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This paper examines the idea of incorporating machine Iearning algorithms into a database

system for monitoring its stream of incoming queries and generating hierarchies with the most

important concepts expressed in those queries. The goal is for these hierarchies to provide

valuable input to the database administrator for dynamically modifying the physical and

external schemas of a database for improved system performance and user productivity. The

criteria for choosing the appropriate learning algorithms are analyzed, and based on them, two

such algorithms, UNIMEM and COBWEB, are selected as the most suitable ones for the task.

Standard UNIMEM and COBWEB implementations have been modified to support queries as

input. Based on the results of experiments with these modified implementations, the whole

approach appears to be quite promising, especially if the concept hierarchy from which the
learning algorithms start their processing is initialized with some of the most obvious concepts

captured in the database.

Categories and Subject Descriptors: H.2. 1 [Database Management]: Logical Design—data
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1. INTRODUCTION

In the past few years, many efforts have been made to bridge the gap

between the fields of artificial intelligence and database management sys-

tems. The goal of several of these efforts is to transfer technology from one

field to another for improved functionality and\or performance. The work

described in this paper belongs in this category as well, and addresses the

issue of using machine learning algorithms for deriving concepts from

database queries.

1.1 Relational Database Systems Overview

Before elaborating on the specifics of our work, we first set the stage by

giving a brief overview of the relevant aspects of relational database systems.
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Every relational database consists of a set of’ relations, which can be simply

thought of as tables with many tuples (rows) and attributes (named columns).

As a canonical example, consider the database (named COMPANY) of an

enterprise where information is kept about employees and the departments

in which they work. Such a database may consist of the following relations:

EMP (eno, enarne, age, salary, edno)
DEPT ( dno, dname, floor, mgrno).

EMP and DEPT are two relations, with five and four attributes respectively,

whose intended meaning is rather straightforward from their names. In this

database, the EMP relation will contain one tuple for each employee and the

DEPT relation will contain one tuple for each department in the enterprise.

Queries on this database retrieve data that satisfies a set of conditions

including selections and joins. Selections involve one relation and are of the

form (attribute op value), where op E {=, <>, <, >}, e.g., salary > 301Y.

Joins combine two relations and are of the form (attribute op attribute),

where op is as in selections, e.g., edno = dno. As an example, in the standard

database query language SQL [1], the query

select ename
from EMP, DEPT
where edno = dno and floor = 2 and salary > 30K

requests the names of employees who work on the second floor and make

more than 30K. Note that the qualification of the query (the where clause)

specifies that the requested data must satisfy two selections and one join.

Each relational database system supports multiple types of disk-based data

structures, or indices, that are usually based on hashing or B ‘-trees, Each

relation can be supported by at most one clustered (primary) and an arbitrary

number of nonclustered (secondary) indices, which are built based on the

values of the relation tuples for some attribute(s). Such a wide variety of

indices gives the system the ability to accelerate the processing of an arbi-

trary number of queries.

One of the most important characteristics of relational systems is their

layered architecture. Each layer is associated with a different abstraction of

the data in any given database. These abstractions are called schemas and

from bottom-up they are the following (see Figure 1):

—Physical schema: It specifies the primary and secondary indices of the

relations. Such details are very important for the internal processing of

queries by the system, but are unnecessary to the user, which is why they

are hidden by the layers above.

—Logical schema: This is also simply referred to as schema and specifies the

relations in the entire database as they are known to the system and

stored internally.

—External schema: There are usually several such schemas associated with

a database, potentially one for each different user. Each external schema

specifies the relations that capture the part of the database that is relevant

to the users of the schema in a way that is most convenient to them.
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Fig. 1. Layers of schemas in rela-

tional databases.

PHYSICAL SCHEMA

Relations that are part of an external schema but not of the logical schema

are called views. Users interact with the system at this layer, and they can

be ignorant of the specifics of the lower layers. That is, they can use views

in their queries ignoring the fact that these are not explicitly stored in the

database but are defined in terms of other relations.

The task of specifying the logical and external schemas of the database is

called logical database design and is performed by the Database Administra-

tor (DBA). For the purposes of this paper, we assume that the logical schema

of a database is given and that there is a single external schema, so that

logical database design consists solely of the specification of one set of views.

In that sense, during logical database design, the primary goal is user

productivity. In particular, based on the expected types and frequencies of

user queries, the appropriate views are defined so that the queries can be as

succinct as possible. For example, if many queries involve the join of EMP

and DEPT in the COMPANY database based on the condition edno = dno, it

may be worthwhile to define the result of the join as a view, so that users do

not have to specify it in their queries all the time.

Similarly, the task of specifying the physical schema of the database is

called physical database design, also performed by the DBA. In this case, the

primary goal is efficiency in query processing. Again, based on the expected

types and frequencies of user queries, the appropriate types of indices on the

appropriate attributes of each relation are built, so that query processing can

be as efficient as possible. In this case, the specific profiles of updates to the

database is also very important, since indices are modified during updates,

and having a large number of them degrades performance. Without loss of

generality, for the purposes of this paper, we ignore updates altogether.

Continuing the above example, if many queries involve the same join of EMP

and DEPT, it may be worthwhile to build an index on the join attribute of one

of the relations or even sort the relations on the join attributes, so that

queries can be executed without scanning the whole relation multiple times

for every query,

1.2 Using Machine Learning for Relation Database Design

The external and physical schemas of a database when the latter is first

created may not always be optimal for the set of queries being asked by the
users at any given time. Ideally, the system should have the ability to

dynamically create, modify, and destroy indices and views. (Actually, deleting

views would be rare to avoid invalidation of existing applications.) That is, if
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Fig. 2, Database system architecture incorporating machine learning

the system can determine that the queries currently being asked by the

database users could be expressed more succinctly by a different set of views

or processed more efficiently by a different set of indices, it should be able to

make the appropriate suggestions for changes in the database schemas to the

DBA. In effect, the database system should be able to fine-tune the user

productivity and its own performance as required by its workload.

In this paper, we argue that a viable approach for attaining the above goal

is through the introduction of machine learning techniques. The incorpora-

tion of machine learning into the database would generally enhance its

knowledge on the way in which its contents are accessed. The system would

monitor the incoming queries and try to extract the commonalities that they

exhibit. This is basically the same as trying to identify concepts given some

observations of events or objects that are examples (or instances) of the

concepts to be learned in traditional machine learning. The concepts pro-

duced would be given to the DBA who would proceed in appropriate modifica-

tions of the database schema, possibly with the help of a database design tool

(see Figare 2). Although we believe that technology is not mature enough yet,

the concepts learned by the machine learning algorithm could be automati-
cally passed on to a design tool, which would make the database reorganiza-

tion. In this paper, we concentrate on the specifics of the machine learning

algorithms that can be used for database design. Except for a very brief

discussion, we do not address the issue of how exactly the DBA will use the

output of these algorithms for database design, since for the most part,

standard approaches exist that can be used for the task.

There are some differences between physical and logical database design on

which we briefly want to elaborate, with respect to how incoming queries

must be manipulated. In particular, for physical database design, the specific
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constants that appear in a query are not important. For example, the query

select ename
from EMP

where salary > 30K

provides exactly the same information for index building as any other query

that has 30K replaced by some other constant. On the contrary, for logical

database design, the query constants are very important, because differences

in them reflect differences in the views that should potentially be defined.

Hence, each query must be manipulated by the learning subsystem in two

forms: (a) in its full form as submitted by the user, for logical design, and

(b) with each constant replaced by some generic constant, for physical design.
Each incoming query must be transformed into its generic form by some of

the higher levels of a database system and then have both of its forms passed

on to the learning subsystem. The primary functions of the latter do not

depend on the specific query form being manipulated. Hence, for this paper,

we ignore the above issue and treat queries that are input to the learning

algorithm similarly, independent of whether they have real or generic

constants.

1.3 Related Work

TO the best of our knowledge, there has been very little work on using

machine learning algorithms in database systems. Specifically, we are aware

of two such efforts, both of which in fact have dealt with database design. The

work of Borgida and Williamson proposes the use of machine learning to

adequately represent exceptions in databases that are based on semantic

data models [3]. The system learns from the encountered exceptional data

objects, i.e., those that do not conform to the logical schema of a database,

and suggests modifications of the schema that will accommodate them appro-

priately. The work of Li and McLeod uses machine learning techniques to

address the problem of object flavor evolution in object-oriented database

systems [12]. Similarly to the previous work, when objects are encountered

that cannot be captured by the logical schema of a database, learning is

employed to aid in the process of appropriately modif~ng the schema. The

primary difference of both of these efforts from the one described in this

paper is that their emphasis is on monitoring data objects so that the logical

schema of database can be modified, whereas the emphasis of our work is on

monitoring user queries so that the external and physical schemas of a

database can be modified.

1.4 Paper Organization

This paper is organized as follows. Section 2 describes the criteria that must

be satisfied by a learning algorithm for it to be applicable for database design.
It also includes brief descriptions of the UNIMEM and COBWEB algorithms,

which we chose based on those criteria as the most appropriate for the task.

Section 3 contains the details of how standard implementations of these

algorithms were modified to accommodate the special needs of the particular
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application studied. Section 4 presents the results of several experiments

with the two algorithms, focusing on issues that are important to database

design. Section 5 compares UNIMEM and COBWEB and attempts to identify

the one that is more useful. Finally, Section 6 summarizes the presented

work and proposes some directions for future work.

2. MACHINE LEARNING ALGORITHMS

For the rest of the paper, we use the terms example and instance indistin-

guishably to denote the basic unit of input to the learning algorithm.

2.1 Criteria for Choosing Machine Learning Algorithms for Database Design

Several criteria that limit the kinds of machine learning algorithms that are

applicable for database design can be derived from the nature of the opera-

tion of database systems. The first such criterion has been mentioned al-

ready. The system must learn the necessary concepts through observation, by

examining examples of those concepts. Each meaningful query entered into

the system is the example of some concept that the system might find useful

to identify. For instance, the aforementioned join of EMP and DEPT based on

the condition edno = dno identifies the concept of Employment. To learn this

concept, the system must monitor the stream of incoming queries and group

together all those that involve this particular join.

The second criterion builds on the first and is that the learning algorithm

must be capable of receiving only positive examples as input, since that is all

that database queries can represent. This is crucial because many of the

machine learning algorithms that learn from examples do so by making use

of both positive and negative examples of a concept. Examples of such

algorithms include Quinlan’s ID3 [16] and Mitchell’s VERSION-SPACE [131.

The importance of negative examples is that they provide bounds on how

general the concept description can be made and yet still have it cover only

proper examples of the concept. With only positive examples, the learning

task is more difficult.

The third criterion is that the algorithm must be able to work incremen-

tally and learn concepts as examples arrive. Many potentially useful machine

learning algorithms, e.g., Stepp and Michalski’s CLUSTER/RD algorithm

[17], are batch-oriented, in that they expect to have all of the examples

present before they begin executing. One could use such a learning algorithm

and run it only periodically, at moments when the system is not so busy, each

time using tlhe example queries collected since its previous execution. How-

ever, if such times of light load are infrequent, the concepts that the system

learns may no longer be so important if the focus of users’ queries is

gradually drifting from one set of concepts to another, a phenomenon known

as concept drift. Given that the algorithm runs incrementally, it is important

that it be computationally efficient or the system performance will suffer.
The fourth criterion is that the learning algorithm must be able to form its

own classifications. The reason is that an example cannot be directly associ-

ated with the concept to which it applies, since the former does not carry any
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information to that effect. This task is called conceptual clustering (or

learning without a teacher). Conceptual clustering involves observing the

instances to be classified and recognizing similarities and differences among

them, which can then be used to cluster the objects into classes or concepts.

Fisher [4] points out that the activity of performing conceptual clustering

actually involves two tasks: the clustering task and the characterization task.

The clustering task corresponds to determining useful subsets of a set of

objects, i.e., the examples of a given concept. The characterization task

involves determining useful concepts for each object class, which is simply

learning a concept from examples.

The fifth criterion is that the learning algorithm must be capable of

learning multiple concepts simultaneously, since the queries entering the

system represent a wide variety of concepts. In addition, the algorithm must

perform its task with the examples arriving in some unpredictable, arbitrary

order, and not clustered in any particular way. Finally, the concepts it has to

learn are likely to be overlapping rather than mutually disjoint. This imposes

the constraint that the learning algorithm must be able to classify a given

example as a member of more than one concept. For example, the concept of

well-paid employees implicitly represents the concept of employment as well.

Several machine learning algorithms meet enough of the desired criteria to

be worthy of consideration for providing the desired functionality to the

database system. Two such algorithms, which are good representatives of the

class of appropriate algorithms, are discussed in detail in this paper. These

are Lebowitz’ UNIMEM algorithm [10, 11] and Fisher’s COBWEB algorithm

[4]. Several other such algorithms are not discussed due to lack of space, e.g.,

CYRUS [8]. UNIMEM satisfies all five of the above criteria, while COBWEB

only fails to satisfy the need for creating overlapping concepts, which is part

of the fifth criterion above. Both algorithms form a hierarchy of concepts,

with concepts at higher levels of the hierarchy being generalized versions of

the concepts at the lower levels of the hierarchy. The main difference between

them is in the method by which the concept hierarcl-ry is created and

maintained. Regarding their input, both algorithms require that the exam-

ples be represented as feature vectors, where a feature is a property whose

value has some role in classifying each example in the appropriate concept.

Each element of the feature vector is a pair consisting of a feature name and

a value for that feature. The two algorithms are briefly described in the next

subsections. Detailed descriptions can be found in the original references

[4, 10, 11].

2,2 UNIMEM

UNIMEM (UNIversal MEMory) is based on the notion of Generalization-

Based Memory (GBM), a hierarchical arrangement of concepts for describing

classes of objects. A GBM hierarchy is built up by generalizing from sets of

examples. For each incoming example, memory (the concept hierarchy) is
searched for examples with similar features with the goal of potentially
forming new concepts. As a result, this hierarchy changes dynamically as

new examples are presented to the system.
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As discussed in the previous section, the examples with which UNIMEM

works are described as feature vectors. A concept is represented by storing

some of the feature values from its instances. These stored feature values are

the ones used to create the concept. Thus, it is expected that these features

will have similar values for all of the instances stored at this concept.

To add a new example to GBM, the algorithm performs a controlled

depth-first search on the hierarchy, compares the example to those stored at

existing concepts, and eventually stores the example either in the (potentially

multiple) most specific concepts that it matches or in a newly-created concept.

The comparison between two examples consists of matching on their feature

values. The more features on which they have the same values, the more

similar the examples are considered. When comparing two different feature

values, UNIMEM issues a score of 1 if the feature values are identical or a

score of O if the feature values do not match at all. For linear features, on

which a total order is defined, a partial match score between O and 1 can also

be issued, depending on how close in the total order the values of the features

are. That score is inversely proportional to the distance between the two

feature values in the total order. Partial matching is very powerful because it

allows concepts to be formed that do not perfectly describe all the instances

that they cover. The final match score between two examples is the sum of

the scores of the individual pairs of features. The matching routines can also

take into account cases where feature values are missing (unknown or

inapplicable) by penalizing the overall matching score. This is important in a

database application, since most attributes known to the database are not

specified in any one query.

Feature confidence values are stored with every feature in a concept. These

confidence values are modified with every new example entering the system

depending on how well its values for those features match against those of

the concept. Features can be deleted from a concept (if their confidence values

fall below some threshold) or be kept permanently in a concept (if their

confidence values rise above some threshold). A concept is deleted if too many

of its original features are deleted. The main advantage of keeping feature
confidence values is that they can allow overly-specific concepts to be re-

moved from the concept hierarchy.

2.3 COBWEB

COBWEB was developed by Fisher [4] and is another algorithm that per-

forms conceptual clustering in a way that is applicable to database design.
Similarly to UNIMEM, COBWEB monitors a stream of incoming examples

and incrementally adds them to a dynamic concept hierarchy. The primary

differences between the two algorithms are that COBWEB uses conditional

probabilities when deciding where in the hierarchy to create new concepts

(clustering) and probabilistic pattern matching when matching a new exam-

ple to existing concepts in the hierarchy (characterization) [4].

A concept is represented by a feature vector that contains all known

features. Each feature is associated with a list of all values for that feature

in the examples stored in the concept, together with the number of occur-

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.



Conceptual Learning in Database Design . 273

rences of each value among all these examples. Unlike UNIMEM, each

example in COBWEB is stored in only one location in the concept hierarchy,

which in fact must be a leaf. Also, unlike UNIMEM, there are no feature

confidence values, so concepts are never deleted and the hierarchy can

become quite large if many queries are processed. Thus, COBWEB is less

efficient in processing examples than UNIMEM.

The metric used for identifying the usefulness of a concept is known as

category utility. Given a new example, COBWEB examines various possibili-

ties of changing the concept hierarchy to accommodate the example, e.g.,

splitting nodes, merging nodes, or classifying the example in an existing

node, and chooses the one with the highest category utility. Based on a way of

predicting basic-level categories in human classification, category utility is

essentially a function that rewards similarity between objects within the

same class and dissimilarity between objects in different classes. Category

utility is defined as the increase in the expected number of attribute values

that can be correctly guessed given a partition of concepts, over the expected

number of correct guesses with no such knowledge. It is calculated using

conditional probabilities of the form P( A, = V,l ICk ), i.e., probabilities that

the ith attribute At of an example takes on the jth value V,l among its

potential values, given that the example is a member of the k th concept C~.

These probabilities are derived from the feature value counts that are stored

with the concept nodes and are also used to deal with missing feature values.

Fisher [4] points out that using these probabilities for conceptual clustering is

useful in a predictive sense as well as in a classification sense. If the concepts

derived by the algorithm are truly meaningful, then they should reflect the

types of instances that will be entering the system in the future.

2.4 Example

In this section, we use the COMPANY database as an example to illustrate

the actions of the two algorithms, UNIMEM and COBWEB, as they receive a

sample stream of queries as input. Before we proceed with the example, we

should mention one major modification that must be done to both algorithms

so that the class of queries that is acceptable to them is not overly restricted.

The algorithms as described above cannot handle joins, because unlike

equality selections, joins are not directly mappable to a feature with a value

specified for it. Hence, the matching that the algorithm performs must be

extended to allow an attribute to take on the name of another attribute as a

value, independent of the type of values that the feature normally has. For
example, if eno normally takes on integer values, it must be able to also take

on values such as m.grno to express the join eno = mgrno. In our work, to

solve this problem, the legal values for each attribute have been enhanced to

include the names of all other attributes that could be joined with it. Then,

matching for joins can be treated similarly to constant selections. For exam-

ple, the following SQL query

select ename
from EMP, DEPT
where edno = dno
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can be represented by the following feature vector:

((enarne ?)(echo = dno)(drzo = echo)).

This notation, which explicitly represents the joins from the perspective of

both join attributes, ensures that joins will always be treated consistently.

For simplicity, we assume that the attributes being printed in the query

results (those in the select clause) do not play a major role in the formation

of concepts, so they are omitted in the following examples, unless they are

also involved in a join or a selection.

Consider the following stream of queries on the COMPANY database (in

feature vector notation):

1. (name employment) (edno = dno)(dno = edno)

2. (name well-paid-empl)( edno = dno)(dno = edno)(age = 20)( salary =

200K)

3. (name senseless )(edno = floor )( floor = edno)(age = 20)

4. (name young-emp)(edno = dno)(dno = edno)(age = 20)

5. (name well-paid-emp2)( edno = dno)(dno = edno )(age = 20)( salary =

200K)

The name feature has been added in this example to more easily identify

what concept is represented by each query. In a system where the user is

meant to be unaware that learning takes place, this would have to be

generated and assigned by the system. For the purposes of this example, we

assume that one similar feature value between examples is sufficient for

creating a new concept,

We first examine the actions of UNIMEM as queries enter the database

system one at a time and are passed on to it. When the first query is

processed, the current concept hierarchy is empty (having only the root node).

Therefore, instance (1) is stored at the root node where it can never conflict

with the features of any other example (no features are necessary to be a

member of the root concept). The concept hierarchy that is generated after
the process is completed is shown in Figure 3.

When the second query enters the system, the root is the only node in the

concept hierarchy. Instance (2) is compared with the instance stored at this

node, namely instance (l), to determine whether or not they have enough

feature values in common to form a new concept. Since they match exactly on

values of the features edno and dno, a new concept node is formed whose
stored features are edno and dno, and both instance (1) and instance (2) are

stored in the new node. Instance (1) is removed from its place at the root

node, and finally the new node is added to the hierarchy as a child of the

original node. At this point, the concept hierarchy looks as in Figure 4. The

numbers in brackets represent the algorithm’s confidence values for those

feature-value combinations.

The final state of the concept hierarchy, after the remaining three queries

enter the system and are all processed, is shown in Figure 5. Note that this

particular set of queries formed a nice linear hierarchy in which the concepts
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Concept-1

Stored 13xamples: employment

Features: <none>

Concept-1

Stored Examples: <none>

Features: <none>

Concept-2

Stored Examples: employment

well-paid-empl

Features: edno = dno [2]

dno = edno [2]

Fig. 3. Concept hierarchy generated by UNIMEM

after query (l).

Fig. 4. Concept hierarchy generated by UNIMEM

after query (2).

become more specialized deeper in the hierarchy. Concept-2 represents the

notion of employment as evidenced by the edno = dno join. Concept-3 is

slightly more specialized and represents the concept of young employees by

including the age = 20 feature as well as the edno = dno join, which it

inherits from Concept-2, its parent in the concept hierarchy. Finally,

Concept-4 adds another new feature to the above, namely salary = 200K, to
represent the notion of well-paid employees. Not all streams of instances will

result in such a linear pattern. If more queries that involved an entirely

different set of relations were introduced, e.g., authors, books, and book

subjects, those concepts would form an entirely separate subtree.

An important point is that queries like (3) could be removed from the root

of the concept hierarchy if they do not match with any other queries after

some specified significant length of time. For a query to not be incorporated

into any concepts is an indication that it is insignificant with respect to the

concepts that it represents and can be removed from the concept hierarchy

without any loss of important information.

We next demonstrate how COBWEB performs on the exact same incoming

stream of queries used above. For the sake of brevity, only those attribute-
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F
Stored Examples: senseless

Features: <none>

I

I Concept-2

Fig. 5. Concept hierarchy generated by UNIMEM

after queries (3)-(5).

I Concept-3

Stored Examples: young-emp

Features: age = 20 [3]

1

I

Ccmccpt-4

I Stored Examples: well-paid-empl

well-paid-emp2

l~eatures: salary = 2CM)K [2]

value pairs with a nonzero probability are shown in the concepts. In addition,

the probabilities are shown directly rather than the feature value counts in

terms of which probabilities are calculated.

As the first query enters the system, COBWEB is called to put it into the

hierarchy. Since the hierarchy is empty, there is no choice but to create a new

concept at the root and place this instance into that concept. The resulting

concept node is shown in Figure 6. When the second query enters the system,

the unique node in the hierarchy is split into two nodes, one for each

ACM TransactIons on Information Systems, Vol. 10, No. 3, July 1992



Conceptual Learning in Database Design . 277

P(co) = 1.0 I
P(edno = dno I CO) = 1.0

P(dno = edno I CO) = 1.0
Fig. 6. Concept hierarchy generated by COBWEB

after query (l).

Stored Examples: employment

P(co) = 1.0

P(edno = dno I CO)= 1.0

P(dno = edno I CO)= 1.0

P(age = 20 I CO)= 0.5

P(salary = 200K I CO)= 0.5
L 1

1’(CI) = 0.5

P(cdno = dno I Cl)= 1.0

P(dno= edno ICI) = 1.0

P(age=201Cl)=l.O

p(S&Ky = 200K I Cl) = 1.0

Stored Examples: well-paid-empl

P(C2) = 0.5

P(edno = dno I C2) = 1.0

P(dno = edno I C2) = 1.0

I

Stored Examples: employment

Fig. 7. Concept hierarchy generated by COBWEB after query (2).

instance, since that gives the best category utility. The resulting hierarchy is

shown in Figure 7. Finally, the hierarchy that results after the remaining

three instances in the query stream are processed is shown in Figure 8. Note

that the concept hierarchy produced by COBWEB is similar to, but not

exactly the same as, that produced by UNIMEM. COBWEB forms a shal-

lower, bushier tree, since some of the nodes have a greater branching factor.

2.5 Use of Concept Hierarchies

In this subsection, we want to elaborate on how the specific algorithms,

UNIMEM and COBWEB, and the concept hierarchies that they produce can

be used within database systems for database design. In particular, we want

to provide some guidelines that can be used by the DBA in interpreting the

concept hierarchies produced and making beneficial changes to the external

and physical schemas of a database. We primarily focus on UNIMEM,

because it is the easiest one to explain, and only briefly discuss COBWEB at

the end.
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We start with physical database design. First, any attributes that figure

prominently in the higher levels of the UNIMEM hierarchy (called high

attributes) are good candidates for indices if they do not already have them,

since they are involved in the most interesting concepts and are the most

likely to appear in queries. Among those, attributes with high confidence

values are the best choices for building indices. For each relation, the highest

such attribute should be chosen for a clustered index, and some of the

remaining ones for nonclustered indices. Second, the specific form in which

an attribute appears in a concept indicates the appropriate type of index: if

the candidate attribute appears in most concepts in equality selections and

joins, hashing is to be preferred; if it appears in many concepts in nonequality

selections, a B ‘-tree is to be preferred. Third, if more advanced features are

supported by the database system, the concept hierarchy can provide guide-

lines for how they can be used as well. If join indices are supported [ 18], then

they should be built on high attributes that appear in joins. If multi-

dimensional indices are supported [7], then they should be built on sets of

high attributes that appear in many concepts together.

As an example of the above, let UNIMEM be the learning algorithm used

by the system and consider queries (l)–(5) on the COMPANY database.

Assuming that they are fairly typical of the kinds of queries that the system

receives, the DBA can use the generated concept hierarchy and identify that

clustered hashed indices would be clearly useful on the join attributes edno

and dno. In addition, the DBA can also determine that it would be better to

put a nonclustered index on the age attribute than on the salary attribute,

since the former is higher up in the hierarchy than the latter, i.e., it

participates in more queries (concepts).

We continue with logical database design. For this, the approach is similar

to physical database design, but the options are much fewer. Concepts that

appear in the higher levels of the hierarchy are good candidates for being

captured by views. The qualification of the view definition will include all

features in the concept that have high confidence values. The attributes of

the view will include all features that (a) are prominently identified by the

concept as part of the output of queries, and (b) are part of close descendants

of the concept (one or two levels lower) in the hierarchy. This will increase

the usability of the view. Note that for logical database design, the algorithm

must keep track of the printed attributes of queries, unlike our practice in the

example of Section 2.4.

Continuing on with the above example, consider the concept hierarchy

generated by UNIMEM (Figure 5). Clearly, a view that joins EMP and DEPT

based on the condition edno = dno and contains eno, age, and possibly

salary, is very useful, since it can be used by almost all queries that have

produced the concept hierarchy.

We conclude with a use of concept hierarchies that is unrelated to database

design, i.e., identification of ill-formed queries. For example, consider the

“senseless” query (3) and again let UNIMEM be the learning algorithm used
by the system. If this query were submitted after a rich concept hierarchy

had been created by UNIMEM, it would probably still end up being stored at
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the root node with all the other unusual queries. UNIMEM could notify the

user that this query does not match any of the concepts that it has identified,

and ask for confirmation that the submitted query is indeed the one intended

by the user. If the query is correct, the system can continue processing it and

produce an answer. If the query is incorrect, however, the user can fix the

mistakes and have the system evaluate the corrected query, instead of

wasting valuable resources on the original one. In fact, this can be done with

the user examining the parts of the concept hierarchy that are closest to the

submitted query, as an aid to identify possible misconceptions on the user’s

part. (This is reminiscent of Motro’s work on dealing with queries having null

answers [14]. ) Such behavior on the part of the database system may also

increase the users’ confidence in the system, since the latter would appear to

have knowledge about the semantics of the information that it contains.

The difficulty in explaining how the concept hierarchy generated by

COBWEB can be used for database design stems from the fact that useful

information is scattered throughout the hierarchy. The root is important,

because the features that have high conditional probabilities there are the

ones that should be chosen for indexing. The same features are also the ones

that should be used to define views, but the root does not contain any

information about how these should be combined. The DBA must traverse the

subtrees of the hierarchy rooted at nodes with high probabilities to identify

which of these features are often used together in queries. Finding such

features together in internal nodes where the conditional probabilities of the

features are uery high (close to 1.0) is a strong indication that they should be

combined in views. In the above example, the join of EMP and DEPT that is

based on the condition edno = cino is found in the internal node Cl and both

features that correspond to it have conditional probability 1.0. Hence, defin-

ing a view that captures it would be very useful. We should mention that the

leaves of the COBWEB hierarchy have almost no importance, since their

union simply corresponds to a list of all queries that have ever been submit-

ted to the system. As we move, however, from the leaves towards the root in a

bottom-up fashion, the significance of finding multiple features with very

high conditional probabilities increases.

3. IMPLEMENTATION OF LEARNING ALGORITHMS

For the experiments described in the next section, we have used LISP

implementations of both UNIMEM and COBWEB that have been developed

in the labs of Jude Shavlik of the University of Wisconsin and Alberto Segre
of Cornell University, respectively. Both were originally written to accept

standard feature vectors as input and needed extensive modifications to

accept database queries as input, and to properly match these queries with

the concept hierarchy.

For this work, a database query is defined to be a conjunction of one or

more atoms of the following form: (atti-, op, ualue, ), where attr, is the name

of an attribute of a relation, opL is a comparison operator in { = , < >, s , or
z}, and value, is either a constant that is type-compatible with attrl or the

name of an attribute with which a ttr, can be joined.
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The current versions of the algorithms impose the following restrictions on

the form of an input query:

—Only conjunctive queries are allowed.

—Only equality joins are allowed.

—At most one copy of each relation is allowed.

—Each attribute is allowed to appear in at most one atom, unless the user

can provide a consistent renaming of the attribute.

The original learning algorithms were modified as follows.

(A) A scheme was developed for efficient feature value matching so that
the database performance does not degrade. This relates to the comments

made earlier regarding the representation of join attributes. As demonstrated

in the examples, the scheme consists of making all attributes that may

possibly be joined with a particular attribute potential values for the latter.

Thus, with the appropriate internal renaming of attributes, the learning

algorithms can treat join-term values like any other constants and apply a

simple pattern matching algorithm on feature values instead of unification of

variables. This solution works well for the subset of relational algebra queries

to which we have limited ourselves, i.e., queries in which at most one copy of

each relation is used. More sophisticated techniques will be necessary to

remove this limitation.

(B) The problem of features whose values are unknown or inapplicable was

solved. For UNIMEM, the solution was provided by the algorithm itself a low

value (O. 10) was used as the partial match score for a missing feature. In

essence, this captured the fact that missing feature values should be given

little weight in a match score, but more weight than two feature values that

are in complete conflict, which earns a score of O. The solution for COBWEB

is more difficult. The feature vector representation of COBWEB requires that

each feature have a value for every example. The solution was to use the

value UNKNOWN for each feature that has no value. This introduces a bias

into the algorithm, since the category utility score increases if one feature in

a concept has a large number of UNKNOWN values. This bias, however, did

not seem significant on the queries that were tested with the algorithm.

(C) An efficient way to store multiple copies of the same example into the
concept hierarchy was devised. In COBWEB, if an example is identical to

another example in some leaf concept node, only the feature value counts are

updated; the new example is not stored in a separate leaf. In UNIMEM, a

similar approach was adopted. If a concept contains an example that is

identical to the current example, the feature confidences at the concept node

are automatically updated with no further action, In both cases, this compli-

cates the comparisons required when performing the matching to create a

concept or adjust feature confidences. Our experiments have shown, however,

that such complications are easy to overcome and the performance trade-offs
are in favor of doing so. This approach is also taken in the CLASSIT

algorithm [6, 9], which is an extension of COBWEB.
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(D) The flexibility of the algorithms was expanded when matching linear

features, on which a total order is defined. For example, when comparing the

ages of two people, it can generally be assumed that a difference of one year

is insignificant, i.e, those people can be considered to have the same age when

considering feature value matching. In our implementation, such “approxi-

mate” matching was only supported for the case of linear features that take

numerical values but not for nominal features, which take symbolic values.

Currently, the user can specify one of three methods by which the algo-

rithm can take advantage of the total order of linear features in the matching

process. The first method is the specification of a radius, a notion that was

introduced by Metro in a system that could deal with vague queries [15]. A

radius indicates the minimum acceptable distance (difference) between two

numerical values for them to be considered equal. For example, for the age

attribute, the chosen radius could be equal to 5, which indicates that two

people whose ages are within five years are to be considered as having the

same age by the learning algorithm. In COBWEB, there may be several

attribute values in a concept within the same radius as the new instance

attribute value. Thus, it is necessary to find the closest match between the

new feature value and each of the existing feature values in the concept when

deciding how to update the feature value counts in the concept.

The second method can be used only for UNIMEM, which as we mentioned

in Section 2.2, can return a value between O and 1 to indicate a partial match

between two particular feature values. The algorithm requires that the

minimum V&n and maximum V.,, possible values for the range of feature

values be specified. Then, for feature values VI and Vz, their match score is

equal to

~ _ Iv, - V,l
vma x – Vm,n“

For example, consider the age attribute with allowable values in the range

[0, 1001. If the feature values are 20 and 25 respectively, then the partial
match score is equal to 0.95, which indicates that the values are reasonably

close.
The third method requires partitioning the whole range of feature values in

a small number of subranges. For example, for the fZoor attribute, the

partitions may specify that floors below the fifth are 10ZU, those between the

fifth and tenth are medium, and those above the tenth are high. Then,
the system will use only the three values 10ZU, medium, and high, when

making decisions about matching feature values. We refer to this type of

feature as a partitioned feature.

(E) The algorithm was enhanced to accept queries with range selections on
linear attributes. The need for these can be illustrated by the above examples

where query (2) tried to model the notion of a well-paid employee by specify-

ing that the salary was equal to 200K. A more realistic formulation of the

concept would be as an employee whose salary is greater than or equal to
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200K. To properly implement range selections, feature values are represented

as a list of the following format: (start-value erzd-ualue). For equality joins

and selections, start-value is equal to end-value. For selections that have the

<, <, >, or a operator with one of the endpoints of the range being

unknown, the unknown value is represented by a ?. For example, the

selection (age > 25) is represented by the value (25 ?). If, however, it has been

specified to the system that the legal range for age is between O and 100, the

preceding selection is represented by (25 100). In addition, if age is a parti-

tioned attribute with partitions ((O 17 young) (1865 middle) (65 100 old)), the

above selection is represented by the value (middle old).

Matching for range selections is done by checking how close the endpoints

of the feature values are. Suppose that feature value (start 1 erzdl ) is being

compared to feature value (startz endz ). If start, is not equal to endi for

either feature value, then the value Istart ~ – start ~/ + Iendl – end2 I is com-

puted. This value can be compared to some specific radius, or it can be used

in UNIMEM to compute a partial match score. Note that, if one of the

endpoint values is ?, the corresponding endpoint value in

must also be the same in order for a nonzero feature value

generated.

4. ANALYSIS

the other feature

match score to be

In this section, we present the results of experiments that we perform with

the enhanced versions of UNIMEM and COBWEB described above. The

schema of the BANK database that was used to study sample concept

hierarchies produced by the algorithms is shown below.

ACCOUNT (actno, bal, cust—narne)

TRANSACTION (trio, type, bal_change, tactno, tatmmo)

CUSTOMER (ssno, name, age, street, city, num_kids, married)
ATM (atmno, num_trans, location, disabled_ time)

For its linear attributes, combinations of all three methods for handling

approximate matching were used. Below we show the templates for the

queries used in the experiments (in English) with the actual values having

been replaced by the generic x. The queries were chosen so that they provide

a good mix of selections and joins.

(0

(2)
(3)

(4)

(5)

(6)

(7)
(8)

Balance of account x.

Transactions of account of customer x.

Address, social security number, and transactions of account of

customer x.

Customers with withdrawals of more than x.

Customers with withdrawals of between x and y.

Customers with accounts whose balance is greater than x.

Age of customers with accounts whose balance is greater than x.

Social security numbers of customers with accounts whose balance is

greater than x.
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(9) Marital status of customers with accounts whose balance is greater

than x.

(10) ATMs with transactions on accounts whose balance is greater than x.

(11) Disabled times of ATMs with transactions on accounts whose balance is

greater than x.

(12) Number of transactions and disabled times of ATMs with transactions

on accounts whose balance is greater than x.

(13) Balance of customers with more than x kids.

For each algorithm, twelve different concept hierarchies were created. Each

time a set of 1000 sample queries chosen from the templates above were

provided as input, each template having an equal number of representatives

in the set. These sets are denoted by qset,, where 1 s z < 12. In qsetl, the

queries from each template were clustered together, i.e., they were one after

the other, without any interleaving among templates. In qset2, the templates

were maximally interleaved, i.e., a sequence of one query per template was

finished before another sequence of the same form started. In each of the

remaining ten query sets, qset ~ to qset ~z, queries were randomly ordered.

Our analysis of the concept hierarchies generated from the above query sets

focus on the following four aspects: (a) consistency of the generated concept

hierarchies across different input orders for the queries, (b) the effect of

starting with a nonempty concept hierarchy based on well-educated estimates

about what the interesting concepts are, instead of starting with an empty

one, (c) size of the concept hierarchies generated by the algorithms and its

variations as the number of observed examples increases, and (d) efficiency of

the learning algorithms. The next few paragraphs discuss the results of our

experiments with respect to all the above aspects.

In general, it is expected that the order in which queries are presented is

significant for both learning algorithms. This is due to the fact that the

algorithms create different initial concepts each time, which then affects both

the placement of the examples that follows in the hierarchy and the updates

of the feature confidence values or conditional probabilities. To establish a

better understanding of that effect, we compared the final concept hierarchies

that were generated for the twelve query sets used in the study. The

hierarchies produced were quite large and, therefore, difficult to examine.

Below, we present the results on the comparison of the concept hierarchies

produced by two of the randomly ordered query sets. The derived conclusions,

however, are in general applicable to the whole suite of conducted experi-
ments.

Based on the discussion in Section 2.5, the top levels of the concept

hierarchy are generally the most important for making decisions about

dynamic changes to the external and physical database schemas. All gener-

ated hierarchies in our experiments were of depth 3 to 5, so we only compared

the two leveks in each hierarchy that were immediately below the root. The

root was excluded because, in UNIMEM, it captures no meaningful concepts,

whereas in COBWEB, it is independent of the order of arrival of queries, so it

is the same for all input query sets that contain the same queries.

ACM Transactions on Information Systems, Vol. 10, No. 3, July 1992.



Conceptual Learning in Database Design . 285

Table I. Comparison of the Top Levels of Two Concept Hierarchies

Level 1 Level 2

Algorithm same different same different

UNIMEM 3 2 5 11

COBWEB 4 0 8 2

The results are summarized in Table I, where for each algorithm, we

present the number of nodes that were the same in both hierarchies and also

the number of those that were different, separately for each hierarchy level of

interest.

The difference between the two hierarchies in each case is clearly evident

by the entries in the “different” columns. However, there are significant

similarities as well. In particular, both hierarchies had the most common

joins captured by concepts in their top levels, which is very desirable due to
the important role of joins in relational databases. These would be the join

between CUSTOMER and ACCOUNT based on name = cust—name and the

join between ACCOUNT and TRANSACTION based on actno = tactno. This

was to be expected, since the query representation that we chose introduces a
bias towards joins by requiring that each join is represented twice, once for

each join attribute. Most of the other common concepts in the top levels

captured groups of queries with the same template.

A comparison of the two learning algorithms, clearly, shows that the

concept hierarchies produced by COBWEB are more consistent than those

produced by UNIMEM. This is seen by the larger numbers for COBWEB in

the “same” columns of Table I, but primarily by the much lower numbers for

COBWEB in the “different” columns. Because of its more advanced tech-

niques, COBWEB generated almost no spurious or unrelated concepts at the

top levels. This is unlike UNIMEM, which generates several more concepts

than COBWEB, many of which are insignificant and may eventually be

deleted.

Given the sensitivity of UNIMEM to the order of the incoming queries, we

focus on that algorithm and elaborate on the issue further. An interesting

question that arises is whether or not there is an optimal order in which

queries should be received by the system so that only the most meaningful

concepts are formed. In that respect, it is clearly optimal for all queries on the

important concepts to be presented first and in clusters as in qsetl. This

ensures that each such concept is identified and permanently established in

the hierarchy before unrelated queries can cause the relevant features to be

discarded. (In fact, this order has been determined to be optimal for

COBWEB as well as for the ITERATE algorithm, which is an extension of

COBWEB, by Biswas et al. [2]).

The above observation inspired the following approach for achieving more

consistent results when the learning algorithm is given queries in different
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orders. In a preprocessing phase, the concept hierarchy is initialized by a

carefully chosen set of queries in a specific order, so that important concepts

are well established in the hierarchy. When the actual queries arrive during

normal processing, the initialized concept hierarchy should play the role of a

robust basis so that the subsequent building of concepts will be relatively

uniform and uninfluenced by the order of incoming queries. Such a prepro-

cessing phase is easily implementable in database applications, because most

often the DBA has right from the beginning quite accurate knowledge about

some of the most important concepts that are captured in a database, e.g., the

natural joins between relations. The desired concept hierarchy can be gener-

ated by simply choosing an appropriate set of queries and “spocm-feeding” it

to the database system.

We experimented with the above method by introducing to UNIMEM a

specific set of 28 queries in a given order during a preprocessing phase. The

resulting concept hierarchy had as children of the root four important joins

that semantically connect the relations of the BANK database. These are the

join between CUSTOMER and ACCOUNT based on name = cust_name, the

join between ACCOUNT and TRANSACTION based on actno = tactno,

the join between TRANSACTION and ATM based on tatmno = atmno, and

the join between CUSTOMER and ATM based on city = location. The param-

eters of the algorithm were chosen so that the corresponding concepts were

never deleted. After the preprocessing phase, we ran the exact same experi-

ments as before with all twelve query sets starting from the initialized

concept hierarchy. We again only present the results from the comparison of

the concept hierarchies produced by the two specific query sets used before,

although the derived conclusions are more generally applicable. In a similar

format to Table I, these results are given in Table II, where the corresponding

numbers for UNIMEM without the preprocessing phase are repeated for ease

of comparison.

Clearly, the preprocessing phase is very valuable to UNIMEM. The com-

mon nodes in both levels increased (although only in the top level were nodes

fixed during initialization), while the differences decreased dramatically.

Moreover, note that the total number of nodes in the top two levels decreased

(as evidenced by the decreased sum of commonalities and differences), which

is an indication of the decrease in the generation of spurious concepts. We

conclude that when using UNIMEM for database design, initializing the

concept hierarchy with a small set of carefully chosen concepts is essential for

consistency in the final result. Therefore, the rest of the analysis concerns the

experiments that involved this preprocessing phase.

To measure the changes in the size of the generated concept hierarchies as

the number of incoming examples increases, we instrumented the algorithms

so that the appropriate measurements are taken every 50 examples. Figure 9

shows typical behaviors observed among the twelve different tested sets of

queries. We show the behavior of both algorithms for the deterministically

constructed query sets qset ~ and qset ~ as well as for the average among the

randomly generated sets. In general, UNIMEM generates hierarchies that

are larger than those of COBWEB. This is due to the fact that UNIMEM
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Table II. Comparison of the Top Levels of Two Concept Hierarchies with Initialization

Level 1 Level 2

Algorithm same different same different

UNIhfEhl with initialization 5 0 7 4

UNIMEM without initialization 3 2 5 11

stores examples in multiple concepts and allows overlapping concepts,

whereas COBWEB does neither of these. The difference in size can be quite

significant, and in our experiments, it occasionally reached close to a factor of

2. For qsetl, both algorithms have a similar behavior: the size of the hierar-

chy grows monotonically for the most part with the number of incoming

queries. This is to be expected, since in qsetl, many similar examples are

given to the system consecutively, so the corresponding concepts are learned

one at a time and become solidly established in the hierarchy. For the

remaining query sets, the behavior is quite different. For UNIMEM, although

the size of the hierarchy grows overall, there is significant variation as

examples are received as input, and the size can grow or shrink at times in

unpredictable ways. In contrast, COBWEB is much more stable, reaching

very close to its final size after few examples and exhibiting only minor

changes beyond that point. This is partly due to the fact that COBWEB does

not delete any concepts from the hierarchy, but also due to the more sophisti-

cated techniques that it employs for concept formation. Another interesting

observation is that, for UNIMEM, there is significant variation on the

behavior among the different query sets, whereas COBWEB again is very

stable, exhibiting only minor differences among them.

Finally, the processing time results of the experiments are shown in Fi~re

10. The x-axis corresponds to the query set, whereas the y-axis (in logarith-

mic scale) corresponds to elapsed time in seconds when the algorithms are

executed on a DecStation 3100, which is approximately a 14 MIPS machine.

In the figure, in addition to the total processing time of each algorithm for

1000 queries, we show the time spent to initialize the concept hierarchy in a

preprocessing phase as discussed above. There are three major conclusions

that one can draw from these results. First, the initialization time is insignifi-

cant compared to the total processing time (approximately two orders of

magnitudes less), so performing it does not degrade performance in any way.

Second, processing a randomly ordered set of queries is always slightly more

expensive than processing a set of queries in a clustered order (set qset ~).

This is due to the fact that with qsetl, the concept hierarchies are formed in a

regular way without many changes (see Figure 9), which makes searching

them more efficient. We should also note, however, that the difference is not

all that significant and is similar in magnitude to the variations that are

observed among different randomly ordered query sets. Hence, based on

Figure 10, it is safe to conclude that query ordering does not affect
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Fig. 9 Concept hierarchy sizes as a function of the number of incoming queries: (a) UNIMEM;

(b) COBWEB.
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performance very much. Third, as expected from the discussions in Section 2,

UNIMEM is much more efficient than COBWEB, by more than an order of

magnitude in all query sets. This is explained as follows. With respect to

searching effort alone, UNIMEM is less efficient than COBWEB, because it

can store examples in multiple places, which implies both that the generated

hierarchies are larger in general than those of COBWEB and that larger

pieces of them must be searched with every example. The efficiency of

COBWEB’s searches, however, is offset by the extreme cost of calculating the

conditional probabilities, which is much higher than the cost of UNIMEM’S

comparisons of match scores. The problem is exacerbated by the fact that

COBWEB requires a value for every known feature in the database (with

UNKNOWN being used as the value of missing features). For our experi-

ments, this implies that for every incoming example and for many nodes in

the hierarchy, conditional probabilities for twenty-two features have to be

calculated. Hence, as the number of incoming queries increases, the hierar-

chy grows larger and the algorithm becomes very expensive. This problem

has been addressed by Gennari in the CLASSIT-2 algorithm [5], where an

attention mechanism is used to determine the minimum number of features

that need to be manipulated for deciding the appropriate modifications to the

concept hierarchy.

5, SYSTEM COMPARISON

As mentioned in Section 2.1, for the most part, both UNIMEM and COBWEB
satisfy all criteria that were given as mandatory for a learning algorithm to

be useful for database design. In this section, we compare the two algorithms
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on their small differences with respect to those criteria and also on other

important issues that were brought up by our experiments in an attempt to

identify the one that is more appropriate for the desired task.

The main mandatory criterion on which the algorithms differ is the ability

to deal with overlapping concepts. Many real-world concepts, like those

represented by the queries in the earlier examples, are interrelated. Hence,

this property is very important and is a strong point in favor of UNIMEM,

which possesses it. On the other hand, COBWEB does not create overlapping

concepts, and given the methods that it uses to identify concepts, it is

unlikely that it could be easily modified to do so.

The next issue is the processing time consumed by the learning algorithms.

The learning component of the system should be transparent to the user, so it

must run in a fraction of the time that is needed by the system to answer a

typical query. Clearly, the results of Figure 10 are overwhelmingly in favor of

UNIMEM again, since COBWEB needs at least an order of magnitude more

time for its expensive conditional probability calculations.

Another issue is the sensitivity of the resulting hierarchy to the order of

incoming queries. In this respect, the two algorithms are roughly equivalent.

Clearly, COBWEB is much more robust when starting from an empty concept

hierarchy, but UNIMEM improves significantly and comes close to COBWEB

when starting from a carefully initialized hierarchy. As we have mentioned

already, for the specific application of database design, we believe that a

preprocessing phase is very useful, essentially allowing the DBA to provide

heuristics that will guide the learning algorithm. Hence, assuming that it is

incorporated as part of the learning algorithm, either algorithm appears to be

adequate.

A related issue to the above is the ability to delete concepts from the

hierarchy. UNIMEM has this ability, whereas COBWEB does not, keeping all

examples that it receives forever. On the other hand, such an ability is much

more important to UNIMEM, which tends to generate many spurious con-

cepts, than to COBWEB, which is more conservative. Hence, with respect to

the quality of the produced concept hierarchies, it is unclear if UNIMEM,

which allows concept deletion, should be considered superior to COBWEB,

which does not. Of course, with respect to efficiency, COBWEB’s practice can

still lead to extremely large concept hierarchies, which is undesirable.

A final issue that could make a difference is the learning algorithm’s

predictive ability. The purpose of identifying concepts is to help the system in

fine-tuning the design of databases. This assumes that the identified concepts

are amenable to analysis that determines the most important ones, which
should play major roles in the external and physical schemas of a database.

For this task, the learning algorithms’ differing representations play a major

role. COB WEB makes the analysis very direct, since it maintains information

that is necessary to calculate probabilities. These probabilities are very good

measures of which concepts are most likely to appear in forthcoming queries.

UNIMEM constructs essentially the same hierarchy and keeps some of the

same information, but not in such a useful form for prediction as COBWEB

does. Hence, in that sense, COBWEB appears to be preferable to UNIMEM.
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The above discussion makes it clear that the question of superiority be-

tween UNIMEM and COBWEB cannot be conclusively answered. Both algo-

rithms have different strengths. UNIMEM appears to be more efficient, has

the power of overlapping concepts, can remove spurious concepts from its

concept hierarchy, and takes advantage of a preprocessing phase that initial-

izes the hierarchy. On the other hand, by using conditional probabilities,

COBWEB generates more consistent and meaningful concept hierarchies,

and appears to have better predictive power for making dynamic database

redesigns. Hence, which of the two algorithms is more appropriate should

depend on the importance of the various factors for the database concerned.

A hybrid algorithm might also be considered, using the UNIMEM hierar-

chy and also storing the conditional probabilities at each node in the hierar-

chy. This algorithm will probably feature the strengths of both algorithms

and none of their weaknesses. Such a combination, however, requires very

careful design and implementation, since there are several incompatibilities

between the two algorithms that underly their basic functions. Thus, the

viability of the hybrid algorithm is very much an open question.

6. SUMMARY AND FUTURE WORK

This paper has examined the idea of incorporating machine learning algo-

rithms into a database system for monitoring its stream of incoming queries

and dynamically modifying its physical and external schemas for improved

system performance and user productivity, respectively. Two existing algo-

rithms, UNIMEM and COBWEB, have been studied, since they appear to be

suitable choices for the task. Standard UNIMEM and COBWEB implementa-

tions have been modified to support queries. These modified implementations
provided a good basis for studying the practicality of using this approach.

The main conclusion from this work is that, given the right application

domain, a database system with built-in learning would be advantageous.

Learning would be most useful in cases where (a) the database contains a

large amount of diverse information, so that many different concepts are

identifiable, and (b) the importance of various concepts fluctuates over time,

so that dynamic tuning is necessary. Another very important conclusion is

that starting the operation of the system after a carefully constructed concept

hierarchy has been established has very beneficial effects on the sensitivity of

the final hierarchies to the order of incoming queries and the meaningfulness

of the learned concepts. The initialized hierarchy should contain concepts

that are expected to remain important throughout the life of the database,

while the learning algorithm primarily deals with fluctuations on the impor-

tance of the remaining concepts.

On the other hand, in their current form, the learning algorithms may not

be ready for incorporation into industrial-strength database systems for

widespread use. On the positive side, it appears that concepts are usually

grouped by the joins appearing in their stored queries, which is useful

information for building indices and views. The inconsistency, however,
between the concept hierarchies that result from differences in the order of

incoming queries (even after a preprocessing phase) makes it difficult to
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predict the structure of the concept hierarchies. Also, another problem is the

large storage requirements of the algorithms (every distinct query must be

stored in the concept hierarchy for some period of time), which may adversely

affect their running time and the overall system performance. Thus, although

the potential exists for using this methodology to make effective decisions on

dynamic database reorganizations, it may not be materialized until the

aforementioned problems are overcome.

There are potentially several directions for future work. Database design is

only one part of the database lifecycle that may benefit from machine

learning. Others include monitoring the sizes of the actual results of queries

so that predictions by the query optimizer in future queries can be more

accurate, or deciding on what values of derived attributes should be cached so

that they are not recomputed whenever they are requested by a query (which

can actually be thought of as part of physical database design as well). An

important investigation would be to incorporate learning techniques for

improving the functionality or performance of a database system with respect

to any of these aspects. For such an effort, different approaches to machine

learning from the one that we have explored in this paper would most likely

be needed.

Another important direction would be to develop learning algorithms whose

output does not depend as much on the input example order. We want to once

again emphasize that this is a key issue that needs to be addressed before

such learning techniques can become practical. As mentioned before, one

possible alternative would be a combination of UNIMEM and COBWEB that

tries to preserve the nice features of both algorithms. As a complement to

such an effort, experimentation with real-world database systems operating

in a production environment would be required to assess the applicability of

such tools.

Finally, some items of more immediate concern are extensions of the

algorithms described in the paper so that their limitations (such as those

mentioned in Section 3) are removed and the range of queries that can be

dealt with by the learning algorithm expands.
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