting algorithm that avoids

duplication of effort. Algorithm BTC can also be adapted in a simple way to

deal with multisource reachability: in the numbering phase, use each of the

given source nodes as a root until no new nodes are encountered. This yields

a topological sort of the subset of the original graph that is reachable from at

least one of the given source nodes. Compute the closure on this subset; this

yields the closure for each of the source nodes. There is no duplicate work,

and marking does improve the performance, but the closure of every reach-

able node is computed. Thus, there is a tradeoff with respect to repeatedly

running the single-source selection algorithm. We have not explored this

tradeoff or compared these algorithms to Jiang’s.

10.2 Path Computations

It is possible to specify path computation queries with selections. For exam-

ple, the longest path from node i can be requested, in which case only the set

of paths from node i are of interest. This is computed using essentially the

inner loop of Path_ BTC. We present the following algorithm:

proc select_ path_ TC(i)
{~ ,= E,; Ml :=@;

while U, # 0 do

choose j E U, s.t. L,~ < L,h for all k E U,;

M, ,= Ml U {j}; ~ := ~ – {j}

for all 1?6 S~ – {j} do

L~~d ~= Lib; L,h ,= AGGCL,k , CON(L,,, L~h));

if L~~~ + Ll~

then {~ := ~ U {k}; i$f, = ~, – {k}}

od

od

}

ACM Tram,actions on Database Systems,Vol. 18, No. 3, September 1993.

564 . Y. Ioannidis et al,

We observe that for the special case of the single source shortest path

problem, this is Dijkstra’s algorithm [9]. The heuristic used in the choice of j

is motivated by this algorithm. Other examples of path computations with

selection include the shortest path from node i to node j and the maximum

flow path from node i to node j. At first sight, it appears that, for these

problems, the above algorithm can be adapted for the selection “columnl = i

and column 2 = j“, so as to terminate as soon as some path from node i to

node j is found. This is incorrect, however, since even in these problems, all

paths from i to j must be explored. Thus, we must still use the algorithm

corresponding to the selection “columnl = i“. We note that the above algo-

rithm assumes that conditions (l)–(7) are satisfied, or that the graph is

acyclic and conditions (l)–(5) and (7) are satisfied. If condition (7) is not

satisfied, we can modify this algorithm as before, but at the cost of some

efficiency. Thus, marking can yield improvements even for path computations

with single-source selections.

Finally, multisource path computations can be also dealt with along the

lines outlined for multisource reachability.

11. RELATED WORK

In Section 2, we reviewed a significant subset of the existing graph-based

algorithms for transitive closure, In this section, we briefly discuss

nongraph-based algorithm and compare them with the ones studied in this

paper. In particular, we compare our algorithms with the traditional matrix-

based Warshall and Warren algorithms, a hybrid algorithm proposed by

Agrawal and Jagadish, and the iterative Seminaive and Smart algorithms,

which are applicable for arbitrary fixpoint computations and not just for

transitive closure. We also discuss some other related work on the topic.

11.1 Iterative Algorithms

The Seminaive algorithm [5] is a well-known algorithm for general recursive

queries, and can be applied to transitive closure as well. Unlike graph-based

algorithms, information specific to the transitive closure problem cannot be

used, so several techniques that improve performance, such as the root-opti-

mization for BTC, are not applicable. In addition, the cost of duplicate-

elimination is nontrivial, since facts that correspond to entries in many

descendent lists are produced in each iteration, and we may have to retrieve

many lists to check if the facts produced in an iteration are already known.
The Smart or ,Logarithmic algorithm [12, 27] first computes all the pairs of

nodes that are a number of arcs apart that is a power of 2, and then computes

the remaining arcs performing much fewer operations than would otherwise

be needed (i.e., if Seminaive were used). Regarding the transitive closure of

trees, it has been shown that Smart outperforms Seminaive in most cases

under varying assumptions about storage structures and join algorithms. On

the other hand, on nontree graphs, Smart tends to generate many more

duplicates than Seminaive, and usually loses in performance. The algorithm
relies heavily on computing sets of arcs, so it is hard to formulate it in a way

ACM TransactIons on Database Systems, Vol. 18, No. 3, September 1993

Transitive Closure Algorithms . 565

that it can be directly compared with the algorithms presented in this paper.

However, the remarks on Seminaive also apply to the Smart algorithm.

Lu proposed another algorithm for reachability that uses hash-based join

techniques to compute the transitive closure of a relation [19]. Its basic

structure is that of Seminaive, but it employs two interesting optimizations

that speed up computation: (a) the original relation is dynamically reduced by

eliminating tuples that are known to be useless in the further production of

the transitive closure, and (b) as soon as a tuple is produced, if it is inserted

in the same hash bucket that is being processed, the tuple is processed also.

Lu showed that for a restricted class of graphs his algorithm performs better

than both Seminaive and Smart.

11.2 Matrix-Based Algorithms

A straightforward disk-based implementation of Warren’s algorithm was

proposed and tested against Smart [19]. It used hashing as a basic storage

structure and employed hash-based join techniques. The cost of the algorithm

was analyzed and compared to the cost of two versions of Smart. The main

results of the analysis were that the Warren algorithm works better than

Smart when there is ample main memory available and when there is a great

variation in the lengths of the various paths in the graph.

Another implementation of the Warran algorithm, much better suited to

disk-based data, was developed by Agrawal et al. [1, 2]. They used blocking to

improve the performance and provided empirical evidence that the algorithm

outperforms both Seminaive and Smart almost uniformly. An important

aspect of their study was the demonstration of the importance of duplicate

elimination costs; much of the difference between the iterative algorithms

and their implementation of Warren’s algorithm derives from the lower cost

of duplicate elimination in their scheme.

11.3 Comparison of Graph-Based with Iterative and Matrix-Based Algorithms

In this section we draw some qualitative conclusions on the relative perfor-

mance of graph-based algorithms when compared to iterative and matrix-

based algorithms. For this we use the results of a performance evaluation

study [16] that compared the last two classes of algorithms and, for the most

part, confirmed the results of the work of Agrawal and Jagadish [1]. Specifi-

cally, we considered the subset of the graphs that were used in that study

and could be identified by the graph parameters that we have used, i.e., lV, b,

and d (via 1). We then ran BTC, GDFTC, and Schmitz on graphs with the

same characteristics, using the same buffer sizes reported in that study. This

allowed a meaningful comparison of the results of the two studies, since they

both use the same hardware and system software platforms (Section 6). Table

VIII shows the results of a subset of these experiments and the corresponding

results from the earlier study. In particular, for each case, Table VIII shows
the cost of the most efficient graph-based algorithm obtained in our experi-

ments and the cost of the most efficient nongraph-based algorithm as re-

ported in that study.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

566 . Y, Ioannidis et al,

Table VIII, Aggregate Cost of the most Efficient Graph-Based and Nongraph-Based

Algorithms on a Variety of Graphs

Graph Characteristics Graph-Based Non-Graph-Based Ratio of

Type N b d M Algorithm (I) Algorithm (II) (II) over (I)

Tree 4094 2 11 50 3996 130.00 3.25
Acyclic 600 2 9 10 38:06 167.01 4.39

20 20.58 103.05 5.01
100 5.44 50.25 9.24

500 4 14 50 32.74 167.51 5.11
Arbitrary 100 10 90 50 1.86 53.29 28.65

400 10 333 150 27.% 2154.20 77.38

The nongraph-based algorithms present the output in the form of a descen-

dent set per node. To permit a uniform comparison, we implemented the

graph-based algorithms to do this as well; thus, for each node in a strong

component, the output included a copy of the descendent set for the strong

component rather than a pointer to it. (Of course, our implementations of

these algorithms still maintain a single copy of the descendent set for a

strong component during the computation of the closure.) The numbers in

Table VIII reflect this; for all algorithms, the cost of reading the input and

writing the output is included.

BTC was the most efficient graph-based algorithm in all these experiments,

whereas each one of Blocked Warren, Seminaive, and Smart was the most

efficient nongraph-based algorithm at least once. In presenting the cost of

algorithms, we have followed the approach of the earlier study, so the 1/0

and CPU cost are combined into an aggregate cost, which is the sum of the

CPU time plus 40 milliseconds for each disk 1/0 access. Thus, the numbers

in Table VIII represent seconds.

From the above table, the superiority of graph-based algorithms should be

clear. Although the specific numbers are for BTC, the magnitude of the

difference between the two types of algorithms is far greater than the

differences that we have observed among any graph-based algorithm. Note

that when the buffer size increases, the relative difference between the

graph-based and the nongraph-based algorithms increases as well. Also note

the tremendous impact that the root optimization has in the performance of

the ~gaph-based algorithms on cyclic graphs, to the point that they become

one or two orders of magnitude more efficient than the nongraph-based
algorithms, which cannot make use of this optimization. Since the two studies

were done independently, there may be some differences in the implementa-

tion details of the algorithms that do not allow us to take the actual numbers

in Table VIII as absolutes. The magnitude of difference between the two

families of algorithms, however, is far greater than what can be attributed to

possible implementation details of the algorithms. Further, given that even

relatively sparse cyclic graphs tend to have large strong components, the

graph-based algorithms are likely to do even better if it is acceptable to

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993

Transitive Closure Algorithms . 567

present the output with a single copy of the descendent set for each strong

component. Hence, at least qualitatively, we can safely reach the conclusion

that graph-based algorithms are superior to nongraph-based ones.

11.4 A Hybrid Algorithm

Recently, Agrawal and Jagadish [1] have proposed a hybrid algorithm that

seeks to combine the advantages of graph-based and matrix-based algo-

rithms. Their algorithm modifies the Warren algorithm with three important

optimizations borrowed from graph-based algorithms. First, Tarjan’s algo-

rithm is run in a first pass to identify strong components and create a

condensation graph. Second, only matrix elements in a row corresponding to

children (of the node corresponding to that row) generate descendent set

additions. Third, columns are ordered similarly to our intradescendent list

sorting in the implementation of BTC. In addition, the marking technique

presented in [13] (and also discussed in this paper) is adapted to the matrix-

based computation, essentially achieving the same effect as in BTC. The

matrix-based formulation can be seen as generalizing BTC by offering a

range of blocking alternatives. Whereas a single descendent list is processed

at a time in BTC, the Hybrid algorithm allows the matrix to be partitioned

into blocks of rows and proceeds a block at a time. Thus, if a descendent list is

fetched to be added to another list, it is added at that time to all lists in the

current block as needed.

BTC is similar to the Hybrid algorithm for the case of blocksize 1. Our

implementation of BTC physically clusters descendent lists in reverse topo-

logical order. While it is not clear whether this is done in the implementation

of Hybrid algorithm [1], the algorithm itself allows it. However, there are

some important differences between BTC and Hybrid. First, BTC does not

actually construct the condensation graph. In particular, while it identifies

the root of the strong component to which each node belongs, it does not

actually create a descendent list for the strong component by adding the

descendent lists of all nodes in the component in the first pass of BTC. Thus,

some additions are deferred in BTC, relative to the construction of the

condensation graph in the Hybrid algorithm. Second, as we noted earlier, the

Hybrid algorithm offers many blocking alternatives that must be explored

relative to the specific choice of blocksize 1 (using “block as in the descrip-

tion of Hybrid) in BTC. As we saw earlier, physical clustering in topological

order yields excellent buffer performance with both LRU and LUND; it would

be interesting to see whether alternating the blocksize improves or degrades

the performance.

Agrawal and Jagadish show that the Hybrid algorithm is superior to the

Warren algorithm. They also study a pure graph-based algorithm, and con-

clude that it is inferior to Hybrid. While the differences in the testbed,

performance methodology and metrics, and implementations differ suffi-
ciently to make a close comparison of the results very meaningful, it appears

that the results of the two papers are consistent insofar as they overlap.

ACM TransactIons on Database Systems, Vol. 18, No. 3, September 1993

568 . Y. Ioannidw et al

11.5 Other Related Work

A limited amount of work has been done on the shortest path problem

between two given nodes of a graph using QUEL* as the coding language

[17]. Four algorithms, two based on breadth-first traversal, and two heuristic

algorithms, based on best first traversal [23], were implemented and their

performance was compared against the same programs implemented in

Fortran. The conclusion was that for large graphs, one of the breadth-first

versions was the algorithm of choice, even as compared to a main memory

implementation. Both the scope of that work and its conclusions are only

marginally relevant to the work presented in this paper.

In the context of the Probe DBMS prototype, transitive closure was identi-

fied as an important class of recursion and was generally termed traversal

recursion [24]. Traversal recursion was formally specified using path algebras

[6], and it focused primarily on path computation problems. The algorithms

proposed for traversal recursion were Seminaive and one-pass traversals, i.e.,

algorithms that need to traverse a graph only once. It was argued that

one-pass traversals are better than Seminaive, but no formal argument or

empirical results were provided. Under the assumptions made in this paper,

our results confirm the above claim (at least for reachability).

12. CONCLUSIONS

We have presented and evaluated a family of graph-based transitive closure

algorithms. Our results indicate that the simplest algorithm, comprised of a

first pass that is essentially Tarjan’s algorithm and an iterative second pass,

is the most promising in terms of both simplicity and efficiency. The superior

performance of this algorithm relative to other, more complicated, graph-based

algorithms is surprising and is partly explained by the fact that many

optimizations can be employed in its second pass to expedite it based on

information collected in its first pass. Our results also suggest that graph-

based algorithms are superior to nongraph-based algorithms due to their

ability to use particular information about the graph structure, e.g., the form

of the condensation graph.

If the graph G is updated relatively infrequently, it might be feasible to

store the descendent sets according to (at least, approximately) the reverse

topological order (popped). In this case, directly running algorithm Closure to

compute the transitive closure should outperform the other strategies, and

thus, the order in which data is stored is exploited in a unique way to
optimize the computation of the transitive closure.

Finally, it is possible to extend BTC for larger classes of problems, such as

one-sided recursions (see [13, 2 l]).

APPENDIX A: CORRECTNESS OF GDFTC

Before we prove the correctness of GDFTC, we prove some intermediate

lemmas. In what follows, we use top to denote a variable that points to the

top of the stack in the algorithm. Let franze[i], for a node i, be defined as

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993,

Transitwe Closure Algorithms . 569

follows:

~EMMA A. 1. The array frame is well defined. That is, at any time there is

at most one f such that i E nodes[f].

PROOF. Within the call visit(i), direct updates to nodes happen only at

statements (11), (15), and (18). At most one of these commands will be

executed, and this at most once, for any i, since control reaches these

statements only when root [i] = n + 1. When these updates happen, root[i] is

updated also to something other than n + 1, so control never returns to

statement (11), (15), or (18). The only other manipulation of nodes is at

statement (12), which simply merges two existing lists into one. Thus, at any

one time, there is at most one f such that i ● nodes[f]. Hence frame is well

defined. ❑

LEMMA A.2. Consider the call visit(i) in Algorithm GDFTC. If j = Ei, then

the following hold.

(1) visited[jl = O at statement (7) if and only if (i, j) is a tree arc.

(2) uisited[j] = 1 at statement (7) and popped[j] = O at statement (13) if
and only if (i, j) is a back arc.

(3) visited[j] = 1 at statement (7) and popped[j] = 1 at statement (13) if
and only if (i, J“) is a cross arc.

PROOF. (1) The proof follows directly from the definition of tree arcs, since

there is a subsequent call visit(j) in visit(i).

(2) The call visit(j) has been made, but has not yet returned, since

uisited[j] = 1 and popped[j] = O. So there must be a path composed of tree

arcs from j to i, and thus, (i, j) is a back arc. In the other direction, if (i, j) is

a back arc, there must be a path from j to i composed of tree arcs. Thus,

visit(j) is invoked before visit(i), and so visited[j] = 1. Further, since visit(i)

has not returned, there is some child k of j for which the call visit(k) in

visit(j) has not returned, and so visit(j) cannot have returned. Thus,

popped[j] = O.

(3) From (1) and (2), (i, j) is not a tree or back arc. Since j is not in S, (by

the condition of statement (5)), it cannot be a forward arc. Thus, it must be a

cross arc. In the other direction, if it is a cross arc, the call visit(j) must have

returned, and so uisited[j] = 1 and popped[j] = 1. ❑

Several sets related to node i are of interest and are defined below. In what

follows, V is a set of nodes such that V c E,.

D: The set of descendants of i via i’s children in V.

T,v The set of descendants of i via i’s children in V in the spanning

forest of calls to visit.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

570 . Y. Ioannidis et al.

By The set of descendants of z via i’s children in V and via paths

containing only tree and cross arcs, except for the last arc, which is

a back arc. (Thus, the members of this set are heads of back arcs.)

POP,V The set of descendants of i via i’s children in V for which the call to

visit returned before the call visit(i).

~EMMA A.3. During the execution of GDFTC the following hold.

(a) For every node i, after the call visit(i) returns, one of the following holds:

(al) frame[i] = n + 1, root[il = n + 1,and S, = DFI, or

(a2) frame[i] = top

root[i] = r, such that uisited[r] = minh ● ~~,{uisited[h]}.

nodes[frame[i]] = {jlj = T,EL and frame[j] # n + 1} U {z}

S, = list[frame[i]] = {jlj = POP,EI and frame[j] = n + 1}

(b) For every tree arc (i, j), after the call uisit(j) returns, the following holds:

(bl) frame[i] = n + 1, if frame[i] = n + 1 before the call uisit(j).

(b2) frame[i 1 = ToF’, if frame[i 1 = Top before the call uisit(j).

Further, frcwne[j] = TOP + 1 or frame[j] = n + 1.

PROOF. PJote that initially frame[i] = root[i] = n + 1 and S, = 0, for all

nodes i. Let pop[i] be the pop order of i, i.e., the order in which visit(i)

returned. We prove the lemma by induction on pop[i]. (This induction is

referred to in the sequel as the outer induction.)

Basis. Let pop[i] = 1, i.e., i is the first node for which visit(i) returned.

Clearly, either i is a node with zero outdegree, so the loop of statements

(5)-(19) is never entered, or for all children j of i, uisited[j] >0 and

popped[j] = O when they are examined, i.e., all arcs (i, j) are back arcs. (In

both cases B,EL = EL and POP,EL = T,EL = 0. Moreover, in the former case

E, = 0.) Part (b) of the lemma does not apply here, so we only prove part (a).

Within the call visit(i), let V denote the set of children of i that have been

iterated through in statements (5)–(19) of the algorithm at any time. Modify

(a) in the statement of the lemma into (a’) so that it reads as follows.

(a’) For every node i, after examining all children of i in V c E,, one of the

following holds:

(al’) frame[i] = n + 1, root[i] = n + 1,and S, = @, or

(a2’) frame[i] = top

root[i] = r, such that uisited[r] = mink ● V{uisited[k]}.

nodes[frame[i]] = {i}

S, = list[frame[i]] = 0

We prove the above by induction on the size of V, i.e., the number of children

of i that have been examined at any time.

ACM Transactions on Database Systems, VOI 18, No 3, September 1993

Transitive Closure Algorithms . 571

Basis. Let IV I = O. Then, the for-loop of statements (5)–(19) has not been

executed at all, and therefore frame[i] and root[i] remain as they were

before, i.e., equal to n + 1. Moreover, S, = @. Thus, (al’) holds.

Induction Step. Assume that the claim is true after examining c z O

children. We prove it for c + 1, i.e., IV] = c + 1. Let j be the (c + l)th child of

i, i.e., Vnew = VOZ~ U {j}. Then, (i, j) is a back arc. By the induction hypothe-

sis, before examining j in statement (5), either (al’) or (a2’) holds. In the

former case (j is the first child of i to be examined and c + 1 = 1), the

condition in statement (18) is satisfied and its then part is executed, estab-

lishing the following.

frame[i] = top

nodes[frame[i]] = rzodes[top] = {i}

S, = list[frame[i]] = D

In addition, statement (19) is executed, and because uisited[n + 1] = n + 1

and O < uisited[j] < n, the then part of statement (30) establishes

(root[i] = j, where vacuously (since V is singleton)

uisited[j] = ~n~ {visited[k]}.

Thus (a2’), and therefore (a’), holds. In the latter case (j is not the first child

of i to be examined), the test in statement (18) fails, and only statement (19)

is executed, possibly updating root [i] as (a2’) requires. The remaining clauses

of (a2’) remain valid by the induction hypothesis. Thus, in this case also,

(a2’), and therefore (a’) holds.

After examining all the children of i, (a’) holds for V = E,. Since i is the first

node for which the call visit(i) returned, by (a’) i # root[i], thus statement

(21) is skipped, and (a’) still holds after visit(i) returns. We have already

mentioned that in this case, B,~L = E, and POP,EI = T,EL = @. Thus, (a)

reduces to (a’) and the basis case of the outer induction is proved.

Induction Step. Assume that the lemma is true for all nodes i such that

pop[i] < pop for some pop >1, i.e., for the first pop nodes i for which visit(i)

returned. We prove it for the (pop + l)th. Let h be he popth node for which

the call to visit returned and let i be the (pop + l)th such node. By the

depth-first traversal structure of the algorithm, either i is a leaf in the

spanning forest of calls to visit (a descendent of a sibling of h or a member of

a different tree in the forest) or i is the father of h and visit(h) was called

from within visit(i). We examine the two cases separately.

Assume that i is a leaf in the spanning forest. Then all arcs (i, j), if any,

are either back arcs or cross arcs; thus, T,EL = @. As in the basis case, since

no call visit(j) is issued for any child j of i, part (b) of the IIemma does not

apply, so we only prove part (a). Within the call visit(i), let V denote the set
of children of z that have been iterated through in statements (5)–(19) of the

algorithm at any time. Modify (a) in the statement of the lemma into (a”) so

that it reads as follows:

ACM Transactions on Database Systems, Vol 18, No 3. September 1993

572 . Y. Ioannidis et al,

(a”) For every node i, after the call visit(i) returns, one of the following holds.

(al”) fkune[il = n + 1, root[il = n + 1, and S, = D~

(a2”) fkune[i] = top

root[i] = r, such that Uisited[r] = minh ~ ~Y{visited[k]}.

rzocies[frczme[i]] = {i]

S, = list[frarne[i]] = {jlj = POP,V and fkune[.j] = n + 1}

As in the basis case, we prove the above by induction on the size of V, i.e., the

number of children of i that have been examined at any time.

Basis. Let IV I = O. Then, the for-loop of statements (5)-(19) has not been

executed at all, and therefore frazne[i] and root[i] remain as they were

initially, i.e., equal to n + 1. Moreover, S, = ~ = @. Thus, (al”) holds.

Induction Step. Assume that the claim is true after examining c z O

children. We prove it for c + 1, i.e., IV I = c + 1. Let j be the (c + l)th child of

i, i.e., Vnew = V“Zd u {j}. Arc (i, j) can be a back arc or a cross arc. We treat

the two cases separately. Assume that (i, j) is a back arc, i.e., the condition of

statement (17) is satisfied, by Lemma A.2. By the induction hypothesis,

before examining j in statement (5), either (al”) or (a2”) holds for i. If (al”)

holds (j is the first child of i to be examined and reveal that i is a member of

a nontrivial strong component), the condition in statement (18) is satisfied

and its then part is executed, establishing the following.

frame[i] = top

nodes[frame[i]] = nodes[top] = {i}

S, = list[frame[i]] = {Jj c POP,V and frame[j] = n + 1)

The last equality is justified by the fact that for a back arc (i, j), the addition

of j into V does not affect the contents of POP,”. In addition, statement (19)

is executed, and because uisited[n + 1] = n + 1 and O < uisited[j] < n, the

then part of statement (30) establishes

root[i] = ~“, where vacuously (since B,v is singleton)

uisited[j] = mink_ ~~{uisited[k]}.

Thus, (a2°), and therefore (a”), holds. If (a2°) holds before examining j, the

test in statement (18) fails, and only statement (19) is executed, possibly

updating root[i] as (a2”) requires. The remaining clauses of (a2°) remain
valid by the induction hypothesis. (The value of S, and list[frarne[i]] have to

remain the same, since the addition of a back arc in V does not affect the

contents of POP,V.) Thus, in this case also, (a2”), and therefore (a”) holds.

Assume that (i, j) is a cross arc, i.e., the condition of statement (13) is

satisfied, by Lemma A.2. Since ~wopped[j] = 1,the call to visit(j) has already

returned. Thus, by the induction hypothesis of the outer induction the lemma

holds for j. If root [j] = n + 1, (a) holds for j and the complete set of

descendants of j is stored in Sj and propagated to S, at statement (14). If

(al”) holds for i before examining j, S, is correctly updated to D: (with V

ACM Transactions on Database Systems, Vol 18, No 3, September 1993,

Transitive Closure Algorithms . 573

containing j also). If (a2°) holds for z before examining j, since all nodes in SJ

have been popped before i, they are members of POP,V. Thus, S, and

list[~rczrne[i]] are updated correctly also. The values of ~rczm,e[i], root[i], and

nodes[i] correctly remain unchanged. (Specifically for mot[i], the addition to

V of the head of a cross arc that is in a different strong component (root[j] =

n + 1), cannot have any effect on the contents of B,v.) On the other hand, if

root[j] + n + 1, the test in statement (14) fails, and control reaches state-

ment (15). Recall that, by the induction hypothesis, before examining j in

statement (5), either (al”) or (a2°) holds for i. If (al”) holds, the condition in

statement (15) is satisfied and its then part is executed, establishing the

following:

frame[i] = top

nodes[frame[i]] = nodes[top] = {i}

SL = list[frcvne[i]] = {jlj c POP,V and frczme[j] = n + 1}

The last equality is justified by the induction hypothesis of the outer induc-

tion, since for a cross arc (i, j), if root[j] + n + 1 then frwne[j] # n + 1.

Thus the addition of j to V does not affect {j[j = POP,V and frarne[j] = n +

1}. In addition, the following will be established:

root[i] = j, where vacuously (since B,v is singleton

Uisited[j] = ~g~,, {uisited[k]}.

Thus, (a2”), and therefore (a”), holds. If (a2°) holds for i before examining, j,

statement (16) is executed, possibly updating root[i] as (a2”) requires. The

remaining clauses of (a2’) remain valid by the induction hypothesis, since

again the contents of {jl j = POP,V and frame[j] = n + 1} are not affected by

the addition of j to V. Thus, in this case also, (a2”), and therefore (a”) holds.

Note that (a”) reduces to (a) when V becomes equal to E,. (Recall that for a

leaf of the spanning forest, T,EI = 0.) For a leaf of the spanning forest of calls

to visit, it can never be true that i = root[i]. This is because root[i] is either

made equal to a child of i (statement (19)) (but i is never examined as a child

of itself (statement (5))), or it is made equal to the root of a child of i

(statements (11), (12), and (16)). By the induction hypothesis of the outer

induction, (a) holds for j. Statements (11), (12), and (16) are only executed

when root[j] # n + 1, thus (a2) must hold for j. If i = root[j] at some point,

this means that there is a path from i to j of tree and cross arcs only starting

with a tree arc from i (and finishing with a back arc to i). This, however,

contradicts the hypothesis that i is a leaf in the spanning forest. Thus i

cannot be equal to root[i], statement (21) is skipped, and after the return of

visit(i), (a) holds. This completes the proof of the lemma for the case that i is

not the father of h.

Assume that i is the father of h. For the first time, since the call to visit(h)

was taken, we need to prove both (a) and (b) for i. We first prove (b). Node z is

never placed in an entry of nodes, except within the top level call of visit(i)

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993

574 . Y Ioanmdls et al.

(statements (11), (12), and (16)). Thus, if frarne[i 1 = n + 1 before visit(j) is

called for a child j of i, this will not be changed after the return of the call to

visit(j). When i is inserted into some entry of nodes it is always true that

ficzrne[i] = top (statements (11), (15), and (18)). Thus, consider the case

where ~ranze[z] = top = TOP, for some value TOP, before the call to visit(j),

for some child j of i. During the call visit(j), top may be increased and

decreased multiple times. Consider the last time within any recursive call of

visit(j) that top was increased from TOP to TOP + 1 without being de-

creased to TOP before the call to visit(j) returns. Assume that this happened

within the call visit(l). Clearly, 1 is a descendent of i and j in the spanning

forest of calls to visit. We prove that for any node k in the path from j to 1 in

the forest, when call visit(k) returns, fkmze[k] = TOP + 1.This will be done

by induction on the distance of k from 1.

Basis. Consider 1 itself. Consider any call visit(m) to a child m of 1, after

top is increased to TOP + 1 and frame[1] is set to TOP + 1 (statement (15)

or (18)). Since 1 and m have been popped before i, by the induction hypothe-

sis of the outer induction, (a) and (b) hold for 1 and m. Thus, when visit(m)

returns, either root[m] = frame[m] = n + 1, statement (9) is executed, and

frame[l] = top = TOP + 1, or root[m] + n + 1 and frame[m] = top =

TOP + 2, in which case, since root[1] # n + 1, statement (12) is executed,

and frame[1] (also frarne[m]) is set to TOP + 1 = top. This covers the basis

case.

Induction Step. Assume that the claim is true for an arbitrary node k’ in

the path between j and 1.We prove it for its father in this path k. Again, by

the induction hypothesis of the outer induction, (a) and (b) hold for both k

and k’. When the call visit (k’) returns, by the induction hypothesis of the

inner induction, frame[k’] = TOP + 1 = top. Moreover, root[k] =

frame[k] = n + 1.Otherwise, it should be frame[k] = TOP (outer induction

hypothesis (b) for k). If that were the case, statement (12) would be executed,

and top would be decreased to TOP, which contradicts our assumption that

this would not happen between the call visit(l) and the return of the call

visit(j) to visit(i). Thus, root[k] = frczme[k] = n + 1, statement (11) is exe-

cuted, which set frame[k] equal to frame[k’] = TOP + 1. After any other

call visit(k“), following the return of visit(k’), within the call visit(k), by the

outer induction hypothesis for k, either frame[k“] = n + 1, in which case

frame[k] remains equal to top = TOP + 1,or frame[k“] = TOP + 2 = top, in

which case after the execution of statement (12), frarne[k] is set back again

to top = TOP + 1.Thus, in all cases the claim holds for k.

By the above induction, after visit(j) returns within visit(i), frame[j] =

TOP + 1 = top. This concludes the proof of (b) for i.

The proof of (a) is straightforward. Recall that i is the next node for which

visit(i) returns after the return of visit(h). If root[h] = n + 1, by the induc-

tion hypothesis (al), Sk contains all the descendants of h, which are correctly

propagated to St or both S, and list [frame[i]] (statement (9)). Nothing else is
modified: frame[i] should remain n + 1 or top; root[i] should retain its

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993

Transitive Closure Algorithms . 575

value, because root[h] = n + 1; nodes[fhwne[i]] should also retain its value,

since for any member k ~ Tjh), which is the set of new members of Tiv,

frarne[k] = n + 1 by the induction hypothesis and the fact that root[h] =

n + 1. Thus, in this case, (a) holds. If root[h,] # n + 1, either statement (11)

will be executed or statement (12). Addressing each case is similar to previous

parts of this proof and is omitted. In all cases, (a) is seen to hold. Node i, may

have other children to examine after h, all of which must be heads of cross or

back arcs. It is easily seen that the claim still holds after examining these

nodes also, as was done before. If (al) holds when control reaches statement

(20); i.e., root[i 1 = n + 1, then statement (21) is skipped, and (al), and
therefore (a) also, holds after visit(i) returns. If (a2) holds when control

reaches statement (2o), i.e., root[i] # n + 1, but root[i 1 # i, then again (a2)

remains valid after visit(i) returns. Finally, if (a2) holds but i = root[i] #

n + 1, then statement (21) is executed, and establish (al) for i after visit(i)

returns. In all cases, (a) holds for i. ❑

THEOREM A.zI. Algorithm GDFTC terminates and correctly computes the

transitive closure of G.

PROOF. Clearly, the algorithm terminates since every edge in G is consid-

ered only once (statement (5)). By Lemma A.3, any node i that satisfied (al)

after the call visit(i) returned, has its descendants correctly computed and

stored in Si. Consider a node i that satisfied (a2) after the call visit(i)

returned. (These are the nodes that are members of nontrivial strong compo-

nents but not a root.) This means that, when visit(i) returned, root [i] was

equal to a node r for which visit had not returned yet. Since there is a path in

the spanning forest from r to i, and a path ending in a back arc whose head

is r, r = B,E’, and therefore, by Lemma A.3 for r, uisited[root[r]] < uisited[r]

after all calls to r’s children return. If visited[root[r]] < uisited[r], due to the

finiteness of the nodes, there must be a node r’, such that root[r’] = r’, that

is an ancestor of i in the spanning forest of calls to visit. Before visit(r’)

returns, all members of nodes[frame[i]] have their descendants set equal to

S,,. Since i ~ T,E” and frame[i] + n + 1 (by Lemma A.3), i = nodes[r’], and

i’s descendants are appropriately updated. The correctness of the update is

straightforward, since there is a cycle that involves both r’ and i, and

therefore, the two nodes have the same descendants. D

REFERENCES

L AGRAWAL, R., DAR, S., AND JAGADISH, H. V. Direct transitive closure algorithms: Design and

performance evaluation. ACM Trans. Database Syst. 15, 3 (Sept. 1990), 427-458.

2. AGRAWAL, R., AND JAGADISH, H. V. Direct algorithms for computing the transitive closure of

database relations. In Proceedings of the 13th International VLDB Conference (Brighton,

England, Sept. 1987), 255-266.

3. AGRAWAL, R., AND JAGADISH, H. V. Hybrid transitive closure algorithms. In Proceedings of
the 16th International VLDB Conference (Brisbane, Australia, Aug. 1990). VLDB Endow-

ment, 326–334.

4. AHo, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1974.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

576 . Y. Ioannidis et al.

5. BANCILHON, F. Naive evaluation of recursively defined relations. In On Knowledge Base

Management Systems—Integrating Database and AI Systems, M. Brodie and J. Mylopoulos,

Eds., Springer-Verlag, New York, 1985.

6. CARRE, B. Graphs and Networks. Clarendon Press, Oxford, England, 1979.

7. CRUZ, I., AND NORVELL, T. S. Aggregative closure: An extension of transitive closure. In

Proceedings of the 5th IEEE Data Engmeermg Conference (Los Angeles, Feb. 1989), 384-391.

8. DAR, S. Ph.D. thesis, Univ. of Wisconsin-Madison, Aug. 1993.

9. DIJKSTRA, E. W. A note on two problems in connection with graphs. Numer. Math. 1 (1959),

269-271.

10. EBERT, J. A sensitive transitive closure algorithm. hf. Process. Lett. 12, 5 (1981).

11.EVE, J., AND KURKI-SUONIO, R. On computing the transitive closure of a relation. Acts Znf.

(1977), 303-314.

12. 10ANNIDIS, Y. E. On the computation of the transitive closure of relational operators. In

Proceedings of the 12th International VLDB Conference (Kyoto, Aug. 1986), 403-411.

13. IOANNIDIS, Y. E., AND RAMAKRISHNAN, R. Efficient transitive closure algorithms. In Proceed-

ings of the 14th International VLDB Conference (Long Beach, Calif., Aug. 1988), 382–394.

14. JIANG, B. A suitable algorithm for computing partial transitive closures in databases. In

Proceedings of the 6th IEEE Data Engineering Conference (Los Angeles, Feb. 1990), 264-271.

15. JIANG, B. I\ O-efficiency of shortest path algorithms: An analysis. In Proceedings of the 8th

IEEE Data Engineering Conference (Tempe, Ariz., Feb. 1989). IEEE, New York, 12-19.

16. KABLER, R., IOANNIDIS, Y. E., AND CAREY, M. Performance evaluation of algorithms for

transitive closure. Znf. Syst. 17, 5 (Sept. 1992), 415-441.
17. KUNG, R., HANSON, E., IOANNIDIS, Y. E., SHAPIRO, L., SELLIS, T., AND STONEBRAKER, M.

Heuristic search in database systems. In Expert Database Systems, Proceedings of the 1st

International Workshop, L. Kerschberg, Ed., Benjamin-Cummings, Menlo Park, Calif., 1986,

537-548.

18. Lu, H. New strategies for computing the transitive closure of a database relation. In

Proceedings of the 13th International VLDB Conference (Brighton, England, Sept. 1987),

267-274.

19. Lu, H., MIKKILINENI, K., AND RICHARDSON, J. P. Design and evaluation of algorithms to

compute thetransitive closure ofadatabase relation. In Proceedings of the3rd International

Data Engineering Conference (Los Angeles, Feb. 1987), 112-119.

20. PURDOM, P. Atransitive closure algorithm. BZT, 10(1970),76-94.

21. NAUGHTON, J. F. One-sided recursions. In Proceedings of the 6th ACM-PODS Conference

(San Diego, Calif., Mar. 1987), 340-348.

22. QADAH, G. Z., HENSCHEN, L. J., AND KIM, J. J. Efficient algorithms for the instantiated

transitive closure queries. IEEE Trans. Softw. Eng. 17, 3 (Mar. 1991), 296-309.

23. RICH, E. Artificial Intelligence. McGraw-Hill, New York, 1983.

24. ROSENTHAL, A., HEILER, S., DAYAL, U., AND MANOLA, F. Traversal recursion: A practical

approach to supporting recursive applications. In Proceedings of the 1986 ACM-SIGMOD

Conference (Washington, D. C., May 1986), 166-176.

25. SCHMITZ, L. An improved transitive closure algorithm. Computing 30 (1983), 359-371.

26. TARJAN, R. E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2 (1972),

146-160.

27. VALDURIEZ, P., AND BORAL, H. Evaluation of recursive queries using join indices. In Proceed-

ings of the 1st International Expert Database Systems Conference (Charleston, S. C., April

1986), 197-208.

28. WARREN, H. S. A modification of Warshall’s algorithm for the transitive closure of binary

relations. Commun. ACM 18, 4 (April 1975), 218-220.

29. WARSHALL, S. A theorem on Boolean matrices. JACM, 9, 1 (Jan. 1962), 11-12.

Received August 1989; revised September 1991; accepted July 1992

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

