
A Genetic Algorithm for Database Query Optimization

Kristin Bennett Michael C. Ferris

Computer Sciences Department

University of Wisconsin

1210 West Dayton Street

Madison, Wisconsin 53706

Yannis E. Ioannidis

Abstract

Current query optimization techniques are

inadequate to support some of the emerging

database applications. In this paper, we out-

line a database query optimization problem

and describe the adaptation of a genetic algo-

rithm to the problem. We present a method

for encoding arbitrary binary trees as chro-

mosomes and describe several crossover op-

erators for such chromosomes. Preliminary

computational comparisons with the current

best{known method for query optimization

indicate this to be a promising approach. In

particular, the output quality and the time

needed to produce such solutions is compara-

ble to and in general better than the current

method.

1 INTRODUCTION

Genetic algorithms [4, 6] are becoming a widely used

and accepted method for very di�cult optimization

problems. In this paper, we describe the implemen-

tation of a genetic algorithm (GA) for a problem in

database query optimization. In order to give a care-

ful formulation of our GA, we �rst give a broad outline

of this particular application.

The key to the success of a Database Management Sys-

tem (DBMS), especially of one based on the relational

model [3], is the e�ectiveness of the query optimiza-

tion module of the system. The input to this module

is some internal representation of a query q given to

the DBMS by the user. Its purpose is to select the

most e�cient strategy (algorithm) to access the rele-

vant data and answer the query. Let S be the set of

all strategies appropriate to answer a query q. Each

member s of S has an associated cost c(s) (measured

in terms of CPU and/or I/O time). The goal of any

optimization algorithm is to �nd a member s

0

of S

that satis�es

c(s

0

) = min

s2S

c(s):

Query optimization has been an active area of research

ever since the beginning of the development of rela-

tional DBMSs. Good surveys on query optimization

and other related issues can be found elsewhere [9, 10].

In the relational model, data is organized in relations,

i.e., collections of similar pieces of information called

tuples. Relations are the data units that are refer-

enced by queries and processed internally. A strategy

to answer a query q is a sequence of relational alge-

bra operators applied to the relations in the database

that eventually produces the answer to q. The cost of

a strategy is the sum of the costs of processing each

individual operator. Among these operators, the most

di�cult one to process and optimize is the join, de-

noted by 1. It essentially takes as input two rela-

tions, combines their tuples one-by-one based on cer-

tain criteria, and produces a new relation as output.

Join is associative and commutative, so the number of

alternative strategies to answer a query grows expo-

nentially with the number of joins in it. Moreover, a

DBMS usually supports a variety of join methods (al-

gorithms) for processing individual joins and a variety

of indices (data structures) for accessing individual re-

lations, which increase the options even further. Thus,

all query optimization algorithms primarily deal with

join queries. These are the focus of this paper as well.

In current applications, each query usually involves a

small number of relations, e.g., less than 10. Hence,

although exponential in the number of joins, the size

of the strategy space is manageable. Most commercial

database systems use variations of the same query op-

timization algorithm, which performs an exhaustive

search over the space of alternative strategies, and

whenever possible, uses heuristics to reduce the size

of that space. This algorithm was �rst proposed for

the System{R prototype DBMS [14], so we refer to it

as the System{R algorithm.

Current query optimization techniques are inadequate



to support the needs of some of the newest database

application domains, such as arti�cial intelligence

(e.g., expert and deductive DBMSs), CAD/CAM (e.g.,

engineering DBMSs), and other disciplines (e.g., sci-

enti�c DBMSs). Simply put, queries are much more

complex both in the number of operands and in the di-

versity and complexity of operators in the query. This

greatly exacerbates the di�culty of exploring the space

of strategies and demands that new techniques be de-

veloped.

One of the proposed solutions is to use randomized

algorithms. Simulated Annealing, Iterative Improve-

ment, and Two-Phase Optimization (a combination of

the �rst two) have already been successfully tried on

query optimization [8, 15, 7], giving ample reason to

believe that a GA will perform well also. Many of the

operators used in these studies can be adapted for use

in a GA and incorporated into a standard GA code.

An advantage of our version of the GA [1], is that

it is designed for a parallel architecture and signi�-

cant computational savings over the other randomized

methods can be obtained by a parallel implementation.

This paper is organized as follows. Section 2 de�nes

two strategy spaces that are of interest to query op-

timization, which were used in our experiments. It

also contains a description of the System{R algorithm,

which is used as a basis for comparison of our results.

Section 3 describes the speci�c genetic algorithm that

we developed, including the representation that we

used for the chromosomes for the two strategy spaces

and the adopted crossover operators. Section 4 con-

tains the results of our experiments. Finally, Section

5 gives a summary and provides some direction for fu-

ture work.

2 QUERY OPTIMIZATION

SPECIFICS

2.1 STRATEGY SPACES

Most query optimizers do not search the complete

strategy space S, but a subset of it, which is expected

to contain the optimum strategy or at least one with

similar cost. To understand the various options, we

need some de�nitions related to databases. In a slight

abuse of notation, consider the following query:

(A 1 C) and (B 1 C) and (C 1 D)

and (D 1 E) and (D 1 F )

(1)

Each join is associated with a constraint (omitted for

clarity of presentation) that speci�es precisely which

tuples of the joined relations are to appear in the re-

sult. Query (1) can be represented by a query graph

[16], which has the query relations as nodes and the

joins between relations as undirected edges, as shown

in Figure 1. Throughout, we use capital letters to de-

note relations and numbers to represent joins. In this

2

1 5

4

3

R

T

HP

S

M

Figure 1: Query Graph

paper, we study tree queries, i.e., queries whose query

graph is a tree. The answer to a given query is con-

structed by combining the tuples of all the relations in

a query based on the constraints imposed by the spec-

i�ed joins. This is done in a step-wise fashion, each

step involving a join between a pair of relations whose

tuples are combined. These can be relations originally

stored in the database or results of operations from

previous steps (called intermediate relations). As a

very strong and e�ective heuristic, database systems

never combine relations that are not connected with a

join in the original query. This is because such an op-

eration produces the cartesian product of the tuples in

the two relations. Not only is this an expensive opera-

tion, but its result is also very large, thus increasing the

cost of subsequent operations. Most query optimizers

con�ne themselves into searching the subspace of S of

strategies with no cartesian products. This heuristic

is adopted in the work presented in this paper as well.

Given the above, each strategy to answer a query can

be represented as a join processing tree. This is a tree

whose leaves are database relations, internal nodes are

join operators, and edges indicate the ow of data from

bottom-up. In addition, the chosen index for each

database relation and the chosen join method for each

join is speci�ed. If all internal nodes of such a tree have

at least one leaf as a child, then the tree is called lin-

ear. Otherwise, it is called bushy. Most join methods

distinguish the two join operands, one being the outer

(left) relation and the other being the inner (right) re-

lation. An outer linear join processing tree (left{deep

tree) is a linear join processing tree whose inner rela-

tions of all joins are base relations. In this study, we

deal with two strategy spaces: one that includes only

left-deep trees, which is denoted by L, and one that

includes both linear and bushy ones, which is denoted

by A. Examples of a left-deep tree and a bushy tree for

query (1) are shown in Figure 2 (avoiding the details

of the join constraints and the join methods). The in-

terest in L stems from the fact that many DBMSs are

using it as their strategy space, and is the one on which

the System{R algorithm can be applied. We experi-

ment with A as well, because quite often the optimum

strategy is not in L. We present results for applying

a genetic algorithm on both spaces and compare them

with the results of applying the System{R algorithm

on L.



4

5

3

4

(b) E

DF

2

1 B

CA

5

3

2

1

(a)

D

B

E

F

CA

Figure 2: (a) Left-deep Tree; (b) Bushy Tree

We should emphasize at this point that, even after ig-

noring all strategies that contain cartesian products,

the number of the remaining strategies still grows ex-

ponentially with the number of joins in the query.

The above is true even for the L space, let alone for

the A space, which is a superset of the former. The

size of these spaces depends not only on the speci�c

query which is being optimized (being dependent on

the shape of its query graph), but also on the number

of join methods supported by the system and the index

structures that exist on the query relations. Hence,

although cartesian products are excluded from strate-

gies, even for the small queries with which we deal in

this paper (up to 16 joins), the corresponding L and A

spaces are very large and the associated optimization

problem is computationally very di�cult.

2.2 THE SYSTEM{R ALGORITHM

The System{R algorithm is based on dynamic pro-

gramming. Speci�cally, the complete space L is con-

structed, occasionally pruning parts of it that are iden-

ti�ed as suboptimal. The space is constructed by iter-

ation on the number of relations joined so far. That is,

at the k-th iteration, the best strategy to join k rela-

tions from the query is found, for all such sets of k rela-

tions. In the next iteration, strategies of k+1 relations

are constructed, by combining each strategy from the

previous collection with the appropriate remaining re-

lations. For each set of k+1 relations, multiple strate-

gies are usually constructed, of which only the one with

the least cost is kept, since it can be shown that all the

rest cannot be part of the optimum�nal strategy. This

process needs as many iterations as there are relations

in the query to complete. The main disadvantage of

the algorithm is that it needs to maintain and process

a very large number of strategies during its execution,

a number that grows exponentially with the number

of joins in the query. Especially towards the later it-

erations, this implies both a signi�cant cpu cost for

processing and a signi�cant I/O cost due to increased

page faults. This makes the algorithm inapplicable to

queries with more than about 16 relations.

The above informal description of the algorithm is

slightly simpli�ed. In the interest of space, we have

not discussed various complications that arise from

side-e�ects that the use of speci�c types of indices can

have on the desirability of a strategy. However, the

version of the algorithm that was used in our experi-

ments did address all these complications as well. The

interested reader can �nd further details in the original

paper on the System{R algorithm [14].

3 GENETIC ALGORITHM

In this section, we describe the implementation of a ge-

netic algorithm to solve the problem outlined above.

For completeness, we briey review our terminology,

details of which can be found in [1]. Our GA works

with a population of chromosomes, each of which can

be decoded into a solution of the problem. For each

chromosome i in the population, a measure of its qual-

ity is calculated, called its �tness, f(i). Chromosomes

are selected from the population to become parents

based on �tness. Then, reproduction occurs between

pairs of chromosomes to produce o�spring. The newly

created population becomes the next generation and

the process is repeated. The model that we use has a

�xed population size N .

Our GA [1] uses a neighborhood scheme in which the

�tness information is only transmitted within a local

neighborhood, see for example [12]. A model algo-

rithm for such a scheme is as follows.

Local Neighborhood Algorithm:

repeat

for each chromosome i do

evaluate f(i)

broadcast f(i) in the neighborhood of i

receive f(j) for all chromosomes j

in the neighborhood

select chromosome k to mate from the

neighborhood of i based on �tness

reproduce using chromosomes i and k

replace chromosome i with one

of the o�spring

until population variance is small



In the experiments that we report below, we have used

a neighborhood structure we call ring6, which consid-

ers chromosomes i and j to be neighbors if

min(ji � jj ; ji +N � jj ; ji� N � jj) � 3

This can be viewed as each chromosome residing on a

ring with neighbors that are chromosomes no further

than three links away. This neighborhood structure

was chosen since it has proven very e�ective in other

problem instances [1]. For query optimization, the aim

is to minimize the cost of the strategy, so to generate a

�tness distribution in a neighborhood, we take the neg-

ative of the cost (to convert to maximization) and use

a linear scaling of these values in each neighborhood

so that the maximum �tness is some proportion (user

supplied) of the average �tness. Details of this scaling

routine are found in [1]. Since each chromosome i only

selects one mating partner, selection is carried out by

choosing chromosome k from the neighborhood with

probability

f

k

=

X

j2nhd(i)

f

j

:

Reproduction produces two o�spring. The current

chromosome is replaced with its best o�spring pro-

vided this o�spring is better than the worst chromo-

some in the neighborhood (see [12]).

For a GA to be an e�cient optimization technique,

we believe that reasonable parameter and algorithm

choices (such as those detailed above) can be made

without reference to a particular problem. However,

the e�ectiveness of the overall algorithm depends cru-

cially on the representation of the problem and the op-

erators we use to exchange genetic information. Thus,

we now specialize to the particular problem of query

optimization. We describe two ways of encoding this

problem which correspond to the two strategy spaces

L and A. We attempt to incorporate as much prob-

lem speci�c information as possible (see [5]), and show

how mutation, initial population choice and crossover

are carried out. Our discussion is broken into three

parts, the �rst dealing with left{deep strategies, the

second with bushy strategies, and the third dealing

with crossover operators.

3.1 LEFT{DEEP STRATEGIES

Left{deep strategies (L) are a relatively small subset

of the strategy space A. However, it has been observed

that frequently a strategy exists in L whose cost is very

close to the optimal cost over A. System{R uses L as

its strategy space, so it is appropriate to apply a GA in

L and compare the results of these two methods. The

advantage of choosing L overA is that the search space

is much smaller (although still large in absolute terms);

the disadvantage is that we cannot beat System{R in

terms of output quality using a GA in L.

Each chromosome represents a left{deep strategy. The

chromosome is an ordered list of genes, where each

gene consists of a relation and a join method. For

example,

J

A

J

C

J

B

J

D

J

F

J

E

represents the left{deep strategy in Figure 2(a), with

J representing some join method.

In our code, we associate the join method with the in-

ner (right) relation of each join. Thus, to recreate the

join processing tree, join the �rst and second relations

using the method associated with the second relation.

Then join the resulting intermediate relation with the

next relation according to the speci�ed method. Re-

peat until no relations remain. At each step verify that

an edge exists in the query graph (Figure 1) between

the current relation and one of the relations that oc-

curred previously in the chromosome. If no such edge

exists, then the query strategy contains a cartesian

product, and the chromosome is penalized with an in-

�nite cost. Note that the join method associated with

the �rst relation is ignored and that if the crossover

method produces many cartesian products, then the

GA will not perform well.

Using this encoding, the problem is similar to a con-

strained traveling salesman problem (TSP) with a

choice of methods of transport between the cities. In

fact we use this analogy to motivate our choices of

crossover operator. However, the query optimization

function is much more expensive to evaluate than typ-

ical TSP functions, since each join, or equivalently the

cost of traveling directly between cities, can be depen-

dent on the route previously taken and/or the future

cities to be visited. As an indication of the above com-

plexity, we want to emphasize that the cost of a join

between two relations is a function of their sizes. That

size depends directly on the precise set of joins that

have occurred previously. It also depends on the joins

that remain to be processed later, because much of the

data that is necessary for their execution is contained

in the two relations.

Mutation is a secondary operator used to guarantee

connectedness of the search pace. In our implementa-

tion it is of two types. The �rst type changes the join

method randomly, and the second swaps the order of

two adjacent genes. A left{deep strategy generator

ensures that the initial population contains no carte-

sian products. This is achieved by cycling through a

randomly generated permutation of the relations, only

adding a relation to our chromosome if this can be

done without introducing a cartesian product. The

join methods are generated randomly.

3.2 BUSHY STRATEGIES

Quite often the best strategy for a query is in L. How-

ever, in order to produce better solutions that System{

R, we must consider a larger strategy space, (A), which

contains both linear and bushy strategies. We en-

code such strategies into chromosomes by consider-



ing each join as a gene, so that k

J

o

represents join

k with some join method J and its constituent rela-

tions (found on the query graph) in o orientation (for

instance (a)lphabetically or (r)everse{alphabetically).

A chromosome is then an ordered list of these genes.

An example is

1

J

a

5

J

r

2

J

r

3

J

a

4

J

a

which represents the strategy given in Figure 2(b).

The decoding of the list into a solution is more costly

than the left{deep decoding but has the ability to rep-

resent many more strategies. The decoding process

grows the bushy tree from the bottom up. It maintains

a list of intermediate relations waiting to be joined.

Scanning the chromosome from left to right, it �nds

the constituent relations in each join (gene) by exam-

ining the query graph. The orientation of the gene

indicates which relation is the outer (left) and inner

(right) relation. If the right relation has been used in

the formation of some intermediate relation in the list,

the latter is substituted as the right relation of the join

and the intermediate relation is removed from the list.

The same process is done for the left relation. The left

and right relations are joined according to the method

in the gene, and the resulting relation is added to the

list. After all the genes are processed, one intermedi-

ate relation remains in the list. This corresponds to

the root of the bushy tree.

Note that although the representation is similar to the

one described for left{deep trees (it is an ordered list

of genes), there are three important di�erences. First,

the decoding scheme guarantees that the correspond-

ing query strategy has no cartesian products. Thus,

we only consider \feasible" strategies of our problem.

Second, our representation is based on labeling joins,

not relations. This is somewhat natural since there

may be several intermediate relations in use at any

given step of the decoding scheme and these relations

can be easily associated with a join. This association is

critical for simple computation. In the left{deep case,

only one intermediate relation is constructed at each

stage, so the problem of handling these relations does

not occur. Third, the representation is not uniquely

de�ned, i.e., several chromosomes can decode into the

same tree.

The coding described above has the advantage that it

may now be possible to beat the System{R solution.

However, the search space has been greatly increased

giving the GA a more di�cult task. We believe that

the decoding scheme is very important for this GA

to perform well: the extra work that we carry out in

decoding guarantees that the algorithm only consid-

ers feasible solutions of the problem, and furthermore,

that we can use standard crossover schemes motivated

by GA's for TSP and other database work to generate

good chromosomes.

Mutation is carried out in two ways. The �rst is to

randomly change the join method or the orientation.

The second is to perform reordering of genes on the

chromosome by transposing a gene with its neighbor.

Together, these guarantee that the search space is con-

nected. The initial population is generated randomly.

3.3 CROSSOVER

In order to complete the discussion of our method, we

describe the two crossover operators that we investi-

gated. In each of the encodings above, the chromosome

is an ordered list of genes. As outlined above, in the

left{deep case the genes can be identi�ed by their rela-

tion letter and in the bushy case by their join number.

We describe the crossover operators solely in terms of

these genes.

The �rst method, modi�ed two swap (M2S), modi�es

the local improvement algorithm given in [11] to in-

corporate information from both parents and was de-

signed primarily for the left{deep case. It can be de-

scribed as follows. Given two parent chromosomes, X

and Y, randomly choose two genes in X and replace

them by the corresponding genes from Y, retaining

their order from Y, to create one o�spring. For exam-

ple, in the left{deep case, suppose the parent chromo-

somes X and Y are given by

X =

m

A

n

C

m

B

m

D

n

F

n

E ;

Y =

m

B

n

C

m

D

m

F

m

E

n

A

where m and n represent particular join methods and

we randomly choose genes labeled A and D. The re-

sulting chromosome is

m

D

n

C

m

B

n

A

n

F

n

E

We interchange the roles of X and Y to create an-

other o�spring. The use of M2S was partly motivated

by the Swap transformation that has been successfully

used for database query optimization in the context of

other randomized algorithms [7, 15]. The two transfor-

mations are quite similar, except that, as a crossover,

the transformation takes into account two strategies,

whereas in its previous use it simply operates on one.

Note that most of the ordering information from one

of the chromosomes is retained, and it is this informa-

tion that is of primary importance in both decoding

schemes outlined above. Therefore, the crossover op-

erator retains most of the ordering information from

one chromosome, and uses order information from the

other chromosome to exchange two genes. In the bushy

case, the modi�ed chromosome can be very di�erent

from both of its parents (depending on the locus of the

genes being exchanged) due to the decoding scheme;

in the left{deep case the solution will look very similar

to one parent, although there is a small possibility of

introducing a cartesian product.

The second method, which we refer to as CHUNK, is

adapted from [2, 12] and was designed primarily for

the bushy case. Here, we generate a random chunk



of the chromosome as follows. Suppose the number of

genes in the chromosome is l. The start of the chunk

(of genes) is a uniformly generated random integer in

[0; l=2] and the length of the chunk is uniformly gen-

erated from [l=4; l=2]. Suppose we randomly generate

the chunk [3; 4], then one resulting chromosome copies

the third and fourth genes of X into the same position

in the o�spring, then deletes the corresponding genes

of Y, using the remainder of Y's genes to �ll up the

remaining positions of the o�spring. For example, if

X and Y are given by

X = 1

n

a

5

n

r

2

m

r

3

m

a

4

n

a

;

Y = 3

n

r

5

n

a

1

m

r

4

m

a

2

m

a

where m and n represent particular join methods, the

resulting chromosome is

5

n

a

1

m

r

2

m

r

3

m

a

4

m

a

Again, another chromosome is created by interchang-

ing the roles of X and Y. We arrived at this method

after some experimentation. The essential motiva-

tion behind the above scheme is to force a reason-

ably sized subtree (between a quarter and a half of

the size of the original tree) from one parent to be

incorporated into the other parent with minimal dis-

ruption to the latter. Of course, the chunk may or

may not correspond to a subtree, but to avoid exces-

sive computation in determining a chunk, the above

scheme was used. The ordering information on the

chromosome crucially determines the strategy in our

decoding scheme, so the crossover operator attempts

to minimize ordering changes. Since our representa-

tion is many to one, forcing the chunk to have a large

size generally results in some genetic information being

exchanged, enabling the algorithm to look at a larger

variety of solutions and hence generate better solutions

in reasonable times.

Although the crossover operators were designed with

particular strategy spaces in mind, both operators can

be applied in the two strategy spaces since they essen-

tially consider the chromosomes as an ordered list of

genes. Thus, we experimented with all combinations

of crossover operators and spaces.

4 PERFORMANCE RESULTS

In this section, we report on an experimental evalua-

tion of the performance and behavior of the above ge-

netic algorithm on query optimization compared to the

System{R algorithm. First, we describe the testbed

that we used for our experiments, and then we discuss

the obtained results.

4.1 TESTBED

For our experiments we assumed a DBMS that sup-

ports the nested{loops and merge{scan join methods

[14]. Tree queries were generated randomly whose size

ranged from 5 to 16 joins. The limit on the query size

was due to the inability of the System{R algorithm to

run with larger queries, primarily because of its huge

memory requirements. Moreover, not all generated 16-

join queries were runnable by the System{R algorithm.

Thus, for large queries, the genetic algorithm is clearly

superior to the traditional algorithm.

In the interest of space, we do not present the pre-

cise cost formulas that were used in this study. They

capture the I/O cost of the various join methods and

indices used and can be found in any textbook on

databases. We also avoid presenting any details on the

assumed physical design of the database. The speci�cs

are exactly as in previous studies [7].

We implemented all algorithms in C, and tested them

on a dedicated DecStation 3100 workstation. All ex-

periments were conducted with a population size of

N = 64. Ten di�erent queries were tested for each size

up to 16 joins. However, System{R managed to termi-

nate on only seven of the 16-join queries, so the results

for that case represent a smaller number of queries.

For each query, each algorithm was run �ve times.

4.2 OUTPUT QUALITY

We compare output quality based on the lowest cost

chromosome in the �nal generation. The cost of the

average output strategy produced by the algorithms

as a function of the query size is shown in Figure 3(a).

The x{axis is the number of joins in the query. The

y{axis represents scaled cost, i.e., the ratio of the out-

put strategy cost over the cost found by the System-R

algorithm. For each size, the average over all queries

of that size, of the average scaled output cost over all

�ve runs of each query is shown.

The results are rather interesting. We observe that

on the average, when GA is applied to L, it fails to

�nd the optimum strategy, but except for the largest

queries (16 joins), it is clearly within a small range

(10%) of optimality. For small queries (4-6 joins), both

crossovers always �nd the optimum. As the query size

grows, however, the algorithm becomes less stable and

the quality of its output deteriorates, primarily due to

the dramatic increase in the size of the strategy space.

When GA is applied to A the results improve. On the

average, for all three sizes, the algorithm found a bet-

ter strategy than the best left-deep tree, with the gains

ranging up to 13%. Note that as query size grows,

GA becomes relatively better than System{R. This is

because, with increased query size, the relative di�er-

ence between the best bushy strategies and the best

left-deep strategies increases as well, so by searching

a richer space, GA is able to improve on the output

quality. A small set of experiments with an increased

population size has given very promising results for

further improving the output quality in large queries.



with CHUNK

with M2S

with M2S

with CHUNK

A

A

L

L

L

System-R in 

GA in 

GA in 

GA in 

GA in 

(a)

4 8 12 16

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Number of Relations

S
c
a
l
e
d

C
o
s
t

with CHUNK

with M2S

with M2S

with CHUNK

A

A

L

L

L

System-R in 

GA in 

GA in 

GA in 

GA in 

(b)

4 8 12 16

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Number of Relations

S
c
a
l
e
d

C
o
s
t

Figure 3: Scaled Cost of Strategy at Convergence: (a)

average of 5 runs and (b) best of 5 runs

Another interesting comparison is that between the

two crossovers. When GA is applied to L, M2S is the

preferred crossover, with CHUNK having much worse

performance. This is due to the fact that, when the

relations are the genes of the chromosome, applying

CHUNK produces many o�spring with cartesian prod-

ucts. Therefore, in that case, the algorithm spends

much time in useless matings, thus failing to converge

to a good strategy. On the other hand, M2S produces

much fewer strategies with cartesian products and is

the overall winner. Exactly the opposite happens when

GA is applied in A. CHUNK is the best performer,

since it generates a large variety of strategies, thus

looking at a larger area of the space and using its time

much more e�ectively.

To overcome some of the inherent problems of random-

ized algorithms, it is occasionally proposed that such

algorithms are run multiple times on a given instance

problem, and the best solution among those found be

chosen. With that in mind, we also compare the best

output found among the �ve runs of each version of the

GA algorithm for each query. We show the average of

that over all queries of a given size in Figure 3(b). We

now see that in L, M2S is perfect, almost always �nd-

ing the optimum strategy. CHUNK is considerably

improved as well, but is still has inferior performance

for the reasons explained above. Similar improvements

are seen in the A space as well. Especially in the large

joins, both crossovers �nd very good strategies. All

these results indicate that multiple runs of the GA al-

gorithm may be a plausible way to avoid some of its

potential instabilities and produce high quality results.

4.3 TIME

The average time results are presented in Figure 4,

where the x{axis represents the number of joins in the

query, and the y{axis represents the processing time

in seconds. For the 16-join queries on which System{R

failed to �nish, we use the time-to-failure in this �gure.

The results are as follows. System{R performs faster

for queries of size up to 14, but the GA in L is much

faster for queries of size 16. The increase in times for

GA in L is almost linear. There is a larger increase in

the time for GA in A than in L. This is to be expected

since L is a much smaller space thanA. As it is obvious

from Figure 4, this increase is much less steep than

the corresponding increase in time for System{R. We

believe that even if System{R was runnable for queries

beyond 16 joins, it would require much more time than

GA.

A �nal comment that we want to make is that this ver-

sion of GA is designed to be ported to a parallel ma-

chine. In a parallel implementation, each chromosome

in the population resides on a processor and commu-

nication is carried out by message passing. The total

communication overhead is thus minimal. Based on

results on other optimization problems [1] where the

evaluation of the �tness function dominates the pro-

cessing time, as is the case with query optimization, we

expect linear speedups in execution time. Since only

limited parallelism can be incorporated into System{

R, the time to execute the parallel GA should become

much smaller than that of System{R.

5 CONCLUSIONS

We have presented a genetic algorithm for database

query optimization. In doing so we have intro-



with CHUNK

with M2S

with M2S

with CHUNK

A

A

L

L

L

System-R in 

GA in 

GA in 

GA in 

GA in 

4 8 12 16

0

100

200

300

400

Number of Relations

T
i
m
e

(
s
e
c
)

Figure 4: Average Processing Time

duced a novel encoding/decoding of chromosomes that

represent binary trees together with associated new

crossover operators. Although we did not exploit it

in this paper, an important characteristic of the al-

gorithm is its e�cient parallelization. Our computa-

tional experiments with sequential implementations of

the algorithm have shown the method to be a viable

alternative to the commercially established algorithm.

In fact, for large queries, one implementation of the

GA found comparable solutions in much better time,

whereas a di�erent implementation found better qual-

ity solutions at the expense of additional time. More-

over, the GA was capable of optimizing large size prob-

lems on which the established algorithm fails.

In the future, we plan to adapt our parallel implemen-

tation of the GA to query optimization and verify our

claims on its superiority over the System-R algorithm.

In addition, we plan to investigate its applicability to

query optimization in more complex database environ-

ments, e.g., parallel database machines.

Acknowledgements

The work described in this paper has been partially

supported by The Air Force Laboratory Graduate Fel-

lowship Program, the Air Force O�ce of Scienti�c Re-

search under Grant AFOSR{89{0410 and the National

Science Foundation under Grant IRI-8703592.

References

[1] E.J. Anderson and M.C. Ferris. A genetic al-

gorithm for the assembly line balancing prob-

lem. In Proceedings of the Integer Programming

/ Combinatorial Optimization Conference, Wa-

terloo, September 1990, Ontario, Canada, 1990.

University of Waterloo Press.

[2] G.A. Cleveland and S.F. Smith. Using genetic al-

gorithms to schedule ow shop releases. In Scha-

e�er [13], pages 160{169.

[3] E. F. Codd. A relational model of data for large

shared data banks. CACM, 13(6):377{387, 1970.

[4] D.E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison{

Wesley, Reading MA, 1989.

[5] J.J. Grefenstette. Incorporating problem speci�c

knowledge into genetic algorithms. In L.D. Davis,

editor, Genetic Algorithms and Simulated Anneal-

ing. Pitman, London, 1987.

[6] J. Holland. Adaptation in Natural and Arti�cial

Systems. The University of Michigan Press, Ann

Arbor, Michigan, 1975.

[7] Y. E. Ioannidis and Y. Kang. Randomized al-

gorithms for optimizing large join queries. In

Proc. of the 1990 ACM-SIGMOD Conference on

the Management of Data, pages 312{321, Atlantic

City, NJ, May 1990.

[8] Y. E. Ioannidis and E. Wong. Query optimiza-

tion by simulated annealing. In Proc. of the 1987

ACM-SIGMOD Conference on the Management

of Data, pages 9{22, San Francisco, CA, May

1987.

[9] M. Jarke and J. Koch. Query optimization in

database systems. ACM Computing Surveys,

16(2):111{152, June 1984.

[10] W. Kim, D. Reiner, and D. Batory. Query Pro-

cessing in Database Systems. Springer Verlag,

New York, N.Y., 1986.

[11] S. Lin and B.W. Kernighan. An e�cient heuris-

tic algorithm for the traveling salesman problem.

Operations Research, 21:498{516, 1973.

[12] H. M�uhlenbein. Parallel genetic algorithms, pop-

ulation genetics and combinatorial optimization.

In Schae�er [13], pages 416{421.

[13] J.D. Schae�er, editor. Proceedings of the Third

International Conference on Genetic Algorithms,

San Mateo, California, 1989. Morgan Kaufmann

Publishers, Inc.

[14] P. Selinger et al. Access path selection in a re-

lational data base system. In Proc. of the 1979

ACM-SIGMOD Conference on the Management

of Data, pages 23{34, Boston, MA, June 1979.

[15] A. Swami and A. Gupta. Optimization of large

join queries. In Proc. of the 1988 ACM-SIGMOD

Conference on the Management of Data, pages 8{

17, Chicago, IL, June 1988.

[16] J. D. Ullman. Principles of Database Systems.

Computer Science Press, Rockville, MD, 1982.


