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People’s preferences are expressed at varying levels of granularity and detail as a result of partial
or imperfect knowledge. One may have some preference for a general class of entities, for example,
liking comedies, and another one for a fine-grained, specific class, such as disliking recent thrillers
with Al Pacino. In this article, we are interested in capturing such complex, multi-granular pref-
erences for personalizing database queries and in studying their impact on query results. We
organize the collection of one’s preferences in a preference network (a directed acyclic graph), where
each node refers to a subclass of the entities that its parent refers to, and whenever they both
apply, more specific preferences override more generic ones. We study query personalization based
on networks of preferences and provide efficient algorithms for identifying relevant preferences,
modifying queries accordingly, and processing personalized queries. Finally, we present results of
both synthetic and real-user experiments, which: (a) demonstrate the efficiency of our algorithms,
(b) provide insight as to the appropriateness of the proposed preference model, and (c) show the
benefits of query personalization based on composite preferences compared to simpler preference
representations.
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1. INTRODUCTION

The World Wide Web has enabled people with varied goals and characteristics
to access an ever-growing amount of information. The emergence of hand-held
electronic devices, such as palmtops and cellular phones, has increased the
possibilities for information access from anywhere, anytime. In this context,
finding the “right information” is a difficult problem accentuated by the growing
rate at which new information becomes available and the heterogeneity of
people searching for information. To cope with this problem, personalization
methods, such as recommendations (e.g., [Balabanovic and Shoham 1997; Das
et al. 2007; Linden et al. 2003]) and query personalization (e.g., [Koutrika and
Ioannidis 2004; Liu et al. 2004; Pitkow et al. 2002]), have been proposed both
by industry and academia.

Query personalization is based on the observation that “different users may
find different answers relevant when searching” because of different prefer-
ences [Pitkow et al. 2002]. A query is personalized by applying related user
preferences stored in the user’s profile and changing the order and possibly the
size of results. Which preferences from a user’s profile are related to a query
and how they affect the final answer can be determined based on the query, the
profile, and the personalization logic applied. Consider as an example a query
about comedies. A preference for movies directed by Woody Allen is related
since this director has directed comedies. On the other hand, a preference for
Andrei Tarkovsky is not related to the same query because this director has
never directed any comedies, and, if this preference is conjunctively combined
with the query, no results will be returned.

In this article, we are interested in modeling and using user preferences for
query personalization in the context of databases. Our interest in databases
stems from the fact that databases comprise an important part of the (deep)
Web, as witnessed by the proliferation of database-driven Web sites (e.g.,
e-commerce and social bookmarking sites), where different notions of user in-
formation are very important.

Modeling preferences and ranking query results based on preferences hide
many challenges. Existing works have studied various aspects of these prob-
lems, such as qualitative (e.g., [Chomicki 2003; Kiessling 2002]) versus quan-
titative preference formulations (e.g., [Agrawal and Wimmers 2000; Koutrika
and Ioannidis 2004]), different types of preferences (e.g., likes and dislikes
[Kiessling 2002; Koutrika and Ioannidis 2005b]), context and preference com-
binations for result ranking (e.g., [Holland and Kiessling 2004; Stefanidis et al.
2007]), and so forth. In this article, we study preference modeling at various
levels of granularity and result ranking that is aware of and respects the pref-
erence importance as well as the natural relationships between multi-granular
preferences.

Multi-granular, composite user preferences and ranking. In an ideal world,
preferences could exist for every object in a domain of interest, for example, for
every movie, for every book, etc. Such elaborate preferences would yield a per-
fectly fine-grained ranking of alternatives and highly personalized content. In
another ideal world, one could express preferences for general but well-defined,
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disjoint sets partitioning the objects of discourse. For example, one could have
an explicit preference for movies directed before 1990 and another, explicit,
preference for movies released after 1990. Unfortunately, neither of these two
extremes is found in practice often. User preferences are typically incomplete
and, furthermore, our knowledge of them is imperfect and partial. Different
factors may contribute to this phenomenon, as we explain next.

People tend to have a mix of general and specific preferences. This mix may
indicate lack of knowledge, lack of elaborate taste, or inability to identify those
properties of objects that determine their preferences. For instance, one may
have a general liking for adventures but a finer-grained taste only for a subset
of them, such as those directed by S. Spielberg, which are characterized as fa-
vorites. On the other hand, one may have liked some particular books but may
be unable to identify a common characteristic that made them attractive. Im-
plicit collection of user preferences, for instance, by observing the user behavior
in the system, suffers from similar problems. For instance, consider a system
that builds user profiles from user ratings for movies to provide personalized
content. Suppose that a user has given high ratings to all comedies she has
seen so far. This knowledge allows the system to conclude that the user likes
comedies but does not suffice to differentiate among comedies. Suppose that
the user continues to interact with the system and provides some low scores for
comedies starring Jack Nicholson. Then, the system may enrich its knowledge
of this user’s preferences by discriminating against comedies starring Jack
Nicholson, which will be ranked lower than other comedies.

Article focus and contribution. Given that general and specific preferences
can peacefully coexist, in this article, we study query personalization based on
multi-granular preferences. We represent preferences as degrees of interest in
query conditions following a similar philosophy to previous works [Koutrika
and Ioannidis 2004; Stefanidis and Pitoura 2008]. The key difference from
earlier works, however, is that we allow a profile to contain any mix of general
and specific preferences, where the latter are explicitly stated rather than being
implicitly calculated from the former.

For personalizing the results of a query, we adopt the personalization frame-
work presented by Koutrika and Ioannidis [2005b], which is based on the
following principles:

—The decision about when a preference is related to a query is determined
with respect to their structure, that is, the relations, attributes, and attribute
values they both contain.

—A personalized answer should satisfy at least l of the top k user preferences
related to a query, in order of decreasing degree of interest.

Parameters l and k provide a quantitative way to describe the desired answer.
Parameter k determines which of the related user preferences should be con-
sidered for application to a particular query. It also provides a way to control
the cost of query personalization, as the fewer the preferences integrated into
a query, the more efficient that query may be. Parameter l captures the min-
imum number of user criteria (i.e., preferences) that an answer should meet,
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thereby offering a degree of flexibility to personalizing a query answer. We
discuss possible ways to specify parameters l and k in Section 4.1.

At query time, a mix of generic and specific preferences may be related to
a query but these may not be freely combined to determine the ranking of the
query results. For example, a preference for comedies can be combined with a
preference for actor Adam Sandler but they are both overridden by a preference
for “comedies with Adam Sandler”. We formally define preference overriding
relationships based on containment mappings. Given a set of preferences re-
lated to a query, we automatically identify such relationships and we organize
them in a preference network (a directed acyclic graph). Each node in the net-
work refers to a subclass of the entities that its parent refers to. Whenever the
more specific preference (e.g., for comedies with Adam Sandler) applies, it over-
rides the more generic one (e.g., for comedies), whether the former represents
a stronger or a weaker preference than the latter. To the best of our knowledge,
this is the first systematic study of multi-granular preferences and preference
relationships in a quantitative way.

Handling multi-granular preferences and preference relationships can lead
to increased complexity and, thus, higher execution times. One approach would
be to build an appropriate set of queries that expand the initial query with
combinations of preferences that are allowable based on the preference rela-
tionships and return ranked results. For example, we could execute a query
that returns comedies without Adam Sandler and another query that returns
comedies with Adam Sandler. However, such queries may be quite complex
and time consuming even for a few preferences with no relationships among
them [Koutrika and Ioannidis 2005a]. Organizing the preferences in a net-
work helps preference processing in the following ways. It helps keep track
of the preference relationships and the preferences to use for ranking each
tuple. Our personalized query answering algorithms can work directly on the
network. They exploit the containment mappings implied by the network to de-
cide how to traverse the network, that is, which preferences to process and in
what order resulting in reduced preference processing. Exploiting containment
mappings for optimizing performance and in general exploiting the charac-
teristics of preferences (not only the characteristics of the queries) to opti-
mize queries with preferences has not been considered in previous works so
far.

We evaluate our framework and algorithms both for effectiveness and effi-
ciency. We study the effect that the increased expressive power and freedom
offered by our framework has to users through a user evaluation. Naturally, we
raise the question of whether increased expressiveness is achieved at the ex-
pense of performance and we answer it in the negative through an appropriate
experimental performance evaluation.

In summary, our contributions are the following:

—We introduce a framework for multi-granular preference modeling that is
based on the concept of networks of preferences, which allow the represen-
tation of both generic and specific preferences and their relationships in a
concise and flexible way (Section 3).
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—We present a system architecture for query personalization based on prefer-
ence networks (Section 4).

—We describe efficient algorithms that, given a query and a user profile, derive
the top k preferences that are related to the query, identify the relationships
among them, and organize them in a network (Section 5).

—We use the preference network to support algorithms for computing the
personalized results of a query. Our algorithms process preferences in an ef-
ficient way by exploiting the containment mappings captured in the network
(Section 6).

—We study the overall impact of the increased expressiveness allowed by our
framework through both synthetic and real-user experiments. We show that
more accurate, finer-grained result rankings can be achieved without losing
in performance (Section 7).

2. RELATED WORK

Preference is a fundamental notion in applied mathematics [Fishburn 1999],
philosophy [Hansson 2001], and AI [Wellman and Doyle 1991]. In databases,
preferences have been used for cooperative query answering, that is, for pro-
viding answers with extra or alternative information that may be meaningful
to the user [Cuppens and Demolombe 1989; Gaasterland et al. 1992]. Recently,
preferences have attracted renewed interest in the database community trig-
gered by the observation that the strict Boolean information access model
assumed in databases is some times restrictive. Query criteria are considered
as hard by default, and a nonempty answer is returned only if it satisfies
all criteria. On the contrary, in information retrieval, query criteria (terms)
are considered soft and an answer contains results ranked according to how
well they match the query. Recent years have witnessed the emergence of ap-
proaches aiming at the introduction of soft criteria or preferences in database
queries, resulting to preference queries, with some early efforts going back to
the 80’s [Lacroix and Lavency 1987]. These approaches are divided into the
following categories:

Qualitative approaches aim at a relative formulation of preferences, such as
a user prefers comedies over westerns. This formulation is natural for humans
and results in partial orders of results. Absolute specification of the significance
of a preference is not possible. Preferences between tuples in the answer to a
query are specified directly, using binary preference relations [Borzsonyi et al.
2001; Chomicki 2003, 2004; Kiessling 2002; Kiessling and Kostler 2002]. Two
frameworks have been independently proposed in which preference relations
are defined using logical formulas [Chomicki 2003] or special preference con-
structors [Kiessling 2002]. Preference relations are embedded into relational
query languages through a relational operator that selects from its input the
set of the most preferred tuples (winnow [Chomicki 2003], BMO [Kiessling
2002]).

Quantitative approaches aim at an absolute formulation of preferences, such
as a user likes comedies very much and westerns to a lesser degree. This
formulation leads to a total ordering of results based on user preferences.
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Preferences in queries are specified indirectly using scoring functions that
associate a numeric score with every tuple of the query answer [Agrawal and
Wimmers 2000; Hristidis et al. 2001].

There is extensive work on executing and optimizing preference queries, in
particular:

—skyline queries [Borzsonyi et al. 2001; Chomicki 2004; Kossmann et al. 2002;
Papadias et al. 2003; Pei et al. 2005], which are a special case of qualitative
preference queries. Skyline queries have been also studied over uncertain
data (e.g., [Pei et al. 2007]), streams (e.g., [Sarkas et al. 2008]) and in P2P
environments (e.g., [Vlachou et al. 2007]).

—top-n queries [Bruno et al. 2002; Chang and Hwang 2002; Tao et al. 2007],
that is, queries that retrieve the best n objects that minimize a specific
function. Core rank-aware query operators [Ilyas et al. 2004] and special
structures, such as the P-Cube [Xin and Han 2008], have been proposed.
Special cases of top-n queries have been studied, such as spatial top-n queries
[Yiu et al. 2007], which rank objects based on the qualities of features in their
spatial neighborhood.

Preference applications. Research on preference queries was mainly inspired
by the need to adopt an IR-like answer model, where an answer to a query
contains results ranked according to how well they match the query, as op-
posed to the strict Boolean model traditionally assumed in databases. Still,
the answer of a query may be the same for all users. The trend for person-
alizing answers to fit different, ephemeral, or long-term user preferences also
emerged in the IR community [Pitkow et al. 2002]. Personalized IR systems
use different representations of preferences, such as bags of words [Joachims
et al. 1997], vectors of terms [Balabanovic and Shoham 1997], and concept hi-
erarchies [Liu et al. 2004] for information filtering, recommendations, or query
personalization.

The idea of using preferences to customize query results has been transferred
to databases, and applications include recommendations [Satzger et al. 2006],
query personalization [Koutrika and Ioannidis 2004; Koutrika and Ioannidis
2005a, 2005b; Stefanidis et al. 2007], and collaborative query results [Koutrika
2006]. In addition to finding interesting results for a query, a related problem
is finding interesting attributes that characterize a set of results [Miah et al.
2008; Wong et al. 2007]. Preference modeling is central to all these approaches.
For instance, Satzger et al. [2006] adopt the preference model presented by
Kiessling [2002]. Koutrika [2006, 2005a, 2005b, 2004] and Stefanidis et al.
[2007] model a preference as a query condition, which can be integrated with
a query associated with a degree of interest. Query personalization has been
also studied for preferences holding in specific contexts [Agrawal et al. 2006;
Holland and Kiessling 2004; Stefanidis and Pitoura 2008; Stefanidis et al. 2007;
van Bunningen et al. 2006].

Preference modeling is only one of the challenges in preference applications.
Other issues include dynamically identifying the preferences that are related to
a query, selecting the most appropriate ones for the specific query and context,
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and determining their effect on the final answer. The personalized answer
may contain all results of the initial query ranked based on all preferences
that are appropriate under a specific context [Stefanidis et al. 2007]. Koutrika
and Ioannidis [2005b, 2004] introduced an l out of k personalization logic: a
personalized answer should satisfy at least l out of k preferences from the
user profile that are related to a query. A different approach is to view query
personalization as an optimization problem using as parameters the query cost,
the answer size, and the interest in the answer and dynamically decide the
appropriate personalized answer optimizing one parameter given constraints
on the others [Koutrika and Ioannidis 2005a]. Acquiring user preferences is
another great challenge. In the context of IR and databases, preferences are
either entered explicitly through a query interface or acquired at query time
using a preference elicitation mechanism [Balke et al. 2007; Lee et al. 2008].
Long-term preferences can be learnt based on user feedback as well. There are
studies for learning the order of objects that reflects user preferences [Cohen
et al. 1998; Joachims 2002] or for learning preferences in object attributes (such
as preferences formulated as described in Kiessling [2002]) [Holland et al. 2003;
Jiang et al. 2008].

Comparison to related work. Our work is closer to Koutrika and Ioannidis
[2004, 2005b] and Stefanidis et al. [2007] in that we share the idea of repre-
senting preferences as query conditions associated with degrees of interest. In
addition, we adopt the “l out of the top k preferences” query personalization
logic [Koutrika and Ioannidis 2005b]. However, these efforts focus on problems
of preference representation, such as differentiating preferences based on their
intensity [Koutrika and Ioannidis 2005b] and studying context dependencies
[Stefanidis et al. 2007], and they formulate structurally (and semantically)
atomic preferences, that is, over a single attribute. For example, they can cap-
ture a preference for Woody Allen and a preference for comedies but would not
allow an explicit preference statement for comedies with Woody Allen. Instead,
they provide mechanisms for deriving more complex preferences based on sim-
pler ones. However, a preference for comedies with Woody Allen may not be
derivable in any natural way by a preference for comedies and a preference
for Woody Allen. One may like both comedies and Woody Allen but one may
like or dislike comedies with Woody Allen. As a result, the personalized results
generated may not always accurately reflect the user preferences.

In this work, we allow complex preferences to be explicitly stated (not be
solely derivatives of other preferences) and hence we can generate more ac-
curate results. Furthermore, the central assumption in existing approaches
is that preferences hold independently of each other and hence they can be
freely combined for result ranking. Allowing preferences of different granu-
larity makes this somewhat unrealistic independence assumption no longer
necessary. Our framework captures preference relationships using preference
networks, so that interrelated preferences (e.g., one for comedies and one for
comedies with Woody Allen) can be treated appropriately (Section 3).

Our work is also different from existing approaches on executing and opti-
mizing queries with preferences, such as skyline and top-n preference queries,
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in several aspects. First, we deal with different types of preferences than sky-
lines. Skylines are formulated in the context of multidimensional Euclidean
spaces [Borzsonyi et al. 2001]. The attributes of a relation are partitioned
into DIFF, MAX, and MIN attributes. Only tuples with identical values of all
DIFF attributes are comparable; among those, MAX, attribute values are max-
imized and MIN values are minimized. Our approach is also different from
top-n queries (e.g., [Bruno et al. 2002; Tao et al. 2007]), where a single scoring
function maps tuples to scores. We describe preferences irrespective of the at-
tribute domain by specifying conditions that tuples must satisfy and assigning
a degree of interest in them. Then, tuples are ranked depending on which of
the conditions they satisfy.

Given these differences in problem formulation, our work addresses sev-
eral new challenges related to preference integration with queries: identify-
ing preference relationships, constructing a network of related preferences for
a query, and using the network to generate personalized answers that re-
spect the semantics of query personalization and the relationships between
the preferences. Given any two preferences, we determine their relationship
based on conjunctive query containment mappings [Aho et al. 1979; Chekuri
and Rajaraman 1997]. Preference mappings are simpler because they are de-
fined on the basis of mappings of the atomic conditions in the preferences
considered. When generating personalized results, our algorithms take into
account the way preferences are connected in the preference network for result
ranking.

By enforcing preference independence, previous works may produce less
accurate results, which may be still acceptable given that query personal-
ization using independent preferences is more straightforward and efficient.
Clearly, there is a trade-off between efficiency and expressivity in allow-
ing multi-granular preferences. We experimentally compare our algorithms
with their simpler counterparts which assume preference independence, both
for efficiency and answer accuracy, and we show that personalized answers
that capture user preferences more accurately are feasible without losing in
efficiency.

3. FRAMEWORK

We consider that for every user there is a profile storing preferences for per-
sonalizing queries. We consider SPJ queries over relational databases. In this
section, we present our multi-granular preference model (Section 3.1). Then,
we define preference relationships and we introduce preference networks that
capture a set of preferences and their relationships (Section 3.2). We estimate
user preferences for the results of a query taking also into account the way
preferences are interrelated (Section 3.3).

3.1 Preference Formulation

A database comprises a set of relations. A relation R (denoted Ri when more
than one relation is implied) has a set A of attributes. We will use R.Aj to refer
to an attribute in A or simply Aj when R is understood.
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Fig. 1. A database.

A preference for a set of tuples of a relation R in the database is expressed as
a degree of interest d ∈ [0, 1] in a condition q that describes this set of tuples,
and is denoted

R : (q, d).

Depending on the value of d, we capture weaker or stronger preferences,
with d = 0 indicating no interest in the qualifying tuples and d = 1 indicating
extreme interest. Depending on the form of condition q, we distinguish the
following types of preferences.

—Atomic Preference. If q is a single, atomic, selection, or join condition, then a
preference for q is called atomic.

—Composite Preference. If q is a conjunction of multiple atomic conditions, then
a preference for q is called composite.

—Selection Preference. If q is a conjunction of atomic selections involving a set
A of attributes and atomic joins transitively connecting these attributes to R
on the database graph, then a preference for q is called a selection preference.

—Join Preference. If q is a conjunction of atomic join conditions representing
the transitive join of relations R and Rj on the database graph, then a
preference for q is called a join preference.

A selection preference indicates a user’s preference for tuples from R that
satisfy the transitive selections in q. A join preference indicates the degree in
which preferences for tuples in R are influenced by preferences on related, that
is, joining, tuples. Since a preference for a set of tuples is essentially captured as
a preference for a condition that describes this set, in what follows, we consider
the terms “preference for tuples” and “preference for a condition” equivalent
and we use them interchangeably. We will use the symbol p (or pi, if a set of
preferences is discussed) to refer to a preference. We will use doi(p) to refer to
the degree of interest for a preference p or simply d if p is understood.

Example. To illustrate preferences, we consider the small database shown
in Figure 1. A user, named Julie, has preferences for movies captured in her
profile, part of which is depicted in Figure 2. For instance, she prefers movies
released after 1990 (p1) and she likes comedies (p2) followed by adventures
(p3). She particularly likes family adventures (p4). Preferences p1, p2 and p3

are atomic selection preferences expressed on different attribute values. We
also observe that preference p1 is stronger than p2 and p3. Preference p4 is
a composite selection preference. Furthermore, Julie considers the director of
a movie more important than the genre (p5 and p6). p5 is a composite join
preference and p6 is an atomic join preference. Her favorite director is Alfred
Hitchcock (p7). She also likes sci-fi movies by Steven Spielberg captured by the
composite selection preference p8.
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Fig. 2. Example preferences.

Preference inference. Given a set of preferences, one can derive implicit pref-
erences by composing preferences. Two preferences, pi and pj , are composeable,
iff:

— pi is a join preference, Ri : (qi, di), connecting Ri to a relation Rj , and
— pj is a join or selection preference on Rj , that is, of the form Rj : (qj, dj).

We now consider a set of preferences: R1 : (q1, d1), R2 : (q2, d2), . . . , Rm :
(qm, dm) such that, ∀1 ≤ i < m, preferences Ri : (qi, di), Ri+1 : (qi+1, di+1) are
composeable. Then, we can compose the implicit preference R : (q, d), as follows:

—R ≡ R1,
—q is the conjunction of the conditions q1, q2, . . . , qm and
—d is some function of the degrees of interest of the base preferences, that is,

d = f (d1, d2, . . . , dm).

Inference assumption. The degree of interest in an implicit preference is a non-
increasing function f of the degrees of interest, d1, d2, . . . , dm, of its constituent
preferences, that is,

f (d1, d2, . . . , dm) ≤ min({d1, d2, . . . , dm}). (1)

Example functions for computing the degree of interest in implicit prefer-
ences include product and minimum. One advantage of the product is that it
captures human intuition and cognitive evidence [Collins and Quillian 1969]:
the more the preferences required to derive an implicit preference, the weaker
this preference is [Koutrika and Ioannidis 2005b].

Example. From the preferences stored in Julie’s profile (Figure 2), we can
derive implicit preferences. For instance, since Julie likes director Alfred Hitch-
cock (p7) and her movie preferences are affected by who is the director of a
movie (p5), we can assume that (in lack of any other evidence) Julie would like
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to some extent movies directed by Alfred Hitchcock by composing p5 and p7

into the following preference.

(p5,7) MOVIE : MOVIE.mid = DIRECTED.mid and

DIRECTED.did = DIRECTOR.did and

DIRECTOR.name = “A.Hitchcock′′, 0.7

Similarly, we can derive an implicit preference for movies that are adven-
tures by combining preferences p3 and p6 into this preference.

(p6,3) MOVIE : MOVIE.mid = GENRE.mid and

GENRE.genre = “adventure′′, 0.49

For the sake of illustration, in both preferences, we have taken the product of
the partial degrees of interest as the degree of interest in the derived preference.
Of course, we could have used any other nonincreasing function, such as the
minimum.

We observe that both base selection preferences p3 and p7 have the same
degree of interest, that is, 0.7. However, when combined with their composeable
join preferences, the degrees of interest in the resulting implicit preferences,
p6,3 and p5,7, are different. It is join preferences that determine to what extent
preferences for tuples in one relation are influenced by preferences on joining
tuples. In this case, preference p5 indicates that directors are more important
for movies than genres (preference p6).

Preference diagram. A preference R : (q, d) can be graphically represented
as a rooted directed acyclic graph g(V, E). The preference diagram g(V, E) can
be thought of as an extension of the traditional schema graph and has the
following characteristics. Nodes in V map to relations, attributes, and values
in q, and can be possibly replicated if the corresponding relation, attribute, or
value is used more than once in q. Edges in E connect: (a) a relation node to
another relation node, representing a join condition in q or (b) an attribute to
its container relation or (c) an attribute to a value, representing a selection in q.
Join edges are tagged with the corresponding joining attributes, and selection
edges are tagged with the operator used in the selection condition. R maps to
the graph’s root. For selection preferences, the leaves are always values.

A preference diagram can take either of two forms. It can contain one sin-
gle path mapping to a join or selection preference or it can contain a set of
paths connecting its root to a set of values capturing a composite multivalue
selection preference. As we will see in Section 5.2, we can determine if there
is an overriding relationship between a pair of preferences by comparing their
corresponding preference diagrams.

Example. Figure 3 illustrates some example preference diagrams.
Figure 3(a) depicts the preference diagram for p4. Figure 3(b) shows the prefer-
ence diagram for p5, which comprises a single path in contrast to the diagram
for p4, which maps to a set of paths from the root to the value nodes. For
the sake of presentation, we do not show tags on the edges, since for our small
database they are understood. Repeated relations and attributes are mapped to
different nodes in the preference diagram. As a notational convention, different
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Fig. 3. Example preference diagrams.

occurrences of a relation (mapping to different nodes in the diagram) are writ-
ten as a concatenation of the relation name and a sequential number. To distin-
guish when an attribute is used with a different occurrence of the same relation,
the attribute takes the relation’s sequential number in their representation.

Preference diagrams can “unfold” complex conditions, such as self-joins, and
map them to distinctive paths on the diagram. To illustrate this, consider
the following, rather nontypical, preference for movies released in 2008 and
directed by French directors who have also directed movies released in 2000.
Its preference diagram is shown in Figure 3(c).

MOVIE : MOVIE.year = 2008 and

MOVIE.mid = DIRECTED1.mid and

DIRECTED1.did = DIRECTOR1.did and

DIRECTOR1.nationality = “French′′ and

DIRECTOR1.did = DIRECTED2.did and

DIRECTED2.mid = MOVIE2.mid and

MOVIE2.year = 2000

3.2 Preference Networks

Depending on the form of the condition, selection preferences can be defined on
a relation at varying levels of granularity, ranging from quite generic (e.g., an
atomic selection) to very specific that combine multiple (atomic or implicit) se-
lections. We can view a preference Ri : (qi, di) as a possible conjunctive query Qi

that selects tuples from Ri that satisfy qi. On the basis of this correspondence,
we can define preference overriding through conjunctive query subsumption,
that is, query containment: Given two preferences, Ri : (qi, di) and Rj : (qj, dj),
with corresponding conjunctive queries Qi and Qj , respectively, we say that pi

is overridden by pj if Qj is subsumed by Qi (i.e., if for all database instances,
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Fig. 4. Preference overriding.

every answer to Qj is an answer to Qi as well, Qj ⊆ Qi). It is well known
[Aho et al. 1979; Chekuri and Rajaraman 1997] that Qj is subsumed by Qi

iff there is a containment mapping from Qi to Qj . A containment mapping is
defined on the basis of mapping the predicates involved in the two queries. In
what follows, we formally define preference overriding on the basis of how one
preference can be mapped to another:

Preference relationships. Given a set P of selection preferences and two
preferences Ri : (qi, di) and Rj : (qj, dj) (denoted pi and pj , respectively) from
P, we distinguish the following possible relationships between them.

—Preference Overriding. If pi can be mapped to pj , such that: (a) Ri ≡ Rj and
(b) each atomic condition in qi is mapped to an atomic condition in qj with
the same relations and attributes, then pi is overridden by pj (pj overrides
pi), denoted pi�pj . In this relationship, pj is specific, pi is generic, and the
following degree of interest correspondences hold (denoted by ←):

doi(pi ∧ pj) ← doi(pj) (2)

doi(pi∧�pj) ← doi(pi) (3)

that is, the generic preference pi holds for a tuple only if the specific prefer-
ence pj does not hold for the same tuple.
Furthermore, if �p ∈ P such that pi�p�pj , that is, pj is the most generic
specialization of pi in P, then pi is tightly overridden by pj , denoted pi�̃pj .

—Preference Independence. If Ri ≡ Rj but pi ��pj and pj ��pi, then pi and pj

are independent and the following holds:

doi(pi ∧ pj) ← h(doi(pi), doi(pj)), (4)

where h is some appropriate ranking function, that is, both preferences can
hold for the same tuple and the overall degree of interest in this tuple is the
combination of their degrees of interest.

In other words, a preference pi is overridden by a preference pj if both of
them are expressed over the same relation and there is a mapping of the atomic
conditions from one preference to the other. Figure 4 shows an example.

Preference network. We can map a set P of selection preferences defined over
the same relation R to a preference network, where nodes map to preferences
and edges represent preference relationships. A preference network GH(VH,
EH) corresponding to a set P of preferences over relation R is a directed acyclic
graph. Nodes in VH map to preferences in P. Given two nodes vi and v j in VH,
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Fig. 5. A set of preferences as a network.

mapping to preferences pi, pj ∈ P, respectively, an edge in EH from vi to v j ,
e(vi, v j), denotes that pi is tightly overridden by pj . When a preference is not
overridden by any other preference, it is called a leaf. When it does not override
any preferences, it is called a root.

Example. Figure 5 illustrates a preference network (on the left side) cor-
responding to a set of preferences (on the right side). pa is a root, pd and pe

are leaves, and pf is both a root and a leaf. We observe that the degrees of
interest at one level of the network are not derived from the degrees of interest
at the higher or lower levels of the network. For instance, pb is a strong prefer-
ence, whereas the more specific pe is a weak preference. If there is no directed
path in the network that connects two preferences, then these preferences are
independent. For instance, pb, pd and pf are independent.

3.3 Combining Preferences

To compute the degree of interest in a particular tuple, we combine the de-
grees of interest of the preferences expressed for this tuple. For instance, given
that Julie likes movies by S. Spielberg and action movies, we can compute a
preference for the movie “Minority Report” that satisfies both preferences.

The degree of interest in a tuple t ∈ R satisfying a set P of selection pref-
erences over relation R is estimated with the help of a ranking function h as
follows:

doi(t) = doi(∧pi∈P ′ pi) = h({doi(pi)|pi ∈ P′}) (5)

with P′ ⊆ P such that (a) ∀pi, pj ∈ P′, pi, pj are independent and (b) ∀pi ∈ P′,
� pj ∈ P that is more specific than pi. In other words, given a set of preferences
satisfied by a tuple t, only the most specific, independent preferences determine
the degree of interest in t.

There are many possible ranking functions that could be used depending
on the application, the domain, and so forth. For instance, it may suffice to
rank movies based on the best preference they meet. On the other hand, when
buying a car, many car features matter and a function such as the average of
preferences may be more appropriate.

Example. Consider the preferences shown in Figure 5 and a movie m that is
a 2000 comedy with J. Nicholson. This movie, in principle, satisfies preferences
pa, pb, pc, and pe. Taking into account their relationships, not all preferences
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count and the degree of interest in this movie is computed as follows.

doi(m) = doi(pa ∧ pb ∧ pc ∧ pe)
pa�pb= doi((pa ∧ pb) ∧ pc ∧ pe)

Formula (2)=
doi(pb ∧ pc ∧ pe)

pb�pe= doi((pb ∧ pe) ∧ pc)
Formula (2)=

doi(pe ∧ pc)
pc�pe= doi(pe) = 0.4

That is, since pe overrides pa, pb, and pc, it alone determines the degree of
interest in the movie.

4. QUERY PERSONALIZATION

4.1 Query Personalization Logic

We consider that a user’s preferences are stored in a user profile. In order to
personalize the results of a query, we need to identify the (explicit or implicit)
selection preferences from the profile that are related to the query and deter-
mine how they will affect the final answer. Obviously, not all preferences are
related to all queries. For instance, if one is looking for movies directed by S.
Spielberg, a preference for movies directed by W. Allen is not related. More-
over, user preferences may have different effects on the results of a query. For
instance, the system may return all results that match a query ranked accord-
ing to the user’s preferences or only a subset of them that exactly match some
preferences.

We define preference relatedness on the basis of the syntactic characteristics
of the query and the preferences in the spirit of the work by Koutrika and
Ioannidis [2004], extended to our multi-granular preference model.

Related preference. Preference R : (q, d) is related to query Q, if R is referred
to in Q.

Conflicting preference. Preference R : (q, d) is conflicting with a query Q,
if: (a) it is related to the query; (b) when q is inserted into the original
query qualification, replacing any part of the latter that coincides with it,
that is, joins or selections on a common attribute, the resulting query quali-
fication and the original one contain at least one common implicit selection;
and (c) this selection is specified over a single-value attribute of the query
results.

Example. Consider the set of preferences shown in Figure 5, which are all
related to movies, and a query about family movies released in 2008. Then,
preferences pa-pe are clearly conflicting with the query since they are about
movies released in 2000. Preference pf is valid because a movie can have more
than one genre.

We adopt the query personalization framework introduced by Koutrika and
Ioannidis [2005b] for determining the effect of query personalization. Given a
preference R: (q, d), d shows the user interest in considering q for personalizing
the results of a query involving R. Hence, preferences that are related to and
not conflicting with a query can be ordered based on their degree of interest. We
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can describe the desired personalized answer with the help of two parameters
as follows:

A personalized answer for a query Q and a user profile U is the set of results
of Q that satisfy at least l of the top k user preferences related to Q and are
ranked according to their degree of interest.

Parameters k and l together offer a flexible mechanism to capture the desired
level of personalization for the results. For example, some special cases are:

—l = 0: the personalized answer contains all the results matching the query
ranked based on the k preferences.

—l = k: the personalized answer contains only the query results that satisfy
all k preferences.

In what follows, we discuss several ways for determining the values for param-
eters l and k. A user can explicitly put constraints on the acceptable person-
alized answer by specifying desired values for l and k. The system can also
automatically determine the appropriate values.

Parameter k controls the desired extent of personalization, that is, how many
of the top user preferences should participate in personalizing the query results.
For instance, the user may be willing to put no bound to k and see results that
satisfy any of her related preferences (i.e., k≡‘all’). On the other hand, if the
results are too many or the user is very selective, returning results that satisfy
a small number k of preferences may be more appropriate. For example, a user
interested in dinner after work may want to see only restaurants that satisfy
her top 3 preferences.

Parameter l controls the desired forcefulness of personalization, that is, how
many of the k live preferences should the query results be forced to simulta-
neously satisfy. For instance, when buying a car a user may definitely want
offers that meet all her preferences but, when selecting a movie, she may be
more flexible and may accept movie recommendations that meet just two of her
preferences.

Parameters k and l also provide a way for the system to control the size
of the personalized answer and the cost of query personalization, hence, the
system could automatically determine appropriate values for them. The system
may restrict k since considering a smaller set of preferences leads to smaller
answers and may be more efficient. For example, if the user is browsing results
through a cell phone, then the system may pick few preferences from the user
profile in order to provide results on the go. If the user uses a laptop and a
high-bandwidth connection, then a more flexible k or no bound for k may be
selected. For the case of k = l, determining automatically appropriate values
of k has been studied in the past [Koutrika and Ioannidis 2005a]. In that work,
query personalization is formulated as a constrained optimization problem,
where constraints are expressed as an upper bound on execution time of the
final query and/or a lower or upper bound on its result size.

In a similar vein, the system may automatically determine the right values
for l. For instance, if the initial query is very general and returns many results,
then a larger number of preferences (i.e., l → k) may be applied on the query
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in order to produce an answer of manageable size. Likewise, if the initial query
is overly specific and returns very few results, then a smaller number of simul-
taneous preferences (i.e., l → 0) may be chosen to avoid an empty answer. The
preference network may also serve as the basis for choosing appropriate values
of l. For instance, if the top preferences are highly correlated, that is, they form
a chain, then the system should automatically determine that l can only be
equal to 1 and return results that satisfy exactly one of the k preferences.

The system may also learn l and k for each user by mining user logs. These
may contain both explicit choices of l and k by users as well as other user
actions, that is, paying attention to specific tuples that offer implicit indications
for the desirable values of these parameters. For example, if the user always
examines results that satisfy up to the top 3 of her preferences and most of the
times her final picks satisfy at least 2 of these preferences, then we can provide
more targeted results by using k= 3 and l= 2 in in future interactions of the
user with the system.

Finally, if personalization is an interactive process and the user can specify
the values of k and l, then there are potentially several cases where freely-
selected values for k and lmay not make sense, such as: (a) the top k preferences
are highly correlated, that is, there are fewer than k independent preferences,
(b) there are not as many as k preferences related to the current query, or (c)
there are no results that satisfy as many as l preferences. In these cases, the
system should guide the user in selecting meaningful values for k and l.

4.2 Overall Approach

Given a query Q, a user profile U, and values for k and l, query personal-
ization proceeds as follows: The top k preferences that are related to a query
are extracted from the user profile. Given that these may comprise a mix of
generic and more specific preferences, we automatically identify the relation-
ships among them and organize the preferences into a network. Next, we use
the network to guide preference processing for the computation and ranking
of the personalized results. We propose two algorithms for personalized query
answering that apply different traversal strategies on the network, exploit the
containment mappings captured in it to process the preferences, and rank the
results.

The query personalization system architecture is shown in Figure 6. Pref-
erence Construction extracts the top k preferences from the user profile that
are related to a query. Preference-Network Integration is responsible for orga-
nizing them in a network that captures the relationships among them (if any).
This module places each preference found from the first module in the right
“position” in the network. It collaborates with the Relationship Finder that
determines the relationship between a pair of preferences. Personalized Query
Answering takes into account the network of related preferences and returns
results that meet the initial query and at least l from the top k preferences.
Sections 5 and 6 describe in detail the preceding modules and the algorithms
and techniques employed in them.
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Fig. 6. System architecture.

5. PREFERENCE CONSTRUCTION

Algorithm PFC (preference-construction) returns the top k preferences from the
user profile U that are related to and not conflicting with a query Q, organized
in a network.

Preferences that are related to a given query include explicit preferences
stored in the user profile but also implicit ones that can be derived by composing
stored preferences. In order to select the top k preferences, the algorithm starts
from the preferences that are stored in the user profile and are related to the
query and iteratively considers additional preferences that are composeable
with those already known to derive implicit ones that are also related to the
query. The set of preferences that are related to the query is kept ordered in
decreasing degree of interest. When k selection preferences have been inserted
into the network, the Inference Assumption guarantees that these are the top
k preferences related to the query. Hence, an exhaustive enumeration of all
related preferences is avoided.

The algorithm is presented in Figure 7. QP is the set of preferences related
to the query. Initially, it contains all related preferences explicitly stored in
the profile (line 2). At each round, the most significant preference is processed
based on its type.

—A selection preference is added to the preference network that comprises the
final output of the algorithm (line 3.2). This process is performed by PNET,
which will be described in Section 5.1.

—A join preference is composed with other preferences (line 3.3). The algorithm
considers all stored preferences that are composeable with it to infer new
preferences that are related to and not conflicting with the query. These are
inserted into QP.

We will use the Inference Assumption to prove the correctness of the
algorithm.

THEOREM 5.1. The algorithm is correct, that is, it finds the top k preferences
related to a query.
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Fig. 7. Building a network of top k preferences related to a query.

PROOF. It is sufficient to show that the algorithm produces preferences re-
lated to the query Q in decreasing order of their degree of interest. It keeps an
ordered list QP of preferences. At each round, the head p of the queue (which
has the highest degree of interest) is picked and processed. If p is a selection
preference with degree of interest d, we will show that: (a) d is greater than
(or equal to) the degree of interest of any other selection preference in QP, and
(b) d is greater than (or equal to) the degree of interest of any other selection
preference that has not been seen yet (i.e., not in QP).

Since QP is ordered, (a) is self-evident. For (b), we observe that any unseen
selection preference can be only derived from the current join preferences in
QP. Based on the Inference Assumption, for each join preference pj in QP with
degree of interest dj , any selection preference that contains pj will have a
degree of interest at most equal to dj . Since it is d ≥ dj (due to (a)), (b) also
holds. Consequently, the algorithm produces preferences related to the query
Q in decreasing order of their degree of interest.

Example. Let us assume that we want to find the top 3 preferences related
to a query about movies given the user profile of Figure 2. (How the preference
network is progressively constructed is the focus of the next section.) Figure 8
shows the status of QP and the top preferences found at the end of each round of
the algorithm. Newly inserted preferences in both lists are shown instantly in
different color. When three selection preferences have been found, the algorithm
can safely stop.
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Fig. 8. Example of deriving top k related preferences.

In addition, for each preference p, algorithm PFC constructs its preference
diagram. In particular, it constructs the set P of all root-to-leaf paths on the
preference diagram. Each path is encoded as a string for the purposes of finding
relationships between pairs of preferences, as we will discuss in Section 5.2.
We distinguish two cases.

—If a preference is stored in a profile, then we have also stored all the root-to-
leaf paths on its preference diagram. This step is done offline. The algorithm
PATHS is sketched in Figure 5 and is described next.

—If it is an implicit preference composed of other preferences: Algorithm PFC

builds a new preference by composing a join preference p with another pref-
erence pj (line 3.3.2). Then, the set P′ of paths for the new preference is
generated by concatenating each of the paths that map to pj (the set of paths
for pj is Pj) with the paths in P that maps to p. Note that since p is a join
preference, its set P of paths is singleton.

Algorithm PATHS is used for offline processing of the preferences in a profile.
For a given preference p, it builds its preference diagram g(V, E) (lines 2–3).
The diagram’s root is the relation for which the preference is defined and
the leaves are the value nodes (in case of selection preferences) or the most
distant relation from the root (in case of join preferences). The diagram edges
are considered undirected at this stage. Their direction is determined as the
algorithm performs a breadth-first traversal of the diagram and generates the
set P of root-to-leaf paths (line 4). The paths are stored in the user profile. This
pre-processing saves time for the online algorithm PFC. A path is represented
as a string (for comparison purposes as we will see in Section 5.2.)

ACM Transactions on Database Systems, Vol. 35, No. 2, Article 13, Publication date: April 2010.



Personalizing Queries Based on Networks of Composite Preferences • 13:21

Fig. 9. Finding the root-to-leaf paths on a preference diagram.

5.1 Preference-Network Integration

In this section, we focus on the integration of a preference p into a network
GH(VH EH) of preferences related to the same query.

Problem statement. Given a preference p and a preference network GH(VH,
EH), the result of their integration is a new network G′

H(V ′
H, E′

H), such that:

—V ′
H = VH ∪ {p},

—∀pi, pj ∈ V ′
H with pi �̃ pj, ∃e(pi, pj) ∈ E′

H.

In other words, the result of integrating a preference into a preference network
is a network, that is, containing only tightly overriding relationships, that
captures all such relationships that exist between the new preference and the
preferences already in the network.

Algorithm PNET. Integrating a preference into a network comprises two prob-
lems: (a) identifying a tightly overriding (�̃) relationship that involves this
preference and some preference in the network and (b) traversing the network
to establish all such relationships.

In order to find the �̃-relationships between a new preference p and the
preferences in a network GH(VH, EH), algorithm PNET employs a set of patterns,
each one identifying one or more �̃-relationship using �-relationships.

—root pattern: (pr is a root in GH with p � pr) =⇒ p �̃ pr

—leaf pattern: (pi is a node in GH with pi � p and pi is a leaf or all its children
are independent with p) =⇒ pi �̃ p

—intermediate node pattern: (pi, pj are nodes in GH with pi � p � pj and
pi �̃ pj) =⇒ pi �̃ p �̃ pj
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The first pattern shows the case of p taking over the role of root from an earlier
root. The second pattern shows the case of p becoming a leaf in the network.
The last pattern captures the case of p being added between two other nodes.
Based on this pattern, given two preferences pi and pj in the network with
pi being tightly overridden by pj , if the new preference p overrides pi and is
overridden by pj , then the edge between pi and pj is replaced by two edges that
essentially place p between the two preferences. Clearly, as algorithm PNET may
be called for a sequence of preferences, relationships in the network are added
or replaced in light of each new preference considered. If a new preference does
not have any relationships with the other preferences, then it is independent
from all preferences currently in the network and becomes a new root-leaf in
the network.

A network may contain multiple roots, that is, preferences that do not over-
ride others (Section 3.2). Hence, preferences that are tightly overridden (�̃) by
p, or vice versa, may be found at different places in the network, under the
same or different roots. Algorithm PNET starts from each root and performs a
breadth-first traversal of the corresponding subgraph. To avoid an exhaustive
traversal of the network, two pruning rules are used:

—Subgraphs with different roots may overlap. If an edge is already visited then
the underlying subgraph is already explored and it can be safely pruned.

—The subgraph starting from any node in the network is not explored if the
preference mapping to this node is independent from or overrides p.

Based on the patterns presented, which capture all cases of p’s position
with respect to other preferences in the network and the traversal strategy,
algorithm PNET correctly places a preference in a network by establishing all
�̃-relationships with the existing preferences in the network and the result of
the integration is a network.

The algorithm is presented in Figure 10. A queue RQ keeps edges to be exam-
ined. These are edges that have not been visited before. New edges are always
added in RQ’s tail. FIND REL identifies the relationship of a pair of preferences
(see Section 5.2).

The algorithm examines the relationship of p with each root pr in the net-
work (line 3.1). It first tries the root pattern (line 3.2). If p is overridden by pr,
then the property of being root is transferred from pr to p. If p overrides pr,
then the algorithm tries the leaf pattern (line 3.3.2): if there are no outgoing
edges from pr, then p becomes a leaf under pr. Otherwise, all edges from pr to
its children are added in the queue along with a dummy edge (pr, −) and the
algorithm will compare p to the preferences below pr in the network.

The algorithm moves down in the network as long as there is an edge e(ps, pi)
in RQ (line 3.4). If this is a dummy edge, e(ps, −), then the leaf pattern
is tested: if p has been found independent from ps’s children (indicated by
inserted = false), then p becomes ps’s new child. Hence, a dummy edge is used
in combination with the flag inserted to show when p should become a new
child of an intermediate node in the network. If e(ps, pi) is an actual edge in
the network, then:
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Fig. 10. Integrating a preference into a network.
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Fig. 11. Examples of preference-network integration.

—If p is overridden by pi (intermediate node pattern), then the algorithm
“breaks” the edge between pi and its predecessor, and creates two edges,
one connecting the predecessor to p and one from p to pi. Having found the
position of p in the subgraph, inserted becomes true and no outgoing edges
from pi are added in RQ, that is, the subgraph under pi is pruned.

—If pi is overridden by p, then this node’s outgoing edges are added in RQ
along with a dummy edge (pi,−). If there are no outgoing edges, then p
becomes pi ’s child and again inserted becomes true.

Finally, if p does not override any other preference (is root = true), it becomes
a root.

Example. Figure 11 presents the construction of the preference network
depicted in Figure 5. Preferences pa to pf are presented to the algorithm in
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that order. Each block in the figure shows the steps required for inserting one
preference in the network. Each step is described by the contents of RQ and
the status of the network, with nodes examined already indicated with gray
background. For instance, the first step for inserting pc visits the root pa, which
is overridden by pc. Hence, its outgoing edges plus a dummy edge are placed
in RQ. In the second step, the edge going to pb is obtained from RQ and as
a result pb is visited. This one is independent from pc, hence the algorithm
will not search below this preference. Finally, pulling out the dummy edge
< pa,− > marks the end of pa’children examination and since pc has been
found independent from all of them, it is connected to pa.

Preference pe provides an example of how the algorithm moves until it es-
tablishes all relationships that pe participates. The first relationship (i.e., with
preference pb) is found in the second step. The algorithm continues exploring
the subgraphs starting from pb’s siblings, and discovers the second relationship
(i.e., with preference pc). Finally, observe how pf becomes a root.

5.2 Relationship Finder

A preference is overridden by another preference if they are both defined over
the same relation and there is a mapping of the atomic conditions from one pref-
erence to the other (Section 3.2). Preferences are represented as graphs. Our
approach for identifying the relationship between two selection preferences, p
and p′, defined over the same relation R, is the following. We consider the sets
P and P′ of all root-to-leaf paths on their preference diagrams, respectively. |P|
and |P′| are the sizes of these sets. For efficient path counting and comparison,
we adopt a string representation of a path (string encoding of graphs in gen-
eral has been proposed in Zaki [2005].) To generate a path representation, we
concatenate the names of nodes in the path. For instance, the string represen-
tation of pa in Figure 5, which comprises a single path, is “Myear2000”. Two paths
si ∈ P and s′

i ∈ P′ match iff their string representations are the same. Then, the
relationship of p and p′ can be determined by counting the number M of pairs
(si, s′

i) of matching paths. The following cases are distinguished:

—If M = |P| it is p � p′.
—If M = |P′| then p′ � p.
—If none of these holds, p′ and p are independent.

This process is captured in algorithm FIND REL, shown in Figure 12. In case of
selections containing inequalities, the process is slightly different: it matches
paths without considering the selection values, and performs an additional
check for the atomic selection conditions to determine their relationship. For
presentation purposes, in subsequent algorithms, we assume selections with
equalities.

The correctness of the algorithm stems directly from the definitions of pref-
erence diagram (Section 3.1) and preference overriding (Section 3.2). p is over-
ridden by p′ if each atomic condition in p is mapped to an atomic condition in
p′ with the same relations and attributes. Since selection preferences map to
rooted graphs, where the root is a relation and the leaves are always values, the
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Fig. 12. Identifying preference relationships.

problem of finding the relationship of two selection preferences is translated
to a mapping of the paths that connect the root to the leaves in the preference
diagrams.

5.3 Preference Construction Analysis

Preference construction involves the following tasks: extraction of the top k
preferences from a user profile that are related to and not conflicting with a
given query, identification of any relationships among these preferences, and
construction of the preference network.

Algorithm FIND REL compares two preferences by comparing their respective
sets of paths. We store sets of paths in memory as hash tables. The algorithm
starts with the “smaller” preference, that is, the one that has the fewest paths
(line 2, Figure 12) and it looks in the hash table of the larger set of paths for
matching paths. Due to the use of hash tables, the matching cost per path is
O(1). We consider that Po is the maximum number of paths of any preference
in the user profile. Hence, the cost for one invocation of FIND REL is O(Po).
Naturally, we do not expect Po to take very large values. In the cases we have
examined, we found Po ranging from 1 to 4.

Algorithm PNET compares a preference to a set of preferences, for which their
relationships are already known. It is called k times from PFC, once for each of
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the top k preferences produced. When PNET examines the jth preference ( j = 1 to
k), it performs a maximum of j −1 comparisons. Each comparison is performed
with the help of algorithm FIND REL. Hence, it is O( j ∗ Po).

Algorithm PFC extracts the top k preferences from a user profile. The algo-
rithm first extracts all related preferences to Q that are found in the profile
U (line 2). If relations are not repeated in Q, then it should be O(|Q| + |U|),
where |Q| is the size of query Q in terms of relations and |U| is the size of
the profile in terms of preferences. Assuming the profile is hashed on the re-
lation for which each preference is defined, then for every query relation the
algorithm finds the list of related preferences in O(1) time and then inserts
into QP all preferences of that relation. Duplicate insertion can be avoided by
maintaining a hash table of all relations examined so far. Hence, there are |Q|
probes in the two hash tables and at most |U| preferences inserted into QP (if
all preferences are related to the query). If we use |UQ| to signify the subset
of |U| with the related and not conflicting preferences then the complexity is
exactly O(|Q| + |UQ|).

The main loop in PFC (line 3) will be executed as many times as there are
preferences added to QP, which are bound by |U| again, or more precisely, by the
size of the transitively composeable subset of it |U∗

Q|. For k of these iterations,
the cost of each one will be that of line 3.2.1, which is O(1) and the cost of a call
to PNET, which we have analyzed earlier. For the remaining iterations, which
should be O(|U∗

Q|) in number, making the reasonable assumption that k< |U∗
Q|,

the cost of each one is the sum of:

—the cost for testing for conflicts, which can be considered equal to O(Po).
Recall that Po is the maximum number of paths of any preference in the
user profile. Since all implicit preferences are generated by composing a
join preference (that is always a single path) to another join or selection
preference, Po is the maximum number of paths in any preference, original
or generated.

—the cost for generating the path combinations, which for each iteration is
O(Po), since a join preference from which we compose other preferences has
only one path.

Hence, the total cost of PFC is O(|Q| + |UQ|+k ∗cost(PNET) + |U∗
Q| ∗ Po), which

becomes O(|Q| + |UQ|+k 2 ∗ Po + |U∗
Q| ∗ Po) and finally O(|Q| + (k2 + |U∗

Q|) ∗ Po).

6. PERSONALIZED QUERY ANSWERING

Given a query Q and a network of k related preferences, the last step of per-
sonalization generates all query results that: (a) satisfy at least some of the
preferences, that is, l ∈ [0..k] preferences, (b) respect the preference relation-
ships, and (c) are ranked using a function h (Section 3.3). When l = 0 then all
the results of the initial query are returned whereas when l > 0, the personal-
ized answer may be smaller.

Relying directly on SQL to capture these semantics can lead to complex
and time-consuming queries. The disadvantages of such approaches to query
personalization have been studied in the literature [Koutrika and Ioannidis
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2005b], and hence are not discussed any further. Here, we describe two new
approaches. These approaches work directly on the preference network. They
take into account the containment mappings captured in the network in order
to generate and rank results with respect to the preference relationships. The
first algorithm (EXCLUDE COMBINE) is based on the observation that an edge from
pi to pj in the preference network implies a difference operation Results(pi) −
Results(pj) on the respective result sets in order to find the results that satisfy
pi but not pj (i.e., with respect to the overriding relationship of pi and pj).
Hence, instead of complex queries, it executes a set of simpler queries that
capture these “local” difference operations and combines the partial results to
find those that satisfy at least l preferences.

Algorithm EXCLUDE COMBINE. The algorithm executes a number of simple
queries. Each query Qi is a combination of the initial query Q and a pref-
erence pi(i = 1...k) in the current network and returns the set Results(pi) of
Q’s results that match pi. In this way, we go from a network of preferences
to a virtual “network of partial result sets”, where nodes and edges have the
following meaning:

—each node Results(pi) represents the results that satisfy preference pi

—for each edge from pi to pj in the preference network, there is an edge
with the opposite direction in the network of result sets, that is, from
node Results(pj) to node Results(pi), which implies a difference operation
Results(pi) − Results(pj) on the respective result sets in order to find the re-
sults that satisfy pi but not pj (i.e., with respect to the overriding relationship
of pi and pj).

Then, for each edge from pi to pj , the algorithm removes from Results(pi) any
results also found in Results(pj). These difference operations are sufficient to
ensure that the tuples remaining in each result set will be those that satisfy
the respective preference (i.e., the preference that initially generated this set)
but not any preference more specific than that. The reason is that, by defini-
tion, Results(pj) contains all results corresponding to preferences more specific
than pj . Hence by removing Results(pj)’s tuples from Results(pi), we satisfy
all preference relationships between pi and any preferences more specific than
pj . In the end, all tuples that occur in at least l sets satisfy at least l pref-
erences, and they comprise the final answer ranked using a specified ranking
function h.

Algorithm EXCLUDE COMBINE is presented in Figure 13. Given a query Q and
a network GH(VH, EH) of related preferences, it proceeds as follows.

—(Exclude) It generates the partial result sets, each one satisfying a single
preference (line 2). Each set is ordered on the tuple id tid. Then, it traverses
the network and excludes from each set all tuples that satisfy other, more
specific preferences (line 4).

—(Combine) As long as there are l nonempty sets, the algorithm removes the
greatest tid. If it satisfies at least l preferences, then its degree of interest
doi(tid) is computed from the preferences corresponding to these sets and
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Fig. 13. Generating personalized results - EXCLUDE COMBINE.

(tid, doi(t)) is added in the Results, which is kept ordered on the degree of
interest (line 5).

When l = 0, all the results of the initial query are returned and are ranked
based on the preferences in the network. In that case, the algorithm executes
query Q (line 3.1). The tuples returned, Results(Q), have default degree equal
to zero (since at this point, we do not know if they satisfy any preferences.) The
algorithm also sets l equal to 1 (line 3.2). This makes sure that the combine
step (line 5) will be executed only if there is at least one preference satisfied,
that is, if there is at least one nonempty preference result set Results(pi). Any
results of Q that have not been ranked during the combine step are added to
the final results (line 6).

Example. We consider the preference network of Figure 5. The algorithm first
generates the partial result sets, each one satisfying a single preference and
maps the preference network to a network of results sets shown in Figure 14.
For instance, taking into consideration the edge from Results(pd) to Results(pc),
Results(pc) − Results(pd) is the “actual” set of results for which pc should hold
because the more specific pd does not hold for them. Then, the algorithm pro-
ceeds as shown in Figure 15 excluding from each set the nonqualifying tuples,
that is, those that satisfy a more specific preference.
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Fig. 14. Mapping a preference network to a network of result sets.

Fig. 15. Excluding results that satisfy more specific preferences.

Algorithm EXCLUDE COMBINE executes all possible queries that map to the
nodes of the preference network. The second algorithm (REPLICATE DIFFUSE) that
we present shortly tries to minimize the number of such queries based on the
following observation: given a preference network, any tuple that satisfies any
preference at any level in the network satisfies (at least) one of the root pref-
erences. Hence, we can execute only the queries corresponding to the roots of
the network and then perform “look-ups” to find the specific preferences satis-
fied by each retrieved tuple. In addition, the algorithm works with a hopefully
smaller set of tuples than EXCLUDE COMBINE.

Algorithm REPLICATE DIFFUSE. This algorithm is based on the idea of visual-
izing a preference network as a system of pipes with preference nodes acting
as safety valves. When a tuple enters the system at some node (as a result of
satisfying the corresponding preference), it rolls down the pipes (edges) start-
ing from this node as long as there is a safety valve that can be “opened”. A
safety valve will remain closed to a tuple, if the latter satisfies the preference
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Fig. 16. Generating personalized results - REPLICATE DIFFUSE.

corresponding to the valve, but the valve leads to no other preferences that
can be satisfied. Moreover, a tuple satisfying a preference at any level of a
network satisfies its ancestors too. This means that any tuple satisfying at
least one preference in the network will “enter” the system from the network’s
roots and roll down following edges from general to more specific preferences,
until it is collected by valves mapping to the most specific preferences satisfied
by it.

Given a query Q and a preference network GH(VH, EH), algorithm REPLI-
CATE DIFFUSE proceeds in three steps, repeated for each root of the network. It
creates a set of queries, each one combining Q with a root preference, in order
of increasing selectivity.

—(Create) For each root, the algorithm first executes the respective query and
creates the set of results that satisfy this preference (line 3.1).

—(Replicate) For each tuple in this set, it finds which root preferences following
the current one in order of selectivity are also satisfied (line 3.2.2).
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Fig. 17. Example of replicate-diffuse steps.

—(Diffuse) Then, tuples satisfying the root preferences roll down the network.
In the end, all tuples are found only in nodes corresponding to the most
specific, independent preferences they satisfy (line 3.2.4).

Example. Figure 17 illustrates these steps for the root pa. The algorithm
retrieves Q’s tuples that satisfy pa, that is, three tuples depicted as different
shapes. Next, it examines whether any of these satisfy pf . Assume that the
triangle and square tuples do. To illustrate that, they are shown replicated
on this node. Then, all tuples move freely down the network until they are
stopped by some valve. For instance, we find that the square tuple satisfies the
independent preferences pd and pf .

For each root prt in the network, the algorithm executes a query Q∧ prt. Each
tuple (with id tid) returned by this query is processed only once as follows. For
tid, a set P of preferences satisfied is kept, initially containing prt. In order
to find which other preferences are satisfied by tid, the algorithm executes a
parameterized query Qrt(tid), which checks whether tid satisfies any other root
preference following prt in order of selectivity (line 3.2.2). This query returns
zero or more occurrences of tid, depending on the number of root preferences
that are satisfied by tid. All root preferences satisfied by tid are placed in P
(line 3.2.3).

Then, for each preference p in P, the algorithm checks whether there are
more specific preferences that override p. For each edge e(p, pi), the algorithm
executes a parameterized query Qi(tid) that checks whether tid satisfies pi. If
that happens, then pi is inserted in P. A preference p stays in P if tid does not
satisfy any more specific preference pi. Note that when considering an edge
e(p, pi), if pi is already in P, this means that Qi(tid) has been executed in
a previous step (that happens when pi overrides more than one preference.)
In that case, the algorithm does not execute Qi(tid) again. At the end of this
process, P contains the most specific, independent preferences satisfied by tid.
If there are at least l such preferences, then the degree of interest in tid is
computed from P using a function h and tid is inserted in the final results
(line 3.2.5).

When l = 0, all the results of the initial query are returned and are ranked
based on the preferences in the network. In that case, the algorithm executes
query Q (line 2). The tuples returned, Results(Q), have default degree equal
to zero as explained for algorithm EXCLUDE COMBINE. Any tuple id tid that is
found to satisfy some preference in the network gets removed from Results(Q)
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(line 3.2.6). At the end, any remaining results in Results(Q) are added to the
final results (line 4).

6.1 Personalized Query Answering Analysis

Let v and r be the number of nodes and edges in a preference network, respec-
tively. We can decompose algorithm EXCLUDE COMBINE into a number of opera-
tions, some of which involve processing of arbitrary queries (lines 2, 3), whose
cost we cannot estimate analytically.

(a) To generate the partial results sets (line 2), the algorithm executes a query
Q ∧ pi, for each preference pi, i = 1...k. In the case of l = 0 (line 3), the
original query Q is also executed on its own (for ease of reference, we may
denote it as Q ∧ p0, where p0 = ‘true’). The total cost of these operations is

k∑

i=0

cost(Q ∧ pi).

(b) After the results are gathered in main-memory hash tables, the algorithm
executes r difference operations (line 4). Assuming that each result set
contains at most n tuples, then each such difference can be executed in
O(n) time, for a total of O(r*n) time.

(c) Finally, the algorithm reads the in-memory results to output those satisfy-
ing at least l preferences. Each iteration of the loop (line 5) requires O(k)
time: (line 5.1) examines each one of the k result sets to remove the highest-
tid common head, while (line 5.2) uses at most k doi’s to compute the overall
doi of the tid examined. In the worst case, the loop of (line 5) will consume
all tuples in the results, of which there are at most k*n, and will do that by
removing the smallest possible number of them each time, which is equal
to l, this way maximizing the number of iterations required. Hence, the
worst-case total time required by this operation is O(k2/l*n). Taking all
the preceding into account, the total cost of algorithm EXCLUDE COMBINE is

k∑

i=0

cost(Q ∧ pi) + O(r ∗ n + k2/l ∗ n).

Similarly to the previous analysis, for algorithm REPLICATE DIFFUSE, we con-
sider the following:

(a) For each root prt (line 3.1), the algorithm executes a query Q ∧ prt. In the
case of nonpersonalizing the output tuples (line 2), the algorithm executes
the original query Q on its own as well (again, for ease of reference in this
case, let us assume that a preference p = ‘true’ is a root as well). The total
cost of all these query executions is

∑

prt is root

cost(Q ∧ prt).

(b) For each tuple returned from the aforesaid queries, the algorithm first
executes a parameterized query Qrt(tid) (line 3.2.2) and then parameterized
queries Qi(tid) (within line 3.2.4) to check which other (less selective) root
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preferences or other preferences down the network, respectively, the tuple
satisfies. Note that Qrt(tid) is equivalent to running a Qi(tid) for each of the
roots that follow the one being considered in the main loop of the algorithm.
Each tid undergoes this process only once and is used as a parameter for
each query only once as well. Hence, assuming there are m tuples in all
root query results together and that the cost of each parameterized query
remains the same independent of the tid used as a parameter, in the worst
case (when all tuples satisfy all preference queries), the total cost of these
operations is

m ∗
k∑

i=1

cost(Qi(.)).

(c) Besides query executions, the main-memory operations of the algorithm
are inside the loop of (line 3.2). For each one of its m iterations, they are
performed either once for every one of the r edges of the network (line 3.2.4
- top) or once for every one of the v preference-nodes of the network (line
3.2.4 - inner foreach-loop). In addition, each iteration uses again at most
k degrees of interest to compute the overall degree of interest of the tid
examined (line 3.2.5). Hence, the worst-case total time required by these
operations is O(m ∗ (r + v + k)).

Taking all the preceding into account, the total cost of algorithm REPLI-
CATE DIFFUSE is

∑

prt is root

cost(Q ∧ prt) + m ∗
k∑

i=1

cost(Qi(.)) + O(m ∗ (r + v + k)).

7. EXPERIMENTS

The novelty of our framework stems from allowing both generic and specific
preferences to be explicitly stated in a profile with user-specific, “freely” selected
degrees of interest assigned to them. Earlier approaches (e.g., [Koutrika and
Ioannidis 2004; Stefanidis et al. 2007]) capture only simple preferences, that is,
preferences on single attributes, and use special mechanisms to derive complex
preferences. ones Two questions naturally arise.

—“Simplicity or expressiveness?” One question is whether the proposed model
can have a higher impact than an approach to preference modeling that cap-
tures simple preferences (i.e., in the form of general rules that hold for a user)
and derives more complex preferences using appropriate preference compo-
sition and inference mechanisms. One can argue that “simple is beautiful.”
We test this argument through a user study (Section 7.1).

—“Expressiveness or performance?” When a profile contains a mix of generic
and more specific preferences, preferences cannot be freely combined. We
need sophisticated algorithms in order to find which preferences can be com-
bined and how to generate and rank the results of a query taking into account
relationships among a set of preferences. Is expressiveness achieved at the
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expense of performance and to what extent? Does the trade-off justify the use
of this framework instead of one that assumes independent preferences? We
investigate these questions through an extensive experimental evaluation of
our algorithms (Section 7.2).

7.1 User Study

Existing approaches (e.g., [Koutrika and Ioannidis 2004]) formulate struc-
turally (and semantically) simple preferences and they provide mechanisms
for composing complex ones. We believe that these mechanisms cannot always
capture the real complex user preferences. We need to enable complex pref-
erences to be explicitly stated (not be solely derivatives of other preferences).
The objective of the user study is to provide insight as to the appropriateness
of our preference model and its benefits for query personalization compared to
simpler preference representations and to highlight the accuracy problem of
the latter.

We conducted an empirical evaluation of our approach with 11 human
subjects with or working towards a diploma in computer science. We built
a database containing information about over 480,000 movie titles that we
obtained from IMDB (http://www.imdb.com/interfaces). Our schema contains 18
relations storing information about movies, actors, directors, ratings, writers,
and so forth. We built a Web interface that allowed users to manually cre-
ate their preference profiles. We explained to them that they had two options:
either providing a profile (NET PROFILE) of complex preferences (such as a pref-
erence for comedies with Woody Allen) or a profile (FLAT PROFILE) of simple,
independent, preferences (such as a preference for comedies and a preference
for Woody Allen). In the latter case, we would infer their more complex prefer-
ences based on what we knew about a user’s generic preferences following the
model presented in Koutrika and Ioannidis [2004].

An initial test for the appropriateness of our model took place during the
creation of these profiles. 8 out of 11 people created a NET PROFILE, 2 started
with simple preferences and decided that they had more complex preferences
to express and only 1 provided a FLAT PROFILE. Figure 19 shows part of one of the
profiles that we have in the system. Once done with their profile (in either form),
all users were asked to create a second “view” of their preferences either more
elaborate or more generic depending on what was their first profile. Hence, 10
people had to create a FLAT PROFILE and 1 had to elaborate his preferences in
a NET PROFILE. At the end, for each user there were two profiles in the system,
both a NET PROFILE and a FLAT PROFILE. The largest group of users complained
for “reformulating” their preferences as simpler ones expressing their concerns
regarding the system’s ability to provide accurate personalization when it re-
lies on simple, partially correct, profiles. These observations seem to indicate
that people tend to trust more a system that captures their preferences more
accurately.

There is, of course, a psychological dimension in how people perceive pref-
erences and personalization. For example, the user who initially formulated
simple preferences explained that he would be probably content with a simple
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personalization approach separating the chaff from the seed. In addition, the
type of networks expected in practice depends on the way user information
is (explicitly or implicitly) collected. Different people have different types of
preferences, depending on their background, their expectations, etc. In our
experiments, “full-fledged” networks that could be derived from the complex
profiles had an average depth of 3, and the average number of preferences
stored per profile was 21.

We built an interface for searching in the database for movies, actors, or
directors based on different criteria, such as the genre and the year of a movie.
We discussed with the users about typical searches they would perform over
a movie database and we made a pool of possible searches, from which we
picked the 4 most popular queries among users. These included a search for
short movies (Q1), a search for movies based on the movie genre (Q2), and
a search for favorite directors that have directed movies after 2000 (Q3). All
subjects were asked to perform these 4 preselected searches plus 2 of their own
choice.

In order to evaluate the effectiveness of our approach, we had to take into
account several issues. We could not use traditional metrics, such as precision
and recall. One reason is that we do not have complete information regarding
which of the (possibly too many) results of a search are liked by a user. Even if
we showed all results returned for a particular, nonpersonalized, search, users
are not willing to browse more than one page of results. In addition, we wanted
to get insights into how personalized search results compare to nonpersonalized
results. However, there is no single uniform way to compare them all together.
For example, in the case of the unranked results, all results are relevant to
the query (by definition of the database query model) and there is no way to
distinguish between them. On the other hand, when comparing ranked lists
we are actually interested in how the results are ranked.

Taking all these issues into account, we proceeded in two steps. First, we
asked users to give scores to query answers as a whole, where an answer
would contain at most 10 results, in order to have an overall picture of how
personalized and nonpersonalized answers compare overall. Then, we focused
on investigating how effective the rankings are based on different preference
representations.

For the first part of the evaluation, each user submitted the queries three
times in arbitrary order. Queries were executed once without personaliza-
tion (NO PERS), once using the user’s NET PROFILE and once using the user’s
FLAT PROFILE. The system randomly rotated these options so that the user would
not be aware of the query processing performed. As default parameters for per-
sonalization, we chose k to be half of the preferences in a user’s profile and l= 1.
We ranked results based on the average degree of interest of the preferences
satisfied and returned (up to) top-10 results. In the case of NO PERS, the first
10 results for the query were returned. Users evaluated query answers using
two scores measuring [Koutrika and Ioannidis 2004]: (a) the difficulty to find
something interesting, if anything was found at all (DEGREE OF DIFFICULTY) and
(b) how satisfactory was the answer (ANSWER SCORE) (both scores in the range
[0, 10].)
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Fig. 18. Impact of composite preferences and benefits of query personalization.

Figures 18(a) and 18(b) present the average answer score and degree of
difficulty, respectively, per query for each of the three different runs, that is,
NO PERS, NET PROFILE and FLAT PROFILE. The use of the complex profiles substan-
tially reduces the difficulty to find interesting tuples within an answer and
attracts distinctively higher answer scores. Using the flat profiles improves
answers (to a lesser degree than NET PROFILE). However, we observe that often
the improvement is marginal compared to NO PERS and the degree of difficulty
in many cases remains high.
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Fig. 19. Part of a real user profile with movie preferences.

During the study, users were also asked to rerank the tuples returned for
each query and put them in an order that they thought closer to their prefer-
ences. For the second part of the study, we compared the ordering of results
using the complex profile or the flat profile to the user’s ordering of the same
results for each query. There are several standard methods for comparing two
lists that are permutations, such as Kendall’s tau distance (τ ) [Fagin et al. 2003;
Kendall and Gibbons 1990]. We used the normalized Kendall tau distance (τ ),
which lies in the interval [0,1] with 1 indicating maximum disagreement. τFU

compares the list of results based on the FLAT PROFILE and the same list re-
ordered by the user. τHU compares the list of results returned using NET PROFILE

and the same list reordered by the user. Figure 18(c) plots the average distances
for each query. We observe that when the FLAT PROFILE was used, users often
disagreed with the system-based ordering of results because it did not quite
capture their actual, elaborate preferences.

A closer look at the user-ordered results revealed that often 1 to 3 tuples
appeared out of order in the system answers due to the less accurate profiles
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Fig. 20. Part of a network of preferences related to a particular search.

used. On the other hand, finer-grained result rankings could be achieved with
the complex profiles that captured more accurately user expectations. The ac-
curacy achieved also depends on the query. For example, for the query Q5,
none of the profiles had adequate (or different) information for differentiating
the output of this query. The figure brings up another issue: one would expect
that since the complex profiles captured more accurately the user preferences,
τHU would be 0 in all cases. Users still moved tuples in the results for differ-
ent reasons (e.g., they knew additional information, such as movie reviews,
or they evaluated results based on additional properties not captured in their
profiles.)

Shortly, we describe some interesting cases of personalized searches that we
observed during the study in order to illustrate the impact of our approach.
Figure 19 shows part of a participant’s profile. This profile was one of the most
detailed ones. It contains some general preferences for movie genres, actors and
so forth, as well as finer-grained preferences. In one of the searches, the user
asked for comedies after 2008 that satisfy at least one of her top 5 preferences.
Her top 5 preferences are the following:

MOVIE.mid = CAST.mid and

CAST.aid = ACTOR.aid and ACTOR.name = “G.Clooney”

CAST.aid = ACTOR1.aid and ACTOR1.name = “B.Pitt” 1

MOVIE.mid = CAST.mid and

CAST.aid = ACTOR.aid and ACTOR.name = “G.Clooney

CAST.aid = ACTOR1.aid and ACTOR1.name = “E.McGregor”

CAST.aid = ACTOR2.aid and ACTOR2.name = “K.Spacey” 1

MOVIE.year > 2000 and MOVIE.mid = GENRE.mid

GENRE.genre = “animation” 0.95

MOVIE.mid = CAST.mid and

CAST.aid = ACTOR.aid and ACTOR.name = “H.Ford” 0.95

MOVIE.year > 2000 and MOVIE.mid = GENRE.mid and

MOVIE.mid = GENRE.mid and GENRE.genre = “animation” 0.95

It is interesting that the user had preferences for specific actors but she
had given very high preferences for groups of actors participating in the same
movie as a wishlist. While combining her individual preferences would not lead
to these strong preferences, being able to code such fine-grained taste made
possible to discover a new movie with title “The Men Who Stare at Goats” that
satisfies her wish that if her favorite actors acted together, this would make a
not-to-miss movie.

Another search performed by the user was for short movies (duration < 1h
45min) that would satisfy at least 2 preferences. Part of the network built for
this query is shown in Figure 20. Short movies satisfying the user preferences
were some animation movies. Using this network, we ranked some animation
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movies, such as the “Ice Age”, high but gave low scores to other animation
movies, such as the “Corpse Bride”. Using the user’s simpler profile would not
allow us to compute such accurate rankings because the complex preferences
for animations are not derivable from the general preferences for animations
and thrillers. If we combined these preferences, the “Corpse Bride” would rank
high.

7.2 Performance Study

A user may explicitly give only a handful of preferences and implicit sources
of preference elicitation, such as log mining and relevance feedback, may indi-
cate many (additional) preferences. In both cases, incomplete information may
prevent deriving a small set of generic preferences and a large number of pref-
erences may be recorded that possibly contain many relationships. Handling
multi-granular preferences and preference relationships add up to increased
complexity and, thus, higher execution times. Therefore, in this section, we
evaluate the performance of query personalization using our preference model
(specific details are given per experiment.) We considered query loads of 50
random queries representing hypothetic user queries, each one containing one
relation and one selection on this relation. Moreover, we divided the query per-
sonalization process in two main phases a preference construction phase which
builds a network of related preferences for a query, and a preference query
answering phase which generates personalized results using this network. We
study each phase separately and identify the critical factors that affect their
performance before discussing the overall performance of personalization. Two
parameters are important.

—the number k of selection preferences manipulated
—the number r of �̃-relationships existing among them

We tested our algorithms and we compared them with simpler algorithms that
operate on the assumption of independent preferences. We generated synthetic
profiles and networks depending on the requirements of each experiment, as
we explain in the following subsections, and we built the indexes required for
the processing. Times are shown in ms.

7.2.1 Preference Construction. This phase involves two tasks: extraction of
the related preferences from a profile and construction of their network. These
tasks are interleaved during preference construction (Section 5). We measured:

—the total time required to extract k selection preferences from a user profile
- TIMEEXTRACT

—the total time required to find the relationships among k preferences and
build their network, that is, the total time required by the Preference-Network
Integration and Relationship Finder modules - TIMEREL

The time TIMEREL for processing independent preferences, as well as the extra
time in TIMEEXTRACT for preparing the structures required in preference compar-
isons, such as representing preferences as sets of path strings, are negligible.
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Fig. 21. Times for extracting and integrating k preferences with r preference relationships.

This observation allows us to consider that when having only independent
preferences, the required execution time for this phase is equal to the time
TIMEEXTRACT, and hence, the overhead from the processing of composite prefer-
ences is reflected in TIMEREL.

TIMEEXTRACT depends on the number k of preferences handled, as Figure 21(a)
confirms. The task of extracting related preferences does not simply read prefer-
ences stored in a profile but it also builds new preferences from the stored ones.
Depending on the database schema and the number of selection preferences
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defined per relation, it may be able to retrieve k stored selection preferences
with a few database accesses or it may need to search in relations further
away from the initial query relations and compose preferences out of many
stored ones. In order to gain insights into the impact of this phenomenon over
TIMEEXTRACT, we generated the schema of a hypothetic database comprised of 100
relations, each one having 3 attributes, one of which possibly joining this re-
lation to another. Then, we generated two synthetic profile databases of 100
profiles each. Profiles in both databases contained 100 selection preferences
each but were generated in a different way: a profile in PROFDB1 was generated
with the constraint that each attribute of the database could be used in at
most one preference, while a profile in PROFDB2 was generated with the con-
straint that each attribute of the database should be used in at most three
selection preferences. Consequently, profiles in PROFDB1 were sparser than pro-
files in PROFDB2. We considered a query load of 50 queries over our synthetic
data and we measured times for extracting the top k preferences for each
query. Figure 21(a) shows TIMEEXTRACT as a function of k over all (100) profiles of
each profile database for the 50 queries. The difference in execution times can
be interpreted as the algorithm’s effort to collect k preferences depending on
how preferences are distributed over the synthetic data. When preferences are
sparsely placed over data (e.g., in PROFDB1), it takes substantially more effort
as k increases because it needs to search more in a profile.

Figures 21(b) and 21(c) show execution times for finding k preferences
(TIMEEXTRACT) and constructing a network of k preferences having r relation-
ships (TIMEREL). For the former, we considered the profiles in PROFDB1 and the
query load of 50 queries used in the previous experiment. Measuring the latter,
especially with respect to r, is tricky. We wanted to explicitly control the num-
ber of relationships r between k preferences in order to measure their impact.
For this reason, we ignored the actual relationships among the k preferences
found from the extraction step and we built a synthetic network generator,
which takes as inputs the number k of preferences and the number r of pref-
erence relationships, and generates a network with these characteristics, that
is, containing r �̃-relationships between k preferences, generated in a random
way but with respect to certain constraints, for example, defining at most one
relationship per pair of preferences. The set of preferences and relationships
of a synthetic network are fed into the Relationship Finder, which can guide
Preference-Network Integration to build the same network from scratch. The
latter is presented with the set of preferences of the synthetic network in ran-
dom order and asks the Relationship Finder regarding �-relationships in order
to build the network.

Figure 21(b) shows execution times as a function of k assuming r = 5. Each
point in the figure is the average of execution times for 100 networks with the
same characteristics. We observe that TIMEEXTRACT dominates and that is due to
the number of database accesses required for the extraction of the top-k pref-
erences (which increases with k), whereas the construction of the network is
an in-memory process. In addition, we observe that although the latter phase
depends strongly on k, the overhead of comparing more preferences as k in-
creases is not as large as one might expect. The reason is that although we
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increase k, there are always r = 5 preference relationships to be detected. That
means that each time a pair of preferences is compared, they are most likely
independent and hence the comparison finishes instantly.

Figure 21(c) shows execution times as a function of r assuming k = 50.
TIMEEXTRACT is constant with r. We observe that as the preference network gets
more complicated (i.e., with r increasing), TIMEREL deteriorates and exceeds
TIMEEXTRACT. With more preference relationships, more complicated comparisons
between preferences take place.

Consequently, each task’s contribution to the total execution time for prefer-
ence construction is different: one task may dominate the other depending on
the parameter settings. Ultimately, the overhead from constructing a network
for a query may come not from the number of preferences but from the number
of relationships among them.

7.2.2 Preference Query Answering. For this phase, we evaluated the per-
formance of the algorithms proposed and the overhead occurred due to the
preference networks. Hence, we measured:

—the execution time required by the EXCLUDE COMBINE algorithm - TIMEEXCLUDE

—the execution time required by the REPLICATE DIFFUSE algorithm - TIMEDIFFUSE

—the execution time required by a SIMPLE algorithm that works with indepen-
dent preferences - TIMESIMPLE

We built SIMPLE as a simpler version of algorithm EXCLUDE COMBINE that treats
preferences as independent and hence does not have the exclude step of the lat-
ter. SIMPLE executes a set of queries that integrate the preferences in the query,
and combines their results returning those satisfying at least l preferences.
For this series of experiments, we used the movie database. We generated a set
of 50 random queries representing hypothetic user queries, each one contain-
ing one relation and one selection on this relation. Note that experiments with
other sets of queries with different features, for instance, with one join and one
selection, show similar trends and are not discussed. We generated different
sets of preference networks over the movie database, each set containing 50
networks with k of preferences and r edges. Each network was meant to be
combined with one query from the preceding set, and was generated as follows:
we first composed k independent selection preferences for our movie database
related to the query, with the constraint that they contained only one selection
(but any joins required.) Then, we ran an iterative procedure that randomly
picked r pairs of preferences and combined them to complex preferences. In
essence, at each round, in a pair (pi, pj), pj was replaced by pi ∧ pj to form a
more specific preference than pi.

Figure 22(a) shows execution times as a function of k with r = 5. Each point
in the figure is the average of execution times for the 50 queries combined
with their respective networks for the same k and r values. EXCLUDE COMBINE

requires more time than SIMPLE. Since they are both built on the same phi-
losophy, the overhead observed is due to the additional actions required by
preference relationships. Algorithm REPLICATE DIFFUSE shows the best perfor-
mance. It executes as few queries as possible and process a smaller number
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Fig. 22. Times for query answering using k preferences organized in a network with r relation-
ships.

of tuples than EXCLUDE COMBINE close to the final number of results returned.
These queries depend on the number of root preferences in the network. As k
increases, more root preferences emerge but they are fewer than k.

Figure 22(b) shows times as a function of r with k = 50. While TIMEEXCLUDE

deteriorates when more preference relationships need to be resolved, TIMEDIFFUSE

is actually benefited because the total number of queries executed is lower.
That is fewer queries of the type Q ∧ prt may be executed (as r increases,
fewer root preferences may exist) or fewer parameterized queries Qi (tuples
may be distributed at different nodes in the preference network). Hence, REPLI-
CATE DIFFUSE for generating results based on preference networks exhibits a
better behavior in contrast to a naı̈ve approach that works with independent
preferences because it exploits preference relationships.

Overall, our results so far indicate that allowing complex preferences in
query personalization may make preference construction more expensive but
benefit query answering. How do these phenomena shape the total execution
time?

7.2.3 Overall Performance. To complete the picture regarding the effi-
ciency trade-offs, we compare the contribution of all parts in the total processing
time of a query. We consider a query load of 50 queries over the movie database
(each one containing one relation and one selection on this relation) and a set
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Fig. 23. Overall times for personalizing queries using k preferences organized in a network with
r relationships.

of 50 profiles and we plot the time TIMEEXTRACT required to extract k selection
preferences from a profile related to a query, the time TIMEREL required to find
the relationships among these preferences and build the network, and the time
TIMEANSWER to generate the personalized results. For the latter, we consider the
time TIMEDIFFUSE, since REPLICATE DIFFUSE is the most efficient.

Figure 23(a) shows the execution times as a function of k for r = 5 and
Figure 23(b) shows the execution times as a function of r for k = 50. Each
point in the graphs is the average of execution times over the sets of queries
and profiles for this experiment. When k increases, the execution time of the
preference query answering phase (TIMEANSWER) shapes the overall performance.
This time is measured on the right y-axis in Figure 23(a). On the other hand,
when r increases (Figure 23(b)), we witness the effect of two opposite forces:
decreasing time for generating results tends to “compensate” for the increase
in the time required for building the network. Thus, the whole personalization
process behaves in a more balanced way.

Finally, Figures 24(a) and 24(b) compare the efficiency of personalization
using networks (TIMENET) with personalization using only simple, independent
preferences (TIMESIM). Overall, performance is not sacrificed for expressiveness
because we can use algorithms that benefit from preference relationships to
adapt more smoothly to changes to k or r.
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Fig. 24. Impact of expressiveness.

8. CONCLUSIONS AND FUTURE WORK

In this article, we have studied query personalization based on multi-granular,
composite preferences. We have introduced the concept of a preference network
to capture preferences and their relationships. We have described algorithms
for identifying preference relationships, constructing a preference network for
a query, and using the network to generate personalized answers. We have
evaluated our framework and algorithms both for efficiency and answer accu-
racy by comparing with simpler models and algorithms, which assume that
preferences are independent, and we have shown that it is feasible to generate
personalized answers that more accurately capture preferences without losing
in efficiency.

Our approach is applicable to any graph model representing information at
the level of entities and relationships. User preferences may be articulated over
a higher-level graph model representing the data over the database schema.
This is a useful abstraction for using a profile over multiple databases with
similar information but possibly different schemas, and for hiding database
restructuring and normalization. Preferences expressed at a higher level can be
transparently mapped to the underlying schema for executing queries. Schema
mappings have been studied in the literature, examining them in the context
of query personalization seems an interesting direction.
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Processing queries with complex preferences is a challenging problem. Pref-
erences that are related to a query may be redundant. A preference for comedies
and a preference for comedies with B. Stiller can never be concurrently met.
Hence, the effect of query personalization may vary depending on how we in-
terpret such preferences. For example, a personalized answer could be shaped
by the set of top, mutually independent preferences related to the query. Obvi-
ously, there are different possible definitions of the “desired” set of preferences
that need to be investigated and tested through user studies. For instance, one
could consider the set of independent preferences that when combined would
produce the highest degree of interest.

Furthermore, a number of interesting issues arise regarding the manage-
ment of complex preferences, for instance, how to exploit preference common-
alities and access patterns in the same or different profiles for developing
efficient storage and access methods and structures for complex preferences, or
for materializing parts of preference networks that are shared among multiple
profiles or that are frequently applied for query personalization.

For the long run, a more “holistic” query optimizer that could take both a
user query and a structured preference set into account for optimization is
an intriguing direction to pursue. There are several possibilities to explore
towards this end. For example, one could implement a special operator that
ranks an input relation with respect to a preference relation in the spirit of
Koutrika et al. [2009]. Alternatively, one could imagine dynamic optimization
techniques building on the concept of Eddies [Avnur and Hellerstein 2000]: the
preferences act as filter operators and the Eddy routes tuples to them choosing
adaptively the way each tuple is routed. A tuple is sent to the output when it
has been handled by at least l operators.

Designing intuitive GUI’s that facilitate defining and editing preferences is
an open issue. In the same direction, designing interfaces allow the user to cus-
tomize the extent of query personalization and get explanations regarding the
effect of query personalization is also challenging. Finally, having the freedom
to capture multi-granular preferences, we can also tune user profiling methods,
such as user log mining, to store richer preferences in profiles instead of being
forced to construct simpler profiles.
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