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Abstract .  Several types of data organizations have been proposed in 
the literature for object-oriented and relational databases. In studying 
these organizations, there appears to be no underlying common basis 
on which they can be compared. Many of these organizations impose 
restrictions on their applicability that seem unnecessary or ad-hoc. We 
present a unified framework for physical database storage. We show that  
most existing data  organizations follow naturally as special cases of this 
framework. Furthermore, this fl-amework permits the specification of new 
types of da ta  organization that have not been proposed or /.hat emmot, 
be described in existing systems, yet. appear to be nsefifl. 

1 I n t r o d u c t i o n  

One of the  l l lost  p rominen t  charac ter i s t ics  a t t r i b u t e d  to rnodern d a t a b a s e  sys- 
t.ems (DBMSs)  is physical data ind~pe',d~nce. In an effort to increase the physical  
d a t a  independence  in ob jec t -or ien ted  and re la t iona l  DBMSs,  researchers  have 
p roposed  numerous  types  of data. o rgan iza t ions  in the  pas t  few years.  I towever,  
s t u d y i n g  these data. o rgan iza t ions  reveals no under ly ing  c o m m o n  basis  on which 
they  can be compared  and  many  res t r ic t ions  on their  app l i cab i l i t y  seem un- 
necessary  and r a the r  ad-hoc.  We have devised a. mechan i sm tha t  d i sassoc ia tes  
co m p le t e ly  a logical  schema from its physical  represen ta t ion ,  thus  achieving gen- 
uine physical  d a t a  independence  [12]. In this paper ,  we briefly present  the  sa l ient  
%a.tures of  th is  mechan i sm and then use it as a concep tua l  f r amework  t,o s t u d y  
var ious  physical  d a t a  mode l s  of DBMSs.  We show tha t  the vast  m a j o r i t y  of ex- 
is t ing d a t a  o rgan iza t ion  types  follow natu  ral ly as special  cases of this  f ramework,  
when res t r ic t ions  are app l ied  on the f l ' amework 's  p roper t ies .  This  helps in un- 
d e r s t a n d i n g  the differences of these o rgan iza t ions  be t te r .  More i m p o r t a n t l y ,  the  
deve loped  f l ' amework pe rmi t s  the specif icat ion of  new d a t a  o rgan iza t ion  types  
t ha t  canno t  be descr ibed  in exis t ing sys tems,  yet  a p p e a r  to be useful. 
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2 T h e  G m a p  M e c h a n i s m  f o r  P h y s i c a l  D a t a  I n d e p e n d e n c e  

In current DBMSs, the process of designing the physical schema is not. clearly 
distinguished from the logical schema design. For example, each logical construct 
definition implies the creation of a corresponding physical da ta  structure. In con- 
trast,  we propose using a completely separate physical da ta  definition language 
(DDL) for the physical schema design. This language allows the definition of each 
physical da ta  structure as a function of, possibly many, logical constructs. The 
function is a restricted query expression over the logical schema. User queries are 
expressed in terms of the logical schema and are not aware of the physical one. 
We have devised an efficient algorithm for translating such queries into access 
plans on the physical data  structures. A prototype system [12] that  incorporates 
the major  aspects of this approach including update  propagat ion and integration 
with the query optimizer is currently operational. 

2.1 Log i ca l  D a t a  D e f i n i t i o n  L a n g u a g e  

We use a simple object-oriented data  model in which schelnas are displayed 
as graphs. Throughout  this paper we illustrate our approach with an example 
schema describing a university with depar tments  (B), faculty (F), students (S), 
courses (C) and teaching assistants (TA) (see Figure 1). Nodes in this graph 

name iiilpame = "CS" 
name works-i~ ~ w o r k ~ U "  ~ 

F ..:@i:i::" nam..e........ ~ v i s e s  "~rolled ~ .  ......... =============??======:===):=====.=... 
area * ~ S~--s'~n am e a .... %hes / a~4"~ 

I / 11~ year name I / ,lisA 
~ [ 7attended I level ~ r I 7 I leve! ~ T~......~ 

assisted TA 
Fig. 1 : The logical schema Fig. 2: Query "simple" 

represent domains (classes) and solid edges represent associations between them. 
Classes are divided into primitive classes, e.g., integers or character strings, and 
entity classes, whose members  are identity surrogates (oids). There are two kinds 
of associations: relationships and inheritance associations. Associations have a 
type and a cardinality 'ratio. The type of relationships captures the intention 
of the user to view one of the two classes as an at tr ibute of the other. The 
cardinality ratio of the relationship determines how many instances of one class 
may be related to an instance of the other class. When the cardinality of the 
relationship is "to-one" a mark  is added in that  direction of the edge. Finally, 
an inheritance association between two entity classes, classifies one class as a 
subclass of the other. Additional details can be found elsewhere [12]. 

2 . 2  L o g i c a l  D a t a  M a n i p u l a t i o n  L a n g u a g e  

The query language serves the dual role of a simple language to be used in our 
examples and the language used by the physical DDL to define da ta  structures. 
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As a.n example, tile query that retrieves the name and year of all students advised 
by faculty working ill the computer sciences department in a. given area is 

def_query simple by 
given Faculty. area select Student.name, Student.year 

where Faculty advises Student and 

Faculty works_in Dept and Dept.name = "CS". 

The classes following the given and s e l e c t  keywords are called input and 
output classes, respectively. Input classes play the role of query parameters, i.e., 
they correspond to variables that can be bound to objects from those classes 
when the query is issued. Output classes indicate the types of objects included 
ill the query result. The remaining parts of the query should be self-explanatory. 

Each query can also be expressed graphically as a subgraph of tile schema 
graph called query graph. Figure 2 shows the query graph of the example query. 
Shaded edges correspond to associatio.s explicitly mentioned in tile where clause 
or implicitly mentioned as part of prhnitive class names. Input classes are indi- 
cated by small arrows, and output classes are indicated by double circles. 

2.3 P h y s i c a l  D a t a  Do, f in i t ion  L a n g u a g e  

In our system, each physical storage structure is defined as a gmap (Generalized 
Multilevel Access Path). A gmap consists of a set of records (gmap data), a query 
that indicates the sema.l~lic relationships among their fields (gmap quay:l), aud 
a description of the data stl'llCtllre Ilsed to store the records (.qmat) strucl.ulw). 
Issuing the gmapquery  on a database always produces the gmapda ta  as a result. 

For example, suppose we want. to cluster together information about each 
st.udetd,. Given the object identifier of a S tudent  object, we should be able to 
retrieve the student name, the stu&mt year and the department the student is 
enrolled in. A gmap that meets these specifications lnay be defined as 

def gmap students_file as heap by 
given Student select Student.name, Student.year, Dept 
where Student enrolled Dept. 

The statement defines tile equivalent of a relation file, i.e., a hea.p structure 
directly accessible by tile Student oid and conta.ining all student attributes. 

3 A U n i f y i n g  F r a m e w o r k  

\Ve identify four aspects of the graph representation of a gmap query. Specitically, 
such graphs are characterized by their shape, the flavor of their input alld output  
nodes, and their having any selection constraints. Figure 3 shows tlle possible 
restrictions that may be placed on each one of them. It then identifies the most 
important  combinations of them (roughly from most to least restrictive), and 
for each one names the resulting indexing scheme category, which is discussed 
in a separate section below. For that part of the table, an empty entry implies 
that no restriction is placed on tile corresponding graph characteristic. 

A gmap query (without cycles) imposes a directionality on the edges it in- 
cludes, from it, s input to its output nodes, essentially capturing how tile edges 
are conceptually traversed when querying. We use the term a~r to refer to all 
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Graph 
characteristic 
Possible 
restrictions 

Graph Characteristics Restrictions 
Shape  Flavor  of  ] F lavor  of  

]ou tpu t  nodes l input  nodes 
single arc endnodes I one endnode 

linear path I one node 

Select ion 
const ra in t ,  

disallowed 

Data Organization Categories 
single edge single arc endnodes one endnode 
l inear  pa th  linear path endnodes one endnode 
m u l t i - o u t p u t  linear path one endnode 
g raph  one node 
mul t i - inpu t  
par t ia l  

disallowed 
disallowed 
disallowed 
disallowed 
disallowed 

Figure 3. Gmap categorization based on graph characteristics 

edge coupled with such a direction. In many  of the categories of Figure 3, existing 
types of da ta  organizations impose additional restrictions on some characteris- 
tics of the arcs that  may be part  of a gmap query graph. These are the arcs' 
kind, type, and cardinality ratio, defined in Section 2.1. We use IsA and tel as 
abbreviations of inheritance associations and relationships, respectively. For in- 
heritance associations, the arc type may be from class to subclass (C --4 Sub) or 
fi'om subclass to class (Sub --+ C),  while the cardinality ratio is always 1 --+ 1. 
For relationships, the arc type may be from class to at tr ibute (C --+ A) or fi'om 
at tr ibute to class (A --+ C) and the cardinality ratio may take any value. 

4 S i n g l e  A r e  I n d e x i n g  

Every edge on the schema graph connects a pair of related classes. It is con- 
ceivable that  for every such edge there exist a query that  requires tra.versing it. 
Thus, it is desirable to be able to provide efficient traversal of every edge of the 
logical schema in both directions, independently of its kind, type, or cardinality 
ratio. Providing the needed efficiency is straightforward via. gmap  definitions. 

4.1 P r e v i o u s  T e c h n i q u e s  

�9 Secondary indices in relational databases. This ca.tegory includes the conven- 
tional, single-key indices of relational databases. The arc properties of these 
secondary indices are [kind = tel, type = A --+ C, card = 1 --4 1 or 1 --+ N]. 
�9 Secondary indices on set attributes. In contrast to relational systems, object- 
oriented and nested relational systems allow multivalued attributes.  This cate- 
gory includes all indices on such attributes.  Examples  of systems that  allow the 
definition of such indices are ObjectStore [7] and Orion [3]. The arc properties 
of these indices are [kind = tel ,  type = A --+ C]. 
�9 Join indices [13]. They have been proposed to enhance the performance of joins 
over many- to-many relationships. The related pairs are stored in two indices, 
each one ordered according to the two classes part icipating in the relationship. 
The two indices offer two different elusterings of the relationship da ta  as well 
as associative access from both classes. The technique applies to any arc with 
properties [kind = tell that  connects entity classes. An example follows: 
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def_gmap join_index_partl as btree by 
given Student select Course where Student attends Course 

def_gmap join_index_part2 as btree by 

given Course select Student where Student attends Course. 

�9 M u l t i - i n d i c e s .  These  also use mult ip le  single arc indices.  Since their introduc- 
t ion [3, 8], mult i - indices  have been i m p l e m e n t e d  in at least one commerc ia l  prod- 
uct [7]. They allow efficient traversal of a path on the s chema  graph, by adding 
indices along the arcs of the path. The important property that these indices 
should have is that, the output of one should be usable as input of the next. This 
property allows chaining of indices, essentially piping the output  of one to the 
next without accessing any other storage structure. Gmaps have this property, 
since they use a c o m m o n  object  id representation for both output and input 
objects. For example, the following two gmap definitions create a multi-index 
that returns the oids of faculty members that work in a department specified by 
a given name: 

def_gmap m u l t i i n d e x _ p a r t l  as b t r e e  by 
given Dept.name select Dept 

def_gmap multiindex_part2 as btree by 

given Dept select Faculty where Faculty works Dept. 

Both multi-index proposals [3, 9] impose the following restrict,  ions  on  the index 
arc propert, ies: [kind = t e l ,  type ~ --+ C]. In addition, the proposal by Maier 
and Stein enforces the restriction [card = 1 --+ 1 or 1 -+ N]. 

4.2 N e w  A p p l i c a t i o n s  

�9 Class  to a t t r i b u t e  ind ices .  Indices thal. rel.urn tile vahle of an att, ril)ute given an 
object id have never been considered, mainly because most systems do include 
efficient structures to access an object given it.s id. However, it may be the case 
that an object is very large, and therefore, the values of an attribute for many 
objects may span a very large space. For such cases, single arc indices of type 
C -+ A provide a. better clustering. For example, for a. query that requests tile 
departments oids of several students, the gmap 

def gmap DeptStudent as b t r e e  by 
g i v e n  Student s e l e c t  Dept where Student enrol led Dept 

includes the needed data in fewer pages and potentially in a more convenient 
order than ~he gma.p in Section 2.,. 
�9 I nd i ce s  on i n h e r i t a n c e  a s soc ia t i ons .  I s A  arcs do not capture relationships 
between distinct objects, but essentially between two different manifestations of 
the same object. For example, the information about a TA may be stored in two 
distinct objects, one for the attributes of the TA and the other tbr the generic 
S tuden t  attributes. In that case, an index may be valuable to find the old of 
one of the objects given the old of the other. 
�9 E x t e n d e d  m u l t i - r a d i c e s .  Any chain of gmaps such that the output nodes of one 
are the input nodes of the other forms an extended multi-index, l%r example, 
the following multi-index 

def gmap multiindex_partl as btree by given Student.year select Student 

def_gmap multiindex_part2 as btree by 

given Student select TA where TA IsA Student 



188 

def_gmap multiindex_part3 as btree by given TA select TA.level 

includes in its path both relationships and inheritance associations, both C -+ A 
and A --+ C ares, and arcs of many cardinality ratios. 

5 L inear  P a t h  Indexing 
In the previous section, the input and the output  classes ofgmaps  were connected 
with a single edge. We generalize this structure by allowing the input and output  
classes to be connected via an arbitrarily long chain of edges. 

5.1 Previous Techniques 
�9 Nested indices. Consider a linear path with all classes, starting from the input 
class, being attributes of the next class in the chain. Then, the input class is 
called a nested attribute of the output  class. An index that maps objects of the 
nested attribute class to objects of the nesting class is called a nested index [3, 8]. 
The following statement defines a nested index over the same path we used to 
define a multi-index in Section 4.1 (Figure 4). 

def_gmap nested_index as bt ree  by 
given Dept.name select Faculty where Faculty works_in Dept. 

Clearly, the chain of indices is replaced by a single index that  performs the 
end-to-end mapping. This results in increased performance since a single index 
traversal is needed, but also implies reduced index usability and more expensive 
updates [2]. Originally, nested indices were proposed with the same restrictions 
on the arc properties as the multi-indices, i.e., [kind -- tel ,  type = A -* C] [3] 
or [kind -- tel ,  type -- A -~ C, card -- 1 -+ 1 or 1 -+ N] [S]. 

works i: n a m e  

F ..:~::~r s / 

/_J 
TA 

works in::iiiii?~~ name 

~ [  S g  .:.:,i! i~:'" i!~::" 

TA 
Fig. 4: Gmap "nested_index" Fig. 5: Gmap "field_replication 

�9 Field replication. Consider the exactly opposite case from above, where all 
classes starting fi'om tile output  class are attributes of the next class in the 
chain. Then, it is the output  class that is a nested attribute of the input class. 
Mapping objects of the nesting class to objects of the nested attribute is called 
field replication [4, 11]. By changing the role of the input and output  attributes 
in the previous example, we derive an exmnple of field replication (Figure 5): 

def_gmap field_replication as heap by 
given Faculty select Dept.name where Faculty works_in Dept. 

As in the case of class-to-attribute indices in Section 4.2, field replication allows 
an alternative clustering of the data, which can be important  for many appli- 
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cations. Originally, field replication was proposed with the following restrictions 
on the arc properties: [kind = te l ,  type = C --+ A, card = 1 --+ 1 or N -+ 1]. 

5 . 2  N e w  A p p l i e a t i o n s  

�9 Extended nested indices. We Call generalize both previous techniques by re- 
moving all restrictions on the type and kind of the arcs. Note that by chaining 
nested indices together we obtain a generalization of the hybrid scheme originally 
proposed for chaining ordinary nested indices [3]. 

6 M u l t i - O u t p u t  I n d e x i n g  

While arbitrary chains of arcs can be described using the previous types of 
organizations, the output classes are always endnodes of a path. In this section, 
we study the opportunities that arise by relaxing this restriction. 

6.1 P r e v i o u s  T e c h n i q u e s  

�9 Path indices. When tile whole path is included in the index output, tile resulting 
data. organization is called a path inde:c [3]. As an example, consider the path 
that connects department names with courses taken by students enrolled ill the 
department. The following gmap defines a path index on that path : 

def_gmap path_ index  as b tree  by 
g i v e n  Dept.name s e l e c t  Dept, S tudent ,  Course 
where Student  e n r o l l e d  Dept and Course a t t ended  Student .  

By recording the whole path, the index is useful to snore queries tha.n the corre- 
sponding nested index, and often allows more elIicient npdates. Originally, path 
indices were proposed with the same restrictions on the arc properties as nested 
indices, i.e., [kind -- tel, type = A -~ (7]. 

�9 Access ,q.upport lqelations ( A S R s )  [5, 6]. These are also full materializa.tions 
of chains of edges. ASI/s are more flexible than path indices: they allow each are 
to be either C: ~ A or A --+ C, but the type must be the same for all the arcs. 

6.2 N e w  A p p l i c a t i o n s  

�9 F~:rtended path indices. Gmaps do not. need the restrictions on arc properties 
originally imposed on path indices and ASRs. Furthermore, there is no reason to 
require that every single node of the path be included in the output. For some 
applications, it. may be convenient to include in the gmap data. only some of 
the classes in the pat.Is. For example, ill the last example (Section 6.1), we lna5; 
not be interested in Dept  and S t u d e n t  oids but only in Course old and Course 
name. A path index that stores exactly what is needed follows: 

def_gmap extended_path index as b t r e e  by 
g i v e n  Dept.name s e l e c t  Course,  Course.name 
where Student  e n r o l l e d  Dept and Course a t t ended  Student .  

By eliminating path nodes from the output, the size of the gmap da.ta may 
decrease significantly. Thus, the resulting gmap offers the needed data in a snore 
conrpact form, which implies better perfornrance. 
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7 G r a p h  I n d e x i n g  

In this section, we relax the restriction that  one can only index along linear 
paths. In general, the gma.p graph can be a tree or even have cycles. Although 
such shapes may  not look familiar in the context of indexing, many of the most 
commonly used storage organizations belong in this category. 

7.1 P r e v i o u s  T e c h n i q u e s  

�9 Relations.  As mentioned earlier (Section 2.3), relations can easily be described 
as gmaps.  As a result, gmaps can be used to achieve a relational physical repre- 
sentation for any given logical schema. Gmaps  that  correspond to relation files 
imply the restrictions [kind = te l ,  type = C --+ A, card = 1 -+ lot  N -+ 1]. 
�9 Class Ex ten t s  and Nested Relations. Class extents are similar to relations. One 
difference is that  they may imply a different heap implementat ion to support  
a logical oid access. Another is that  they may include lnulti-valued attributes.  
Thus, the only implied restrictions on arc properties are [kind = te l ,  type = 
C --+ A]. Some systems allow storing in a class extent members  of its subclasses 
[1]. Describing such organizations requires gmap  queries with the union operator; 
hence, these variants cannot be represented within our framework. 
�9 Hierarchical Join Indices [14]. These are a generalization of join indices that  
also requires a nonlinear query graph for its description. An HJI captures the 
structure of a complex object by recording the surrogates of the nested objects 
included in each complex object. Since complex objects have in general a hier- 
archical structure, the query graph for the index is a tree. For example, the HJI  
for the F a c u l t y  complex object can be defined as 

def_gmap hierarchical_join_index as btree by 

given Faculty select Dept, Student, Course, TA 
where Faculty works_in Dept and Faculty advises Student and 

Faculty teaches Course and Course assisted TA. 

8 M u l t i - I n p u t  I n d e x i n g  

8.1 P r e v i o u s  T e c h n i q u e s  

�9 Indices with composite keys. A relational index with a composite key, i.e., a key 
consisting of the concatenation of multiple relation fields, is tile most common 
example of an organization whose query graph includes nmltiple inputs. 

8 . 2  N e w  A p p l i c a t i o n s  

�9 Indices with composite key-paths. Nested indices allow the input class to be 
many  edges away from the output  class; conventional indices with composite keys 
allow multiple input classes that  are one edge away from the output  class. By 
combining these, we have an organization with a composite  key, such that  every 
component  of the key may potentially belong in a separate path. An example 
is shown in Figure 6. The index maps area/course-level pairs to faculty ill that  
area who teach such courses: 

def_gmap extended_composite  as btree  by 
g i v e n  Faculty.area, C o u r s e . l e v e l  s e l e c t  Facul ty  
where Facul ty  t eaches  Course. 
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Tile order of the input classes is important and is captured a.s pa.rt of tile gmap 
definition, a.lthough for simplicity it is not shown in the graphical representation. 

J~;i ....................... 

D~ienrolled 

"IA 

Fig. 6: Gmap "extended_composite" Fig. 7: Gmap "cs_collection" 

9 P a r t i a l  I n d e x i n g  

9.1 P r e v i o u s  Te(-hniques 

�9 Collections o f  Oltjects. Until now w(, ass, reed all extent-based system: queries 
were expressed ill terms of classes, llowever, many objects-oriented DBMSs 
maintain only user-defined object collections, which incl,de only a subset of 
the class members. The following gmap uses a restriction to define a. collection 
containing only computer science sl.udellt.s (Figure 7): 

def_graap cs_collect;ion as heap by 
given Student; select; Student;.name, Student.year 
where Student enrolZed Dept; and Dept; = cs_oid. 

In the above, cs_oid is the oid of the computer science depa.rtment. 
�9 Indices on Collections of  Objects. Syslelns that store instances ill explicit col- 
lections rather than class extents also allow tile creation of indices on top of 
these collections [8, 10]. These indices provide a fast access path only to tile 
class members that are included in the collection. For example, an index on 
student y e a r  tbr students ill the conll)llter science clepa.rtment call be defined a.s 

def_gmap cs_collection_index as btree by 

given Student; .year select; Student 

where St;udent enrolled Dept and Dept; = cs oid. 

9.2 New Applications 

�9 h~tention~El~l &f ined coll~ctwrl.~. In many cases, an alternative way to describe 
the contents of a set is through its intention, i.e., by using a. query that defines 
the characteristics of the object in the set. Our approach permits the crea.tion 
of such intentionally defined collections ,sing arbitrary selection conditions in 
gmap queries, thus allowing arbitrary horizontal decompositions of tile database. 

10  C o n c l u s i o n s  

gxplora.tion of the space of Mternative physical data. organiza.tion types has been 
the focus of this paper. We have t.aken a mechanism that achieves genuine physi- 
cal data. independence and ha.ve used it. as a conceptual, unifying, framework for 
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describing such organizations. Most. types of data. organizations proposed earlier 
ill the context of relational or object-oriented systems follow natura.lly as special 
cases of this Damework. Also, the framework has permitted the specification of 
new useful data organizations that have not been proposed earlier. Given that 
the entire space of these alternatives is realizable within the existing implemen- 
tation of gmaps by using different gmap queries [12], one may immediately apply 
our work to physical design problems. 
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