Query Optimization in Distributed Networks
of Autonomous Database Systems

FRAGKISKOS PENTARIS and YANNIS IOANNIDIS
Dept. of Informatics and Telecommunications, University of Athens, Hellas

Large-scale distributed environments, where each node is completely autonomous and offers ser-
vices to its peers through external communication, pose significant challenges to query processing
and optimization. Autonomy is the main source of the problem, as it results in lack of knowledge
about any particular node with respect to the information it can produce and its characteristics, for
example, cost of production or quality of produced results. In this article, inspired by e-commerce
technology, we recognize queries as commodities and model query optimization as a trading nego-
tiation process. Subquery answers and subquery operator execution jobs are traded between nodes
until deals are struck with some nodes for all of them. Such trading may also occur recursively,
in the sense that some nodes may play the role of intermediaries between other nodes (subcon-
tracting). We identify the key parameters of the overall framework and suggest several potential
alternatives for each one. In comparison to trading negotiations for e-commerce, query optimiza-
tion faces unique new challenges that stem primarily from the fact that queries have a complex
structure and can be broken into smaller parts. We address these challenges through a particular
instantiation of our framework focusing primarily on the optimization algorithms run on “buying”
and “selling” nodes, the evaluation metrics of the queries, and the negotiation strategy. Finally, we
present the results of several experiments that demonstrate the performance characteristics of our
approach compared to those of traditional query optimization.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Distributed
databases; query processing

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Query optimization

A previous version of this article was published as PenTaris, F., AND Ioannipis, Y. E., Distributed
query optimization by query trading, In Proceedings of the EDBT, E. Bertino, S. Christodoulakis,
D. Plexousakis, V. Christophides, M. Koubarakis, K. Bohm, and E. Ferrari, Eds., Lecture Notes in
Computer Science, vol. 2992, Springer-Verlag, New York, 2004, 532—550.

This research was partially supported by the Information Society Technologies (IST) Program of
the European Commission under the DELOS Network of Excellence on Digital Libraries (Contract
G038-507618) and the BRICKS Integrated Project (Contract 507457).

Authors’ address: Department of Informatics and Telecommunications, University of Athens, 15785
Ilisia, Athens, Hellas; email:{frank,yannis}@di.uoa.gr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2006 ACM 0362-5915/06/0600-0537 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006, Pages 537-583.



538 . F. Pentaris and Y. loannidis

1. INTRODUCTION

Current requirements on scalability and availability of information foster the
formation of large networks of databases with large amounts of data distributed
among hundreds or even thousands of autonomous and possibly heteroge-
neous Database Management Systems (DBMSs). In such environments, finding
the answer to a query requires splitting it into parts (subqueries), retrieving
the answers of these parts from several remote “black-box” nodes, and merg-
ing the results together to calculate the answer of the initial query [Navas and
Wynblatt 2001]. Node autonomy and diversity result in lack of knowledge about
any particular node with respect to information it can produce and its charac-
teristics, for example, query capabilities, quality of produced results. Earlier
work [Deshpande and Hellerstein 2002; Kossmann 2000; Stonebraker et al.
1996] has shown that traditional query optimization techniques [Ioannidis and
Kang 1990; Ioannidis et al. 1997; Papadimitriou and Yannakakis 2001] do not
work well in federations of autonomous DBMSs. In this article, we consider a
new approach to distributed query optimization, particularly suitable for such
environments. Inspired by microeconomics, we adapt e-commerce trading nego-
tiation methods to the problem. The result is a query trading mechanism where
instead of trading goods, nodes trade answers of (parts of) queries and operator-
execution jobs in order to find the best possible distributed query execution plan.

As a motivating example, consider the case of a telecommunications com-
pany with hundreds of regional offices. Each of them has a local DBMS,
holding customer-care (CC) data of millions of customers. The schema in-
cludes the relations customer (custid, custname, office), holding customer
information such as the regional office responsible for each customer, and
invoiceline(4nvid, linenum, custid, amount) holding the details of cus-
tomers’ past invoices. For performance and robustness, each relation may be
horizontally partitioned and/or replicated across several regional offices. As-
sume that a manager at the Athens office asks for the total amount of bills
issued at the offices of the Corfu and Myconos islands:

SELECT SUM(amount) FROM invoiceline i, customer c
WHERE i.custid=c.custid AND office in (‘Corfu’, ‘Myconos’);

The Athens node will ask all other company nodes whether or not they can
evaluate (some part of) the query. Assume that the Myconos and Corfu nodes
reply positively about the part of the query dealing with their own customers
at a cost of 30 and 40 seconds, respectively. These offers could be based on the
nodes actually processing the corresponding queries, or having the results pre-
computed already, or even receiving them from yet another node; whatever the
case, it is of no concern to Athens. It only has to compare these offers against
any other it may have and obtain each partial result from the node with the
least-cost offer.

This example has Athens effectively purchasing the two answers from the
Corfu and Myconos nodes at a cost of 30 and 40 seconds, respectively. That is,
queries and query-answers are commodities and query optimization becomes
a common trading negotiation process. The buyer is Athens and the potential
sellers are Corfu and Myconos. The cost of each query-answer is the time to
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deliver it. In the general case, the cost may involve several other properties
of the query-answers, for example, freshness and accuracy, and may even be
monetary. Furthermore, the participating nodes may not be in a cooperative
relationship (e.g., members of a company’s distributed database) but in a com-
petitive one (e.g., nodes on the Internet offering data products). In the latter
case, the goal of each node would be to maximize its private benefits (according
to the chosen cost model) instead of the joint benefit of all nodes.

In this article, we present a comprehensive query and processing-task trad-
ing negotiation framework, and propose its use as a query optimization mech-
anism appropriate for large-scale distributed environment of (cooperative or
competitive) purely autonomous information providers. It is inspired by tradi-
tional e-commerce trading negotiation solutions, whose properties have been
studied extensively within B2B and B2C systems [Bichler et al. 1999; Collins
et al. 1999; Parunak 1987; Sandholm 2002; Su et al. 2001; Winoto et al. 2002],
but also by problem solving approaches that distribute tasks over several agents
in order to achieve a common goal (e.g., Contract Net [Smith 1980]). Its ma-
jor differences from these traditional frameworks stem primarily from two
facts:

(1) Aqueryisacomplex structure that can be broken into smaller parts that can
be traded separately. Hence, buyers do not know a priori what commodities
(query answers) they should buy. Traditionally, only atomic commodities
have been traded, for example, a car.

(2) The value of a query answer is, in general, multidimensional, for example,
system resource consumption, data freshness, data accuracy, response time,
etc. Traditionally, only individual monetary values have been associated
with commodities.

We focus primarily on the first difference and provide details about the pro-
posed framework with respect to the overall system architecture, negotiation
protocols (i.e., bidding, auctions, bargaining), and negotiation contents. We also
present the results of several simulation experiments that identify the key pa-
rameters affecting query optimization in very large networks of autonomous
DBMSs and demonstrate the potential efficiency and effectiveness of our
method.

To the best of our knowledge, the only other algorithms suitable for partially
autonomous environments are that of the Mariposa system [Stonebraker et al.
1996] and a specific variant of the Iterative Dynamic Programming (IDP)
[Deshpande and Hellerstein 2002]. Mariposa has been the first system to ever
consider an economic approach to distributed query optimization. Its optimizer
is suitable for federations of autonomous databases and works in multiple
phases. First, it ignores data distribution to produce locally optimal execution
plans; then, it splits these plans to pieces using a heuristic algorithm; finally,
it brings back data distribution into consideration and selects execution nodes
for the plan pieces using ideas from microeconomics. Our approach requires
less information on distant nodes than Mariposa, allowing for higher node
autonomy. Furthermore, it performs better by avoiding multiple phases and by
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integrating access method selection, query splitting and node selection phases
within a unique virtual query and query-answer economy.

In our experimental study, we compare our technique to both the Mariposa
query optimizer and IDP and show that it produces better execution plans and,
needs (on average) less time to optimize and execute a query. We also experi-
mentally compare our technique to some of the currently dominant centralized
techniques for distributed query optimization to show the potential cost of node
autonomy.

The remainder of the article is organized as follows: In Section 2, we exam-
ine the components of a general trading negotiation framework. In Section 3,
we present our query trading technique. In Section 4, we examine the proper-
ties of all currently-known algorithms that are relevant to query optimization
in distributed networks of autonomous database systems and, in Section 5,
we experimentally measure their performance. In Section 6, we present an
extended version of our technique supporting both query and processing-task
trading and, in Section 7, we discuss the way our framework can support sub-
contracting. In Section 8, we present some further extensions to our technique.
In Section 9, we discuss our findings on distributed query optimization and, in
Section 10 we conclude.

The electronic appendix contains information on the structure of network
messages exchanged by our technique, implementation details concerning the
dynamic programming algorithm used in our experiments, and a discussion
on the behavior of our technique when network nodes use advance trading
negotiation protocols.

2. TRADING NEGOTIATION FRAMEWORK

A trading negotiation framework provides the means for buyers to request
items offered by seller entities. These items can be anything, from plain pencils
to advanced gene-related data. The involved parties (buyer and sellers) assign
private valuations to each traded item, which in the case of traditional com-
merce, is usually their cost measured using a currency unit. Entities may have
different valuations for the same item (e.g., different costs) or even use differ-
ent indices as valuations, (e.g., the weight of the item, or a number measuring
how important the item is for the buyer). Since valuations are private, sellers
will usually make different offers concerning the same item, and therefore, a
negotiation procedure will be required before the buyer and sellers reach an
acceptable agreement.

Trading negotiation procedures follow rules defined in a negotiation protocol.
In each step of the procedure, the protocol designates a number of possible
actions (e.g., make a better offer, accept offer, reject offer, etc.). Entities choose
their actions, based on the strategy they follow and the expected surplus (utility)
from this action, which is defined as the difference between the values agreed
in the negotiation procedure and these held privately.

Figure 1 shows the modules required for implementing a distributed elec-
tronic trading negotiation framework among a number of network nodes.
Each node uses two separate modules, a negotiation protocol and a strategy
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Fig. 1. Modules used in a general trading negotiation framework.

module (white and gray modules designate buyer and seller modules respec-
tively). The former handles the internodes message exchanges and monitors
the current status of the negotiation, while the latter selects the contents of
each offer/counter-offer. There are many different parameters affecting the be-
havior of these modules, including which negotiation protocol is used, which
mechanism is used to reduce network congestions, what strategy is selected,
how the private valuation of the traded items is calculated, and what the con-
tracting details are. We briefly examine the most important of these parameters
separately below.

2.1 Negotiation Protocol

The Negotiation protocol designates to the bargaining nodes, the valid actions
in each stage of the negotiation (i.e., the rules of the negotiation), including the
valid network messages, and how the winner(s) of the negotiations are selected.
Negotiation protocols should be efficient, as simple as possible, symmetric (i.e.,
the same for all nodes), and for scalability reasons, not requiring the use of any
centralized decision-making node [Rosenchein and Zlotkin 1994]. In Su et al.
[2001], three principal forms of negotiation are defined: bidding, auction, and
bargaining.

Bidding is the most simple negotiation protocol. The node interested in pur-
chasing specific items asks for bids from nodes that may be able to supply them.
The selling nodes reply with offers that include the properties (e.g. quantity,
quality) of the items they can provide. The winning node(s) are the one(s) that
make the best offers. The Contract Net Protocol (CNP) [Smith 1980] is a good
example of bidding.

Auctions are the second type of negotiation protocol. There are many dif-
ferent auction protocols, which differ in the way prices are quoted and in
the manner in which bids are tendered. Among them, the most frequently
used is the English (first-price) auction. Auctions are much more complex
than direct bidding but have better efficiency in terms of accumulated sell-
ers profit and buyers surplus, and smaller computational cost of the strategy
used by sellers [Winoto et al. 2002]. In large markets, using an agents-based
auction mechanism substantially reduces the number of network messages
exchanged.
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Finally, bargaining is the third and probably the oldest negotiation
mechanism. The buyer and sellers make alternating offer/counter-offers until
an agreement is reached. The bargaining protocol is not as simple as the bidding
protocol, and the strategy used is more complex than that of auctions, yet it is
the only one allowing the negotiation of every property of an offer using counter-
offers, like for instance, how may items will be purchased, their quality, and the
delivery date. Bargaining with a large number of nodes is considered inefficient.

2.2 Strategies

The negotiation protocol designates the actions that are valid during the ne-
gotiation process. For instance, in an English auction, any participating node
may bid a higher price than the currently winning offer, do nothing or leave
the auction. The strategy each node follows is the set of rules that designates
the exact action the node will choose depending on the knowledge it has about
the other nodes. For instance, a buyer may strategically delay to accept an offer
hopping that in the mean while the seller will improve its offer.

Both buyers and sellers have their private valuation of the bargained
items. The buyers/sellers will not accept any offer or make any counter-offer
above/below their private valuation. A proper strategy should ensure that
seller’s and buyer’s offers converge towards a common acceptable value.

Traditionally, strategies are classified as either cooperative or competitive
(noncooperative). In the former, the involved entities aim to maximize the joint
surplus of all parties, whereas in the latter, they try to individually maximize
their personal utility.

2.3 Offers Valuation

In order for a strategy to work, there must be some way to rank two offers. The
designer of the trading mechanism can define certain functions that map the
values of the qualitative properties of the offers into real numbers, in such a
way that better values are mapped into larger (or, depending on the parameter,
smaller) numbers, and then specify a weighting aggregation function that maps
these numbers into a single one measuring how good an offer is.

3. DISTRIBUTED QUERY TRADING FRAMEWORK

Using the e-commerce negotiation paradigm, we have constructed an efficient
algorithm for optimizing queries in large disparate and autonomous environ-
ments. Although our framework is more general, in this paper, we limit our-
selves to select-project-join queries. The optimization algorithm works by grad-
ually allocating queries and their processing-tasks to remote nodes. In this
section, we explain the framework for trading queries focusing on the parts of
the general trading framework we have modified, and leave the explanation
of processing-tasks outsourcing to Section 6. The reader can find additional
information on parts that are not affected by our algorithm, such as general
competitive strategies and equilibriums, message congestion protocols, and de-
tails on negotiation protocol implementations in Bichler et al. [1999], Collins
et al. [1999], Conitzer and Sandholm [2003], Ogston and Vassiliadis [2002],
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Parunak [1987], Sandholm [2002], Su et al. [2001], and Winoto et al. [2002]
and on standard e-commerce and strategic negotiations textbooks (e.g., Kagel
[1995], Kraus [2001], and Rosenchein and Zlotkin [1994]). Furthermore, there
are possibilities for additional enhancements of the algorithm that will be cov-
ered in future work. These enhancements include the use of contracting to model
partial/adaptive query optimization techniques and the examination of various
competitive strategies that lead to Pareto optimal load balancing schemas.

3.1 Query Trading Overview

The idea of the basic query trading (QT) algorithm is to consider queries and
query-answers as commodities and the query optimization procedure as a trad-
ing of query-answers between nodes holding information that is relevant to the
contents of these queries. Buying nodes are those that are unable to answer
some query, either because they lack the necessary resources (e.g., data, I/O,
CPU), or simply because outsourcing the query is better than having it exe-
cuted locally. Selling nodes are the ones offering to provide data relevant to
some parts of these queries. Each node may play either role (buyer and seller)
depending on the query been optimized and the data that each node locally
holds.

Before proceeding with the presentation of the optimization algorithm, we
should note that no query or part of it is physically executed during the whole
optimization procedure. The buyer simply asks from sellers for assistance in
evaluating some queries and sellers make offers that contain their estimated
properties of the answer of these queries (query-answers). These properties can
be the total time required to execute and transmit the results of the query back
to the buyer, the time required to find the first row of the answer, the average
rate of retrieved rows per second, the total rows of the answer, the freshness of
the data, the completeness of the data, and possibly a charged amount for this
answer. The query-answer properties are calculated by the sellers’ query opti-
mizer and strategy modules, therefore, they can be extremely precise, taking
into account the available network resources and the current workload of sellers.

The buyer ranks the offers received using an administrator-defined weight-
ing aggregation function (see Section 2.3) and chooses those that minimize the
total cost/value of the query. In the remaining of this section, the valuation of
the offered query-answers will be the total execution time (cost) of the query,
thus, we will use the terms cost and valuation interchangeably. However, noth-
ing forbids the use of a different cost unit, such as the total network resources
used (number of transmitted bytes) or even monetary units.

3.2 The Query-Trading Algorithm

The execution plans produced by the query-trading (QT) algorithm consist of the
query-answers offered by remote sellers together with the processing operations
required to construct the results of the optimized queries from these offers.
The task of the algorithm is to find the combination of data offers and buyer
and seller processing operations that minimize the valuation (cost) of the final
answer. For this reason, it runs iteratively, progressively selecting the best
execution plan. In each iteration, the buyer asks (Request for Bids—RFBs) for
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Buyer-side algorithm Sellers-side algorithm

BO. Initialization, set Q@ = {{q,C}}

B1. Make estimations of the values of the queries in
set @, using a trading strategy.

B2. Request offers for the queries in set Q

S1. For each query ¢ in set @ do the
following:

S2.1. Find sub-queries g; of ¢ that
can be answered locally.

S2.2. Estimate the cost ¢i of each of
these sub-queries gy,

S2.3. Find other (sub-)queries that
may be of some help to the buyer.
B3. Select the best offers {g¢;,c;} using one of the | S3. Using the query trading frame-
three methods (bidding, auction, bargaining) of the | work, make offers and try to sell some
query trading framework of the subqueries of step S2.2 and
S2.3.

B4. Using the best offers, find possible execution plans
Py, and their estimated cost Cp,

B5. Find possible sub-queries g. and their estimated
cost ce that, if available, could be used in step B4.
B6. Update set @ with sub-queries {ge, ce}.

B7. Let P« be the best of the execution plans Pp,. If
P is better than that of the previous iteration of the
algorithm, or if step B6 modified the set @, then go to
step B1.

B8. Inform selling-nodes, which queries are used in the
best execution plan Px, so that they start executing
these queries.

Fig. 2. The query trading (QT) algorithm.

some queries and the sellers reply with offers that contain the estimations of
the properties of these queries (query-answers). Since sellers may not have all
the data referenced in a query, they are allowed to give offers for only the part
of the data they actually have. At the end of each iteration, the buyer uses the
received offers to find the best possible execution plan, and then, the algorithm
starts again with a possibly new set of queries that might be used to construct
an even better execution plan.

The optimization algorithm is actually a kind of bargaining between the
buyer and the sellers. The buyer asks for certain queries and sellers counter-
offer to evaluate some (modified parts) of these queries at different values.
The difference between our approach and the general trading framework, is
that in each iteration of this bargaining the negotiated queries are different, as
the buyer and sellers progressively identify additional queries that may help in
the optimization procedure. This difference, in turn, makes necessary to change
selling nodes in each step of the bargaining, as these additional queries may
be better offered by other nodes. This is in contrast to the traditional trading
framework, where the participants in a bargaining remain constant.

Figure 2 presents the details of the distributed optimization algorithm. The
input of the algorithm is a query ¢ with an initially estimated cost of C. If
no estimation using the available local information is possible, then C is a
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predefined constant (zero or something else depending on the type of cost used).
The output is the estimated best execution plan P, and its respective cost C,
(step B8). The algorithm, at the buyer-side, runs iteratively (steps B1 to B7).
Each iteration starts with a set @ of pairs of queries and their estimated costs,
which the buyer would like to purchase from remote nodes. In the first step (B1),
the buyer strategically estimates the values it should ask for the queries in set
@, and then asks for bids (RFB) from remote nodes (step B2). The (candidate)
sellers after receiving this RFB make their offers, which contain query-answers
concerning parts of the queries in set @ (step S2.1-S2.2) or other relevant
queries that could be of some use to the buyer (step S2.3). The winning offers
are then selected using a small nested trading negotiation procedure (steps
B3 and S3). The buyer uses the contents of the winning offers to find a set of
candidate execution plans P,, and their respective estimated costs C,, (step B4),
and an enhanced set @ of queries-costs pairs (g., c.) (steps B5 and B6) which
they could possibly be used in the next iteration of the algorithm for further
improving the plans produced at step B4. Finally, in step B7, the best execution
plan P, out of the candidate plans P,, is selected. If P, is not better than that
produced in the previous iteration (i.e., no further improvement is possible) and
step B5 did not find any new query, then the algorithm is terminated.

As previously mentioned, our algorithm looks like a general bargaining with
the difference that in each step the sellers and the queries bargained are dif-
ferent. In steps B2, B3 and S3 of each iteration of the algorithm, a complete
(nested) trading negotiation is conducted to select the best sellers and offers.
The protocol used can be any of the ones discussed in Section 2.1. If the expected
number of offers is large, then an auction mechanism should be preferred, oth-
erwise, a bidding or bargaining protocol should be used. More specifically, if
only minor modifications in the offers are required (e.g., a change of a single
query-answer property), then the use of bargaining will improve the perfor-
mance as it will help avoid a costly algorithm iteration. If this is not the case,
like for instance when a modification of a query structure is required, then
bidding should be preferred. This is because after such a modification, the al-
gorithm will run at least one more iteration and since each iteration is actually
a generalized bargaining step, using a nested bargaining within a bargaining
would only increase the number of exchanged messages.

3.3 Algorithm Details

Figure 3 shows the modules required for an implementation of our query trading
algorithm (grayed boxes are modules running at the sellers) and the processing
workflow between them. As Figure 3 shows, the buyer initially assumes that
the value of query q is C, and asks its buyer strategy module to make a (strate-
gic) estimation of its value using a traditional e-commerce trading reasoning.
This estimation is given to the buyer negotiation protocol module that asks for
bids (RFB) from distant sellers. The latter use their seller negotiation protocol
module to receive this RFB and forward it to their partial query constructor
and cost estimator module, which builds pairs of a possible part of query g to-
gether with an estimate of its respective value. The pairs are forwarded to the
seller predicates analyzer to examine them and find additional queries (e.g.,
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Fig. 3. Modules used by the query trading algorithm.

materialized views) that might be useful to the buyer. The output of this mod-
ule (set of (sub-)queries and their costs) is given to the seller strategy module to
decide (using again an e-commerce trading reasoning) which of these pairs is
worth attempting to sell to the buyer, and in what value. The negotiation pro-
tocol modules of both the sellers and the buyer then run though the network
a predefined trading protocol (e.g., bidding) to find the winning offers (g;, ¢;).
These offers are used by the buyer as input to the buyer query plan generator,
which produces a number of candidate execution plans P, and their respective
buyer-estimated costs C,,. These plans are forwarded to the buyer predicates
analyzer to find a new set @ of queries g. and then, the workflow is restarted
unless the set @ was not modified by the buyer predicates analyzer and the
buyer query plan generator failed to find a better candidate plan than that of
the previous workflow iteration.

It is worth comparing Figure 1, which shows the typical trading framework,
to Figure 3, which describes our query trading framework. These figures show
that the buyer strategy module of the general framework is enhanced in the
query trading framework with a query plan generator and buyer predicates
analyzer. Similarly, the seller strategy module is enhanced with a partial query
constructor and a seller predicates analyzer. These additional modules are re-
quired, since in each bargaining step the buyer and the sellers make (counter-)
offers concerning a different set of queries, than that of the previous step.

To complete the analysis of the distributed optimization algorithm, we ex-
amine in detail each of the modules of Figure 3, starting from the seller ones.

3.4 Partial Query Constructor and Cost Estimator

The role of the partial query constructor and cost estimator of the selling nodes
is to construct a set of queries q; offered to the buyer. It uses two separate
algorithms, explained below:
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Sellers may not have all necessary base relations, or relations’ partitions,
to process all queries asked by the buyer (set ). Therefore, they have to ex-
amine each query g, of @ and rewrite it (if possible), using the following al-
gorithm, which removes all non-local relations and restricts the base-relation
extents to the locally-available partitions. After trimming the queries, they
are split (if necessary) into pieces in such a way that no Cartesian products
exist. The split queries are stored in a set CQ, which is the output of the
algorithm.

Query rewrite algorithm

While there is a relation R in query g, that is not available locally, do
Remove R from q,.
Update the SELECT-part of q. adding the attributes of the remaining relations
of g, that are used in joins with R.
Update the WHERE-part of q. removing any operators referencing relation R.
End While
For each remaining relation R in query q., update the WHERE-part of g, adding
the restriction operators of partitions of R stored locally.
Let set CQ = . Insert q, into CQ.
While set CQ contains a query with Cartesian product, do
Let ¢’ be the first query of C@ with Cartesian product.
Remove ¢’ from CQ.
Break ¢’ into two pieces g; and g} so that g; contains no Cartesian product.
Query g; will contain all relations of ¢’ that have a mutual join condition in the
WHERE-part of ¢'. If no such relations exist, g; will contain the first relation
of g'. g5 will contain the remaining relations of g'.
12 Insertq; and g, into CQ.
13 End While

O UL LW DN =

= 00 =3
= o

As an example of how the previous algorithm works, consider the example of
the telecommunications company and consider again the example of the query
asked by the manager at Athens. Assume that the Myconos node has the whole
invoiceline table but only the partition of the customer table with the re-
striction office=‘Myconos’. Then, after running the query rewriting algorithm
at the Myconos node and simplifying the expression in the WHERE part, the
resulting query in set CQ will be the following:

SELECT SUM(amount) FROM invoiceline i, customer c
WHERE i.custid=c.custid AND office=‘Myconos’;

The restriction office=‘Myconos’ was added to the above query, since the My-
conos node has only this partition of the customer table.

After running the query rewrite algorithm, sellers use their local query op-
timizer to find the best possible local plan for each (rewritten) query of set CQ.
This is needed to estimate the properties and cost of the query-offers they will
make. Conventional local optimizers work progressively pruning suboptimal
access paths, first considering two-way joins, then three-way joins, and so on,
until all joins have been considered [Selinger et al. 1979]. Since, these partial
results may be useful to the buyer, we include the optimal two-way, three-
way, etc. partial results in the offer sent to the buyer. The modified dynamic
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programming (DP) algorithm [Halevy 2001] that runs for each (rewritten) query
q is the following (The queries in set D are the result of the algorithm):

Modified DP algorithm

Find all possible access paths of the relations of q.
Compare their cost and keep the least expensive.
Add the resulting plans into set D.
For i = 1 to number of joins in g, do
Consider joining the relevant access paths found in previous iterations using
all possible join methods.
Compare the cost of the resulting plans and keep the least expensive.
Add the resulting plans into set D.
End For

U LON =

(o BEN o]

If we run the modified DP algorithm on the output of the previous example,
we will get the following queries:

1. SELECT custid FROM customer WHERE office=‘Mycomnos’;

2. SELECT custid,amount FROM invoiceline;

3. SELECT SUM(amount) FROM invoiceline i, customer c
WHERE 1i.custid=c.custid AND office=‘Myconos’;

The first two SQL queries are produced in steps 1-3 of the dynamic program-
ming algorithm and the last query is produced in the first execution (i = 1) of
steps 5-7.

3.5 Seller Predicates Analyzer

The seller predicates analyzer works complementarily to the partial query con-
structor to further find queries that might be of some interest to the buyer. The
latter is based on a traditional dynamic programming optimizer and therefore
does not necessarily find all queries that might be of some help to the buyer. If
there is a materialized view that might be used to quickly find a superset/subset
of a query asked by the buyer, then it is worth offering (in small value) the
contents of this materialized view to the buyer. For instance, continuing the
example of the previous section, if Myconos node had the materialized view:

CREATE VIEW invoice AS
SELECT custid, SUM(amount) FROM invoiceline GROUP by custid;

then it would worth offering it to the buyer, as the grouping asked by the man-
ager at Athens is more coarse than that of this materialized view. There are
a lot of non-distributed algorithms concerning answering queries using ma-
terialized views with or without the presence of grouping, aggregation and
multidimensional functions, like for instance [Zaharioudakis et al. 2000]. All
these algorithms can be used in the seller predicates analyzer to further en-
hance the efficiency of the QT algorithm and enable it to consider using remote
materialized views. The potential of improving the distributed execution plan
by using materialized views is substantial, especially in large databases, data
warehouses and OLAP applications.
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3.6 Buyer Query Plan Generator

The query plan generator combines the queries g; that won the bidding proce-
dure to build possible execution plans P,, for the original query g. The problem
of finding these plans is identical to the answering queries using material-
ized views [Pottinger and Levy 2000] problem. In general, this problem is NP-
Complete, since it involves searching though a possibly exponential number of
rewritings.

The most simple algorithm that can be used is the dynamic programming
(DP) algorithm that we describe below. Its input are the queries g; and the
output of the algorithm is the set D of candidate plans P,,. If query q is the one
been optimized, then candidate plans are those representing an equivalent re-
writing of query ¢ using some of the queries g; that won the bidding procedure
(see Figure 3):

DP buyer plan generator

Find all queries g; that are candidate execution plans and move them to set D.
Compare the cost of the remaining (partial) plans and keep those for which there
is no other partial plan with the same or greater contribution towards query g
and equal or smaller value.
While there are still some partial plans left, do
Consider joining or unioning all remaining partial plans using all possible ways.
Find all candidate execution plans and move them to set D.
Compare the cost of the remaining (partial) plans and keep those for which there
is no other partial plan with the same or greater contribution towards query g
and equal or smaller value. The value of two plans can be compared only if they
run on the same set of nodes and their results are delivered on the same node.
7 End While

DN =

S Utk W

In the experiments presented in the next sections, apart from the DP algo-
rithm, we have also considered the use of a version of the Iterative Dynamic
Programming IDP-M(3,5) algorithm proposed in Kossmann and Stocker [2000].
This algorithm is similar to DP. Its only difference is that after evaluating all
3-way join subplans, it keeps the best five of them throwing away all other
3-way join subplans, and then it continues processing like the DP algorithm.

If the buyer plan generator cannot aggregate a plan from the offers received
then:

(1) If the environment is competitive this may be caused by some malicious
sellers trying to increase the value of their offers. It is the responsibility of
the buyer strategy module to decide whether the buyer should re-issue the
RFB or abort. Note that the strategy module will not always re-issue the
RFB, as this will increase the tendency of sellers to ignore the first RFB
(and thus save resources and possibly increase their profit), especially if
they know they are the only one capable of supplying certain data.

(2) If the environment is cooperative then this may be caused by a temporary
outage of resources from a seller that is the only one supplying the data
requested. For this reason, the algorithm runs one more iteration before
aborting.
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3.7 Buyer Predicates Analyzer

The buyer predicates analyzer enriches the set @ (see Figure 3) with additional
queries, which are computed by examining each candidate execution plan P,
(see previous subsection). If the queries used in these plans provide redun-
dant information, it updates the set @ adding the restrictions of these queries
which eliminate the redundancy. Other queries that may be added to set @ are
simple modifications of the existing ones with the addition/removal of sorting
predicates, or the removal of some attributes that are not used in the final plan.

To make the functionality of the buyer predicate analyzer more concrete
to the reader, consider again the telecommunications company example, and
assume that someone asks the following query:

SELECT custid FROM customer WHERE office in (‘Corfu’, ‘Myconos’, ‘Santorini’)

Assume that one of the candidate plans produced from the buyer plan gen-
erator contains the union (distinct) of the following queries:

1. SELECT custid FROM customer WHERE office in (‘Corfu’, ‘Myconos’);
2. SELECT custid FROM customer c WHERE office in (‘Santorini’, ‘Myconos’);

The buyer predicates analyzer will see that this union has redundancy and
will output the following three queries:

1. SELECT custid FROM customer WHERE office=‘Corfu’;
2. SELECT custid FROM customer WHERE office=‘Myconos’;
3. SELECT custid FROM customer WHERE office=‘Santorini’;

In the next iteration of the algorithm, the buyer will also ask for bids concerning
the above three SQL statements, which will be used in the next invocation of
the buyer plan generator, to build a redundancy-free plan that is equivalent to
the above union-based one.

3.8 Protocol and Strategy Modules

The protocol and strategy modules are responsible for implementing the trad-
ing negotiation protocol (see Section 2.1) and handling the message exchanges
between buyers and sellers. All of the previously mentioned negotiation pro-
tocols can be used. In most cases, the bidding protocol will provide the best
performance. If an agent-based architecture can be used, then an even better
alternative is to use an auction mechanism. Finally, bargaining can be used in
certain cases to reduce then number of iterations of the QT algorithm.

In this article, we consider a simple cooperative seller strategy, where sell-
ers, if possible, make bids that contain the true valuation of the offered queries.
However, all of our findings are applicable in case where QT is used in a com-
petitive environment as well. Designing competitive strategies is beyond the
scope of this article, as it requires extensive knowledge of game theory.

4. DISTRIBUTED QUERY OPTIMIZATION ALGORITHMS

There are serveral algorithms that have been proposed in the past for dis-
tributed query optimization. In this section, we outline the most prominent
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such algorithms and discuss several key details. The following section describes
the results of their experimental evaluation.

4.1 Node Autonomy and Amount of Published Information

Each of the distributed query optimization algorithms examined has different
requirements with respect to the characteristics of each node that must be
publicly available for the algorithm’s operation. This essentially defines the
level of node autonomy that can be afforded by each algorithm. The types of
information that may or may not be required are described below:

Capabilities. Each node may allocate different amounts of processing, main
memory and I/O resources for use by distant nodes. In addition, it may have
different query processing capabilities. For instance, in our experiments, we
have assumed that all nodes supported nested-loops and sort-merge joins but
only 80% of them also supported hash-joins.

Information on node capabilities is required by some optimization algorithms
to calculate the cost of operations and ensure that certain parts of query ex-
ecution plans can be evaluated on specific nodes. Publishing this information
harms node autonomy since administrators must inform about any modifica-
tions that alter node capabilities (e.g., software updates, installation of more
memory, etc.).

Logical Schema. The tables stored locally at each node is the minimum
information required for any query optimization algorithm to work. It is used
to find candidate sources of data required by a query. Making it public requires
announcement of all CREATE/DROP TABLE DDL statements executed by each
node.

Physical Schema—~Partitioning. For performance reasons, it is common for
administrators of large databases to horizontally partition relations and dis-
tribute their parts across the network. Subsequently, they constantly modify
the resulting partitioning schemas to ensure optimal performance.

Some optimization algorithms require partitioning information to optimally
split join operations across multiple machines. Making this information pub-
lic requires announcement of all CREATE/DROP/MERGE/MODIFY PARTITION DDL
statements executed.

Physical Schema—Indices. The set of relation indices that exist in a node
may be used by some optimization algorithms to improve the quality of query
execution plans produced. Making this information public requires announce-
ment of all CREATE/DROP INDEX DDL statements executed.

Data Statistics. Histograms or other approximations of the data distribu-
tions in a node may be used by some optimization algorithms to estimate oper-
ator selectivity. Making this information public requires announcement of all
DML statements that substantially modify data statistics.

Workload. This information is used by some optimization algorithms to
estimate the cost of operations by understanding how system resources will
be split. The workload is affected by all DML statements, for example,
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Fig. 4. Types of information required by the algorithms tested.

SELECT/INSERT/UPDATE/DELETE (and some DDL statements, for example,
CREATE/DROP/ALTER TABLE/INDEX/PARTITION). Making this information public
requires announcement of almost every activity of distant nodes, which is not
practical. Alternatively, it may be estimated using techniques from the area of
mediation systems.

The less information an algorithm needs, the more suitable for autonomous
environments it is. In the next section, we describe the algorithms tested and
compare their needs for knowledge.

4.2 Query Optimization Algorithms

In this article, we study the following six algorithms: Dynamic Programming
(DP), Iterative Dynamic Programming (IDP), IDP with minimum knowledge
(IDP-NK), Mariposa, and two variations of Query Trading (QT and QT-IDP).
Figure 4 summarizes the needs of these six algorithms for public knowledge.
The algorithms are further elaborated below:

Dynamic Programming (DP). The Dynamic Programming (DP) algorithm
[Selinger et al. 1979] progressively builds plans with 1,2, ..., n — 1 joins of
tables, where n is the number of tables in the query being optimized. DP is
intended to run in centralized environments, as it requires complete informa-
tion to run (see Figure 4) and, hence, is unable to respect node autonomy. In
the experiments that we have run, we saw that in some cases there was not
enough system memory to complete optimization of certain queries. This has
been solved by allowing our implementation of DP to automatically fall back to
the IDP algorithm (described below) when memory usage exceeded a specific
threshold. This is explained in detail in Section B.3 of the electronic appendix.

DP is examined because it produces optimal execution plans and, hence,
serves as a solid basis for comparing the quality of plans produced by the re-
maining algorithms. Our implementation assumed nodes running the algo-
rithm had exact knowledge of the state of the whole network. This avoided all
network traffic, which would normally dominate its execution time, but ren-
dered the resulting optimization times for DP not directly comparable to those
algorithms respecting some levels of node autonomy.

Iterative Dynamic Programming (IDP and IDP-NK). The Iterative Dy-
namic Programming (IDP) family of algorithms [Kossmann and Stocker 2000;
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Deshpande and Hellerstein 2002] is a heuristic extension of DP that exhibits
better performance at the expense of slightly increased cost for the resulting
plan. Given an n-way join query, IDP(%k,m) first enumerates all subqueries that
contain less than or equal to £ base tables and finds their costs, following the
DP algorithm. Then, it chooses the best m sub-plans out of those produced
for all k-way joins together, and purges all others. Finally, it resumes the DP
optimization procedure for larger subqueries by examining only the subplans
chosen.

For our study, we have implemented two variations of IDP(3,5). The first one
(IDP) is the original centralized form and the direct counterpart of DP above. It
assumes that nodes running the algorithm have exact knowledge of the state
of the whole network and, thus, avoids the bottleneck of network congestion. It
is studied because it produces plans that are close to the optimal plans of DP
[Kossmann and Stocker 2000] and yet it requires substantial less memory than
DP, making it particularly well suited for distributed environments [Deshpande
and Hellerstein 2002].

The second variation of IDP (IDP-NK) follows an earlier suggestion
[Deshpande and Hellerstein 2002] and decouples cost estimation from the query
optimization process itself by delaying pruning of plans until the end of each
step of IDP. In each step, IDP-NK contacts data providers using a single round
of communication to find the exact cost of each execution plan and then uses
this information to prune suboptimal plans. Figure 4 shows that IDP-NK re-
quires only relation location and partitioning information to work, making it
more suitable for autonomous environments than IDP. Knowledge of relation
indices is optional for the operation of IDP-NK, but enables the algorithm to
produce plans equivalent in quality to those produced by plain IDP. In our tests,
such information was indeed available to IDP-NK.

Mariposa. The Mariposa Distributed DBMS [Stonebraker et al. 1994] ad-
dressed the question of distributed query optimization in autonomous systems,
and was the first one to propose a microeconomics-based solution for this prob-
lem. Its optimizer is a two-phase algorirhm that considers conventional opti-
mization factors (such as join orders) separately from distributed system factors
(such as data layout and execution location). First, it uses locally-kept informa-
tion about various aspects of the data and constructs a locally optimal plan
by running a DP optimizer over the query, disregarding the physical distribu-
tion of the base relations and fixing such items as join order and data access
methods. It then uses network yellow-pages (directory service) information to
parallelize query operators, and a bidding protocol together with a greedy algo-
rithm to select operators’ execution sites, all in a single interaction with remote
nodes. The degree of parallelism is statically determined by the system admin-
istrator before query execution and is independent of the distributed resources
available.

The Mariposa System was initially designed to cover a large range of different
requirements. In this paper, we have implemented the particular description
of the Mariposa algorithm presented in the Mariposa database management
system [2002]. In the second greedy phase of the algorithm, the optimization
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goal was set to minimize the total execution time of the query, which is the task
of interest in our experiments. We have not used Mariposa’s MERGE operator
(implementing parallel k-way data merges and joins), whose presence is not
relevant to our analysis.! Finally, the Mariposa algorithm was configured to
use the maximum possible degree of parallelism, that is, joins were split to
the maximum possible number of pieces. This setting is a commonly accepted
solution for distributed optimization [Liu and Rundensteiner 2005] and gave
the best overall measurements for the Mariposa algorithm.

We have included Mariposa in our study as it is one of the fastest-running
known algorithm for distributed query optimization. It is suitable for au-
tonomous environments, although it requires more information for its first
phase than QT and IDP-NK (Figure 4). It needs data statistics and, optionally,
information on indices [Deshpande and Hellerstein 2002] to produce execution
plans of higher quality. In its second phase, it needs partitioning information to
properly split and parallelize join operations. Note that indices are used if they
are the same for all partitions of a relation, as in the first phase partitioning
information is ignored. In our experiments, when relations had multiple par-
titions, we respected node autonomy and let them build potentially different
indices per partition.

Query Trading. We have instantiated the Query Trading Algorithm using
the following properties:

For the Negotiation protocol, we chose the bidding protocol (see Section 2.1)
as the expected number of offered bids for each RFB was not large enough for
an auction protocol to be useful. We ranked each offer based only on the time
required to return the complete query answer. In this way, our optimization
algorithm produced plans that had the minimum execution time, reflecting
traditional optimization.

We used a plain cooperative strategy. Thus nodes replied to RFBs with offers
matching exactly their available resources. Note that in Pentaris and Ioannidis
[2004], the seller strategy module had a small buffer that held the last 1,000
accepted bids. These bids were collected from past biddings that the node had
participated in. Using the contents of this buffer, nodes estimated the most
probable value of the offer that will win a bidding and never made offers with
value more than 20% of this estimation. This strategy helped to reduce the
number of exchanged messages but made QT produce worse plans as it caused
buyers to lose some useful plans. Thus in this paper, we chose to disable this
mechanism.

In the buyer query plan generator we used a traditional answering-queries-
using-views dynamic programming algorithm. However, to decrease its com-
plexity we also tested the plan generator with the IDP-M(3,5) algorithm
(QT-IDP).

In Pentaris and Ioannidis [2004], Mariposa did use the MERGE operator, but for the sake of
equality to the remaining algorithms, we have decided to disable it in the experiments presented
in this article.
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Table I. Simulation Parameters

Parameter
Type Parameter Value
Network Total size of network (WAN) 5,000 nodes
WAN network packet latency 1-30 ms (uniform distribution)
WAN interconnection speed 10-100 Mbits/s (uniform distribution)
Directory service centralized/DHT-based
RDBMS Join capabilities Nested-loops, merge-scan and
Hash-join
Operators pipelining support Yes
CPU resources One simulated 2-4 GHz CPU (uniform
distribution)
Sorting/Hashing buffer size 10,000 tuples
I/0 speed per node 5-40 Mbytes/s (uniform distribution)
Soft memory usage limit during 10K execution plans (approximately
optimization 10-100 MBytes)
Maximum memory used during Up to OS limit (2 GByte)
optimization
Dataset Number of relations 10,000
Size of relations 1-400,000 tuples (uniform distribution)
Number of attributes per relation 10 attributes
Number of partitions per relation 1-9
Number of mirrors per partition 0-29
Indices per partition per node 2 single-attribute indices
Workload Joins per query 0-29
Partitions per relation 1-9
Shape of queries path/star

Since there was no limit on the time the buyer waited for offers and the seller

strategy did not block offers with low probability of being accepted (see, for
instance, Pentaris and Ioannidis [2004]), no offers were lost. Thus, if relations
were not partitioned or mirrored, then the QT and plain DP examined the
same plans and created the same execution plans. Otherwise, QT evaluated
fewer plans than plain DP, as the latter examined all possible data sources and
all ways of horizontally splitting the joins. QT examined only those that were
possible based on the offers it received and accepted from the sellers.

5. EXPERIMENTAL STUDY

In order to assert the quality of QT, we have simulated a large network of inter-
connected RDBMSs and run several experiments to measure the performance
of our proposed solution in comparison to the other distributed query optimiza-
tion algorithms mentioned earlier. The details of the study are elaborated in
the rest of this section.

5.1 Experiment Setup

5.1.1 Experiment Parameters. We have used C++ to build a simulation of a
large Wide Area Network (WAN). The parameters of this environment, together
with their possible values, are displayed in Table 1. All range parameters fol-
lowed the uniform distribution. The network had 5,000 nodes that exchanged
messages with a simulated latency of 1-30 ms and a speed of 10—-100 Mbits/s.
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Fig. 5. Centralized directory service architecture.

Each node was equipped with a single CPU at 2-4 GHz that hosted an RDBMS
capable of evaluating joins using the nested-loops and the merge-scan algo-
rithms. 80% of the simulated RDBMSs could also use the hash-join method.
The local I/0O speed of each node was not constant and varied between 5 and
40 MBytes/s. The only (hard) limit on the amount of memory consumed by the
optimizer was the one forced by the operating system used (2 GBytes).

The data-set used in the experiment was synthetically built. We constructed
the metadata of a large schema consisting of 10,000 relations. There was no need
to actually build the data since our experiments measured the performance of
query optimization, not that of query execution. Query execution times were
estimated from the statistics of the relations. Each relation had 1-400,000 tu-
ples and was horizontally range-partitioned to 1-9 disjoint partitions stored in
possibly different nodes in such a way that each partition had up to 29 mirrors.
The nodes were allowed to create 2 local indices per locally-stored partition.

5.1.2 Directory Service Architecture. Execution of QT, QT-IDP, Mariposa,
and IDP-NK algorithms assumes the existence of a directory service (yellow
pages) holding the corresponding information that each algorithm requires, as
specified in Figure 4 (including all information indicated as optional). This di-
rectory service can be implemented in either a centralized or a distributed (P2P)
fashion. The latter is most likely used in cases where RFBs’ arrival frequency
is too much to be handled by a single centralized system. For completeness
reasons, we have evaluated both solutions.

As a centralized solution, we have implemented a publish-subscribe mech-
anism, since these are widely used in existing agent-based e-commerce plat-
forms [Ogston and Vassiliadis 2002] and have good scalability characteristics.
All nodes registered information concerning their locally-stored relations to a
special subscription server. Figure 5 describes how this server was used by
QT during query optimization. The lines show the flow of network message
exchanges. Buyers sent to the subscription server request for bids (RFB) mes-
sages containing, among others, the description of the queries requested. The
server examined the FROM-part of these queries and relayed these RFBs to all
sellers having relevant data. Note that the subscription server did not modi-
fied the query descriptions relayed. This was done by the sellers’ partial query
constructor and cost estimator explained in Section 3.4. Finally, sellers commu-
nicated their replies to RFBs (offers) directly to the buyers (i.e., the did not sent
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the replies though the subscription server). The overall cost of each bidding in
terms of network resources was two messages per seller plus one message from
the buyer to the subscription server. There was no limit on the time required
for a bidding procedure to complete. The remaining algorithms operated in a
similar fashion according to their needs.

To test the algorithms using a distributed directory, we simply replaced the
centralized subscription server of Figure 5 with a simulated DHT-based di-
rectory. The DHT was based on the Chord protocol [Stoica et al. 2001]. The
lookup of keys required log(IN) messages, where N was the number of net-
work nodes. Each node for each locally-held relation inserted into the DHT a
pair of <relationName, relationInformationStruct>, that is, the name of the
relation was the key of the DHT and data were relationInformationStruct
structures holding information on relation’s locations, partitions, indices and
statistics. All RFBs were routed to the relevant seller nodes through the DHT
routing tables. The keys searched were the relations referenced in the queries’
FROM-part contained in RFBs.

5.2 Simulated Scenarios

We initially ran some experiments to assert the scalability of our algorithm in
terms of network size. As expected, the performance of our algorithm was not
dependent on the total number of network nodes but on (a) the number of nodes
which replied to RFBs, and (b) the complexity of the queries. Hence, we ended
up running three sets of experiments: In the first set, the workload consisted of
select-project-join queries with a varying number of 0-29 joins. The relations
referenced in the joins had no mirrors and only one partition. This workload
was used to test the behavior of the optimization algorithms as the complexity
of queries increased. In the second set of experiments we considered 6-way
join queries that referenced non-partitioned relations with a varying number
of copies (0-29). This experiment measured the behavior of the algorithms
in the presence of redundancy. In the last set of experiments, we considered
4-way-join queries that referenced relations with a varying number of 1-9
horizontal partitions. The number of data copies varied from 0-8 to ensure that
the algorithms had multiple alternatives for selecting partition data sources.
This test measured the behavior of the algorithms as relation data were split
and stored (data spreading) in different nodes. This last set of experiments
had substantially more complexity than the first two ones, since algorithms
had to enumerate all possible ways of splitting and parallelizing joins.

We randomly created 12 path-shaped and 12 star-shaped queries for each
possible number of query joins, relation partitions and mirrors (i.e., a total of
(12 + 12) x (30 + 30 + 9) = 1,656 queries). We batch optimized these queries
using all possible algorithms (DP,IDPIDP-NK,QT,QT-IDP,MARIPOSA). Except
for the DP and IDP algorithms, we run the remaining algorithms using both the
centralized and the DHT-based (P2P) directory service. Thus, a total of 16,560
query optimizations were run. From the output of our simulations, we calcu-
lated the optimization time of the algorithms and the plan cost of the queries,
that is, the time required to execute the plans produced as this was estimated
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Fig. 6. Performance of the Query Trading algorithm.

by the algorithms. Optimization time was split into two pieces. The first one was
the actual local processing time spent by buyer nodes. The second one (network
and seller processing time) was the delay caused by network traffic and remote
(sellers’) processing. It was not possible to measure these delays separately as
they overlap. However, to let readers understand the amount of network re-
sources spent during optimization, we also measured the total number of bytes
exchanged through the network. This number is not directly related to the cost
(in seconds) of network messages as the latter were dispatched in parallel in
both the centralized and the P2P directory service case.

We should emphasize again that the execution times of DP and IDP are not
directly comparable to those of the other algorithms, as these are centralized
implementations, incurring no cost for network message exchange.

5.3 Results

5.3.1 Number of Joins. Figures 6(a) and 6(b) summarize the results of the
first set of tests measuring algorithms’ performance as the number of joins was
varied. The first of these figures presents the average plan cost (in seconds) of
queries optimized by DP, IDP/IDP-NK (recall that IDP-NK produces the same
plans as IDP), Mariposa, and the two instances of QT (plain QT and QT-IDP).
The averages are calculated separately over all path- and star-shaped queries
optimized in this first set of tests.

As expected, DP and QT produced the same results since no bids were lost
and tables had no mirrors. The same holds for IDP and QT-IDP. The Mariposa
algorithm made the largest error producing plans that on average required 10%
more time than those produced by DP. The reason is that, in its first phase,
Mariposa disregarded network costs and delays and thus, failed to find the
best joins order for the base tables. The remaining of the algorithms selected
the proper joins order, taking into account that delays caused by slow data
sources may be masked if joins related with these sources are executed last.

Figure 6(b) presents the average optimization time of all algorithms tested
when the directory service used was either centralized or distributed (P2P).
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Times are split into two parts: The first one (local processing time) is the time
spent by buyer nodes and the second one (network and seller processing time)
represents time spent in network communications and sellers processing. The
figure shows that from the algorithms suitable for autonomous distributed en-
vironments, the IDP-NK is clearly the slowest one, followed by QT, QT-IDP
and Mariposa. IDP is the fastest of all but is a centralized algorithm. When a
centralized directory was used, the network and seller processing times of all
algorithms were small compared to their respective total optimization times.
This did not also hold when the distributed directory was used. In that case,
the network and seller processing delays were substantial and severely affected
total optimization times. It is worth noticing that a large portion of the optimiza-
tion time of the IDP-NK and P2P IDP-NK algorithms was not due to network
delays but due to local processing. This is because the delayed pruning of these
algorithms increased their memory requirements slowing down the structures
held by our dynamic algorithm implementation.

Figures 7(a) and 7(b) display the average plan cost vs the number of joins
for path and star queries. The DP and QT algorithms always produced better
plans than the IDP and QT-IDP, respectively. The latter ones, deviated from the
optimal plan (i.e., that of DP) when the number of joins was more than three.
Mariposa produced plans that were up to 20% slower than those of DP. Note
that contrary to the case of optimizing nondistributed queries, the plan cost
of star-queries was smaller than that of the respective path ones. The reason
is that star-queries had more chances of pushing multiple joins to the same
remote seller node than path queries.

Figures 7(c) and 7(d) presents the average total optimization time in millisec-
onds for path and star queries separately, as the number of joins of the queries
being optimized is varied. The directory service used is the centralized one. The
average optimization time of all algorithms depends exponentially on the num-
ber of joins, with star-queries times being larger than path-queries ones. The
Mariposa, QT-IDP, and QT algorithms have a start-up cost of a single round of
message exchanges (approximately 50 ms) caused by their bidding procedure.
IDP-NK requires at least one round of message exchanges and, hence, also has
a similar start-up cost. For small number of joins, Mariposa is faster than QT-
IDP. However, for large queries (more than 13 joins), Mariposa becomes slower
to QT-IDP. This is because Mariposa’s greedy algorithm replaces leaf operators
of the currently best execution plan in such a way that the OperatorSchedule
algorithm (see Section B.2 of the electronic appendix) is invoked with the max-
imum degree of complexity, as the stored sets T' and N are invalidated. Lastly,
for star-queries with more than 9 joins, our implementation of QT and DP al-
gorithms exceed the soft memory-usage limit (see Section B.3 of the electronic
appendix) and fell back to a variation of the QT-IDP and IDP, respectively. This
does not seem to harm the quality of the execution plans produced but does
affect the optimization times of DP and QT. This is visible in Figure 7(d) where
the slope of DP and QT lines is reduced when the number of joins is equal or
more than 9.

Figure 7(e) displays the additional time required to optimize path queries
when the distributed algorithms used the DHT-based directory service instead
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of the centralized one. As expected, in all cases, this additional time grows
almost linearly with the number of joins involved in the query, as more messages
are required to get the relevant information for the extra tables. Mariposa has
the lowest rate of increase with QT-IDP following up closely, since the size (in
bytes) of the messages of the latter algorithm are larger than those of the former.
The rate of optimization-time increase of IDP-NK is by far the worst, since
the number of message-exchange rounds of IDP-NK linearly depends on the
number of joins. This is in contrast to QT-IDP and Mariposa, which completed
the message exchanges in a single round for all number of joins tested.

Figure 7(f) examines the average local processing time, the network and
seller processing time, and the total number of MBytes transmitted thought
the network by the QT algorithm for path queries with the centralized direc-
tory service. This figure shows that the volume of exchanged information and
nonlocal delays almost linearly depend on the number of joins, whereas the
local processing time exponentially depends on the number of joins.

5.3.2 Data Mirroring. Figures 8(a) and 8(b) summarize the results of the
second set of experiments, where the level of data mirroring is varied. The
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figures concern path queries with centralized directory. We also run experi-
ments with star queries and the distributed directory but there were no signif-
icant differences. Data mirroring substantially increases the complexity of all
algorithms as they have to select the nodes allowing for the best paralleliza-
tion/pipelining of join (and union) operators. The best plans were produced by
DP and QT, though IDP and QT-IDP were not affected by redundancy and
also produced almost optimal plans. Figure 8(c) shows that Mariposa produced
plans that were more than two times slower than the ones produced by the
remaining algorithms, yet, as Figure 8(d) displays, it completed optimization
only marginally faster than QT, QT-IDP and IDP-NK.

The IDP-NK algorithm was by far the slowest of all algorithms, followed by
QT and QT-IDP. Mariposa was faster than QT and QT-IDP but, as expected,
slower than IDP and DP, since the results of the last two algorithms include no
cost of network message traffic.

5.3.3 Data Partitioning. Figures 8(c) and 8(d) summarize the results of the
last set of experiments, which evaluate the algorithms as the partitioning and
spreading of information varied. Similarly to the previous set of experiments,
the figures concern path queries with centralized directory. Our findings also
hold for star-queries and distributed directory services.

The first figure shows that QT and QT-IDP took advantage of the increased
possibilities for join splitting and operators parallelism and produced plans of
smaller cost as the number of partitions was increased. DP and IDP produced
marginally better plans than QT and QT-IDP, respectively, because they enu-
merated all possible ways of splitting query joins, whereas the query trading
algorithms considered only those plans that were possible from the offers re-
ceived. Mariposa was affected by the level of data partitioning more than the
other algorithms and initially produced plans that were up to 90% slower than
those of DP. The reason is that as the number of partitions was increased, the
chances that some remote partitions had some useful remote indices (which
were disregarded by Mariposa as each partition had different indices) were
increased. Furthermore, the degree of join splitting and operators parallelism
is statically determined by the database administrator and not by the Mari-
posa algorithm itself. Although, we had configured Mariposa to produce plans
of maximum degree of parallelism, the other algorithms automatically choose
plans with less degree of parallelism but with better pipelining possibilities,
and thus managed to produce plans that were better than those of Mariposa.

Data partitioning substantially increases the search space of the dynamic
programming algorithm. For more than three partitions per table, all algo-
rithms, except Mariposa, encountered soft memory overflows (see Section B.3
of the electronic appendix) and fell-back to using the IDP(k,m) heuristic with
different but very small values of the £ and m parameters. This is visible in
Figure 8(a) as for large values of number of partitions, all algorithms produced
plans of similar cost.

Figure 8(d) shows the execution time of all algorithms tested. Except for
Mariposa, the remaining algorithms spent a lot of time trying to find the optimal
way of horizontally splitting query joins. IDP-NK, as expected, was the slowest
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Fig. 9. Processing tasks allocation by the QT algorithm.

of all algorithms whereas, Mariposa was by far the fastest. In fact, in some
cases, Mariposa was approximately three orders of magnitude faster than QT.
Note that Mariposa optimization time appears to exponentially depend on the
number of partitions. This is because the values tested are small. The true
complexity of Mariposa was polynomial.

6. TRADING OF PROCESSING TASKS

In distributed query optimization, an important factor affecting the overall
performance of distributed execution plans is the selection of nodes that will
actually process the data. Figure 9 shows the way processing tasks are assigned
by QT, as presented in the previous sections. Note that processing is performed
in either the sellers (of query answers) or the buyer, which constitutes a two-
level approach. Sellers only process data that is locally available, while the
buyer performs all left-over processing on the data received from the sellers.
These restrictions on where processing may occur reduce the search space of the
buyer, helping query trading to complete in reasonable time. Nevertheless, they
may lead to nonoptimal plans, especially in cases where the buyer is overloaded
or the network connection between the buyer and the sellers is slow.

In the remaining of this section, we extend the QT algorithm so that it can
handle trading of pure processing tasks, that is, assigning the execution of
a plan’s operators to nodes that do not have all the data required available
locally. As we show in Section 6.2, this enables our technique to produce better
execution plans at the expense of additional optimization time.

6.1 Algorithms

In general, to trade processing tasks (pt-trade, for short) within a query op-
timization algorithm, the buyer broadcasts to candidate sellers an RFB for
specific operators/subqueries that appear in the query being optimized. Such
an RFB includes all needed information about the input data of the opera-
tors/subquery, such as their size and data distribution, since this data may not
be local to the sellers. The buyer must have this information from earlier steps
of the algorithm, while the sellers can use it to estimate the execution cost of
(some or all of) the operators and make the appropriate offers. The buyer re-
ceives these offers, adds to the costs stated by the sellers the corresponding
costs to transfer the necessary data to them, and based on the results, chooses
the best offers for consideration in the next step of the algorithm. Note that the
above exchange still respects the autonomy of all nodes; compared to QT, all
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| Buyer-side algorithm Sellers-side algorithm
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S4. For each processing operator, estimate
the cost (and more generally the properties)
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B9. For each operator, select the K best of- | S5. Using the trading framework, make of-
fers. In addition, select all offers coming from | fers for the operators evaluated at step S4.
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B10. Using Pi and the processing offers se-
lected in step B9. find a new optimal distrib-
uted plan P

B11l. Inform the selling-nodes, which offered
queries and processing used in plan P, to exe-
cute these queries/operators.

Fig. 10. Query trading with final step of pt-trading (QTPT).

additional information exchanged becomes available during the natural pro-
gression of the algorithm and requires no revelation of internal information.

We have identified three different extensions of QT to incorporate pt-trading
in it. These are analyzed below.

Query Trading Followed by Final Step of pt-Trading (QTPT). This is the
simplest way of extending QT with pt-trading. It only requires modification of
the buyer predicate analyzer module (see Figure 3) and works in two steps.
First, it runs the normal query trading algorithm to find an initial distributed
query execution plan and then, it runs a single pt-trading round to assign
processing of plan operators to remote nodes that would otherwise be processed
by the buyer after QT.

QTPT is different from QT (Figure 2) after step B7. Figure 10 shows only the
steps that are modified. More specifically, in step B8, instead of terminating,
QTPT locates all processing operators of the optimal plan P, built by QT and
asks for processing bids from remote nodes. Seller nodes estimate the cost (and
other relevant properties) of evaluating these operators locally using the cost
model and knowledge that they have about their locally available resources
(step S4). These estimations assume that the input data of these operators
are available locally at the seller site. Subsequently, in steps B9 and S5, a
traditional trading procedure helps the buyer to decide which processing offers
should be accepted.

An important difference from QT is that, instead of selecting a single offer
per operator, the buyer selects the best K offers, where K is an administrator-
provided constant. The reason for keeping K offers is that, until step B10, we
do not know the exact origin of the input data streams of each operator. For
instance, for a five-way join, plan P, designates the exact origin of the raw
table-scans but not the origin of the inputs of the intermediate joins (these
are most likely “temporarily” assigned to the buyer node in P,). Increasing
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Fig. 11. Iterative query-answer and processing-task trading (IQPT).

K produces better execution plans but exponentially increases optimization
time as well. In the experiments presented in this section, K equals either 3
or half the number of joins of the query being optimized, whichever is larger.
In addition to the K best offers and in accordance with Kossmann [2000], the
buyer also unconditionally accepts offers from all interesting sites. These are
the seller nodes providing query-answers in P,. After selecting the pt-offers,
the buyer DP algorithm is run for the last time starting from the table-scans of
P, and taking these offers into account. The result is a new execution plan P/,
which is executed in step B11.

The QTPT algorithm does not substantially increases the optimization time
of QT but has the potential of substantially improving the plans produced (due
to wider distribution of processing tasks). However, it is a two-step optimization
procedure, still leaving space for further improvements of the produced plans.

Iterative Query and Process Trading (IQPT). The drawback of QTPT is that,
in step B7, the algorithm has already decided on the nodes that will provide
the data (original relations or partial subquery results), taking into account not
the entire network of nodes but only the buyers and data-sellers. This problem
is partially solved by the IQPT algorithm. The algorithm proceeds like QT, but
query-answer trading cycles are interchanged with the pt-trading cycles that
assign processing tasks to remote nodes. That is, between steps B4 and B5 of
QT (Figure 2) a pt-trading cycle is inserted (Figure 11). Each pt-trading cycle
is handled in a similar way as in QTPT. The distributed plans P,, produced are
fed (steps B5 and B6 of Figure 2) into the buyer predicate analyzer, which is
responsible for finding additional queries whose trading could further improve
the plan (in the next iteration of the algorithm).

The IQPT algorithm is still a two-step optimization method (albeit iterative),
since in step B5, plans P,, have already fixed the query-answer providers. The
difference between QTPT and IQPT is that, in the latter, pt-trading does affect
the potential join and union order of distributed plans P,,, which are used by
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Fig. 12. Simultaneous query-answer and processing-task trading (SQPT).

the buyer predicate analyzer. Thus, we expect the latter to produce queries (for
use in the next iteration of the algorithm) that are better suited for the globally
available processing resources. Overall, IQPT is more complex than QT and
QTPT but finds better plans, although its two-phase nature still leaves space
for improvement.

Simultaneous Query and Processing Trading (SQPT). This algorithm
(Figure 12) tries to overcome the two-phase nature of the previous algorithms by
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embedding pt-trading into the heart of QT (modification of the buyer predicate
analyzer again) and simultaneously requesting bids for both query answers
and processing tasks. Hence, in addition to keeping a set of queries @ whose
answers might be worth purchasing from remote nodes, it also keeps a set PC
of operator-processing tasks that it tries to purchase from remote nodes in ev-
ery iteration of the algorithm. The SQPT algorithm starts with an empty PC
set (step BO), which means that in the first iteration, only query answers are
traded. At the end of the first iteration, PC is updated with all processing tasks
that are present in the set P,, of currently best plans and in the set g, of sub-
queries that will be requested in the next iteration of the algorithm (step B7).
In the second and subsequent iterations, SQPT trades query answers (set @)
and processing-tasks (set PC) on an equal basis (step B2-B3). Accordingly, the
buyer DP algorithm (step B4) takes into account offers produced for both sets.

In step B3, selection among query-answer and processing-task offers is han-
dled as follows. First, similarly to QT, the best query-answer offers are accepted,
that is, those offers that together with the network cost to move the data to the
buyer node have the overall least cost. Processing-task offers are then selected
in a way similar to QTPT and IQPT. Finally, except for the first iteration of
SQPT, the following algorithm is run to select additional query-answer offers
that minimize the network cost to nodes that have made the best relevant
pt-offers:

SQPT-qans algorithm

Set N = 0.
For each query ¢, in set @ do
Find all selected processing-task offers that take as input this query g.. Insert
the nodes that made these offers into set N.
For each node n in set N do
Accept the relevant query-answer offer that together with the network cost
to move the data to node n has the overall least cost.
6 End for
7 End for

W N+

(S9N

As mentioned above, the first iteration of SQPT is special in that it does not
include any pt-trading. The reason is lack of two pieces of information for the
buyer. First, the buyer has not built any execution plan P,, and thus does not
know which operators will be needed for answering the query being optimized to
ask for bids to process them. Second, the buyer has no information on any data
in order to propagate it to potential sellers so that they may produce their offers.

Overall, SQPT has substantially higher complexity than the previous al-
gorithms, since its buyer DP algorithm simultaneously examines both query-
answer and processing-task offers. On the other hand, it produces better plans.

6.2 Experiments

In order to test the performance of the three previous algorithms, we have used
our network simulator to run a new set of experiments. The parameters of
the simulated network and data sets are the same as those of Section 5.1. As
a basis for comparison, we have used the Distributed Dynamic Programming
(DDP) algorithm presented in Kossmann [2000]. This algorithm is similar to
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Fig. 13. Performance of query and process trading algorithms.

classical IDP, but each join operator is examined in all possible interesting
nodes using all possible mirrors of the outer and inner relations. Interesting
nodes are those having data relevant to the query. A plan is pruned only when
the cost of the plan plus the shipping cost of moving the results of this plan to
all other interesting nodes is dominated by another plans (when moved to the
same node) producing the same results.

We have run the same three sets of experiments using the same randomly
created set of queries as in Section 5.1, and measured the average optimization
time and plan execution time for DDP and each of the pt-trading algorithms us-
ing either a centralized directory service or a distributed one (11,564 query op-
timizations). In all experiments and all algorithms, the IDP(3,5) algorithm was
enabled since it reduced their optimization time without substantially hurting
the performance of the execution plans produced.

As in Section 5.1, the execution time of DDP is not directly comparable to
QT,QT-IDPIDP-NK and Mariposa, as it does not incur any cost of network
message exchanges. For comparison reasons, in the graphs presented in the
next section, we include the respective results of Section 5.3 obtained by running
QT-IDP. We differ the comparison of the pt-trading algorithms to IDP-NK and
Mariposa till Section 9.

6.3 The Results

6.3.1 Number of Joins. Figure 13(a) presents the average execution cost
of plans produced by DDP, QT-IDP and the three QT enhancements with
pt-trading, for both path-queries and star-queries. The results confirm our
intuition that the pt-trading algorithms would substantially improve the
plans produced by QT-IDP. Figure 14(a) further analyzes the performance of
the algorithms as the number of joins is varied for path-shaped queries. The
results obtained for star-queries are similar. This figure shows that pt-trading
algorithms always produce better plans than QT-IDP irrespectively of the
complexity of queries being optimized. However, as the number of joins is
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Fig. 14. Performance of query and process trading algorithms vs number of joins.

increased, the average quality of plans produced by QT-IDP, QTPT and IQPT
deviates from that of DDP and only SQPT manages to perform close to DDP.

The average optimization times of path-queries for the previous algorithms
are presented in Figure 13(b), either with a centralized directory or with a
distributed (P2P) one. Interestingly, in both cases, the pt-trading algorithms
spend a lot of their time idle, waiting for replies to their RFBs concerning
queries and processing tasks. This is why the network and seller processing
delay times are a large fraction of the total optimization time of pt-algorithms.
The relative difference of the total optimization time between the centralized
directory and the distributed one is rather small for pt-algorithms compared to
that of QT.

Figure 14(b) analyzes the optimization time vs number of joins of path
queries with centralized directory. The execution time of the algorithms expo-
nentially depends on the number of joins. As expected, the QT-IDP algorithm
has a start-up cost of a single round of message exchanges (approximately
50 ms) caused by the bidding procedure. The QTPT algorithm has a start-up
cost of two rounds of message exchanges (and two runs of the buyer DP
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algorithm). The IQPT algorithm has a start-up cost of four rounds of message
exchanges (and four runs of the buyer DP algorithm) since it runs at least
two iterations. Finally, the SQPT has a start up cost of two rounds of message
exchanges and two runs of the buyer DP algorithm. Its substantially higher
cost is due to the much higher complexity of its DP module algorithm, which
is higher than that of the other trading algorithms.

Figure 14(c) further analyzes the behavior of the SQPT algorithm by pre-
senting the average local processing times, the network and seller processing
delays, and megabytes transmitted vs the number of joins. The directory ser-
vice used is the centralized one, and queries are path-shaped. Due to processing
parallelization (by seller nodes) and the fact that the £ and m parameters of
IDP were modified at run-time whenever a soft memory overflow was detected,
the optimization time, the network delays and the megabytes transmitted by
the SQPT algorithm almost linearly depend on the number of joins. Still, com-
paring Figure 14(c) to Figure 7(f) we see that the SQPT algorithm transmits a
lot more data through the network than plain QT.

6.3.2 Data Mirroring. Figures 15(a) and 15(b) summarize the results of
the second set of experiments, where the level of data mirroring is varied. The
presented figures concern path queries with a centralized directory. The first
figure shows that all trading algorithms benefit from the existence of data mir-
rors. Initially, as the number of copies is increased all algorithm improve their
execution plans by parallelizing join operations and using bushy and hyper-
bushy execution plans (see Figure 22(c)). However, for more than 8 copies per
relation, all algorithms roughly fail to further improve the produced plans.

As far as optimization cost is concerned (Figure 15(b)), SQPT is the slowest
of the trading algorithms followed by IQPT, QTPT, and finally QT-IDP. Opti-
mization time of all pt-trading algorithms is affected by the increase in the
number of network message exchanges and the increase in their search space.
Fortunately, the bidding procedure discards most offers for the same part of a
query received from different seller nodes, keeping only the best K offers (see
Section 6.1). Thus, the search space and optimization times of the pt-trading
algorithms is kept substantially smaller than those of DDP, which considers all
nodes having data relevant to the query.

6.3.3 Data Partitioning. Figures 15(c) and 15(d) summarize the results
of the last set of experiments, where the number of partitions and mirrors is
varied. The figures concern path-queries with a centralized directory. All pt-
trading algorithms manage to improve the plans produced by plain QT-IDP.
However, as the number of partitions is increased, the complexity (and mem-
ory) requirements of all algorithms are substantially raised. For values larger
than 3 partitions, all algorithms automatically modified their IDP(k, m) param-
eters to avoid memory overflow (see Section B.3 of the electronic appendix). For
more than 5 partitions, all algorithms ended up running using 2 = 2,m = 1,
which severely affected the quality of plans produced. This is why for large
values of the number of partitions, all algorithms behave similarly. As far as
the optimization time is concerned, this increases almost exponentially with
the number of relation partitions.
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Fig. 15. Performance of query and process trading algorithms.

7. SUBCONTRACTING

7.1 Algorithm

Up to now, we have assumed that all nodes could directly communicate to all
other ones. However, this is not always true, especially in networks of au-
tonomous systems. For instance, nodes of autonomous interconnected LANs
(except for gateways) are typically aware of (and are allowed to directly com-
municate to) only those nodes residing on the same LAN. Query subcontracting
can be used by our trading framework to allow it to work in cases where such
nodes’ interconnection restrictions apply, or when nodes use different (central-
ized or distributed) directory services, which hold the same type of information
but for different sets of nodes (part of the network). Such segmentation of the
network interconnection graph or of the directory service information occurs
frequently due to security constraints (e.g., firewalls), other policies, or simply
due to the physical network topology. Allowing sellers to subcontract parts of
queries requested by buyers can also potentially improve the overall quality
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of plans produced, as sellers will try to outsource those parts that cannot be
handled efficient by them.

Modifying either QT or one of the pt-trading algorithms to support query
subcontracting is relatively straightforward. Only the seller-side algorithm of
Figure 2 is altered as follows:

Sellers-side algorithm

S1. For each query ¢ in set @ do the following:

S2.1. If subcontracting [sAllowed () then

S2.2.1. Run QT (or a pt-trading algorithm) to optimize query q.

S2.2.2. For each execution plan p that was not pruned by the DP algorithm of the

Buyer Query plan generator of QT (see Section 3.6) do:

S2.2.3.1 Find the part g, of query g that is evaluated by plan p. The cost ¢, of g,
is the cost of plan p as found by the Buyer Query plan generator of step
S2.2.1.

S2.2.4. End For.

S2.3. else

S2.4.1. Find subqueries g;, of g that can be answered locally.

S2.4.2. Estimate the cost ¢, of each of these subqueries gy.

S52.5. End if

S2.6. Find other (sub-)queries that may be of some help to the buyer.

S1. End For.

S3. Using the query trading framework, make offers and try to sell some of the

sub-queries of steps S2.3.1, S2.4.2 and S2.6.

The above algorithm differs from the original seller algorithm of Figure 2 in
steps S2.1-S2.3. For each query g requested by a buyer, a nested query trading
(QT or pt-trading) algorithm is run (step S2.2.1) at each buyer-reachable seller
node. This algorithm optimizes g using the remotely available data and the
seller’s local data. The results of this procedure (52.2.3.1) are then offered to
the initial buyer. If insufficient seller-reachable nodes exist, the nested trading
algorithm of step S2.2.1 may fail to find a complete execution plan of the whole
query q, therefore, sellers make offers (to the initial buyer) for all plans (S.2.2.2.)
that were simply not pruned by the Buyer Query plan generator of these nested
QT or pt-trading algorithms.

The seller algorithm for subcontracting is recursive, since at step S2.2.1 a
query trading algorithm is instantiated which, in turn, recursively makes use
of the seller algorithm. This recursion is terminated at step S2.1. with the help
of the subcontractinglsAllowed() function. We tested two different implemen-
tations of this function. The first one is based on a technique borrowed from the
area of network routing. It uses a Time To Live (TTL) integer, which is included
in RFBs and decremented each time a nested trading algorithm is used. The
initial buyer selects a TTL value large enough to ensure that all network nodes
are reached though the recursion.

Our second implementation of subcontractinglsAllowed() uses a node black
list, attached in each query RFBs. Each new instance of a nested trading al-
gorithm uses the black list received (by the seller) to send its new RFBs only
to those nodes that are not contained in this list. Furthermore, the black lists
included in new RFBs produced by this nested trading algorithm are expanded
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Fig. 16. Performance of subcontracting algorithms when network node degree is varied.

to include all seller-reachable nodes, which means that after a number of recur-
sive instantiations of the trading algorithms, all nodes will be blacklisted and
recursion will terminate.

7.2 Experiments

To test the performance of our optimization algorithms with subcontracting,
we used the same simulation test-bed as before. The relations referenced in
these queries had on average 2 copies. We tested the QT and SQPT algorithms
with and without subcontracting using either the TTL or the BlackList (BL)
mechanism. To avoid out-of-memory problems in the machine used by our sim-
ulation program, the number of nodes was reduced to 400 and the number of
relations to 1,000, since due to recursion, hundreds of trading algorithms had
to be concurrently simulated. The network was generated as a random graph
where each node had a degree of d. In our experiments, d varied from 399
(complete graph) to 2.

Figure 16(a) presents the average plan cost as a function of d for 15-way join
path-queries. The QT and SQPT algorithms could not always find an execution
plan for all queries tested when node degree was less than 300. Ford < 250, the
node degree was too low and very few execution plans could be found by either
QT or SQPT. On the other hand, their subcontracting variations successfully
found efficient execution plans for all values of d tested.

For the same node degree, the subcontracting versions of the algorithms
produce better plans than their respective plain (nonsubcontracting) versions.
This is because the former, through subcontracting, are able to assign process-
ing tasks to nondata providing nodes, that is, perform some kind of (additional)
process trading. For instance, a seller node without any relevant to a query data
can obtain (by subcontraction) the two halves of this query from two different
seller nodes, perform the missing operations to construct the whole query and
offer it to the initial buyer.

Figure 16(a) also shows that for the same node degree, the SQPT-based al-
gorithms perform better than those based on QT. This is because the latter still
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select data sources and assign processing tasks in separately discrete steps,
whereas the former do so simultaneously, as they are extensions of SQPT. As d
decreases, the quality of plans produced by QT and SQPT deteriorates as fewer
candidate sellers are available. The plan cost of queries optimized by QT-TTL
and SQPT-TTL also increases as d is reduced, but at a much slower rate. Such
increase cannot be avoided since the network costs of plans produced rise due
to the increase in the number of network hops required to contact the physical
seller nodes of data.

The performance of QT-BL and SQPT-BL is more spectacular than QT-TTL
and SQPT-TTL. Plan cost of queries optimized by the blacklist-based algorithms
actually improves as d decreases from 399 to 150, as the size of the initial
black list of each query is reduced and thus the potential of finding a profitable
subcontract is initially increased. The black list ensures that all nodes not
reachable from the initial buyer node are informed of RFBs. Each of these nodes
receives the same RFB from multiple different candidate sellers of the initial
(first-level) QT or SQPT algorithm. This is in contract to the TTL mechanism
which simply statistically ensures that all nodes receive (once) the RFBs of
the initial buyer node. The blacklist-based algorithms consider a substantially
larger number of subcontracting possibilities than their respective TTL-based
ones and, thus, manage to produce better plans than the latter. For values of
d between 150 and 40, QT-BL and SQPT-BL cannot further improve the plans
produced and the increase of network costs causes an overall deterioration
of plans produced. Finally, for very small values of d, the performance of all
subcontracting algorithms collapses due to the substantial increase in the cost
of network transfers.

Figure 16(b) presents the optimization time of the algorithms tested for 15-
way join path-queries. As expected, the situation is now reversed: For the same
node degree, the QT-based algorithms are faster than their respective SQPT-
based ones and the subcontracting algorithms are slower than their respective
non-subcontracting versions. The optimization time of plain QT and SQPT al-
gorithm is reduced as d is decreased, since the number of sellers contacted is
reduced. The QT-BL and SQPT-BL algorithms increase their optimization time
as d is decreased, since the number of concurrently running seller-algorithms
required to complete optimization grows substantially with that.

The QT-TTL and SQPT-TTL algorithms initially reduce their optimization
time as d falls from 399 to 200. For these values of d, the TTL value is con-
stant (2) and thus, as d is decreased, the number of concurrent seller-algorithm
instances is decreased. For values of d less than 200, the initial TTL value is
starting to increase, causing the number of concurrent seller algorithms to sta-
bilize to approximately 400 instances. This also increases the number of net-
work hops and thus the optimization time is raised as the value of d is reduced
from 200 to 2.

8. FALLBACK ALGORITHM

Our main objective when designing the query trading framework was to create
algorithms that would respect the autonomy of nodes and produce plans as
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close as possible to the optimal (DDP) ones. However, there are cases where
query optimization times are large compared to the execution time of plans
produced, for example, queries referencing small relations. In such cases, using
trading algorithms as presented until now is a problem, especially in interactive
environments, where queries are optimized on the fly and the resulting plan is
typically used only once. We have studied three possible approaches to reduce
optimization time:

(1) reducing the number of iterations of the algorithms,

(2) reducing the extent of partition parallelism exploired by the search compo-
nent of DP (see Section 3.6),

(3) using a bargaining/auction negotiation protocol, when this is better than
bidding.

We examine the first two of these options separately below and consider the
use of bargaining/auctions in Section C of the electronic appendix. In all cases,
we compare the resulting algorithms to Mariposa. We do not consider IDP-NK
since it produces very similar execution plans as QT-IDP, yet, it needs more
time to complete query optimization than the latter (see Figures 6, 7, 8). As a
case example, we will use the SQPT algorithm; nevertheless, our findings are
applicable to all trading algorithms presented in this article.

8.1 Number of lterations

Since SQPT is an iterative algorithm, it is possible to substantially reduce
its optimization time by reducing the number of iterations it goes through.
Consider queries requiring more than one iteration to be optimized. Figure 17(a)
shows the average fraction of optimization time spent in the first iteration
(denoted «1(j)) vs. the number of joins j of the queries. Figure 17(b) presents
the corresponding average execution cost of plans produced in the first iteration
of SQPT, normalized by the cost of plans produced in the last iteration of the
same algorithm (this normalized cost is denoted 81(j)). For instance, for queries
with 5 joins, the first iteration of SQPT takes approximately 21% of the total
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optimization time and produces plans that are on average 55% slower that those
of the last iteration. The particular diagrams were derived from the logs of the
experiments run in Section 6.3.1 and concern path queries with centralized
directory (results for other cases were similar).

Using functions a7 and B, we can heuristically decide whether or not it is
worth continuing to the second iteration of SQPT. Let T4 be the time spent in
the first iteration of SQPT for a specific query with j joins, and C; be the cost
of the best execution plan at the end of this iteration. If we stop optimization at
this point, the total cost of optimizing and executing the query will be 77 +C;. If
we continue optimization, then the final cost will be approximately % + ﬁ%)
Hence, it is worth continuing optimization if and only if

Tl. + Cl. < +C <= LR —al(J.)('Bl(J) .1)
a1(j)  pi(j) C1  AGA—a1(j)

The last fraction is denoted A1(j). Similarly, we can define «,, 8,, and A,,
n=1,2,...,n,forthen-thiteration of SQPT («, would refer to the cummulative
optimization time for the first n iterations).

To implement the previous heuristic, step B8 of SQPT (see Figure 12), which
is run at the end of each iteration, is modified to test whether equation (1),
extended for arbitrary n, holds. If this is not the case, then SQPT is terminated.
Fraction g—z is easy to be calculated at step B8, since both 7}, and C,, are known.
Function A, can be estimated from previous historic data or it can be specified
based on system policy.

To test the effectiveness of this fall-back strategy, we created a set of 1,000
path queries with 0-29 joins. We created a modified version of SQPT (F-SQPT)
which stopped optimization in the first iteration according to the mechanism
described above. Function A, was estimated from historic data, so we first use F-
SQPT to optimize the first half of the queries (training) and then optimized the
remaining 500 queries with SQPT, Mariposa, DDP, and F-SQPT. The results of
this experiment are given in the scatter plots of Figure 18 (each point represents
an individual query). The x-axis measures the execution costs of queries as
estimated by DDP. The y-axis measures the sum of optimization plus execution
cost of the queries optimized by SQPT, F-SQPT and Mariposa. Note that in
Figure 18(a), SQPT performs better than Mariposa for large queries but is
deficient for queries taking only a few seconds to complete. Figure 18(b) shows
the behavior of F-SQPT compared to that of Mariposa. Almost always, F-SQPT
performs better than Mariposa. Figure 18(c) compares SQPT to F-SQPT. The
latter is clearly better for queries with small execution time but the former is
better for the remaining ones. The reason is that often F-SQPT incorrectly stops
optimization in the first iteration. Hence, SQPT should be further modified to
fall back into F-SQPT only when C; (or C,) is low.

= 1)

8.2 Partition Parallelism

Partition parallelism is a major source of query optimization complexity as the
number of ways join and union (of table partitions) operators can be ordered is
immense. To obtain a better sense of the impact of such parallelism we used
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Fig. 18. Behavior of F-SQPT algorithm.

SQPT and a centralized directory service to optimize 20 path queries, with 7
joins, where each relation joined had two partitions and two copies per partition.
Figure 19 displays the average optimization time and plan execution cost of the
first and last iteration of SQPT as a function of the number of relations that are
allowed to be executed in a partition-parallel fashion (joins before unions). In
particular, for a specific value P in the x-axis, parallel execution of the largest P
tables is explored, while the remaining tables are first unioned and then joined
as a whole. The results show that the optimization time of SQPT (final iteration)
is substantially reduced from approximately 6, 500 seconds (all joins possibly
parallelized) down to 13.4 seconds (no parallism), whereas the execution cost
of plans produced increases from 71,5 seconds to 85 seconds, respectively. This
indicates that reducing the level of partition parallelism examined is a good
trade-off between optimization time and plan cost.

Figure 19 also shows that the first and last iteration of SQPT exhibit the
same behavior. This indicates that reducing partition parallelism is orthogonal
to reducing the number of iterations. Hence, the following fall-back strategy of
SQPT can be used: After buyer nodes have received all bids from sellers and
have selected data sources using the biding procedure, they can estimate the fi-
nal cost of queries assuming joins are executed locally, without parallelism. The
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estimated costs together with previous historic data can then be used to decide
whether or not the remaining iterations of SQPT should consider a restricted
level of partition parallelism. We measure the performance of this fall-back al-
gorithm, together with the use of different negotiation protocols, in Section C.1
of the electronic appendix.

9. DISCUSSION

Distributed query optimization requires extensive knowledge of the current
state of network nodes. This includes the location of table partitions, the avail-
able indices and materialized views, the network interconnections throughput,
the sizing and capabilities of remote nodes, their cost functions and their cur-
rent workload. In the autonomous environments that we consider, nodes have
to ask others for this information, as no node has exact knowledge of all these
parameters. Centralized optimization algorithms, such as DP and IDP, must
initially contact remote nodes to retrieve this necessary information and, thus,
are inappropriate for autonomous environments. Even so, they find the best ex-
ecution plan of a query by examining several different solutions and assigning
processing tasks only to the buyer and data providers (two-level processing-
task assignment). The DDP centralized algorithm finds even better plans by
assigning processing-tasks to any interesting node. However, the search space
is very large and DDP requires large amounts of memory, even when the iter-
ative dynamic programming heuristic is used.

The IDP-NK optimization algorithm is suitable for autonomous environ-
ments and produces the same execution plans as IDP does. However, its de-
layed pruning technique that decouples cost estimations from nodes running
the IDP-NK algorithm has the side-effect of increasing the volume of network-
exchanged messages and slowing down the enumeration of candidate execution
plans due to the large amount of plans kept in memory. A better alternative
for cost decoupling is to distribute the optimization procedure, that is, all (re-
mote) nodes should contribute to the optimization process. This ensures that
the search space is efficiently divided among many nodes and at the same time,
it minimizes the number of messages exchanged during query optimization, as
remote nodes need not inform a node running some centralized algorithm of
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the cost of each feasible execution plan. The trading algorithms do so by asking
candidate sellers to calculate and find the cost of any possible subqueries and
processing-tasks that might be useful for the construction of the global plan.
Network flooding can be avoided using standard e-commerce techniques such as
agent-based architectures, focused addressing, audience restriction, use-based
communication charges, and mutual monitoring [Parunak 1987; Smith 1980].

The Mariposa algorithm works in two phases. First it builds the execution
plan, disregarding the physical distribution of base relations and then selects
the nodes where the plan will be executed using a greedy approach. In this
way, Mariposa and any other two-phase algorithm that treats network inter-
connection delays and data location as less important aspects of optimization
produce plans that exhibit unnecessarily high communication costs [Kossmann
2000] and are arbitrarily far from the desired optimum [Papadimitriou and
Yannakakis 2001]. Mariposa cannot take full advantage of advanced access
methods that may exist in remote nodes if relations are partitioned and have
different indices. Finally, it partially violates node autonomy since it requires
accurate statistics and information on the physical database design (i.e., exis-
tence of indices on the underlying data sources) [Deshpande and Hellerstein
2002]. This information is used in the first phase of optimization, to improve
the quality of execution plans produced.

Query trading algorithms are the ones that better respect the autonomy of
remote nodes and protect their privacy. They treat them as true black boxes
and run having the minimum possible information on them, apart from what
is implied by their bids. They do not need or make any assumptions on the
state of remote nodes (e.g., their CPU resources, etc.), not even on the data
model that they actually use internally. The only piece of information required
is their logical schema, which is exposed through a directory service.

Figure 20 shows a scatter diagram of the algorithms presented in this article.
This diagram shows the average plan cost vs the average optimization time for
nonpartitioned, nonmirrored, select-join-project path queries with 0-29 joins.
The directory service used is the centralized one. The network graph is fully
connected. The same diagram for star-queries or mirrored or partitioned rela-
tions differs in that the pt-trading and subcontracting algorithms have larger
optimization times and Mariposa produces less efficient plans. From left to
right, there are four areas. In the left area are the algorithms (DDP, SQPT-TTL,
SQPT) producing the best execution plans, that is, those that simultaneously
consider the allocation of data and processing without any constrain on the
selection of nodes. Next are the algorithms (QTPT, IQPT,QT-TTL) attempting
to select data-sources and distribute processing to non-data-providing nodes in
separate steps. The third area includes all algorithms (DP,IDP,IDP-NK,QT, QT-
IDP) that restrict assignment of processing tasks to nodes that provide data.
Finally, in the right area of the diagram is Mariposa which works in two phases
(i.e., local and then distributed optimization). The F-SQPT algorithm is not dis-
played in the scatter diagram since its exact position depends on the sum of
optimization and execution times. If the average execution time is large com-
pared to optimization time, like in the case of most of the experiments that we
run in Sections 5.1, 6.2 and 7.2, then F-SQPT will be near SQPT. Otherwise,
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Fig. 20. Optimization time vs plan cost.

Table II. Optimization Algorithms for Networks of Autonomous Database Systems

Small queries Medium-size queries Large queries
Mariposa, SQPT with fall-back  QT-IDP, QTPT, IQPT, SQPT SQPT

F-SQPT will be near QT-IDP. The optimization time and the sum of optimiza-
tion and execution time of F-SQPT is always between those of QT-IDP and
SQPT. The Black-list-based subcontracting algorithms are not displayed be-
cause for connected network graphs, they perform similarly to their respective
non-subcontracting versions.

Considering the overall trade off between plan execution cost and optimiza-
tion time as indicated in Figure 20, SQPT (without subcontracting) appears to
offer the best trade-off. In interactive environments were possibly small queries
may be evaluated, F-SQPT with bargaining (see electronic appendix) and re-
striction on the level of partition parallelism is the best choice as it keeps the
query evaluation time (optimization plus execution time) small. Finally, sub-
contracting algorithms should be used when buyer has no direct connection
with all candidate sellers.

A different perspective is offered by Table II, where the best algorithm choices
are shown as a function of query size. Although the fastest of all algorithms in
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general (recall that DP, IDP and DDP are centralized algorithms and do not in-
clude any network costs), Mariposa produces the worst execution plans. Thus,
it should be preferred only for ultrasmall queries (i.e., queries with optimiza-
tion + execution cost less that a second). Another viable solution for small
queries is SQPT with a fall-back mechanism, such as the F-SQPT with bargain-
ing. The QT-IDP and pt-trading algorithms are excellent choices for medium-
sized queries, whereas for very large queries, the SQPT algorithm should be
preferred.

10. CONCLUSIONS AND FUTURE WORK

In this article, we have discussed an approach to distributed query optimiza-
tion in a network of autonomous database systems based on a framework for
trading query answers and processing tasks. We have elaborated on its main
components, explored several algorithmic options and policies, and examined
the performance characteristics of the various alternatives. Our algorithms
can be used in any large federation of cooperating DBMSs, hosted in a large in-
tranet or the Internet. Through several experimental results, we have showed
that these algorithms are scalable and produce plans that offer better trade-
offs between query optimization time and resulting plan execution cost than
other existing optimization algorithms. Furthermore, these algorithms require
less knowledge about the nodes in the network than other approaches, making
them more appropriate for autonomous systems.

To the best of our knowledge, the only other algorithms directly comparable
and having similar objectives to query trading is Mariposa and IDP-NK. Our
framework improves on most aspects of these algorithms: It requires less global
knowledge, produces better execution plans, and it is the only one that runs
progressively enabling users to fine tune the query optimization and execution
time.

There are several directions that we intend to pursue in our future work.
First, we plan to explore the use of contracts to model the notion of adap-
tive/dynamic query optimization and compare the resulting method to other
algorithms that exist for the problem. Second, we would like to investigate sev-
eral theoretical issues with respect to our techniques, for example, whether or
not the resulting plans are Pareto optimal, whether or not the algorithms lead
to Nash equilibrium, and others. Third, we intend to work on other forms of
query-answer valuations (e.g., data completeness or freshness, in isolation or
combination) and examine the consequences on our current approaches. Finally,
we will explore competitive environments as well.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.
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