
Algorithmica (1986) 1:361-385 Algorithmica 
�9 1986 Springer-Verlag New York Inc. 

A Time Bound on the Materialization of Some 
Recursively, Defined Views I 

Yannis E. Ioannidis 2 

Abstract. A virtual relation (or view) can be defined with a recursive Horn clause that is a function 
of one or more base relations. In general, the number of times such a Horn clause must be applied 
in order to retrieve all the tuples in the virtual relation depends on the contents of the base relations 
of the definition. However, there exist Horn clauses for which there is an upper bound on the number 
of applications necessary to form the virtual relation, independent of the contents of the base relations. 
Considering a restricted class of recursive Horn clauses, we give necessary and sufficient conditions 
for members of the class to have this bound. 

Key Words. Logic and databases, Horn clauses, Recursively defined relations, Uniformly bounded 
recursion. 

1. Introduction. In the past few years major attempts have been made to improve 
the power of  database systems, in particular those based on the relational model 
[Codd]. A significant part of this effort has been in the formalization, design, 
and development of deductive databases. Deductive databases are defined as 
"databases in which new facts may be derived from facts that were explicitly 
introduced" [Gall]. A major difference between a deductive and a conventional 
relational database is that in the former new facts may be derived recursively. 
This very characteristic of deductive databases is what makes query processing 
a difficult task in such an environment. The main problem that arises is how to 
detect the point at which further processing gives no more answers to a given 
query. Many researchers have studied and proposed solutions to this termination 
problem for various cases [Reit], [Chan 2], [Hens], [Viei]. 

A common characteristic among all the proposed solutions that we are aware 
of  is that the termination condition relies on the data explicitly stored in the 
database. In general this is necessary. However, there are some cases where a 
termination condition exists, which is independent of the particular instance of 
the database. The purpose of this paper is to identify and characterize these 
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cases. Restricted to a particular class of  recursive formulas, we give necessary 
and sufficient conditions for the existence of a data-independent termination 
condition. 

The paper  is organized as follows. In Section 2 the basic definitions for the 
study of deductive databases are given. Our investigation is restricted to a subset 
of  all possible deductive databases. The restrictions imposed on the database are 
outlined and justified. Uniformly bounded recursion is introduced in Section 3. 
Some general results together with related work is presented as well. Section 4 
contains the description of  the graph model used as a tool to derive the results 
presented. Using this graph model, necessary and sufficient conditions for uni- 
formly bounded recursion are given in Section 5. The theorems are illustrated 
with a number  of  characteristic examples. In Section 6 we characterize uniform 
boundedness for a slightly more general class of  recursive formulas. Finally, in 
Section 7, the results are summarized and more problems for future work in the 
area are discussed. 

2. Assumptions. The following definitions about first-order formulas [Ende] are 
useful in the forthcoming analysis. 

DEFINITION 1. A first-order formula is equivalent to a Horn clause if  it is of  
the form A1 A A2 A �9 �9 �9 A An ~ C. All the variables appearing in the formula are 
(implicitly) universally quantified. The formula to the left of  ~, is called the 
antecedent and that to the right of  ~ the consequent. 

Each one of  C, A1, A 2 , . . . ,  An is an atomic formula [Ende],  i.e., it is of  the 
forrn P ( t l ,  t 2 . . . .  , tn), where P is a relation (predicate) symbol and 4, 1 - - - i - n ,  
is a term (a variable symbol or a constant symbol or a function symbol "appl ied"  
on terms). A Horn clause is recursive if the relation that appears in the consequent 
appears at least once in the antecedent as well. 

DEFINITION 2. The sole relation appearing in the consequent of  a recursive 
Horn clause is called the recursive relation. Any other relation in the Horn clause 
is called nonrecursive. 

DEFINITION 3. A recursive Horn clause is called linear if  its recursive relation 
appears only once in the antecedent. 

DEFINITION 4. Two variables x, y appear under the same relation in a Horn 
clause if there is an atomic formula P ( . . . ,  x, . . . ,  y , . . .  ) appearing in the Horn 
clause, where P is a relation symbol. 

DEFINITION 5. A variable is called distinguished if it appears under the 
recursive relation in the consequent of  a Horn clause. Otherwise it is called non- 
distinguished. 
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A deductive database is a relational database [Codd] enhanced with a set of 
Horn clauses. If there is some recursive Horn clause (or a set of mutually recursive 
Horn clauses) appearing in the database, then the termination problem mentioned 
in Section 1 arises. We address the problem with respect to the processing of a 
single recursive Horn clause only (immediate recursion). 

We restrict our attention to recursive Horn clauses that satisfy the following 
conditions: 

R1 The recursive Horn clause is linear. 
R2 There are no function symbols in the Horn clause. 
R3 There are no constant symbols in the Horn clause. 
R4 There are no repeated variables in the consequent. 
R5 No subsequence of distinguished variables in the consequent is a permutation 

of the corresponding subsequence of the variables under the recursive 
relation in the antecedent. 

The motivation behind restriction R1 is simplicity. Moreover, most of the 
recursive Horn clauses in a real world system are expected to be linear. Function 
symbols in a recursive Horn clause may lead to infinite relations. Situations like 
that are not easily handled in a database environment, if at all. Restriction R2 
is imposed to avoid them. The last three restrictions are imposed for the sole 
purpose of getting a uniform result. It is the goal of our future research to remove 
them, thereby generalizing our results. 

Finally, we assume that there are no equalities in the Horn clause. Any equality 
may be removed by replacing one of its variables with the other, wherever it 
appears in the Horn clause. It is clear that the new Horn clause is equivalent to 
the initial one. 

DEFINITION 6. A recursive Horn clause is called simple if it satisfies conditions 
R1-R5 and does not contain any equality symbol. 

3. Bounded Recursion. Let the following be a simple recursive Horn clause. 

(1) P(x~, x 2 , . . . ,  xm) ^ 3 ~ P(Yl,  Y 2 , . . . ,  ym). 

Subformula fl is a conjunction of atomic formulas, with relations other than P 
The following infinite sequence of nonrecursive Horn clauses is equivalen t to (1): 

por ..(o) ~(o) x(O)~ fl(o) \"~1 , "~2 , ' ' ' ,  m , ^ "-> PI(Yl, Y 2 , ' . . ,  Ym) 

P o ( x ~ l ) ,  x(21), . . " ,  x ( 1 ) )  ^ f l ( 1 ) ^  f l ( o )  .._> P 2 ( Y l ,  Y 2 , . . . ,  Ym) 

p o / ~ . ( 2 )  ~.(2) X(2m)) A l~(2) A fl(1) A fl(~ P3(Yl Y2, . , Ym) \ ' *1  , "~2 ~ �9 �9 �9 ~ ~ �9 �9 
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In the above, it is/3(') =/3[si] and Po(x] ~), x(,i),..., x(~ )) = Po(xl, x2 , . . . ,  x,,)[s~], 
for some substitution s~ of the variables in (1). Note that So substitutes each 
variable for itself. The ith Horn clause above is called the ( i -  1)th expansion of 
(1). So, the first one of these Horn clauses is the Oth expansion. Each one of 
these expansions is applied on Po, the initial contents of P. P is equal to U~=o P~. 
The ith expansion of a recursive Horn clause a is denoted by a~. Whenever this 
creates no confusion, the same notation is used to denote the recursive Horn 
clause produced by removing the subscripts from P in ai. 

In a database environment all the relations are finite. Furthermore, only 
function-free recursive Horn clauses are considered. Hence, even though a recur- 
sive Horn clause is equivalent to an infinite sequence of nonrecursive Horn 
clauses, the latter stop producing new tuples for P after some point. The process 
terminates exactly when some Nth  expansion of (1) fails to produce any new 
tuples for the first time. In general, N depends on the database contents. Our 
goal is to identify and characterize simple recursive Horn clauses, for which this 
is not true, i.e., the number of expansions needed to materialize the relation 
defined is independent of the database contents. 

The problem can be addressed in two frameworks. In the first, Po is produced 
by a given nonrecursive Horn clause. In the second, Po is stored in the database. 
The question in the first case is one of boundedness, whereas in the second it is 
one of uniform boundedness. In this paper we address the question of uniform 
boundedness only. 

DEFINITION 7. A simple recursive Horn clause is called uniformly bounded if 
it is equivalent to a finite number of its expansions. 

DEFINITION 8. Let a uniformly bounded simple recursive Horn clause a be 
equivalent to its first N expansions, So, a l , . . . ,  aN-1. The smallest such N is 
called the order of a. 

EXAMPLE 1. Consider the following simple recursive Horn clause a: 

a: reachable(x) ^ edge(x, y)-~ reachable(y). 

If edge represents the edges of a directed graph, then reachable denotes the nodes 
of the graph reachable from the ones originally contained in it. In general, the 
number of times a has to be applied to get the materialization of reachable is 
not known. It depends on the initial contents of edge (the graph) and reachable. 

EXAMPLE 2. As another example of a simple recursive Horn clause, consider/3: 

/3: P ( z ) ^ N P  c(z) ANP c(y)-~P(y). 

If  NP c is the set of NP-complete problems and P is the set of problems evaluated 
in polynomial time, then/3 states the well-known theorem that if one NP-complete 
problem is in P, then all are [Lewi]. Clearly, one application of/3 is enough to 
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materialize P, regardless of the initial contents of the relations P and NP__c. If 
there is one tuple in P that joins with (that is, is equal to) some tuple in NP_c,  
then/3 produces for P all the tuples in NP__c. Any further applications of 13 fail 
to produce new tuples for P. So /3, unlike a, is uniformly bounded with order 
equal to 1. 

Uniform boundedness of Horn clauses has been addressed in the past. Minker 
and Nicolas give a sufficient condition for a Horn clause to be uniformly bounded 
[ Mink]. In particular, they define a restricted class of Horn clauses, called singular, 
and show that any singular Horn clause is uniformly bounded. They do allow 
nonlinearity, but singular Horn clauses are restricted in the way relations share 
variables. 

The problem has also been addressed under a tableau formulation [Sagi 2]. 
Representing a Horn clause by a tableau, Sagiv gives necessary and sufficient 
conditions for a set of  Horn clauses to be uniformly bounded. The restrictions 
imposed are that there exists only one relation symbol in the Horn clauses, and 
that the Horn clauses are typed, i.e., no variable appears in more than one column 
of the relation. Similar results have been given by Cosmadakis and Kanellakis 
also [Costa]. 

More recently, Naughton has addressed the same problem [Naug]. The class 
of Horn clauses he considers is similar to the one of simple Horn clauses. He 
does not impose restriction R5, but he does not allow a nonrecursive relation to 
appear more than once in the antecedent either. Besides giving a necessary and 
sufficient condition for uniform boundedness for this class, he also addresses 
boundedness as well as the case with multiple recursive Horn clauses. 

Some tools developed for the study of conjunctive queries [Chan 1] and 
tableaux [Aho] are helpful in addressing the uniform boundedness problem of 
Horn clauses also. 

DEFINITION 9. A valuation 0 is a function from variables to constants. Applying 
0 on an atomic formula Q(xl . . . .  , x , )  gives the tuple (O(x l ) , . . . ,  O(x,)). 

DEFINITION 10. Consider two nonrecursive Horn clauses a and /3. A 
homomorphism h : a ~/3 is a mapping from the variables of a into those of/3, 
such that: 

(i) If x, y are distinguished variables appearing in the same argument position 
in the consequent of  t~ and/3, respectively, then h(x)  =y. 

(ii) If  Q ( X l , . . . ,  x , )  appears in the antecedent of a, then Q ( h ( x l ) , . . . ,  h(x , ) )  
appears in the antecedent of/3. 

When it is well defined, composition of homomorphisms hi and h 2 is denoted 
by h i o h2" 

DEFINITION 11. For two nonrecursive Horn clauses a and/3, a is more restrictive 
than r ,  denoted a-<rfl,  if for any database instance the relation produced by a 
is a subset of  that produced by/3. Clearly, -<r is a partial order. 



366 Y.E. Ioannidis 

DEFINITION 12. For two nonrecursive Horn clauses a and/3,  a is equivalent 
to /3, denoted a=~/3,  iff there exists an isomorphism h : a ~ / 3 ,  that is a 
homomorphism that is one-to-one and onto. 

The following lemma is a slight extension of a similar result on typed tableaux 
[Abo]. 

LEMMA 1. For two nonrecursive Horn clauses a and/3, it is a <-~/3 iff there exists 
a homomorphism h :/3 ~ a. 

PROOF. Let d~ (D~), 0 -  i -  < m, be the distinguished variable in the ith argument 
position in the consequent of  a (/3). 

(/f) Assume that there exists a homomorphism h :/3 ~ a. Let 0 be a valuation 
on the variables of  a. Consider a database instance such that relation Q contains 
the tuple (0 (X l ) , . . . ,  O(xn)) iff an atomic formula Q ( x l , . . . ,  xn) appears in the 
antecedent of  a. The composition of 0 and h, 0 ' =  0 o h, is a valuation on /3. 
Property (ii) of  homomorphisms assures that for an atomic formula Q ( y l , . . . ,  y~) 
in the antecedent o f / 3 ,  the tuple ( O ' ( y l ) , . . . , O ' ( y ~ ) } e Q .  Property (i) of  
homomorphisms guarantees that 0(d~)= 0'(D~), 1 - < i -  < m. Thus, any tuple in 
the relation produced by a is in the one produced by/3 was well. So, a -<~/3. 

(Only if) Consider a one-to-one valuation 0 from the variables in a onto 
some set of  constants C. Consider a database instance such that relation Q 
contains the tuple (0(xl) , .  �9 �9 O(xn)) iff an atomic formula Q ( x ~ , . . . ,  x , )  appears 
in the antecedent of  a. Then the tuple ( 0 ( d l ) , . . . ,  O(d~)) is in the relation produced 
by a. Since it is a -<r/3, it has to be in the relation produced by/3 as well. Thus, 
a valuation 0' from the variables of /3  into the set of  constants C exists, such 
that 0 ' (D~)= O(d~), 0 < - i < - m, and for any atomic formula Q ( y ~ , . . .  ,yn)  in the 
antecedent of/3, ( 0 ' ( y l ) , . . . ,  0 '(y,)) ~ Q. 0 is one-to-one and onto, so its inverse 
0 -1 is defined. Taking the composition h = 0 -1 o 0', it is easy to verify that it is 
a homomorphism from the variables of/3 into the variables of  a. [] 

LEMMA 2. Let  a~ and at, O<-s<-t, be two expansions o f  some simple recursive 

Horn clause a, such that at <- r as. Then it is at+k <-- r as+k, for  all k >- O. 

PROOF. It is shown by induction on k. The basis case k = 0 is given. Assume 
that at+k_l<--ras+k_l is true. By Lemma 1, there exists a homomorphism 
h : as+k-1 --~ at+k-1. Consider as+k and at+k. From the way expansions are formed, 
it is clear that the new part in the antecedent of  as+k is isomorphic to the new 
part in the antecedent of  at+k (they are both equivalent to a0). Let h I be this 
isomorphism from the part  of  as+k onto the part of  at+k. Consider the mapping 
h':  as+k ~ a t + k  defined as follows: 

S h ( x )  if x appeared in as+k-i 
h ' (x )  

h i (x )  i f x  is new. 

Clearly, h'  is a homomorphism from as+k into at+ k. By Lemma 1, it is 

a t+k  ~ r a s + k  �9 [] 
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LEMMA 3. A simple recursive Horn clause a is uniformly bounded iff there exist 
n, N, n < N, such that aN <--r an. 

PROOF. (If) By Lemma 2 and the transitivity of --~, if aN<--:a, then for all 
k -  N there exists some n ' <  N such that a k ~ r  an'. Hence, a is equivalent to its 
first N expansions. Its order is at most N. 

(Only if) This part follows the proof  of  [Sagi 1], and is similar to Lemma 1. 
Let a be equivalent to its N first expansions, ao through aN-l .  Assume that all 
of  them share the same distinguished variables di, 1 -< i -< m. Consider a one-to-one 
valuation 0 from the variables of  aN onto some set of  constants C. Consider a 
database instance such that relation Q contains the tuple (O(x l ) , . . . ,  O(xt)) iff 
an atomic formula Q ( X l , . . . ,  xl) appears in the antecedent of  aN. Then the tuple 
( 0 ( d l ) , . . . ,  O(dm)) is in the relation produced by aN. Since a is equivalent to its 
first N expansions, it has to be in the relation produced by an, for some n < N, 
as well. Thus, a valuation 0' from the variables of  an into the set of constants C 
exists, such that for any atomic formula Q ( y ~ , . . . ,  yt) in the antecedent of  an, 
( 0 ' ( y l ) , . . . ,  O'(yl))~ Q. o is one-to-one and onto, so its inverse 0 -1 is defined. 
It is easy to verify that the composition h = 0-1o0 ' is a homomorphism from 
the variables of  an into the variables of  aN. Hence, by Lemma 1, it is 

aN ~ r  O~n" [] 

Consider a uniformly bounded simple recursive Horn clause of  order N. By 
Lemma 3, there exists n, n < N, such that aN <--r an. Whenever ak--<r az implies 
( k -  l) = c ( N -  n), for some integer c-> 0, following the terminology of  [Clif], 
we define n to be the index and N - n  the period of a. 

4. The Model. The examples given in Section 3 indicate that the way in which 
the variables of  a Horn clause are connected with each other through the relations, 
plays an important  role in whether the Horn clause is uniformly bounded or not. 
In this section a graph model is developed for simple recursive Horn clauses. 
The form of the graph reflects the connection among the variables in the Horn 
clause. 

Let a be a simple recursive Horn clause. It is modeled by a labeled, weighted, 
directed graph constructed as follows: 

(i) There is a node in the graph for every variable in a. 
(ii) I f  two variables x, y appear  under some nonrecursive relation Q in a then 

an undirected edge ( x - y )  is put in the graph between the corresponding 
two nodes x, y. The label of  the edge is Q and its weight is 0. 

(iii) I f  two variables x, y appear  in the same argument position of the recursive 
relation P in the antecedent and the consequent, respectively, then a directed 
edge (x ~ y) is put in the graph from node x to node y with weight 1 and 
its inverse edge ( y ~  x) with weight -1 .  Each directed edge has label P. 

The graph corresponding to a simple recursive Horn clause a is called the 
a-graph. The subgraph induced on the a -graph  by the undirected edges defined 
in (ii) is called the static a-graph. The spanning subgraph of the a -graph having 
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the directed edges defined in (iii) as its edge set is called the dynamic a-graph. 
The weight of a path (cycle) in the graph is the sum of the weights of the edges 
along the path (cycle). Regarding static edges, they can be traversed in both 
directions, as if there were two opposite directed edges. 

EXAMPLE 3. Consider the following simple recursive Horn clause: 

a: P ( z , w ) ^ Q ( z , x ) ^ R ( w , u ) ^ S ( u , x , y ) ~ P ( x , y ) .  

The a-graph is shown in Figure 1. 

In terms of the graph model, restrictions R4 and R5 together may be stated as 

R4, R5 The dynamic graph (restricted on the positive edges) is a forest. 

According to the definition of the graph model, there is a one-to-one correspon- 
dence between the positive and the negative dynamic edges. The positive ones 
alone are enough to carry all the information captured by the dynamic edges in 
the graph. Hereafter, we refer to the dynamic graph as containing the positive 
edges only, the negative ones implicitly assumed only whenever the weight of a 
path is discussed. Likewise, in all the figures only the positive edges are drawn. 
Finally, since the weight of some edge is determined from whether it is static 
(weight zero) or dynamic (weight one), no weight is put on the edges. 

5. Characterizing Uniform Boundedness. Uniform boundedness for simple 
recursive Horn clauses is characterized by the following theorem: 

THEOREM 1. A simple recursive Horn clause a is uniformly bounded iff the a-graph 
contains no cycle of nonzero weight. In that case the order of a is equal to the 
maximum path-weight in the a-graph. 

Without loss of generality, we restrict our attention to Horn clauses that involve 
only binary nonrecursive relations. Any n-ary relation R, n > 2, is equivalent to 
n binary relations Ri, constructed as follows. Each tuple of R is assigned a unique 

z u R,0 w 

z y 

Fig. 1. The a-graph. 

-I 
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identifier, called tid [Ston]. Relation R~ is created by combining tids with the 
corresponding values in the ith column of  R. Clearly, R may be reconstructed 
from the R~'s by joining all of them on the tid column. That generality is not lost 
when considering only binary nonrecursive relations is justified by the following 
proposition: 

PROPOSITION 1. Let a be a simple recursive Horn clause and a' the Horn clause 
produced by replacing all n-ary, n > 2, nonrecursive relations of a with binary 
relations according to the description above. The a-graph contains no nonzero weight 
cycle iff the a'-graph contains no nonzero weight cycle. 

PROOF. Any two variables that appear under some n-ary, n > 2, relation in a 
are connected through a zero weight edge in the a-graph and through two zero 
weight edges in the a ' -graph.  The common node of the two edges is the one 
corresponding to the tid column. Hence, for any path in the a-graph there exists 
another one in the a ' -graph with the same weight and vice-versa. [] 

Also, every (connected) component of  the graph of  some simple recursive 
Horn clause a, expands independently of the other. Hence, uniform boundedness 
of a is equivalent to uniform boundedness of all of  its components. Lemma 4 
formalizes the above. 

LEMMA 4. Let a be a simple recursive Horn clause and the a-graph consist of M 
connected components/31 through [3 ~. If, for all 1 <- i <_ M, [3~ is uniformly bounded 
then a is uniformly bounded as well. Moreover, if~3 i is of  order Ni and period Pi, 
a is of  period P=lcm{Pi}  (the least common multiple of {Pi}) and order N =  
maxl<i<~ {N~ - Pi} + lcm{Pi). 

PROOF. Since each component expands without any interactions with the other, 
uniform boundedness of all of  them implies uniform boundedness of the whole 
graph also. Since the period is well defined for all fl~, it is well defined for a 
also. Let N be the order and P the period of  a. This means that aN<~raN_p, 
and N is the minimum such number. Moreover, this is the case for each [3i, that 
is (/3 ~) N -< r (/3 ~) N- e. This, Lemma 2, and the transitivity of -<r imply that for all 
1 -< i -_ M there exist integers c~, cl, and r~, with 0 -  ci < c~ and 0 -< r~ - P~ - 1, such 
that 

(2) 

(3) 

( Ni  - P~) + c,Pi + r~ = N - P ,  

( N , -  P,) + c~P, + r, = N.  

Subtracting (2) from (3) yields (c l -q)P~ = P, which implies that P~ divides P, 
for all 1 -< i _< M. Hence, P = lcm{Pi}. Since ri >- 0 and ci -> 0, (2) yields N - P >- 
N~-P~, for all l<-i<-M. Hence, N-P=maxl<_~<M(N~-P~} or equivalently 
N = maxl_<~_<M{Ni- P~} +lcm{Pi}. Notice that this implies that the index of  a is 
the maximum of  the indices of the/3"s .  [] 
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For the proof of Theorem 1, a regular naming scheme for variables is estab- 
lished. Consider a simple recursive Horn clause a. Restrictions R4 and R5 denote 
that the dynamic a-graph is a forest; therefore, every connected component in 
the graph is a tree. For every node in such a tree there is a unique path from it 
to the root of the tree. Each variable is subscripted by the weight of this path, 
which is nonpositive. Hence, for a variable x~, it is: 

~ nondistinguished variable i f j  = O, 
(4) xj = (distinguished variable if j < O. 

Variables that belong to the same root-to-leaf path in the dynamic a-graph are 
denoted by the same symbol (with different subscripts). 

EXAMPLE 4. Figure 2 illustrates the established notation for the variables of 
some simple recursive Horn clause a. The Horn clause corresponding to the 
figure is 

P(xo, x - l ,  x-2, Yo) ̂  Q(x_l, yo) ^ R(y_I,  x_3) ~ P(x_l,  x_2, x_3, y_,). 

In the first expansion of some Horn clause a, each distinguished variable is 
replaced by the corresponding variable appearing under the recursive relation in 
the antecedent. Due to the variable naming convention, this means that a distin- 
guished variable X-k is replaced by X-k+1. In addition, some new variables are 
introduced to replace the nondistinguished variables. The convention is that each 
new variable has the name of the one it replaces with the subscript increased by 
1. According to the above it may be inductively shown that in the nth expansion 
x~ is replaced by x~+,. So, the variable substitution for the expansions of a given 
in Section 3 is 

(5)  s . ( x , )  = x i+ .  

meaning that xi+n is substituted for xi. 

Xo 

Q 
Z_I ~ ~0 

1 
X_2q ~ Y--1 

x~ 

Fig. 2. Example of variable naming. 
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LEMMA 5. Consider tWO variables Xk, Xl, with k > I. There is a path of  weight c > 0 
from Xk to Xt in the dynamic an-graph, n >- 0, /ff the following hold: 

(a) k -  I = c( n + 1) the distance of the two variables in the dynamic a-graph is a 
multiple of  ( n + 1). 

(b) k, l <- n both variables do appear in an. 

PROOF. ( I f )  Let Xk, X~ be two variables satisfying (a) and (b). The conditions 
imply that 

k - l =  c(n+ l ) ~ l =  k - c ( n +  l ) -  < n - c ( n + l ) =  ( 1 - c ) n - c < O .  

Hence, (4) implies that xt is a distinguished variable. The lemma is shown by 
induction on c. 

Basis: For c = 1, it is k - l  = n + 1. Since x~ is distinguished, there is an edge 
from xt+l to xt in the a-graph.  The substitution in (5) implies that in the an-graph 
there is an edge from x~+l+, = xk to xt. Hence the two are connected with a path 
of  weight 1. 

Induction step: Assume that the above is true for all integers less than c. Take 
variable xj, with j - 1  = (n + 1). From the induction hypothesis there is an edge 
from xj to xt in the a , -graph.  Also, since k - j  = k - 1 - (n + 1) = (c - 1)(n + 1), the 
induction hypothesis implies that there is a path of  weight (c - 1) from Xk to Xj. 
Hence there is a path of  weight c from Xk to Xi. 

(Only if) Let Xk, XZ be two variables that are connected through a path of  
weight c in the an-graph. Substitution (5) implies that the first expansion variable 

Xk (Xt) appears is amax{k, 0} (amax{l, 0})" Hence, it is k, 1-< n. Furthermore, (5) implies 
that the path of  weight 1 from Xk leads to Xk-~n+l). An easy induction shows that 
the path of  weight c from Xk leads to Xk-cr The last variable is equal to x~. 
Hence it is k - c ( n + l ) =  l e t > k - l =  c ( n + l ) .  [] 

Consider a path in the an-graph of some expansion of a. In general, this path 
corresponds to a walk in the a -graph (when traversing a walk, nodes and edges 
may be visited multiple times [Bond]). Static edges met in a traversal of  the path 
in the a , -g raph  are met in the same order in a traversal of  the walk in the a-graph.  
Likewise, a cycle in the an-graph corresponds to a cyclic walk in the a -g raph  
(its end nodes coincide). The following lemma relates the path in the an-graph 
and the corresponding walk in the a-graph.  

LEMMA 6. Let Xk, y~ be two variables connected through a path of  weight Ln in 
the an-graph. Let xk,, Yr be the end variables of  the corresponding walk in the 
a-graph, of  weight L. Then the following holds: 

(6) ( k -  k') = ( l -  l') + (n + 1)L. - L. 



372 Y.E.  Ioannidis 

PROOF. Let Xk=XI&,  Xk,=Xx,k~, yt=xm, t,,, and yr=x,n,~;. Figure 3 shows the 
path from Xk to y~ and the walk from Xk, to Yr in the a,-  and the a-graph, 
respectively. By Lemma 5, each section in the dynamic an-graph is of length 
( k ~ - l i ) / ( n + l ) .  Hence it is 

1 m 

(7) L, - 52 (k~- l~). 
n + l  ~=a 

Likewise for the walk in the a-graph it is 

(8) L = ~ (k~-  l'~). 
i=1 

Consider Qi(xi, l,, Xi+l,ki+l), 1 -< i -< m - 1, in the an-graph. Let n~ be the expansion 
that this was formed from Q~(x~.~:, x~+~,k~§ in a. Substitution (5) implies that 

(9) 
li = l'i + rli ] , _ , 

ki+l = kl+l + n i l  :::::~ li - li  - ki+l - k i + l .  

Adding (9) for all 1 - i x  m - 1 gives 52m-~ (1 i _ l l )  =52im_2 ( k  i -k~) .  By (7) and (8), i=1 
since it is k = k~, k' = k~, 1-- lm, and l' = l~, the above gets transformed into 

( k - k ' ) = ( l - l ' ) + ( n +  l ) L , -  L. [] 

COROLLARY 1. I f  there is a cycle of  weight L,  in the a,-graph, then there is a 
cyclic walk of  weight L =  ( n + 1)L. in the a-graph. 

PROOF. Assume that in Figure 3 there is one more static edge Q,, between 
x,,,lm and Xl,k, (see Figure 4). The corresponding edge in the a-graph is between 
Xr,,~ and Xl,kl, which creates a cycle in the a-graph as well. Like in (9), sub- 
stitution (5) implies that I r a - l "  = k l - k ~ .  Applying the above on (6) yields 
L = ( n +  I)L,,. [] 

Q, Q: Qm-x 
7. 7. 7- 7' ~. 11 . . . . . . . .  "2 7. 7. 

Z 1,k z ~ 1,1 z "T'2,k~ X2,l~ Xrn,km X m , l m  

Q~ Q2 Q~-I 
Z1Jct I Z l,ltz X 2,kt2 Z 2,1t a X mffct m XraJtm 

Fig. 3. Path in the an-graph and corresponding walk in the a-graph. 
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Q~ Q2 Q,~-I 
X l , ~  Xl,l I X2,k2 Z2,12 2~m,km ~ "  Xm,lm 

J 

Qm 

Fig. 4. Cycle in the a,-graph. 

5.1. Sufficiency o f  the Condition 

LEMMA 7. Let a be a simple recursive Horn clause such that the a-graph is 
connected and has no nonzero weight cycles. I f  N, N >- 1, is the max imum path-weight 
in the a-graph, then aN <--r aN-~. 

PROOF. Consider aN-l .  Let Q(xm, x'~,) appear  in its antecedent. Assume that 
a ,  is the first expansion in which it appeared, corresponding to Q(X_k, X~_k,), 
k, k'->0, in a. In this case, (5) implies that n = k + m  = k ' + m ' .  Consider a node 
Zo in the a -g raph  whose distance from some other node in the graph is N, i.e., 
there is a path in the graph starting at that node whose weight is the maximum 
possible (see Figure 5). 

Let r be the distance of Zo from x_k. Consider the following mapping h: aN_ 1 --> 

a N :  

h ( x m ) = I x m + l  Vm,  r + l < - k + m < - N - 1 ,  
( x,. otherwise. 

I f  Xm does not map to itself then m _> 0. Otherwise, it is 

m < O ~ k +  m < k ~ r  < k ~ r l  + r2 < k ~ r l  + r 3 < k - r2+ r3=::>N < k - r2q- r3, 

i.e., a path of  length greater than N exists (see Figure 5). Hence, looking at (4) 
also, we can see that h is meaningful, i.e., it affects only nondistinguished variables. 
Since k +  m = k ' +  m', h affects xm and x'~, the same way. Distinguished variables 
map to themselves. For every atomic formula Q(x, , ,  x~,)  in aN 1 there is another 

ZO X o 

rl ( k 

- r 2 

r8 

l rl + r 2 ~  r 

-~ r I -t- r3 -~- W 

Fig. S. Distance between variables in the a-graph. 
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one  Q(Xm+l, Xtm,+l) in aN, which appeared in a,+~ for the first time (see substitu- 
tion (5)). The same is true for the recursive relation also. Hence, h is indeed a 
homomorphism from aN_ 1 into a N .  Lemma 1 implies that aN~.raN_ 1. [] 

THEOREM 2. Let a be a simple recursive Horn clause. I f  the a-graph contains no 
cycle of  nonzero weight then a is uniformly bounded. 

PROOF. By Lemmas 3 and 7, each component  of  the a -graph  is uniformly 
bounded. Lemma 4 implies that a is uniformly bounded as well. [] 

5.2. Order of  Uniformly Bounded Simple Horn Clauses 

LEMMA 8. Let a be a simple recursive Horn clause. Consider as and at, 0 <- s < t, 
with at <-r a,. Then the maximum path-weight in the dynamic as-graph is 1. 

PROOF. Lemma 1 implies that there exists a homomorphism h: a, ~ a,. This 
induces a homomorphism h for the corresponding graphs also. Consider a single 
component  G of the as-graph. Partition the nodes of  G into two subgraphs H 
and H '  as follows: 

H = { x c  G: h ( x ) #  x}, 

H ' = { x c  G: h ( x ) =  x}. 

Distinguished variables map to themselves, so all heads of  dynamic edges are in 
H ' .  Furthermore, restrictions R3-R5 imply that no variable appears in the same 
argument position of the same relation in two different expansions (see s, in 
(5)). Since the recursive relation appears exactly once in the antecedent of  each 
expansion, no variable appearing under it in as can map to itself. Hence, all tails 
of  dynamic edges are in H. The two points above imply that H is connected to 
H '  as shown in Figure 6. Clearly, the maximum path-weight in the dynamic 
as-graph is 1. [] 

For the following analysis it is necessary to define the following family of  
functions f ,  :7/-~ {0, 1 , . . . ,  n -  1}, Z the set of  integers, defined for all n > 0 as 
follows: 

fn(x)  = (x mod n). 

In the above, (x rood n) = r if and only if n divides ( x -  r) and 0 -  < r < n. 

G 

H'  

Fig. 6. General form of the %-graph with a t -<r %, for t > s. 
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LEMMA 9. For all integers x , y  and all positive integers n it is ( fn (x)+y)- -  
fn(x + y) : cn for some integer c. 

PROOF. Obvious from the definition of fn [Ioan].  [] 

LEMMA 10. Let a be a simple recursive Horn clause. I f  the a-graph contains a 
path of weight L with e static edges, then the an-graph contains a path of weight 
[(n + L) / (n  + 1)] 3 with e static edges. 

PROOF. Consider a path in the a -graph  of weight L and e = m - 1 (see Figure 
7). From Figure 7 the weight of  the path from Xl,kl to Xm, lm is equal to 

(10) L = ~ ( k , -  l,). 
i=1 

From the way the expansions are formed, a ,  contains n +  1 instances of  Qi, 
1-< i -  < m - l ,  each one created at a different expansion. The one created at 
expansion ri, 0 <- ri-< n, is of  the form Qi(xi, r~+,,, Xi+l,r,+k,+,). We claim that the 
combination of appropriately chosen instances of  the Qi's in a ,  creates a path 
in the an-graph. Let o-i be 

i 

o'i = • ( k j - l j )  for O<-i<m. 
j=l 

In Figure 7 o-i denotes the distance of the variables appearing under Q / f r o m  
Xl,kc The Qi's are chosen so that ri=f,§ For every Q/_I, Qi chosen as 
above the two variables Xi, r,_,+k~ and xi, r,+~, are connected with a path in the 
dynamic an-graph. This is shown as follows. Lemma 9 implies that 

(11) (f~+l(n + o'/_1) + ki) - (f~+l(n + o'i) + li) = c(n + 1) 

for some integer c. Furthermore, from the definition off ,+~ and ki, li-<0 it is 

fn+l (n+o ' /_ l )+ki<n+l  and fn+~(n+o-i)+li<n+l.  

Hence, the conditions of  Lemma 5 are satisfied. Therefore, the given variables 
are connected in the dynamic a , -graph  by a path of  weight c (as given in (11)). 
Since this is true for all 1 - i _< m, the Qi's chosen as above form a path in the 
a , -g raph  with e = m -  1 static edges. 

Let L,  be the weight of  the path. Using (11) for the weight of  each individual 
subpath, L, becomes equal to 

1 ~ [f , ,+l(n+o'i-O+ki-fn+l(n+o'i)- l i]  r L n = n +  l i=l 

n + l  fn§ ~ ( k i - l i )  . 
i=l 

3 By Ix]  we deno te  the smal les t  in teger  greater  t h a n  or equa l  to x. 
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Q~ Q~ Q,.-x 

ZI,I  1 Z2,ka g2,lz Zm,km Zrn,lm 

Fig. 7. Typical path in the graph of some simple recursive Horn clause. 

From (10), which gives the weight L of the original path, and the fact that tro= 0 
we get 

- -  

1 [ n + L - f . + ~ ( n + L ) ] C * L .  L n + l . l "  L. n + l  

The last equivalence is an obvious implication of the definition off.+1. [] 

THEOREM 3. Let a be a simple recursive Horn clause such that the a-graph contains 
no nonzero weight cycles. The order of a is equal to the maximum path-weight in 
the a-graph. 

PROOF. Suppose that the maximum path-weight in the a-graph is N. Theorem 
2 shows that a is uniformly bounded. Assume that the a-graph is connected. By 
Lemma 7, N is an upper bound on the order of a. This upper bound is tight, 
i.e., N is indeed the order of a. 

Assume to the contrary that for some s, t, with s < t < N, it is a, <- r as. Lemma 
1 implies that there exists a homomorphism h : as ~ at. By Lemma 8, the as-graph 
is of the form of Figure 8. The variables that h maps to themselves are the ones 
in H'.  Since s < N -  1, Lemma 10 guarantees the existence of some path of weight 
greater than 1, in the a~-graph. Hence, there exists a path of weight zero with 
one end in H and the other, a tail of a dynamic edge, in H' .  In Figure 8 xm to 
Yl, is such a path. Because of h, there exists a path of weight zero in the a,-graph 
also, like the one from xm to Yt2 in Figure 8. Substitution (5) implies that for l 1 

and /2 it is 

(12) 11=s+1+1, 1 2 = t + l + l .  

By Lemma 6, in the a-graph there exist two walks between the dynamic com- 
ponents where x,~ and Yl belong (see Figure 9). Let L1 and L2 be the weight of 

G 

H 

H' 

Y~ 

OL s OL t 

Fig. 8. Expansions a s and a t with a t -<~ cq and maximum path-weight in the corresponding graphs 
greater than 1. 
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Zra I 

Xm, 

Zl 

/ 

Lz 

Ykl 

Yk2 

Fig. 9. Cyclic walk in the a-graph. 

these walks, respectively. Figure 9 shows that a cyclic walk of weight 

(13) L = (m~ - m2) + L2 - (k, - k2) - LI 

exists in the a-graph.  Furthermore, Lemma 6 implies that the following hold. 

(m - ml) = (11 - k,) + (s + 1 ) 0 -  L1, 

(m - m2) = (12- k2)+ ( t +  1 ) 0 - L 2 .  

Subtracting the two above we get (ml - m2) + L2 - (kl - k2) - L 1  = ( / 2  - 10. Making 
the substitution in (13) and using (12) yields L =  ( t - s ) .  Since t >  s, the cyclic 
walk in the a -g raph  has nonzero weight. This implies that there exists some cycle 
in the a -g raph  with nonzero weight also, which contradicts the hypothesis. Thus, 
at -< r as holds for no s, t, with s < t < N. The smallest such numbers are s = N - 1 
and t = N. Hence, the order of  a is N, the index is N -  1, and the period is 1. 

I f  the a -g raph  is not connected the above is true for each one of its components.  
Applying Lemma 4, gives again that the order of  a is equal to the maximum 
path-weight in the complete a-graph.  [] 

EXAMPLE 5. The proofs of  Theorems 2 and 3 are illustrated with the following 
example. Consider the simple recursive Horn clause a:  

a: P(u l ,  u2, u4, u4, y) ^ Q(Ul, u2) ^ R(uz,  u3,x) ^ S(w, z) ^ T(v)  

~ P(v, w , x , y , z ) .  

The a -g raph  appears  in Figure 10. All the cycles in the a -graph  have zero weight. 
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U3 ~4 

1 
V W Z 

Fig. IO. The a-graph. 

Hence, according to Theorem 2, a is uniformly bounded. The maximum path- 
weight in the graph being 2, it implies that a2 is redundant, i.e., a is equivalent 
to ao and a l .  This becomes apparent by looking at al and a2: 

al : P(u~,  u;, ut4, ut4, /-/4) A Q(u~, l..l;) A R(u'2, u'3, /,/4) A S(u2,  y )  A T ( U l )  

^ Q(Ul, U2) ̂  R(U2, u3, X) A S(w, z) 

A T ( v ) ~ P ( v ,  w,x ,y ,  z), 

t! It " u'4) A Q(Ul, u2) A R(u~, " l.,lv4) A S(blV2, U4) A T(u~) a2: P(u~, U2," U4 U4 ' U3 ' 

A Q(/-'/~, /,/2) A R(u2 ,  u3,//4) A S(/,/2, y) ^ T(u l )  

^ Q(Ul,  u2) A R ( u 2 ,  u3, x)  A S(w,  z) 

^ T(v)  ~ P(v, w, x, y, z). 

The corresponding graphs are shown in Figures 11 and 12, respectively. The 
~l-graph in Figure 11 has two (connected) components, none of which can be 
the image of the a-graph under any homomorphism. This implies that there are 
some instances of the relations in a that make al produce some tuples that are 
not produced by ao. Hence, a~ is necessary. On the other hand the a2-graph in 
Figure 12 has three components. Two of them are homomorphic images of those 
in the al-graph. Therefore, ~2 is not necessary. 

5.3, Necessity of  the Condition. The converse of Theorem 2 is proved using the 
following lemmas. 

U t 3 

ul R R u~ ul4 

�9 Z 

Fig. 11. The ctl-graph. 
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a II 3 

u"2 R R u"4 

U W Z It 1 U 2 ~ . . Z f  

U t 3 

u t ~  

Fig. 12. The a2-graph. 

LEMMA 11. Let a be a recursive Horn clause. I f  a is uniformly bounded then, for 
all k >-O, a k is uniformly bounded as well. 

PROOF. In what follows the fact that (ak)t = ( a l ) k  = a(k+l)(l+l)- i  = Olk+l(k+l) is 
used. Lemma 3 implies that aN-<r a , ,  for some 0 -  < n-< N - 1 .  Consider ak for 
some k > 0. It is 

ak )  N = aN+k(N+l)  ~ r  an+k(N+l) 

-~- an+k(n+l)+k(N_n) 

~ r  Oln+k(n+l) 

= (O~k) n . 

from Lemma 2 

from Lemma 2 and the transitivity of -<r 

Lemma 3 implies that ak is uniformly bounded. [] 

Consider a typical cycle in the a-graph (see Figure 13). It is essentially the 
path of Figure 7, with one more static edge labeled Qm between x,,,~ m and Xl,kl. 

The following two lemmas are similar to Lemma 10. 

LEMMA 12. Let a be a simple recursive Horn clause. I f  the a-graph contains a 
cycle of  weight n + 1, n >-O, with e static edges, then the a,-graph contains a cycle 
o f  weight 1 with e static edges also. 

PROOF. Adding the static edge labeled Qm to the path of Figure 7 creates the 
cycle in Figure 13, of weight equal to that of  the original path with e = m static 

Q1 Q: Q,,_I 

Xl, ~ X 1,1 t X2,k~ Z2,1~ 27m,km ~ "Z;m,l m 

Qm 

Fig. 13. Typical cycle in the a-graph. 
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edges. Hence, Lemma 10 is directly applicable. Since the a-graph contains a 
cycle of weight n + 1, it implies that the a , -graph contains a cycle of weight 

[n+(n+l) l=12n+l 
n~-i- J k n + l J  =1" 

The number of the static edges in the cycle remains the same, that is 
8 - - ~ m .  [ ]  

LEMMA 13. Let a be a simple recursive Horn clause. I f  the a-graph contains a 
cycle of  weight 1 with e static edges, then the an-graph, n >-O, contains a cycle of  
weight 1 with e(n + 1) static edges. 

PROOF. The proof  is similar to that of Lemma 10, so it is only sketched here. 
The Qi's are partitioned into n + 1 partitions, each partition having exactly one 
instance of each Qi, l<-i-<m. The rth partition, 0<-t-<n, contains 
Qi(Xi, ri+li, Xi+l,ri+ki+,), such that r~=f,+l(r+o'i). Each one of these partitions is 
shown to form a path. Furthermore, the last node of partition r and the first node 
of partition r + 1 are connected by a dynamic path, and so are the last node of 
partition n and the first node of partition 0. Hence a cycle is formed. Its weight 
is calculated as in Lemma 10 and is equal to 1. The static edges in the cycle are 
those of all the partitions. Each partition has e = m edges, and there are n + 1 
partitions. Hence, the cycle formed has e(n + 1) static edges. [] 

THEOREM 4. Let a be a simple recursive Horn clause. I f  a is uniformly bounded 
then the a-graph contains no cycle of  nonzero weight. 

PROOF. Suppose to the contrary that the a-graph contains some nonzero weight 
cycles. Consider the one with the smallest number of static edges, say e. Let n + 1, 
n->0, be its weight. By Lemma 12, the an-graph contains a cycle of weight 1, 
with e static edges also. Lemma 11 implies that an is uniformly bounded. Hence, 
there are two expansions (an)s and (a , ) , ,  s < t, such that (an)~ --<r (an)s. By Lemma 
1, there exists a homomorphism h : ( a n ) s ~  (an)t. Lemma 13 implies that the 
(an)s-graph contains a cycle of weight 1 with (s + 1)e static edges, which h maps 
to another cycle of weight 1 in the (an)t-graph (see Figure 14). The cycle contains 

G 

H' 

a s O~t 

Fig. 14. Expansions a, and a, with cr z -<, c~ s and cycles in the corresponding graphs of weight 1. 
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at most as many static edges as the cycle of the (an)s-graph. It may contain fewer 
static edges if h is not one-to-one but it can never contain more. By Corollary 
1, there exists a cyclic walk in the a-graph of weight ( n + l ) ( t + 1 ) - 1 + 1 =  
(n + 1)(t + 1). Without loss of generality, assume that it is formed by traversing c 
times a cycle of weight n' with e' static edges (the case that it is formed by 
traversing multiple cycles connected with each other is a trivial extension of what 
follows). Hence, it is 

(14) cn '=(n+ l ) ( t+  l). 

There are ce' static edges in the cyclic walk, and as mentioned above it is 

(15) ce '< - (s + 1)e. 

Combining (14) and (15) yields 

e ( n + l )  ( t + l )  
(16) e ->-  n' ( s+  1)" 

However, from Lemma 2 and the transitivity of -< r, t may be chosen arbitrarily 
large. In (16) s and n are fixed, whereas there is an upper bound on the value 
of n', imposed by the form of the a-graph. Hence, there exists some t satisfying 
the desired properties, such that [(n + 1)/n'][(t  + 1)/(s + 1)] > 1. This combined 
with (16) yields e > e', that is there exists a cycle in the a-graph, with fewer static 
edges than e. This contradicts the hypothesis. Hence, all the cycles in the a-graph 
are of weight zero. [] 

EXAMPLE 6. Theorem 4 is illustrated with an ~xample. Consider the Horn clause 
below: 

fl: P(u~, t'i~, 1,/2, /'/3) A Q(w, u2) ^ R(y, u3) ^ S(x, z) ~ P(w, x, y, z). 

The fl-graph appears in Figure 15. The 0-graph contains a cycle of weight 1, 

II 1 

Q u2 

I Y R us 

z 

Fig. 15. The fl-graph. 
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U I 1 

wl Q u~ R u~ 

S 

Ul ~ U12 

S ~  u 

Fig. 16. The ill-graph. 

namely (w -~ u 2 --~ y -~ ua -~ z ~ x ~ w). According to Theorem 4, ]3 is not uniformly 
bounded. This becomes apparent by looking at the graphs of the expansions of 
ft. The ill- and fl2-graphs appear in Figures 16 and 17, respectively. Contrary to 
what happened to the graphs of uniformly bounded Horn clauses, the graphs of 
the expansions of fl continue to have a single component, but the number of 
static edges in the original cycle increases (Lemma 13). This continues, no matter 
how many expansions are taken. 

THEOREM 1. A simple recursive Horn clause a is uniformly bounded iff the a-graph 
contains no cycle of nonzero weight. In that case the order of a is equal to the 
maximum path-weight in the a-graph. 

PROOF. The proof follows immediately from Theorems 2, 3, and 4. [] 

Testing the condition of Theorem 1 requires time linear in the number of edges 
and nodes of the graph. A depth-first search in the graph is sufficient [Ioan]. 

6. Transitive Closure. Unfortunately some very useful recursive Horn clauses 
are not simple. A characteristic example is the transitive closure P of a binary 
relation Q expressed by the Horn clause 

P(x, z) A Q(z, y) -~ P(x, y). 

1~ II 1 

I 

wl Q U2 R ul~ S ul Q u'2 R u"8 U 11 Q U I t  2 

R us 

Fig. 17. The fl2-graph. 
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This is clearly unbounded and one would expect to be able to characterize 
uniform boundedness for Horn clauses of this form. To achieve that we relax 
restriction R5. We define a permutation Horn clause to be one whose correspond- 
ing graph is a dynamic cycle. The dynamic a-graph of a simple recursive Horn 
clause is a forest. Restriction R5 is relaxed by allowing components of the dynamic 
graph to be cycles, as long as there are no static edges attached to them in the 
complete graph. That is, each component of the a-graph is either simple or 
permutation. 

EXAMPLE 7. 
closure of Q. 

Let a be the above given Horn clause representing the transitive 

P(x, z) ^ Q(z, y) -~ P(x, y). 

The a-graph is shown in Figure 18. Clearly, a belongs in the new extended class 
of Horn clauses, since one component in the a-graph is simple and the other is 
permutation. 

The following theorem characterizes uniform boundedness for the new exten- 
ded class of recursive Horn clauses. 

THEOREM 5. Let a be a recursive Horn clause in the extended class. It is uniformly 
bounded iff the simple components of the a-graph contain no cycle of nonzero weight. 
In that case, a has order N = Ns + lcm{P~} and period P = lcm{P~}, where Ns is the 
maximum path-weight in the simple components of the a-graph, and {P~} is the set 
of weights of the cycles in the permutation components. 

PROOF. Consider a recursive Horn clause a in the extended class. Assume that 
the a-graph contains M permutation components, with P~ dynamic edges in the 
ith one, 1 <- i <_ M. Each such component is clearly uniformly bounded, since it 
simply permutes distinguished variables. Apparently, the period is well defined 
for permutation components, and for the ith component it is P~. Its order is P~ - 1. 
Notice that the index is equal to (P~- 1 ) -  P~ = - 1 .  This actually represents the 
identity Horn clause, with antecedent equal to the consequent, and may be 
denoted as a_l for consistency. Furthermore, by Theorem 4, each simple com- 
ponent is uniformly bounded iff it contains no nonzero weight cycles. In that 
case it has been shown that the order of the component is the maximum path- 
weight in the graph of the component and the period is 1. Applying Lemma 4 
yields that a is uniformly bounded if the simple components of the a-graph 

z 

Fig. 18. Transitive closure graph. 
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contain no nonzero weight cycles. In that case, if the maximum path-weight in 
the simple components is Ns, then Lemma 4 implies that the period P of a is 
equal to P = lcm{P~} and the order N is N = Ns +lcm{Pi}. [] 

7. Conclusions. We have considered a restricted class of recursive Horn clauses 
in the context of a deductive database. We have demonstrated that some such 
Horn clauses are equivalent to a finite set of nonrecursive ones. By modeling 
such a Horn clause with a weighted graph, we have shown that the uniform 
boundedness property of Horn clauses is equivalent to the property that the 
graph has no cycles of nonzero weight. 

Recently, it has been shown that both boundedness and uniform boundedness 
are undecidable in the presence of multiple Horn clauses [Gait']. However, the 
question is open for the case of a single recursive Horn clause. We are currently 
working in this direction, trying to characterize uniform boundedness for more 
general classes of  recursive Horn clauses, by removing some of the restrictions 
R1-R5 of  Section 2. 
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