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Conjwzctiue queries are queries over a relational database and are at the core of relational query

languages such as SQL. Testing for containment (and equivalence) of such queries arises as part

of many advanced features of query optimization, for example, using rnateriahzed views,

processing correlated nested queries, semantic query optimization, and global query optimiza-

tion. Earlier formal work on the topic has examined conjunctive queries over sets of tuples,

where each query can be viewed as a function from sets to sets. Containment (and equivalence) of

conjunctive queries has been naturally defined based on set mcluslon and has been shown to be

an NP-complete problem.

Even in SQL, however, queries over multzsets of tuples may be posed. In fact, relations are

treated as multisets by default, with duplicates being ehmmated only after explicit requests

Thus, in order to reason about containment/equivalence of a large class of SQL queries, it is

necessary to consider a generalization of conjunctive queries, in which relations are interpreted

as multmets of tuples: The view of a relation as a set of tuples must be generahzed.

In this paper we study conjunctive queries over databases in which each tuple has an

associated label. This generalized notion of a database allows us to consider relations that are

mcsltzsets and relatlons that are fuzzy sets. As a special case, we can also model traditional

set-relatlons by making the label associated with a tuple be either “true” (meaning that the tuple

is in the relation) or “false” (meaning that the tuple is not in the relation). In order to keep our

results general, we consider a variety of label systems, where each label system is essentially a

set of conditions on the labels that can be associated with tuples. Once a result is established for

a label system, it holds for all mterpretations of relatlons that satisfy these conditions. For

example, we present a necessary and sufficient condition for containment of conjunctive queries

for label systems of a type that abstracts both the traditional set-relations and fuzzy sets. We

also present a different necessary and sufficient condition for containment of a restricted class of

conjunctive queries for a label system that abstracts relations as multlsets. Finally, we show that

containment of unions of conjunctwe queries is decidable for label systems of the first type and

undecidable for label systems of the second type This result underscores the fundamental

difference between viewing relations as sets and as multmets, and motivates a closer examina-

tion of relatlons as multisets, given them importance in SQL.
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1. INTRODUCTION

The problem of syntactically characterizing containment and equivalence of

conjunctive queries was addressed in the late 1970s by the work of Chandra

and Merlin [1977] and by the tableau work of Aho et al. [1979]. In these

pioneering papers, conjunctive queries were seen as functions from sets (of

t~ples) to sets, and containment was naturally defined based on set inclusion.

Even in SQL, however, queries over multisets of tuples may be posed. In fact,

relations are treated as multisets by default, with duplicates being elimi-

nated only after explicit requests. Thus, in order to reason about equivalence

of a large class of SQL queries, it is necessary to consider a generalization of

conjunctive queries, in which relations are interpreted as multisets of tuples:

Our view of a relation as a set of types must be generalized.

tn this paper we study conjunctive queries over databases in which each

tuples has an associated label [Ioannidis and Wong 1991]. This generalized

notion of a database allows us to consider relations that are fuzzy sets or

multisets, in addition to the case of relations as sets. We develop results on

the decidability of conjunctive query containment for different label systems,

that is, different conditions on the labels that can be associated with tuples.

In the rest of this section, we motivate our work, and describe our results

and their significance.

1.-1 Motivation for Generalized Conjunctive Queries

The unit of optimization in current relational optimizers is an SQL block,

which corresponds closely to a conjunctive query. The basic idea behind most

query optimizers is to examine a collection of equivalent evaluation plans for

a given query and to use the plan with the least estimated cost. In addition,

many advanced optimization techniques require an earlier, rewriting, step,

where declarative queries are rewritten into equivalent ones, thus expanding

the opportunities for optimization at the lower, algebraic (plan-based), level.

The rewriting is often based on comparing the original query with (possibly

pieces of) other queries with respect to equivalence or containment.

As a first example of such advanced query optimization techniques, con-

sider the use of materialized views. In this case, a given query is compared

against multiple view definitions (which may be seen as queries as well) to

identify which of them may be combined to answer the query. This compari-
son is essentially testing for query containment. Supporting materialized
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views to process and optimize queries is the topic of much recent work

[Blakeley et al. 1986; Chaudhuri et al. 1995; Tsatalos et al. 1994], and

designers are considering offering this option in their future systems; for

example, Microsoft is contemplating the use of GMAPs [Tsatalos et al. 1994]

in their system [Graefe 1995]. As a second example, consider the related

problem of processing correlated nested SQL queries, where one of the

alternatives is to process a more general nested query whose result can then

be used to process the outer query. Figuring out what the appropriate more

general nested query is involves query containment. With the release of the

TPC-D benchmark, in the last year or so much research has started on such

transformations in the context of processing and optimizing aggregate queries.

As a third example, consider semantic query optimization. In this case, the

system tries to figure out if integrity constraints (which may be seen as

queries) can be used to modify a given query into a semantically equivalent

one that may be more efficiently executed [King 1981; Shenoy and Ozsoyoglu

1987]. This is only possible if the antecedent of the integrity constraint, seen

as a query, is contained in the given query. As a final example, in

multiple/global query optimization, several queries are compared pairwise to

identify equivalent common subqueries (subexpressions). This gives us the

option of evaluating such subexpressions only once, hopefully resulting in an

overall more efficient combination of plans [Grant and Minker 1981; Sellis

1986]. Again, these comparisons involve query containment tests, as the

common subexpressions contain each of the full queries. From all of these

examples, it should become clear that the questions of containment and

equivalence of declarative queries are central to the design and implementa-

tion of many advanced query optimizers.

Currently, the formal results on conjunctive query equivalence and con-

tainment apply only when we regard a relation as a set of tuples [Chandra

and Merlin 1977; Sagiv and Yannakakis 1980]. As mentioned, however, the

defaz~lt in SQL (unless distinct is used) is that duplicates are not eliminated,

and the cardinal ities of the tuples in the answer are significant. Hence, to

reason rigorously about containment/equivalence in the context of current

SQL query optimizers, we must consider conjunctive queries over relations

that are multisets of tuples. This is a major motivation for the results

presented in this paper, which provide a theoretical foundation for conjunc-

tive query equivalence and containment over relations that are multisets.

Moreover, these results are cast in a more general framework, and in fact

deal with relations as fuzzy sets and with the traditional case of relations as

sets as well. Our results demonstrate that the containment problems for sets
and multisets are quite different in nature. Thus, we believe that they

represent a necessary complement to the earlier results on conjunctive query

containment [Chandra and Merlin 1977; Sagiv and Yannakakis 1980], which

are widely recognized as foundational from a theoretical standpoint.

Next, we present two examples, one from view materialization and one

from multiple query optimization, illustrating the query containment/equiv-

alence problem and the significance of addressing it when relations are

treated as multisets.
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Example 1.1. Consider the following SQL view definitions:

create view EMPHIWl(ename, hours) as
select distinct. e.ename, e.hours
from EMP e,

create view EMPHRS2(ename, hours) as
select e.ename, e.hours
from EMP e.

The database relation EIW? has columns “ename,” “dname,” and “hours”;

intuitively, each employee works in one or more departments for a certain

number of hours. Users write queries that refer to the views EMPHRS 1 and

EMPHRS2, and we wish to evaluate these queries efficiently. If queries on

EMPHRSI are common, the system might choose to materialize this view.

Now, given a query on EMPHRS2, when can we use the materialized version

of IEMPHRS 1 to answer it? Such an optimization becomes especially impor-

tant in an environment containing large numbers of complex, related view

definitions, as is the case for instance in decision support applications.

TO answer this question, we must determine when the two view definitions

are equivalent. If EMPHRS1 and EMPHRS2 are regarded as sets of tuples,

they are equivalent. However, if we take into account the number of copies of

each tuple, they are different. For example, an employee could work five

hours each in the Toy Department and the Sales Department, leading to two

identical tuples in EMPHRS2, but only one tuple in EMPHRS1.

Consider the following query:

select ename, max(hours)
from EMPHRS2.

The difference between EMPHRS1 and EMPHRS2 is not important for this

query, and we can use a materialized version of EMPHRS1, if it is available,

in place of the reference to EMPHRS2. On the other hand, if the aggregate

max(hours) is replaced by sum(hours), the difference becomes crucial, and we

carmot substitute EMPHRS 1 for EMPHRS2. To make this distinction cor-

rectly, the SQL optimizer must recognize that the two view definitions are

different under multiset semantics.

The next example illustrates a more complex optimization scenario in

which, again, equivalence of queries over relations as multi sets plays a

central role.

Example 1.2. Consider the relational schema of a large corporation’s

database, which includes the following three relations:

MANUF( mrzo, location,... )
TRANSP(tno, location,... )
WAREFIS(zorzo, location,.. . ).

Attributes in italic are primary keys, “location” is the city where the manu-

facturing plant, the warehouse, or the transportation unit’s headquarters are

located, and other attributes are omitted for simplicity. Assume that, in a
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downsizing effort of the company, to decide relocations of’ various operations,

the following three SQL queries are submitted, and the system tries to

optimize and then execute them together:

Ql: selectm.mno, count(m.location)

fmm MANUF m, TRANSP t

vvhere m.location = t.locatlon

@oup-by m.mno,

Q2: select w.wno, count(w.location)

from WAREHS W, TRANSP t

where w.location = t.location

group-by w.wno,

Q3: SAX% m.mno, w.wno, count(”)
from MANUF m, WAREHS w, TRANSP t
where m.location = t.location

and w.location = t.location
group-by m.mno, w.wno.

QI requests the number of transportation units based on the city of each

manufacturing plant. Q2 requests the number of transportation units based

on the city of each warehouse. Finally, Q3 requests the number of transporta-

tion units based on the city of each pair of colocated manufacturing plant and

warehouse.

Most relational systems process aggregate queries by first processing ag-

gregate-free subqueries to generate temporary relations containing the neces-

sary data and then by performing the appropriate aggregations. The sub-

queries respectively corresponding to Ql, Q2, and Q3 are as follows:

SQ1: select m.mno, m.locations

from MANUF m, TRANSP t
where m.location = t.location

SQ2: select w.wno, w.location
from WAREHS w, TRANSP t
where w.location = t.location

SQ3: select m.mno, w.wno
from MANUF m, WAREHS w, TRANSP t
where m.location = t.location
and w.location = t.location,

In the above SQL queries, it is natural to consider the relations named in the

from clause to be sets of tuples. However, since the keyword distinct is not

used in their formulation the resulting relations are m uztisets. For example,

if there are three transportation units in San Francisco, which is the city of
warehouse #34, there are three copies of the tuple (#34, San Francisco) in

the result of SQ2. Retention of duplicates is critical in this case, since it

enables us to count these tuples on a per-warehouse basis and to generate the

information requested by Q2.

Instead of directly processing SQ3, a seemingly plausible alternative for a

multiple query optimizer is to join the results of SQ1 and SQ2 on “location,”

thus reducing the number of required join operations. The query correspond-
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ing to this approach is the following:

SQ4: select m.mno, w.wno
from iVMNUF m, WAREHS w, TRANSP t, TRANSP t’
where m.location = t.location

and w.location = t’.location
and m.location = w.location.

It is clear that SQ3 and SQ4 generate the exact same sets of (mno, wno)

pairs, that is, pairs of colocated manufacturing plants and warehouses with

at least a transportation unit based in the same city. (This may also be

formally proved by applying the results mentioned earlier [Chandra and

Merlin 1977].) Nevertheless, executing SQ4 instead of SQ3 is wrong in this

case, because the subsequent aggregations require that the duplicates must

be retained, and SQ3 and SQ4 generate different numbers of duplicates of

each (mno, wno) pair. Specifically, SQ3 generates each (mno, wno) pair as

many times as there are transportation units based on the city of the pair,

whereas SQ4 generates each (mno, wno) pair as many times as there are

pairs of transportation units based on the city of the pair, a rather meaning-

less result. Viewed as conjunctive queries, SQ3 is contained in SQ4 when

relations are treated as multisets, but not vice versa, whereas they are

equivalent when relations are treated as sets. Thus, these notions are differ-

ent depending on how relations are treated. If this distinction is not made,

systems may end up producing erroneous results.

Example 1.2 illustrates the main motivation for this work and the impor-

t?W_lCe of the presented results. As we have seen, correctness of many realistic

query optimization scenarios depends on the existence of techniques that

compare queries with respect to containment or equivalence when relations

are treated as multisets. Similar needs also arise for a variety of other

interpretations of relations, for example, fuzzy sets, which are also included

in this study.

In developing our results, we have chosen to model generalized relations as

sets of tuples with associated labels [Ioannidis and Wong 1991]. As an

example, a positive integer multiplicity (or number of copies, intuitively) is

associated with every tuple in a multiset. As noted, current relational query

languages such as SQL support a multiset semantics, and this has been

found to be extremely useful for many common queries. Another example is

fuzzy sets, where an arbitrary number in [0, 1] (or certainty factor, intu-

itively) is associated with every tuple in a fuzzy set.

The conditions under which our results are applicable are stated in terms

of the algebraic properties of the set of labels and associated label operations.

Although it is true that the results for, say, multisets could be obtained

without the abstraction of label systems, the framework has several impor-

tant advantages. First, our results have more generality; for example, a

single label system, type A, defined later, covers both fuzzy sets and tradi-

tio nal sets, and thus, our results about type A systems apply to both. Without
the abstraction of labels and label systems, the same results would have to be
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established independently for relations as sets and for relations as fuzzy sets,

although the essence of the proofs is the same. Second, by abstracting the

essential properties upon which our proofs depend, the framework of label

systems allows us to understand more fully the basic differences between

queries over different kinds of relations. Finally, it is possible that our results

are applicable to other kinds of relational extensions with properties similar

to the label systems that we study; the formulation of our results in terms of

label systems makes it easy to extend our results, since it is only necessary to

show that the new kind of relations satisfies the (simple) conditions for a

given label system,

1.2 Results

Our main results are the following: First, we show that containment of both

individual conjunctive queries and unions of them is decidable but NP-com-

plete for a label system that generalizes relations as sets and relations as

fuzzy sets. For the specific case of relations as sets, these results had been

shown earlier as well [Chandra and Merlin 1977; Sagiv and Yannakakis

1980]. Second, we show that containment of unions of conjunctive queries is

undecidable for a label system that captures relations as multisets. For

individual conjunctive queries within that label system, we present sufficient

conditions for containment, which are necessary and sufficient when the

queries are in a restricted (but very common) form. Decidability of contain-

ment in the general case, however, remains an open problem.

Recently, Chaudhuri and Vardi [ 1993] studied multisets and independently

discovered some of our results. (We discuss this further in Section 8.)

1.3 Outline of the Paper

The paper is organized as follows: In Section 2 we present some background

material and also develop our generalized notion of a database, which we

consider to be one of our important contributions. We introduce label systems

and identify two types of label systems (types A and B), for which results are

presented in this paper. In Section 3 we establish a general necessary

condition for conjunctive query containment that is satisfied by a large class

of label systems, including type A and type B systems. In Section 4 we show

that the necessary condition identified in Section 3 is also sufficient for

conjunctive query containment over databases with label systems of type A.

This result strictly generalizes the condition of Chandra and Merlin [1977]
and is also applicable to databases that deal with fuzzy sets. In Section 5 we

present a sufficient condition for containment over databases with label

systems of type B. For restricted classes of conjunctive queries in which there

are no repeated predicates, we prove that this condition is necessary as well

as sufficient. These results are applicable to databases that deal with multi-

sets. In Section 6 we study unions of conjunctive queries. For label systems of

type A, we present a necessary and sufficient condition for containment of

unions of conjunctive queries, which generalizes a similar result for sets

[Sagiv and Yannakakis 1980]. For label systems of type B, we prove that the
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problem is, in generaI, undecidable. In Section 7 we establish some results

concerning a class of label systems that captures the form of fuzzy-set

reasoning used in expert systems like MYCIN, as well as label systems that

are motivated by graph-theory problems. We discuss related work in Section

8. In Section 9 we outline several interesting directions for future work and

summarize our results.

2. BACKGROUND AND BASIC DEFINITIONS

In this section we review some standard concepts and develop our model of

databases and conjunctive queries. In particular, the definitions of label

systems, databases, and conjunctive query containment are generalizations of

the usual definitions.

2.1 Label Systems

We first introduce label systems, which are at the heart of our generalization

of conjunctive queries. Intuitively, the ideal is to extend the relational model

by attaching a label to each tuple. Labels can be used to capture certainty

factors or multiplicity, for example. In our framework, labels are drawn from

a special domain, and their usage must conform to certain rules that enable

us to interpret labels using an appropriate semantics. It is possible to place

different sets of rules upon labels, leading to different semantics and to

differences in the difficulty of deciding issues like containment of conjunctive

queries. In this paper we study two types of label systems, each characterized

by a small collection of algebraic rules.

Definition 2.1. A label system 9 is a quintuple 1% z (L, *, +, O, < ) such

that

L is a domain of at least two labels equipped with a partial order < ;

* is a binary operation (called multiplication) on L that is associative and

commutative;

+ is a binary operation (called addition) on L that is associative and

commutative; and

O is the additive identity in L and is also an annihilator with respect to

multiplication and the least element with respect to the partial order < ,

thatis, Va~L, a+ O=a, a*O =0, and O<a.

When a s b and a # b, then we use the notation a < b. The first label

system studied in this paper is presented here:

Definition 2.2. A label system 5?’= (L, *, +, O, < ) is of type A if it

satisfies the following:

(Al) b’a, b~L-{O}, O<a*b <a.

(A2)Va GL, a*a=a.

(A3)Va, a’, b, b’~L, (a<a’andb <b’) =a+b<a’+ b’.

(A4)Va, b~L, a+ b<aora+b< b.
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Note that condition (A2) states that multiplication is idempotent. Also,

conditions (A3) and (A4) are equivalent to stating that < is a total order and

that + is equal to max with respect to that total order. We chose the given

presentation to make the analogy with condition (B2) of label systems of type

B clearer.

Example 2.1. Binary truth values as well as certainty factors are two

important examples of label systems of type A. For the case of truth values,

L = {“false”, “true”}. The operation * is logical and, the operation + is logical

or. The label “false” corresponds to O and serves as the additive identity of

the annihilator for multiplication. Finally, < is such that “false” < “true.” It

is easy to verify that all of the conditions for a type A label system are

satisfied.

For certainty factors, L is equal to the set of real numbers between O and 1.

The operation * is min, and the operation + is max. (This is the case, e.g., in

the system proposed by van Emden [ 1986].) The number O serves as the

additive identity and the multiplicative annihilator. Finally, < is the regular

total order on numbers. Again, all conditions for a type A label system are

satisfied.

Definition 2.3. A label system L?= (L, *,+ ,0, < ) is of type B if it satis-

fies the following. The second label system studied in this paper is presented

next:

(Bl)Va, b~L–{O}, a<a*b.

(B2)Va, a’, b, b’=L, (a<a’andb <b’)+ a+ b<a’+ b’.

(B3) Va @ L, ~a’ G L, a < a’.

Example 2.2. Arithmetic is the most important label system of type B.

Specifically, L is equal to the set of nonnegative integers. The operations *

and + are the usual multiplication and addition of numbers, respectively.

The number O serves as the additive identity and the multiplicative annihila-

tor. Finally, < is the usual total order on numbers. Again, it is easy to verify

that all of the conditions for a type B label system are satisfied.

2.2 Relation Instances with Respect to a Label System

In order to deal with multiple interpretations of relations, our treatment

requires that a relation instance is defined in a new, generalized way. Before
presenting the formal definition, we illustrate it with an example from a

traditional SQL-based context to provide intuition. After the definition, addi-

tional examples focus on aspects of the definition itself.

For the purposes of this work, a relation instance is defined as a function

from all possible tuples that could be formed from the domains of the

relation’s attributes to the labels of a system according to which the relation

is interpreted. For example, consider the MANUF relation of Example 1.2

interpreted as a multiset. Assuming that there are three manufacturing

plants #1, #7, and #9 located, respectively, in Boston, San Francisco, and
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Boston, the corresponding MANUF instance would be formally specified as

the following function:

(# I, Boston) ~ 1,

(#1, San Francisco) A O,

(#7, Boston) ~ O,

(#7, San Francisco) -+ 1,

(#9, Boston) ~ 1,

(#9, San Francisco) + O.

Similarly, if Boston has 3 transportation units and San Francisco has 5

transportation units, the result of query SQ1 would be formally specified as

follows:

(#1, Boston) ~ 3,

(#l, San Francisco) ~ O,

(#7, Boston) -0,

(#7, San Francisco) ~ 5,

(#9, Boston) ~ 3,

(#9, San Francisco) -0.

That is, each possible tuple is associated with a nonnegative integer multi-

plicity, indicating the number of times it appears in the relation. This is

formalized in the following:

Definition 2.4. Let Q be an n-ary predicate symbol, and let .DI,... , D. be

the domains of values of the arguments of Q. Predicate symbols over the

sa,me cross product of domains are called compatible. Also, let 2? be a label

system with domain L. A relation instance for Q with respect to 2 is a total

functionl Q: DI X . . . x D. ~ L. Relation instances for compatible predicate

symbols are called compatible. A database instance with respect to a label

sy~tem & is a set of relation instances. Any element of the domain DI

x . . . X D. is called a tuple and is denoted by (dl,. . . . dn), for d, ● D,,

l:$i <n.

Example 2.3. The traditional view of relations as sets is captured through

the first label system of type A given in Example 2.1. Usually, a relation

instance is compactly represented as the subset of its domains containing the

tulples that map to “true.” Fuzzy sets may be captured through the second

label system of type A given in Example 2.1, where each possible tuple is

mapped to a certainty factor between O and 1. Finally, multisets may be

calptured through the label system of type B given in Example 2.2. In this

case, as illustrated earlier, each tuple is mapped to a nonnegative integer,

which indicates the number of copies of the given tuple in the multiset.

lFunctions that denote relation instances appear in boldface.
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In the sequel, whenever we refer to a database instance it is understood

that it is with respect to a given label system. One could argue that an

equivalent, and perhaps more natural, formulation of different interpreta-

tions of relations is obtained by adding an explicit column (field) that stores

the label assigned to each tuple. The resulting extended relations would then

be treated as regular sets. For example, instead of using atomic formulas of

the form Q(tl, t2,....tn),one could use Q(tl, t2,....tn,1),where the domains

of t, remain unchanged and the domain of 1 is L. In fact, this alternative

formulation would most likely be used as the basis for storing relation

instances based on nontraditional label systems. However, as will be made

clear shortly, explicit representation of the additional label column in con-

junctive queries is not enough. The label column must be given a special

status and must be treated in a special way that respects the semantics

associated with it. Otherwise, wrong results will be obtained in several cases.

The formalism of label systems, introduced in this section, makes the special

semantics of labels explicit, and is therefore adopted for the rest of the paper.

2.3 Conjunctive Queries

Conjunctive queries are formally defined in this subsection. We have already

mentioned that SQL blocks, that is, fZat SQL queries, correspond closely to

them. Specifically, conjunctive queries are essentially logic-based specifica-

tions of such SQL queries, whose syntax is more natural to deal with in

formal work, as earlier studies of containment and equivalence have demon-

strated. For example, consider the SQ1 query, which is expressed in flat SQL.

The equivalent logic-based syntax for this query is

MANUF(mno, 10C) ~ TRANSP(tno, 10C) + SQlresult(mno, 10C).

The join on location is captured by the use of the common variable 10C in the

MANUF and TRANSP predicates, whereas the appearance of mno and 10C on

the right-hand side of ~ indicates the query projections. Conjunctive queries

require a predicate name for the result, which was arbitrarily chosen here to

be SQlresult. The formal syntax of conjunctive queries is defined as follows:

Definition 2.5. A conjunctive query is a first-order formula of the form
t“

Al ~Az ~ . . . ~ Am ~ C. All of the variables appearing in the formula are

(implicitly) universally quantified. The formula to the left of - is called the
antecedent, and that to the right of ~ is called the consequent. Each one of
C, AI, A,,..., Am is an atomic formula of the form Q(tl, tz, . . . . t.), where Q

is a relation (predicate) symbol and t,,1 < i < n, is a variable. The predicate

symbol in the consequent does not appear in the antecedent (i.e., recursion is

not allowed). Variables that appear in the consequent are called distin-

guished and must appear in the antecedent as well, while all others are

called nondistinguished. Finally a conjunctive query has an associated unary

function f: M e M, for some set M equipped with a partial order < such
that 30 ~ M, ‘da ● M – {O}, O < a, and O <f(a).
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Based on Definition 2.5, a conjunctive query is a purely syntactic construct.

It obtains semantics only when it is interpreted based on a particular label

system and processed based on that. Several distinct semantics can be given

to the same conjunctive query by interpreting it based on different label

systems. The only requirements for using a label system L? to interpret a

conjunctive query associated with a function f: M ~ M is that L c M and
Va = L, f(a) ~ L. The role of the function f will be clear when we discuss

valuations of conjunctive queries.

‘Whenever we present a conjunctive query without an associated function f,

then it is assumed that ~ is the identity function. Also, we use the convention

that the atomic formula in the consequent of a conjunctive query always has

the distinguished predicate symbol P, possibly subscripted with an indicator

of the specific conjunctive query. Finally, unless otherwise noted, the phrases

atomic formulas of a conjunctive query and predicates of a conjunctive query

are used to refer to those in the antecedent.

2.4 The Rewlt of a Conjunctive Query

To define the result of applying a conjunctive query to a database instance,

we first have to capture the essence of inferring a single tuple in that result.

Such a single-tuple inference, or derivation, is realized by instantiating each

atomic formula in the antecedent of a conjunctive query with a single tuple.

For the purposes of this paper, such a derivation corresponds to the

traditional combination of tuples (one from each participating relation) en-

hanced with a multiplication of their labels, which results in the label

assigned to the derived tuple. For instance, consider query SQ 1 of Example

1.2 with its relations interpreted as multisets and instantiated as mentioned

earlier. Combining the (#1, Boston) tuple of MANUF, which is labeled 1,

with, say, the (#24, Boston) tuple of TRANSP, which is labeled 1, generates

the result tuple (#1, Boston) with label 1, capturing the existence of some

transportation unit in the city of plant #1. Similarly, combining the (#7, Bos-

ton) tuple of MANUF, which is labeled O, with the above (#24, Boston) tuple

of TRANSP, generates the result tuple (#7, Boston) with label O, since plant

#r/ is not even in Boston.
Valuations of conjunctive queries are used as the formal mechanism for

single-tuple derivations in the query result and are defined next. After the

definition, additional examples focus on aspects of the definition itself.

Definition 2.6. Consider a conjunctive query a of the form Al A Az

A . . . A Am ~ C. A valuation 0 of a is a pair of functions ( @u,01). Function @v

is from the variables of a to some set of constants, and function 91 is from

the atomic formulas of a to labels such that

0Jc)=f(1cP4

Applying 0 on a gives an instance of a.

Example 2.4. To illustrate Definition 2.6 and the fact that it captures the

intuition when dealing with familiar label systems, we discuss the cases of

ACM Transactions on llatabase Systems, Vol. 20, No. 3, September 1995



300 . Y E. Ioannldls and R. Ramaknshnan

Table I TWO Valuatlons d and H’ In a Label System that Interprets Relatlons as Sets

ConJunctzue query ztem e (i’

.! o,(x) = K 6:(x) = K

z HC,(Z)=L til:(z) = L

-v H,,(y) = N o;,(y) = N

Q(,r, z) til( Q( x, z)) =“true” fi~(Q(x, z)) =“false”

R(z,.v) Ol(R(z. y)) =“true” O~(R(z, y)) =“true”

relations as sets and relations as multisets. Consider the following conjunc-

tive query:

Q(x, z) A~(z, y) +~(X, y).

Assume that the domain of all argament positions of all relations is D =

{K, L, M, N}.

Consider the label system that interprets relations as sets (first label

system in Example 2.1), and let the two valuations o and 6’ be as shown in

Table I. Valuation O represents the case where tuple (K, L) is in Q and tuple

(L, N) is in R. Then, tuple (K, N) should be in the result. Definition 2.6

captures this intuition since, based on the definition of multiplication in the

set label system, dl applied on the consequent of the conjunctive query yields

til(P(x, y)) = Ol(Q(x, z)) and Ol(R(z, y)) =“true”.

On the other hand, valuation (1’ represents the case where tuple (K, L) is not

in Q and tuple (L, N) is in R, and therefore, tuple (K, N) should not be in the

result. Again, Definition 2.6 captures this intuition since (I1 applied on the

consequent of the conjunctive query yields

OI(P(X, y)) = Ol(Q(x, .z)) and Ol(R(z, y)) =“false”.

We now turn our attention to the label system that interprets relations as

multisets. Consider the two valuations o and d’ shown in Table II. Valuation

0 represents the case where tuple (K, L) appears in Q twice and tuple (L, N)

appears in R five times. Then, tuple (K, N) should appear in the result ten

times. Definition 2.6 captures this intuition since, based on the definition of

multiplication in the multiset label system, 01 applied on the consequent of

the conjunctive query yields

dl(~(~,y)) = 01( Q(x, z))* 61( R(z, y)) =2*5= 10.

On the other hand, valuation 0’ represents the case where tuple (K, L) does

not appear in Q at all, and therefore, independent of the number of times

tuple (L, N) appears in R, tuple (K, N) should not be in the result. Again,

Definition 2.6 captures this intuition since (ll applied on the consequent of

the conjunctive query yields

dl(P(.x, y)) = 61( Q(x, z))* 01( R(z, y)) = O*5 = O.
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Table II. Two Valuations () and f)’ in a Label System that Interprets Relatlons as Multlsets

Conjunctl ve query item (1 w

x f),(x) = K e:(x)=K
z f),(z)=L o:(z) = L

Y ~,>(y)= N q:(y) = N
Q(x, z) Ol(Q(X, Z)) = 2 o;(Q(.z, z)) = O

R(z, y) @l(R(z, .v)) = 5 O;(R(z, y)) = 5

Definition 2.7. Consider two conjunctive queries a and ,B with compatible

consequent whose distinguished variables in the ith argument position,

1< i < n, are a, and b,, respectively. Let /3” and 6 ~ be valuations of a and

D, respectively. If, for all 1< i < n, 6;(a, ) = Ot?(b,), then 6” and o ~ are
compatible.

Note that in Definition 2.7 a and ~ do not have to be distinct. For valuations

of the same conjunctive query, it is easy to show that compatibility is an

equivalence relation over valuations. Compatible valuations are important

because they capture derivations of the same tuple. This is a key concept

needed in defining the result of applying a conjunctive query to a database

instance, because the labels assigned to a tuple by compatible valuations

need to be combined to determine the label assigned to it in the overall result.

Definition 2.8. A valuation o of a conjunctive query a is true with respect

to a database instance if, for every atomic formula Q( xl, . . . , x.) in a,

Q((l(x, ), . . . . du(xn))) = f31(Q(x1,..., x~)).

We finally move to the definition of the result of applying a conjunctive

query to a database instance. This is essentially done by combining the

individual tuple derivations defined earlier. In particular, separate deriva-

tions of the same tuple are combined by adding the labels assigned to the

tuple in each derivation. The outcome of the addition is the final label

assigned to the tuple in the overall result. For example, consider query SQ 1

of Example 1.2 with its relations interpreted as multisets and instantiated as

mentioned earlier. The (#1, Boston) tuple of its result is derived three times,

once for each of the TRANSP tuples with location = Boston combined with

the (#1, Boston) tuple of MANUF. Each derivation assigns the label 1 to the

resulting tuple, whose final label is therefore equal to 3, capturing the fact

that three transportation units are based in the city of plant #1, as expected.

The result of a query is formally defined in Definition 2.9. After the defini-

tion, additional examples focus on aspects of the definition itself.

Definition 2.9. Consider a conjunctive query a of the form Al ~ Az
f

A . . . A Am ~ ~ and a &tabaSe instance 1. Let @ be the set of all valuations

of a that are true with respect to 1. Partition @ based on the equivalence

relation of valuation compatibility, and let @~ denote the partition that
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Table III Instances of Q and R m a Label System that Interprets Relations as Sets

Domam ?nenlber d Q(d) R(d)

(K, L) “true” “false”

(K, M) “true” “false”

(L, N) “false” “true”

(M, N) “false” “true”

All others “false” “false”

Table IV, Four Valuations that are Compatlble in Generating Tuple (K, N) m the Consequent

of the Conjunctive Query

Item o 6’ (i’{ o(,!

x (+,(x) = K ti:(x)=K ~;:(x)=K fl[v(~) = K

z fJ,(z)=K d:(z) = L ()::(z)=M H;!(z) = N

Y f),(y) = N d:(y) = N e;(y) = N d;’’(y) = N

Q( x, z) til(Q( x, z)) =“false” 6~(Q(x, z)) =“true” ,9j(Q(x, z)) =“trUe” o?(Q( X, z)) =’<false”

R(z, y) 01(R(2, y)) =<’false” #~(R(.z, y)) =< ’true” (3j’(R(z, y)) =’<true” t?j’’(R(z, y)) =“false”

generates tuple t in the distinguished variables of a. The result of applying

a to 1 (denoted by a(l)) is a relation instance P, that is, a function, such that

‘(t)=,Loz(c)=2“),UP(A4$
The intuition behind Definition 2.9 is that all derivations of a single tuple

based on the conjunctive query are grouped together. Each derivation assigns

a different label to it, and these labels are combined (through addition) to find

the label of the tuple in the result.

Example 2.5. To illustrate Definition 2.9, we discuss the cases of relations

as sets and relations as multisets. We use the same conjunctive query as in

Example 2.4,

Q(x, z) //~(Z, y) +~(X, uV),

with the same domain for all argument positions of all relations, D =

{K, L, M, N}.

Consider the label system that interprets relations as sets, and let the

instances of Q and R be as shown in Table III. There are 81 valuations that

are true with respect to Table 111 (three variables, each assigned to one of
four possible elements in its domain). Four of these valuations are compatible

in generating tuple (K, N) in the consequent of the conjunctive query, and are

given in Table IV. Valuations (I and 0’” generate the label “false” for tuple

(K, N), while valuations 8’ and O“ generate the label “true.” By adding, that
is, by taking the logical or of these four labels, we obtain the label “true” for

tuple (K, N). This was to be intuitively expected, because tuples (K, L) and

(L, N) are in Q and R, respectively, and therefore their composition (K, N)
should be in the result. Similarly, tuple (K, N) is placed in the result as the
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Table V. Four Valuations Compatible in Generating Tuple (K, M) in the Consequent

of the Conjunctive Query

Item o 6’ 0“ o ,!,

x d,,(x) = K o;(x) = K o;(x) = K o;(x) = K
z 0“(2) = K 0;(2) = L 6((z) = M H:(z) = N

Y (1,,(y)= M o:(y) = M e:(y) = M e~(y) = M
Q(x, z) O[(Q(x, z))= ’’false” 6j(Q(x, z))= ’’true” @f(Q(x, z))= ’’true” @j’’(Q(x, z))= ’’false”

R(z, y) dl(l?(z,y) )=’’false” tij(fi(z,y) )=’’false” fl~(lt(z,y) )=’’false” O~(R(z, y))= ’’false”

‘lrable VI. Instances of Qand Rina Lebel System that Interprets Relations as Multisets

Domain member d Q(d) R(d)

(K, L) 2 0
(K, M) 3 0
(IJ,N) o 5
(M, N) o 2

All others o 0

Table VII. Four Compatible Valuations that Generate Tuple(K, N)inthe Consequentof

the Conjunctive Query

Zte?n o 0) w Q,!,

x OU(x)= K f);(x) = K o;(x) == K o:(x) = K

z o,)(z) = K o;(z) = L o;(z) = M ~~(z) = N

Y o,(y) = N f);(y) = N e:(y) = N o:(y) = N

Q(x; Z) dl(Q(x, z)) = O 6:(Q(x, z)) = 2 @fl(Q(x, z)) = 3 (Ij’’(Q(z, z)) = O

R(z, y) 6’l(R(Z, y)) = o @j(R(z, y)) = 5 Oj’(R(z, y)) = 2 Oj’’(R(z, y)) = O

composition of tuples (K, M) and (M, N), but multiple derivations have no

effect since relations are interpreted as sets.

Now consider the four compatible valuations that are true with respect to

the ,given database instance and that generate tuple (K, M) in the consequent

of the conjunctive query, as given in Table V. All of these generate the label

“false” for tuple (K, M), and therefore, its final label is “false” as well. Again,

this was to be intuitively expected, because there are no tuples in Q and R
whose composition could generate (K, M).

We now turn our attention to the label system that interprets relations as

multisets (Example 2.2). Let the instances of Q and R be as shown in Table

VI. The four compatible valuations that are true with the instance given in

Table VI and that generate tuple (K, N) in the consequent of the conjunctive

query are given in Table VII. Based on the multiplication semantics of * and

Definition 2.6, the four valuations generate the labels O, 10, 6, and O for tuple

(K, N). By adding these four labels, we obtain the label 16 for the tuple, which
is exactly the number of copies one would intuitively expect for it. The

composition of tuples (K, L) and (L, N) of Q and R, respectively, generates 10

of these copies, and the composition of (K, M) and (M, N) generates 6 more.
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Table VIII, Four Compatible Valuations that Generate Tuple (K, M) in the Consequent of

the Coniunctlve Query

Item o (1’ e“ tl,,/

x (9,(x)=K (?:(x) = K 6;(x) = K (l;:(x) = K

z d,,(z) = K d;(z) = L 8;(. ) = M @J’’(z)=N

Y #u(.Y) = M e;(y) = M o::(y) = M 01’’(y) = M

Q(x) z.) (Ir(Q(X, Z)) = O o;(Q(x, z)) = 2 6j’(Q(x, z)) = 3 (3:( Q(x, z)) = O

R(z, y) tll(R(z, y)) = o Oj(l?(z, y)) = o tIj’(R(z, y)) = O Hj’’(l?(z, y))= o

Since we are dealing with multisets, each separate copy counts, and there-

fore, 10 and 6 must be added. Indeed, this is precisely the number of copies of
(K, N) generated by evaluating the above query in SQL.2

To conclude the example, consider the four compatible valuations that are

true with respect to the given database instance and generate tuple (K, M) in

the consequent of the conjunctive query, as shown in Table VIII. All of these

valuations generate the label O for tuple (K, M), since E?(z, y) is always

mapped to O. Thus, the final label of tuple (K, M) is O, which again is what

intuition requires.

At this point, let us consider why explicit representation of labels as
additional relation columns is not enough. Consider the conjunctive query

used in the previous examples, and add a label column in the participating

relations:

Q(x, z,lQ) ~R(Z,Y,lR) ~l~=g(lQ,zR) ‘f’(x,Y,lP).

We claim that, independent of our choice of function g, the above cannot

capture arbitrary interpretations of relations. The main problem is that the

final label assigned to a tuple depends on multiple derivations, whereas g

can only capture relationships of labels associated with a single tuple deriva-

tion. Thus, for example, if g is equal to *, then g captures the treatment of

labels for a single valuation, but cannot capture the combination of multiple

compatible valuations. For conjunctive queries where all variables are distin-

guished, this suffices. When variables are projected out of the result, how-

ever, additional machinery needs to be invoked, which cannot be represented

as part of a single valuation. The formulation of the problem as presented in

the previous definitions achieves what is desired. Moreover, in our opinion, it

is also aesthetically pleasing because it separates syntax from semantics.
There is a single syntactic definition of conjunctive queries, on top of which

one may impose arbitrary semantics captured via label systems.

We now present some simple queries that illustrate the power of the

generalizations that we have proposed. These complement the examples in

the Introduction and are given in light of the formal definitions that we have

established earlier. Our first example demonstrates the importance of multi-

2 In SQL, multiset semantics is the default, and duplicate elimination must be explicitly

requested by using the keyword distinct.
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sets in languages like SQL. As we have already argued, this is the most

compelling reason to study generalized conjunctive queries, since queries

such as the ones discussed here are already widely used.

E,~ample 2.6. The following query can be considered a view definition in

SQL:

Department (dname, fZoor) A Employee(ename, dname, sal)

~ Deptsals( dname, sal ).

This query is interpreted based on the label system 2’ defined in Example

2.2, where each tuple in a relation has an associated cardinality. In this

example, it is natural to consider the relations in the antecedents to be sets of

tuples. However, unless the keyword distinct is used in the formulation of

the SQL query, the Deptsals relation is a multiset of tuples in which a salary

value appears as often as there are employees in the department earning that

salary. This enables us to query the view, for example, to compute the sum of

all salaries on a per-department basis, that is, the budget of each depart-

ment, by using features such as GROUP-BY and the sum aggregate opera-

tion. If the view relation was considered to be a set of tuples, we could not

compute the budget of a department by examining the view.

One could argue that explicit construction of multiset relations is not

necessary to compute budgets, since it is possible to write an SQL query over

the Department and Employee relations that directly groups by department

and sums the (multiset of) salaries in each department. Although this is true,

it does not diminish the importance of understanding conjunctive queries

over relations as multisets, for two reasons. First, even in this single query

formulation, it is important to recognize that there is an implicit projection of

the salary field that generates a multiset of salaries, and thus, we need to

account rigorously for the cardinality of each salary in the projection. Second,

for a variety of reasons, it may not be desirable to give users access to the

Department and Employee relations directly. For example, a user who is

authorized to see the Deptsals view may nonetheless not be authorized to see

what each individual earns. In such a situation, the explicit creation of a

multiset relation is the most natural solution.

The following example illustrates the generalization to relations as fuzzy

sets:

Example 2.7. The following queries attempt to find promising candidates

in a football draft. The first query identifies linebackers who are big and have

experience, and the second identifies receivers with speed and skill. The data

have a degree of uncertainty, in that each fact has an associated “certainty

factor” between O and 1. These factors are to be interpreted in terms of fuzzy

logic, rather than as probabilities. That is, a fact llig~ohn) with an associated

label of 0.7 is to be read as “John is quite big,” rather than “It is quite likely

that John is big.” Furthermore, our confidence in the criteria expressed in the
two rules is also limited, and thus, each rule has an associated “rule certainty

factor.” The certainty of a deduced fact is given by the minimum value of the
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certainties associated with the facts used in the antecedent of the valuation

multiplied (in the arithmetic sense) by the rule certainty factor. If a fact is

deduced using several different valuations, the associated certainty factor is

given by the maximum of the deduced certainty factors for it. (General rules

about certainty factors and why they are sometimes more appropriate than

probability-based reasoning are discussed elsewhere [Parsaye and Chignell

1988].)

Linebacker x) A Big(x) A E~perienced( x) ‘~ Candidate( X),

Recei~er( x ) A Fast(x) A Skilled(x) ‘-G Candidate( X).

The above desired semantics are captured by interpreting this query based on

the second label system (fuzzy sets) defined in Example 2.1. The two conjunc-

tive queries are respectively associated with the functions fl( a) = 0.7* a and

fz(a) = 0.6* a, having the real numbers between O and 1 as their domain.

This gives the rule certainty factor semantics mentioned above.

The label system of type A used in Example 2.7 essentially captures the

quantitative deduction framework proposed by van Emden [ 1986]; ignoring

rule certainty factors, it is essentially Zadeh’s [1965] treatment of intersec-

tion and union of fuzzy sets. Although we do not consider recursive queries, it

is interesting to note that van Emden showed a correspondence between his

framework and alpha–beta search trees for two-person games.

2.5 Conjunctive Query Containment

We are now ready to define conjunctive query containment in a general

setting, where relations are interpreted not necessarily as sets but with

respect to some label system. Intuitively, containment is based on comparing

the labels assigned to the same tuple in the results of two queries based on

the required partial order of the label system. For instance, as we saw in

Example 1.2 of the Introduction, SQ3 and SQ4 generate exactly the same set

of kuples, but sQ4 contains potentially more and certainty never fewer

duplicates of each tuple than SQ3. Thus, based on a comparison of the
multiplicities of each tuple, SQ3 is contained in SQ4, but not vice versa.

The above illustration is formalized for a general label system in Definition

2.10. After the definition, a more formal example is also provided.

Definition 2.10. Consider two relation instances R ~ and R ~ for a predi-

cate R with domain D ~ x “”” x D. with respect to a label system ~. R ~ is
contained in Rz, denoted by RI <, Rz, if, for each tuple t ● Dl x ““” xD.,
R.l(t ) s Rz(t). Clearly, S, is a partial order.

Example 2.8. We again use the label systems corresponding to sets and

multisets to illustrate the above definition of containment. If R 1 <, R ~, then,

based on the above definition, there is no tuple t in the domain of R ~ and R ~
such that Rl(t) > R.g(t).

For the set case, this is equivalent to the absence of a tuple t for which

Rl(t) = “true” and R2(t) = “false,” that is, which is in R ~ but not in R ~. This

captures precisely the traditional notion of set inclusion, R 1 c R z.
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For the multiset case, this is equivalent to the absence of a tuple t for

which t has strictly more copies in RI than in Rz. Again, this is the

traditional notion of inclusion between multisets based on number of copies.

Definition 2.11. For two conjunctive queries a and j3, a is more restric-

tive than ~, denoted a <, ~, if, for any database instance I, a(I) <, f?(I).

Note that the symbol S, is overloaded in that it signifies containment of

relations as well as containment of conjunctive queries. This is natural, since

the latter is defined in terms of the former. ‘l’he ordering <, denotes a

partial order over both the set of compatible relation instances and the set of

conjunctive queries,

2.6 Homomorphisms

We close this section with the definition of homomorphisms, which are useful

tools in characterizing conjunctive query containment.

Definition 2.12. Consider two conjunctive queries a and ~ with compati-

ble consequent. A homomorphism h: ~ -+ a is a total function from the

variables of ~ into those of a, such that

(1) if x, y are distinguished variables appearing in the same argument
position in the consequent of f? and a, respectively, then h(x) = y; and

(2) if Q(xl,..., x.) appears in D, then Q(h(xl), ..., h(x.)) appears in a.

Note that a homomorphism h: ~ -~ a induces a total mapping from the

atomic formulas of ~ to the atomic formulas of a. Occasionally, when no

confusion arises, we use h to denote that induced mapping as well. If a

contains repeated formulas, this mapping is not a function, but we can

readily extend the definition of a homomorphism to require that it is a

function. With this extension, we can define an onto homomorphism to be a

homomorphism in which this function is onto, with respect to the set of

atomic formulas in a. We also define a variable-onto homomorphism to be a

homomorphism that is onto with respect to the set of variables in a. Note

that every onto homomorphism is also variable-onto, but that the converse is

not true.

Definition 2.13. For two functions fl and fz such that the range of fz is a

subset of the domain of fl, their composition is denoted by fl o fz and is

defined as fl o fz(~) = fl( fz(~)) for any member x in the domain of fz.

3. TWO GENERAL RESULTS

In this section we establish two results that are applicable to almost all label

systems and that are used extensively in the rest of the paper.

LEMMA 3.1. Consider a label system -Y such that Vu, b ~ L – {O}, a * b # O.

For two conjunctive queries a and ~, the inequality a <, ~ holds with respect

to 2 only if there exists a homomorphism h: ~ - a.

PROOF. Let a, (resp., b,), 1< i < n, be the distinguished variable in the

ith argument position of a (resp., ~). Assume that a <, (3. Consider a
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valuation O Of a SUCh that 0,, is one-to-one from the variables in a onto some

set of constants C and (+1 maps all atomic formulas in a to nonzero elements

of L. Consider a database instance such that for any relation Q the following

is satisfied:

16/( Q(.rl, . . ..xm )). if t = (f),,(.rl),...,fl,(x,,l))for some

Q(t) =

\

Q(xI , . . . . .~,. ) in the antecedent of a;

4), otherwise.

Let P,, (resp., I?fi ) be the result of applying a (resp.. ~ ) on that instance.

Then, based on the requirements on .& in the premise of the lemma and the

requirements on f in the definition of conjunctive queries, the following

holds: ~t((~,(al), . . . . ti,, (a~))) # O. Since a <, /3 and because O is the least

element of L with respect to < , it must be the case that

Pfl((dt(al),. ... (1,,(a,,))) + O as well. Thus, a valuation 6’ of ~ exists that is

true with respect to the given database instance that is compatible with o

and such that for any atomic formula Q(.Y1, ..., y~) in 6, Q((fl~(.Yl ),...,

6:( Y., ))) # O. By the construction of the database instance, the above implies

that d; maps the variables of P into the set of constants C. Valuation O, is

one-to-one and onto, so its inverse (3,T1 is defined. Taking the composition

h = 0,, 10 ():, it is easy to verify that it is a homomorphism from the variables

of ~ to the variables of a. ❑

L~iWWA 3.2. Consider two conjunctive queries a and ~, and assume that

there exists a honlomorphisrn h: ~ ~ a. Consider a database instance I and

the set 0,, ( resp., @P) of all valuations of a ( resp., @) that are true with
respect to I. Let P be a total function on 6)0 ranging over the set of valuations

of ~ and defined us F( O) = O ~ h. Function F has the following property:

For all o ~ (OC,, P( e ) ● (3D and P( (ii) is compatible with (i

PROOF. The proof of the lemma is based on the definition of homomor-

phisms. By property (2) of Definition 2.12, for each atomic formula

Q(yl, . . . . -vk’) in /3, Q(h( yl), . . . . A(yk)) appears in a as well. This implies the

following:

z Oh(Q(yI,..., Y,n)) = fl(h(Q( yl, . . ..ym)))

= O1(Q(h(y l),. ... h(y,n)))

=Q((o,,oi(yl) ),..., ti,,(h(ym)})

since (I is true with respect to 1

=Q((O, ok(yl),..., d,, Oh(y~)))

Hence, by Definition 2.8 valuation F( (3) = 60 h of /3 is true with respect to 1,

that is, it is in (Op.
Let a, (resp., b,), 1 < z < n, be the distinguished variable in the ith

argument position of a (resp., ~). By property (1) of Definition 2.12, /3C(aZ) ==

ti,, o h(b, ), 1 < i < n, and therefore, H and F(fl ) = @o h are compatible. ❑
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4. LABEL SYSTEMS OF TYPE A

The following theorem identifies a necessary and suff~cient condition for

conjunctive query containment over databases with label systems of type A:

THEOREM 4.1, Consider two conjunctive queries a: Al A ~.” A A.,l ~ c.

and p: BI A . . . A B~z ~c~. Assume that Ya, b =L, a s b = fa(a) <fP(b).

Then, the inequality a <, ~ holds with respect to a label system .S? of type A

iff there exists a homomorphism h: P ~ a.

PROOF. Let a, (resp,, b,), 1 s i s n, be the distinguished variable in the

ith argument position of a (resp., ~). Assume that a <, /3, By property (Al),

it follows that Va, b e L – {O}, a * b # O. Therefore, by applying Lemma 3.1,

the “only-if’ direction is proved.

For the “if” direction, assume that there exists a homomorphism h: ~ - a.

Consider a database instance 1 and the set 6). (resp., @P) of all valuations of

a (resp., /3) that are true with respect to 1. Let F be defined as in Lemma 3.2.

Then, F has the following additional property:

The proof of property (a) is based on specific characteristics of label systems

of type A. Let A = {A,: 1 s i < ml} and B = {B,: 1 < i < rn2} represent the

set of atomic formulas in a and ~, respectively. Consider the subset A~ of A

consisting of the atomic formulas in a that are images of atomic formulas in

B under h. Without loss of generality, assume that A~ = {Al: 1< i < k} for

some k z 1.Then, since til o h ~ @fi (Lemma 3.2), the following holds:

(1)

The last equality is due to property (A2), which implies that, even if h(B, ) =

h(llj ) for some i #j, the product is not affected. On the other hand, the

following is also true:

From the above, we conclude that Ol(c,t ) s 610 h(cP ), using property (Al) of

multiplication and the conditions on f. and fp in the theorem. Thus, property

(a) of F holds.

We proceed with the proof of the theorem. Partition (1,, and @v based on

the equivalence relation of valuation compatibility, and let @ffl and @~P be

the corresponding partitions that generate tuple t in the distinguished

variables of a or ~. Clearly, there is a one-to-one and onto correspondence
between the partitions obtained for a and those obtained for B (since for both
of them there is a single partition for each tuple in the domain of the

consequent relation). Let V,, and Vfi be multisets defined as follows: V,, =
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{6?(c. ): 9 = @t.} and Vp = {O~(cD ): 0’ = @fP}. By property (A4) of addition,

there is some element UO = V’ such that

Suppose that UO = 61(c0 ) and v~ = IN 01)(cP ), for some O = ofa. From property

(a), UO < v~, and from Lemma 3.2, u~ = VP. By property (A3) of addition, the
following holds:

Combining (2) and (3) yields E,, ~ ~ u < ZU ● ~ U. If a(~) and ~(l) are equal to

the relations Pa and PD, respecti~ely, by ~efinition 2.9, the above implies

that, for all tuples t in the result of a or ~, P.(t) < PP(t ). Therefore, for an

arbitrary database instance 1, a(1) <, P(1), which also implies that a <, ~.

❑

As we have mentioned earlier, conjunctive queries over traditional rela-

tional databases, which interpret relations as sets, are a special case of type

A systems. Thus, Theorem 4.1 generalizes the result of Chandra and Merlin

[ 1977], so that it is now applicable for alternative semantics as well, for

example, for interpreting relations as fuzzy sets [Zadeh 1965]. A straightfor-

ward corollary is that testing for conjunctive query containment with respect

to label systems of type A is identical to the same problem for the traditional

case of sets. Hence, we have the following [Chandra and Merlin 1977]:

COROLLARY 4.1. Testing for conjunctive query containment with respect to

label systems of type A is NP-complete.

5. LABEL SYSTEMS OF TYPE B

The following theorem identifies a sufficient condition for conjunctive query

containment over databases with label systems of type B. Unfortunately, as

Example 5.1 illustrates, it is not necessary, in general;

THEOREM 5.1. Consider two conjunctive queries a: Al A . . . A Anl ~ CW
rfi

and P: Bl A . . . ~B~z~cp. Assume that Va, b = L, a < b * f.(a) < ffl(b).

If there exists an onto homomorphism h: /? d a, then the inequality a <, /?

holds with respect to a label system S7 of type B.

PROOF. Let a, (resp., 6,), 1 < i < n, be the distinguished variable in the

ith argument position of a (resp., /3 ‘). Assume that there exists an onto

homomorphism h: /? + a. Consider a database instance I and the set 6).

(resp., fl~ ) of all valuations of a (resp., ~) that are true with respect to 1. Let
3’ be defined as in Lemma 3.2. Then, F has the following additional proper-

ties:

(a) For all O E @a, 191(c.) s (A); that is, @l(c. ) <010 h(cp).

(b) F is one-to-one from 6). to 6)P.
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The proof of property (a) is based on the specific characteristics of label

systems of type B. Let A = {A,: 1 < i < ml} and B = {Bi: 1 < i < rrz2}

represent the set of atomic formulas in a and ~, respectively. Because h is

onto, the set .?3 can be partitioned into two subsets, say, B~ and BQ, such

that h: B~ a A is a bijection, Without loss of generality, assume that the two

subsets are B~ = {B,: 1 s i s ml} and B ~={BZ: ml + 1 .s i < m2}. Thus,

the following holds:

[

m 2

=fp fi6’1( Al)*
)

~ 6,0h(Bz) .
t=l 2=7721+1

Also,

From the above, because of property (Bl) of multiplication and the conditions

on fa and ~P in the theorem, we conclude that 01(Ca) s 010 h(cP ) and there-

fore that property (a) of F holds,

The proof of property (b) consists of showing that, given two valuations

19,f3’ = @a, if o(a) # ~’(a), then Ooh(P) # O’Oh( @). Because O(a) + O’(a),

there must be at least one variable x in a such that

tic(x) # f3;(x). (4)

Because h is onto, it is also variable-onto, and so every variable of a is an

h-image of some variable of /3. Assume that x = h(y), for some variable y of

~. The above combined with (4) implies that

Ouok(y) # 6);0/i(y). (5)

Therefore, 0,,0 M P) # O; oh(B), which implies that property (b) of F holds.

We proceed with the proof of the theorem. Partition ~. and @p based on

the equivalence relation of valuation compatibility, and let (l~e and @fP be

the corresponding partitions that generate tuple t in the distinguished

variables of a or ~. As in the proof of Theorem 4.1, there is a one-to-one and

onto correspondence between the partitions obtained for a and those ob-

tained for ~. Let V. and VP be multisets defined as follows: Vu = {61(c0 ):

@E @ta} and VP = {O;(CP ): (3’ e @tP}. Let VP” be defined as follows: VP” =

{O{(cp): 0’ e @tp and 0’ = /3 o h for some 19= (30}. The properties of F imply

that for every element u = V. there is an element U’ ● V: that corresponds

to u (Lemma 3.2) such that u < cl’ (property (a)), which corresponds to no

other element of Va (property (b)). By property (B2) of addition, the above

imply the following:

ACM TransactIons on Database Systems, Vol. 20, No. 3, September 1995.



312 . Y, E. Ioannidls and R Ramakrishnan

If a(l) and P(1) are equal to the relations P. and PP, respectively, by

Definition 2.9, (6) implies that, for all tuples t in the result of a or /3,

Pa(t) < Po(t). Therefore, for an arbitrary database instance 1, a(l) <, /3(1),

which also implies that a <, /3. ❑

The following proposition provides a straightforward necessary condition

for conjunctive query containment with respect to label systems of type B:

PROPOSITION 5.1, For two conjunctive queries a and (3, the inequality

a ST ~ holds with respect to a label system -5? of type B only if there exists a

homomorphism h: /3 ~ a.

PROOF. Assume that CY S, ~. By property (Bl), it follows that VCL, b = L –

{O}, a * b # O. Therefore, by applying Lemma 3,1, the proposition is proved.

❑

By restricting the form of conjunctive queries, the following theorem shows

that the condition of Theorem 5.1 is both necessary and sufficient:

THEOREM 5.2, Consider two conjunctive queries a: Al A ~ A A~l ~ c.

and ~: BI A .“ A B~z ~ C@. Assume that Vu, b ● L, a < b + f.(a) < fP(b).

If a does not contain repeated predicates, the inequality a <, fl holds with

respect to a label system $?’ of type B iff there exists an onto homomorphism h:

D + a!,

PROOF. The “if” direction is an immediate consequence of Theorem 5,1,

Suppose that a <, /3. By Proposition 5.1, we know that there must be some

homomorphism h: D s cr. We first show that, in this case, there is a unique

such homomorphism. Since there are no repeated predicates in a, for each

atomic formula of ~, there is a unique atomic formula in a that can be its

image under any homomorphism. Therefore, for each variable in ~ its image

is uniquely determined; that is, there is a unique homomorphism h: /3 4 a.

It remains to be shown that this unique homomorphism is onto. Assume to

the contrary that h is not onto. Then, there is an atomic formula in a that is

not the image of any atomic formula in /?. Let Q be the predicate in that

atomic formula of a. Clearly, Q cannot appear in ~. Without loss of general-

ity, assume that all arguments of all predicates in the conjunctive queries

have the same domain. Consider a constant c in that domain and a database

instance such that each relation R satisfies the following:

R(t) # O, if t has c in all its arguments;

R(t) = o, otherwise.

Let P. (resp., PP ) be the result of applying a (resp., B ) on that instance. Let s

be the tuple in these results that has c in all of its arguments. Let Pp(s) = 1,

where, by the construction of the database instance, 1 G L – {O}. By property

(B3), there is a label m ● L such that m >1. Suppose that t’is the tuple in Q
that has c in all of its arguments, and choose Q( t’)= m. Then, by property
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(Bl), l’.(t) > m >1 = PP(t), which implies that a <, p, which is a contradic-
tion. Hence, h must be onto. ❑

Recently, Chaudhuri and Vardi [1993] independently discovered Theorem

5.1, Proposition 5.1, and Theorem 5.2 for the case of multisets. It is natural to

ask whether Theorem 5.2 can be strengthened to cover the case that ~ does

not contain repeated predicates (while a possibly does). Unfortunately, the

following example shows that this is not possible:

Example 5.1. Consider the following two conjunctive queries:

a: Q(x) A Q(x) -P(x),

P: Q(x) +P(x).

Let Y be defined as follows: L = N (the set of natural numbers including O),

* is ma-c, + is the usual addition, and < is the usual total order over the

natural numbers. Clearly, a s, ~, although there is no onto homomorphism

from ~ to a.

By limiting the definition of type B label systems so that examples like the

above are excluded, we can prove a stronger version of Theorem 5.2.

Definition 5.1. A label system -!%= (L, *, +, O, < ) is of type B’ if it

satisfies the following:

(El) Va, b~L–{O}, a<a*b, and3a =L, Vkkl, ah<ak+l.

(B’2)Va, a’, b, b’=L, (a<a’andb <b’) +a+b<a’+ b’.

(B’3) Va G L, ~a’ ~ L, a < a’.

Observe that the only difference between label systems of type B and of type

B’ is that there is an element in L whose product with itself is strictly larger

than the element itself (property (B l)). For these label systems, we have the

following result:

THEOREM 5.3. Consider two conjunctive queries a: Al ~ . . . ~ Am ~ 5 c.
tp

and P: BI A . . . ~B~z-cfl. Assume that Va, b = L, a < b ~ f.(a) < f~(b).

If either a or ~ does not contain repeated predicates, the inequality a <, /3

holds with respect to a label system J? of type B’ iff there exists an onto

homomorphism h: p d a.

PROOF. The “if’ direction as well as the “only-if’ direction for the case

where there are no repetitions in a are immediate consequences of Theorems

5.1 and 5,2, respectively. Suppose that (1 does not contain repeated predicates

and that a <, ~, By Proposition 5,1, we know that there must be some

homomorphism h: D ~ a. Clearly, every such homomorphism must be one-

to-one with respect to atomic formulas, since there is no repetition or predi-

cates in ~. Assume that h is not onto. If m (resp., n) is the number of atomic

formulas in a (resp., ~), then clearly m > n.
Let 1 be an element of L such that Vk >1, lk < lk +‘. Property (B 1)

ensures the existence of such a label. Without loss of generality, assume that
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all arguments of all predicates in the conjunctive queries have the same

domain. Consider a constant c in that domain and a database instance such

that each relation R satisfies the following:

R(t) = 1, if t has c in all its arguments,

R(t) = O, otherwise.

Let Pe (resp,, PP ) be the result of applying a (resp., ~ ) on that instance. Let s

be the tuple in these results that has c in all of its arguments. We note that

P.(s) = lm and PP(s) = l“, Since m > n, by property (B 1), it follows that
P.(s) > PP(s ), which implies that a K, /3, which is a contradiction. Hence, h

must be onto, ❑

We remark that the choice of h in the above proof was arbitrary. Hence,

a <, ~ only if every homomorphism h: P ~ a is onto.

As mentioned earlier, commercial relational database systems treat rela-

tions as multisets and therefore, operate under the semantics of type B (and,

in fact, type B ) label systems. Hence, Theorems 5. 1–5.3 are applicable to this

case.

6. UNIONS OF CONJUNCTIVE QUERIES

In this section we generalize the results presented above and discuss contain-

ment not of individual conjunctive queries, but of collections of them. For the

classical case, where relations are viewed as sets, the problem has been

addressed by Sagiv and Yannakakis [1980], who gave a syntactic characteri-

zation to the containment problem, After introducing the necessary terminol-

ogy, we first show that their theorem holds for all label systems of type A (of

which the set-case is one). We then show that the problem is, in general,

undecidable for label systems of type B, thus providing more evidence of the

differences between the two label systems.

6.1 Basic Definitions

The following definitions are straightforward extensions of the single con-

junctive query case:

Definition 6.1. A union of conjunctive queries is a collection of first-order

formulas with identical consequent. If a,, 1< i < n, are the conjunctive

queries in the collection, then their union is denoted by U ~=~al.

Definition 6.2. Consider a union of conjunctive queries U ;. ~ a, and a

database instance 1. Let P, be the relation instance that is the result of
applying a, to 1. The result of applying U ~. ~ a, to 1 (denoted by U ~. ~ a,(l))

is a relation instance P, that is, a function, such that, for each tuple t in the

domain of the consequent of the conjunctive queries,

P(t) = fi P,(t).
[=1

Definition 6.3. For two unions of conjunctive queries I.J ~~~ a, and I.J~j ~ ~~

with compatible consequent, U ~~~ al is more restrictive than U ~~ 1 BJ,
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6.2 Label Systems of Type A

The following theorem identifies a necessary and sufficient condition for

containment of unions of conjunctive queries over databases with label

systems of type A:

‘1’HEOREM 6.1. For two unions of conjunctive queries U ~~~ a, and U ~~~ B,,
the inequality u ~~~ a, <, U ~! ~ /3, holds with respect to a label system ~ of
type A iff for all 1 s i s nl there exists 1 s j < n2 such that a, <, (31.

PROOF. For the “if’ direction, assume that for all 1< i s nl there exists

1< j < n2 such that a, <, ~j. Consider a database instance and let Pa, PP,
Pai, and PPj denote the results of applying U ~~~a,, (J~~ ~ ~,, al, and ~~ tO

that instance, respective] y. For any tuple t in the domam of the consequent

of the conjunctive queries, Definition 6.2 implies that

Pa(t) = : Paz(t). (7)
1=1

Properties (A3) and (A4) together with associativity and commutativity of +

imply that there exists some 1 < -I < nl such that

; Pa,(t) < Pa,(t). (8)
~=1

By the premises of the “if’ direction, there exists some 1< J < TZ2 such that

aI <, PJ, which implies that

Finally, property (A3) and associativity of + together with Definition 6.2

imply that

PpJ(t) < ; PFJ(t) = Pp(t). (lo)
,j=l

The combination of (7)-(10) yields that for any tuple t in the domain of the

consequent of the conjunctive queries Pc,( t ) g PD(t),Since the above holds

for arbitrary tu-pies t and arbitrary database instances, Definitions 2.10 and

2.11 imply that l-l~!l a, <, U~!l (3,.

The proof of the “only-if’ direction is very similar to the proof of Lemma

3.1, but is given here in full detail for clarity. Assume that the inequality

U ~1, a, <, U ~1, ~, holds. Let al (resp., b,), 1< i < n, be the distinguished
variable in the i th argument position of the conjunctive queries in U :1 ~ a,

(resp., U ~! ~ ,t3~). Consider an arbitrary conjunctive query ar in U:! ~ a,.
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Furthermore, consider a valuation 6 of aI such that 0, is one-to-one from the

variables in aI onto some set of constants C and Ot maps all atomic formulas

in aI to nonzero elements of L. Consider a database instance such that for

any relation Q the following is satisfied:

\
i?l(Q(xl, . . ..x7n )). if t = (6L,(x1),....OL.Tin))))for some

Q(t) =

\

Q(x, ,.. .,xm) in a~ ;

o, otherwise.

Let P<,, PP, P., and I?pj denote the results of applying (.J ~1 ~ a,, U ~! ~ PJ, al.

and /3j to that instance, respectively. Properties (Al) and (A3), Definition 6.2,

and the premise of the “only-if” direction imply that

o< Pal((oL, (al),..., q(a,t))) < Pfl((6L, (a1),..., O,,(an)))

e (an))).< pb((o,, (al)....> L’

Since O is the least element of L with respect to < and the additive identity,

the above implies that there must exist some ~,1 in U ~! ~ ~ such that
0< Pp.l((f),,(al). ...) (),(a.))) as well. Thus, a valuation 0’ of BJ exists that is

true with respect to the given database instance that is compatible with d

and such that, for any atomic formula Q( yl, . . . . v,. ) in PJ, Q({ ~~(yl), . . . .

O:( y~ )) ) + O. By the construction of the database instance, the above implies

that d; maps the variables of BJ into the set of constants C. Valuation 0,, is

one-to-one and onto, so its inverse d,: 1 is defined. Taking the composition

h = (3C 10 (3;, it is easy to verify that it is a homomorphism from the variables

of PJ to the variables of a{. Theorem 4.1 implies that aI <, BJ. Since the
above was true for an arbitrary conjunctive query cr~ in U ~1~ a,, the theorem

follows. ❑

When considering the label system that captures the usual interpretation

of relations as sets, Theorem 6.1 is identical to the corresponding theorem of

Sagiv and Yannakakis [ 1980] on containment of unions of conjunctive queries.

Its significance is that it demonstrates that the same characterization of

containment exists for arbitrary label systems of type A.

6.3 Label Systems of Type B

We now turn our attention to label systems of type B and the problem of

containment of unions of conjunctive queries. We show that there is one such

label system for which the problem is undecidable, specifically, the label

system that captures the interpretation of relations as multisets. The reduc-

tion is from a variant from the Diophantine equation problem, so we first

state some definitions related to that.

Let .&( x ~, Xz, . . . . x~ ) be a polynomial in k variables with integer coeffi-

cients. The equation AC xl, Xz, . . . . x~ ) = O is referred to as a Diophantine

equation when only its integer solutions are being sought.
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The problem of determining whether there exists a nonnegative integer3

solution to such an equation is undecidable [Davis 1982]. More formally,

there is no decision procedure for the statement

The following equivalences are straightforward:

(m3x1, x2,..., xk)A(xl, x2, xk), xk) =0

‘=’(VX1, X’2, ..., x~)A(xl, xz, ..., Xk) +0,

=(v-r~, xz, ..., x~)l–(A( xl, xz, . . ..x~))2 <0.

Therefore, the problem of determining whether a polynomial is nonpositive

for all nonnegative integer assignments to its variables is also undecidable. In

addition, for a variable XO that is distinct from all other variables x,,

1 s i s h, the following equivalence holds:

~(vx~,x~,..., xk)xo A(.xl ,x2,..., xl, ) < 0.

Note that XOA(XI, Xz, ..., Xh ) is a polynomial without a constant term.

Hence, the above equivalence implies that the problem of determining whether

a polynomial is nonpositive for all nonnegative integer assignments to its

variables remains undecidable even if the polynomial has no constant terms.

This final undecidable problem related to Diophantine equations is the one

that we use in the following result:

THEOREM 6.2. Consider the following label system of type B: -Y’=
(L, * , + , (), ~ ), where L = No, the set of nonnegative integers, * and + are

the usual integer multiplication and addition, and < is the usual total order

on the integers. Also consider two unions of conjunctive queries U ~~~ a, and

lJ:: I B,. The problem of deciding whether or not U ?I ~ a, ~, ~!: 1 P, with
respect to the above label system F is undecidable.

PROOF. Let @(xl, X2, ..., xk ) and Wxl, X2, . . . . Xh) be two polynomials in

k variables with positive integer coefficients and with no constant terms. We

have established above that there is no decision procedure for the statement~

(VX1, X2,..., xk)(@( x1 ,x2,..., xk)sw(xl, x~, ..., Xk )).

Given the above problem instance, we construct an equivalent instance of the

problem of containment of unions of conjunctive queries.

3The problem is undecidable independent of whether the solutions sought are nonnegative,

positive, or arbitrary integers.

4Note that we have rewritten a polynomial with arbitrary integer coefficients as the difference of

two polynomials with positive coefficients.
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Assume that the polynomial @ is of the form

s

@(x1, x2, . . ..xk) = ~a,x:’’x$” ““” .x;”,
L=l

where there are s terms in @, which have been numbered in some arbitrary

way from 1 to s. For all 1 < i < s, a, is a positive integer, and for all

1 <J’ < k, c,] is a nonnegative integer with at least one of them being positive

(cD has no constant terms). From 0, we construct a union of conjunctive

queries as follows: There is a unique, unary relation symbol Xl for each

variable xi, 1 s z s k, plus the unary relation symbol P for the query

consequent. All of these relations share the same domain D. For each term

ajx;’’x; ~ ““” x~~, we put a, identical conjunctive queries in the union; that is,

there are a total of n ~ = Z:. ~ a, conjunctive queries. Each such conjunctive

query is of the form

c, ~ times c,,, times

Xl(u) Ax’l(u) A . . AXI(V) A . . . A Xh(U) AX1(V) A ““ ~X~(U) ~P(u).

Let lJ ~1 ~ al be the union of conjunctive queries thus constructed. Similarly,
the union of conjunctive queries U ~~ ~ ~j can be constructed from the polyno-

mial W.

What remains to be shown is that

(b’xl, x2, . ..rk)(@(xlx1 ,x%, . . ..x~ )<Wxl,x2,...,xh)

* u;!lal<r U;!l p,.

For the “only-if” direction, consider an arbitrary database instance 1, and let

P,, denote the result of applying U ~~~ a, to 1. If X, is the relation (function)

associated with the symbol Xl in this instance, then, for any element d = D,

Pa(d) = @(Xl(cZ), Xz(d),..., X~(d)). (11)

The above is a straightforward consequence of the way IJ ~~~ a, was con-

structed from the polynomial @. Likewise, if PD denotes the result of applying

U 75 ~ P] to 1, then, for any element d = D,

PP(d) = WX1(d), X,(d),,,., X~(d)). (12)

If (Vxl, xz, . . ..x~)(@(xl. xz, x~), x~) <IP(Zl, Xz, . . ..xk)). then by (11) and

(12), for any element of d = D, P.(d) < PP(d), which implies that P. <, Pp.
Since the above holds for an arbitrary database instance, we conclude that

u;!, ffzsr U;?l P,.
For the “if” direction, consider an arbitrary set of nonnegative integers Xl

assigned to the variables xl, respectively, of CDand ~. Let I be a database

instance such that, for some d G D, for all 1 < i s k, X,(d) = x,. If P. and P~

denote the results of applying U ~~~ a, and U ~j, ~j to

clearly

Pw(d)=@( X1, X2, . . .. x}.),

PP(d)=T( Xl, Xz, . . .. X~).
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If U ~~1 a, S, U ;~l DJ, then p.(d) s J?@(d), which by (13) and (14) implies
that @(xl, xZ, ..., Xk)swxl, xz, ..., Xk ). Since the above holds for an arbi-

trary set of nonnegative integers x,, we conclude that (Vx ~, x ~, . . . .

x~)(~(xl, xz, ..., xh)<q?(xl, x2,..., Xk)).

The two problem instances are equivalent, and the polynomial inequality

problem is undecidable. Therefore, the problem of containment of unions of

conjunctive queries with respect to the label system of type B described in the

theorem is undecidable as well, ❑

We should emphasize that Theorem 6.2 deals explicitly with the most

important label system of type B from a practical perspective. In principle,

there could be some such label system for which the problem of containment

of unions of conjunctive queries is decidable, but Theorem 6,2 shows that

there is no general decision procedure for all such label systems and, in

particular, for unions of conjunctive queries in the case of relations as

multisets,

7. DISCUSSION

One of the benefits of our general framework is the ability to identify other

useful types of label systems and to characterize containment for them

syntactically. As an example, we consider a specific new label system in some

detail. This is a variant of our type A system and is also motivated by

fuzzy-set reasoning.

Definition 7.1. A label system 2 = (L, *, +, O, < ) is of type A’ if it

satisfies the following:

(AI’) Va, bGL-{O}, O<a*b <a.

(A2’)vcze L,a*a=a.

(A3’)Va, a’, b, b’~L, (a<cz’andb <b’) ~a+b<a’+ b’.

With respect to type A, condition (A4) has been dropped. Clearly, every type A

label system is also a type A’ label system.

Example 7.1. For certainty factors, L is equal to the set of real numbers

between O and 1, as noted earlier. However, while the operation * is usually

rein, the operation + is not always taken to be max. For instance, in the

expert system iMYCIN, a + b is defined as a + b – a. b (where + and “

denote addition and multiplication over numbers, resp.). This label system is

of type A, but not of type A. Many other choices for + also yield type A’

systems.

Lemma 3.1 clearly holds for type A’ systems, giving us a necessary condi-

tion for conjunctive query containment. The following theorem establishes a

sufficient condition:

f<,
THEOREM 7.1. Consider two conjunctive queries a: Al A . . . A A~l ~ c.

r

and ~: BI ~ . . . ~ B~z ~ CP. Assume that Va, b ~ L, a < b * fi,(a) < f~(b).
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Then, the inequality a <, P holds with respect to a label system J? of type A

if there exists a variable-onto homomorphism h: /3 - a.

PROOF. Let a, (resp., b,), 1 s i s n, be the distinguished variable in the

ith argument position of a (resp., /3). Assume that there exists a variable-onto

homomorphism h: ~ ~ a. Consider a database instance I and the set O.

(resp., @p) of all valuations of a (resp., B) that are true with respect to ~. Let
F be defined as in Lemma 3.2. Then, F has the following additional proper-

ties.

(a) For all o ● @a, Ol(cti) < (F(O~))(cp); that is, OZ(ca) < 1910h(cP).

(b) F is one-to-one from (9. to (3P.

The proof of property (a) is identical to the corresponding part of the proof of

Theorem 4.1. The proof of property (b) is identical to the corresponding part of

the proof of Theorem 5.1. The rest of the proof is identical to the correspond-

ing part of the proof of Theorem 5.1, observing that condition (B2) is identical

to condition (A3’), ❑

The proof of Theorem 7.1 illustrates an important benefit of our algebraic

framework: The exact properties upon which each part of a proof rests can be

identified precisely, and this is of great help in identifying new label systems

of interest for which useful results can be established.

This still leaves open the interesting question of whether Theorem 7.1 can

be strengthened to provide a necessary and sufficient condition. Of course,

studying equivalence and the case of unions of conjunctive queries for the

various label systems considered here, and possibly other interesting label

systems, pose further interesting problems in this area.

A more basic question is whether or not our conditions on label systems can

be made more liberal. In particular, can we relax the requirement that the

least element should be both the additive identity and the multiplicative

annihilator? Our final example provides some motivation for such fundamen-

tal extensions and also illustrates that our generalization of conjunctive

queries using label systems is equally useful in the context of recursive

queries.

Example 7.2. Several generalizations of the transitive closure of a graph

seek to perform path computations by associating labels with paths and by

performing label computations as paths are enumerated, Typically, the set of

labels is either the set of nonnegative integers or the set of nonnegative reals.

The operations correspond to computing a new label for a path by “multiply-
ing” ( * ) the labels for the subpaths used to generate the path and to

computing a new label for a set of paths by “adding” ( + ) the labels for the

paths in the set. By making different choices for * and +, a variety of path
problems can be stated in this framework. Table IX contains some character-

istic examples.

Although we do not consider recursive queries, as Table IX shows, we can

use any of these label systems to define useful databases and queries. For

example, the label system in reachability is the traditional relation-as-set
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Table IX. Characteristic Examples of Path Problems

Problem * + L Label system type

Reachability and or (“false,” “true”} A

Maximum capacity path min max Nonnegative integers A

Bill of materials product sum Nonnegative integers B

Shortest path sum min Nonnegative integers ?

Most reliable path product max [0, 11 ?

Critical (longest) path sum max Nonnegative integers ?

view, whereas bill of materials, when restricted to nonnegative edge labels,

essentially treats relations as multisets. Unfortunately, not all proposed path

systems can be viewed as type A or type B label systems, or even as label

systems! Most reliable path is not a type A label system because * is not

idempotent, and it is not a type B label system because it does not satisfy

(Bl). Shortest path and critical path are not even label systems, because
neither has a multiplicative annihilator.

8. RELATED WORK

The problem of conjunctive query containment for sets was solved by Chan-

dra and Merlin [1977]. Aho et al. [1979] studied the problem in the presence

of functional and multivalued dependencies, while Johnson and Klug [19821

studied it in the presence of functional and inclusion dependencies. Finally,

Sagiv and Yannakakis [1980] addressed the union of conjunctive queries for

sets and showed that the problem is decidable, essentially proving a special

case of Theorem 6.1 (in contrast to the same problem over relations as

multisets, which we prove undecidable).

Recently, Chaudhuri and Vardi [1993] independently discovered Theorem

5.1, Proposition 5.1, and Theorem 5.2 (i.e., similar sufficient conditions for

conjunctive query containment) for the case of multiset queries. In terms of

differences with our work, they also showed that the problem of conjunctive

query containment for multiset queries is II # hard, whereas surprisingly,

conjunctive query equivalence is the same as graph isomorphism (and there-

fore in NP, but not known to be NP-complete). On the other hand, we

additionally deal with unions of conjunctive queries and show that contain-

ment is undecidable in that case. Moreover, whereas their entire work is on

multisets alone, we present a much more general formalism (that of label

systems), which captures a variety of possible interpretations of relations

(including sets and fuzzy sets). Hence, even the results that are common with

those of Chaudhuri and Vardi are in essence more general, since they hold for

all label systems of type B.

The algebraic framework that we have used in this paper is inspired by an
idea of Ioannidis and Wong [1991]. Specifically, that earlier work talks about

associating a real number with each tuple of a relation, so that an algebra
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can be formed and a theorem on Iinearizability of multilineal recursion (over

relations as sets of tuples) can be obtained. In this paper we have taken the

real-number idea and have generalized it to attach an arbitrary label to a

tuple. Based on that, we have then developed the entire formalism of label

systems, their properties, and the results on query containment.

There have been a few other pieces of work that deal with relations as

multisets, but address problems other than containment of conjunctive

queries. Dayal et al. [ 1982] were probably the first to consider multiset

queries in SQL, using a model of relational algebra with control over dupli-

cate elimination. Maher and Ramakrishnan [1989] proposed a multiset se-

mantics for logic programs that generalizes the multiset semantics for con-

junctive queries studied in this paper. The main results in that paper were

that checking if a general logic program generated duplicates is undecidable

and that there is a sufficient condition for ensuring that no duplicates are

generated. Mumick et al. [1990] studied the issue of multiset queries in SQL

and showed how selection-pushing into nested queries can be accomplished

using the magic sets technique. Final ly, Negri et al. [1991] recently consid-

ered the semantics of general SQL queries.

The area of fuzzy sets has been studied extensively following the seminal

work by Zadeh [1965]. Van Emden [ 1986] proposed an extension of logic

programs to deal with quantitative deduction that is closely related to fuzzy

sets and uncertainty reasoning in expert systems [Parsaye and Chignell

1988].

9. SUMMARY AND FUTURE WORK

We have generalized the notion of a relational database to cover fuzzy sets,

multisets, and other refinements to the concept of a relation as a set. We have

examined the problem of conjunctive query containment for two important

types of label systems. Specifically, we have shown that earlier theorems that

deal with relations as sets are generalized for all label systems of type A,

which include sets and fuzzy sets as special cases. We have also provided

sufficient conditions, and in special cases necessary and sufficient conditions,

for label systems of type B, which include relations as multisets, an impor-

tant special case due to its significance in SQL. We have also addressed the

problem of containment of sets of conjunctive queries, generalized again

earlier set-based results for all label systems of type A and proving undecid-

ability for label systems of type B.

An interesting open problem is that of containment of individual conjunc-
tive queries for type B systems. We have presented a necessary and sufficient

condition for queries with no repeated predicates and a sufficient condition

for the general case. Is there a general necessary and sufficient condition? Is

the problem decidable? (Note that Chaludhuri and Vardi [1993] established a

lower bound for this problem, but not an upper bound.) Given that the
problem is decidable for both individual queries and sets of queries over

relations as sets and our undecidability result for sets of queries over
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multi sets, this raises the possibility that the problem is undecidable even for

individual queries.

There are several additional areas that require further exploration. These

include dealing with recursive queries in the context of deductive databases,

formalizing a label system that captures the traditional notion of probabili-

ties and addressing the query containment problem for it, and incorporating

the techniques developed in this work into query optimizers that face issues

of query containment.
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