
A Unif ied Framework for Index ing in Database
Sys tems

Odysseas G. Tsatalos* and Yannis E. Ioannidis**

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

Abstract . Several types of data organizations have been proposed in
the literature for object-oriented and relational databases. In studying
these organizations, there appears to be no underlying common basis
on which they can be compared. Many of these organizations impose
restrictions on their applicability that seem unnecessary or ad-hoc. We
present a unified framework for physical database storage. We show that
most existing data organizations follow naturally as special cases of this
framework. Furthermore, this fl-amework permits the specification of new
types of da ta organization that have not been proposed or /.hat emmot,
be described in existing systems, yet. appear to be nsefifl.

1 I n t r o d u c t i o n

One of the l l lost p rominen t charac ter i s t ics a t t r i b u t e d to rnodern d a t a b a s e sys-
t.ems (DBMSs) is physical data ind~pe',d~nce. In an effort to increase the physical
d a t a independence in ob jec t -or ien ted and re la t iona l DBMSs, researchers have
p roposed numerous types of data. o rgan iza t ions in the pas t few years. I towever,
s t u d y i n g these data. o rgan iza t ions reveals no under ly ing c o m m o n basis on which
they can be compared and many res t r ic t ions on their app l i cab i l i t y seem un-
necessary and r a the r ad-hoc. We have devised a. mechan i sm tha t d i sassoc ia tes
co m p le t e ly a logical schema from its physical represen ta t ion , thus achieving gen-
uine physical d a t a independence [12]. In this paper , we briefly present the sa l ient
%a.tures of th is mechan i sm and then use it as a concep tua l f r amework t,o s t u d y
var ious physical d a t a mode l s of DBMSs. We show tha t the vast m a j o r i t y of ex-
is t ing d a t a o rgan iza t ion types follow natu ral ly as special cases of this f ramework,
when res t r ic t ions are app l ied on the f l ' amework 's p roper t ies . This helps in un-
d e r s t a n d i n g the differences of these o rgan iza t ions be t te r . More i m p o r t a n t l y , the
deve loped f l ' amework pe rmi t s the specif icat ion of new d a t a o rgan iza t ion types
t ha t canno t be descr ibed in exis t ing sys tems, yet a p p e a r to be useful.

* Partially supported by the Advanced Research Project Agency, ARPA order num-
ber 018 (formerly 8230), monitored by the U.S. Army Research Laboratory under
contract DAAB07-91-C-QS18

** Part ial ly supported by grants from NSF (IRI-9113736, IRI-9224741, and IRI-9157368
(PYI Award)), DEC, IBM, HP, AT&T, and Informix.

184

2 T h e G m a p M e c h a n i s m f o r P h y s i c a l D a t a I n d e p e n d e n c e

In current DBMSs, the process of designing the physical schema is not. clearly
distinguished from the logical schema design. For example, each logical construct
definition implies the creation of a corresponding physical da ta structure. In con-
trast, we propose using a completely separate physical da ta definition language
(DDL) for the physical schema design. This language allows the definition of each
physical da ta structure as a function of, possibly many, logical constructs. The
function is a restricted query expression over the logical schema. User queries are
expressed in terms of the logical schema and are not aware of the physical one.
We have devised an efficient algorithm for translating such queries into access
plans on the physical data structures. A prototype system [12] that incorporates
the major aspects of this approach including update propagat ion and integration
with the query optimizer is currently operational.

2.1 Log i ca l D a t a D e f i n i t i o n L a n g u a g e

We use a simple object-oriented data model in which schelnas are displayed
as graphs. Throughout this paper we illustrate our approach with an example
schema describing a university with depar tments (B), faculty (F), students (S),
courses (C) and teaching assistants (TA) (see Figure 1). Nodes in this graph

name iiilpame = "CS"
name works-i~ ~ w o r k ~ U " ~

F ..:@i:i::" nam..e........ ~ v i s e s "~rolled ~ =============??======:===):=====.=...
area * ~ S~--s'~n am e a %hes / a~4"~

I / 11~ year name I / ,lisA
~ [7attended I level ~ r I 7 I leve! ~ T~......~

assisted TA
Fig. 1 : The logical schema Fig. 2: Query "simple"

represent domains (classes) and solid edges represent associations between them.
Classes are divided into primitive classes, e.g., integers or character strings, and
entity classes, whose members are identity surrogates (oids). There are two kinds
of associations: relationships and inheritance associations. Associations have a
type and a cardinality 'ratio. The type of relationships captures the intention
of the user to view one of the two classes as an at tr ibute of the other. The
cardinality ratio of the relationship determines how many instances of one class
may be related to an instance of the other class. When the cardinality of the
relationship is "to-one" a mark is added in that direction of the edge. Finally,
an inheritance association between two entity classes, classifies one class as a
subclass of the other. Additional details can be found elsewhere [12].

2 . 2 L o g i c a l D a t a M a n i p u l a t i o n L a n g u a g e

The query language serves the dual role of a simple language to be used in our
examples and the language used by the physical DDL to define da ta structures.

185

As a.n example, tile query that retrieves the name and year of all students advised
by faculty working ill the computer sciences department in a. given area is

def_query simple by
given Faculty. area select Student.name, Student.year

where Faculty advises Student and

Faculty works_in Dept and Dept.name = "CS".

The classes following the given and s e l e c t keywords are called input and
output classes, respectively. Input classes play the role of query parameters, i.e.,
they correspond to variables that can be bound to objects from those classes
when the query is issued. Output classes indicate the types of objects included
ill the query result. The remaining parts of the query should be self-explanatory.

Each query can also be expressed graphically as a subgraph of tile schema
graph called query graph. Figure 2 shows the query graph of the example query.
Shaded edges correspond to associatio.s explicitly mentioned in tile where clause
or implicitly mentioned as part of prhnitive class names. Input classes are indi-
cated by small arrows, and output classes are indicated by double circles.

2.3 P h y s i c a l D a t a Do, f in i t ion L a n g u a g e

In our system, each physical storage structure is defined as a gmap (Generalized
Multilevel Access Path). A gmap consists of a set of records (gmap data), a query
that indicates the sema.l~lic relationships among their fields (gmap quay:l), aud
a description of the data stl'llCtllre Ilsed to store the records (.qmat) strucl.ulw).
Issuing the gmapquery on a database always produces the gmapda ta as a result.

For example, suppose we want. to cluster together information about each
st.udetd,. Given the object identifier of a S tudent object, we should be able to
retrieve the student name, the stu&mt year and the department the student is
enrolled in. A gmap that meets these specifications lnay be defined as

def gmap students_file as heap by
given Student select Student.name, Student.year, Dept
where Student enrolled Dept.

The statement defines tile equivalent of a relation file, i.e., a hea.p structure
directly accessible by tile Student oid and conta.ining all student attributes.

3 A U n i f y i n g F r a m e w o r k

\Ve identify four aspects of the graph representation of a gmap query. Specitically,
such graphs are characterized by their shape, the flavor of their input alld output
nodes, and their having any selection constraints. Figure 3 shows tlle possible
restrictions that may be placed on each one of them. It then identifies the most
important combinations of them (roughly from most to least restrictive), and
for each one names the resulting indexing scheme category, which is discussed
in a separate section below. For that part of the table, an empty entry implies
that no restriction is placed on tile corresponding graph characteristic.

A gmap query (without cycles) imposes a directionality on the edges it in-
cludes, from it, s input to its output nodes, essentially capturing how tile edges
are conceptually traversed when querying. We use the term a~r to refer to all

186

Graph
characteristic
Possible
restrictions

Graph Characteristics Restrictions
Shape Flavor of] F lavor of

]ou tpu t nodes l input nodes
single arc endnodes I one endnode

linear path I one node

Select ion
const ra in t ,

disallowed

Data Organization Categories
single edge single arc endnodes one endnode
l inear pa th linear path endnodes one endnode
m u l t i - o u t p u t linear path one endnode
g raph one node
mul t i - inpu t
par t ia l

disallowed
disallowed
disallowed
disallowed
disallowed

Figure 3. Gmap categorization based on graph characteristics

edge coupled with such a direction. In many of the categories of Figure 3, existing
types of da ta organizations impose additional restrictions on some characteris-
tics of the arcs that may be part of a gmap query graph. These are the arcs'
kind, type, and cardinality ratio, defined in Section 2.1. We use IsA and tel as
abbreviations of inheritance associations and relationships, respectively. For in-
heritance associations, the arc type may be from class to subclass (C --4 Sub) or
fi'om subclass to class (Sub --+ C), while the cardinality ratio is always 1 --+ 1.
For relationships, the arc type may be from class to at tr ibute (C --+ A) or fi'om
at tr ibute to class (A --+ C) and the cardinality ratio may take any value.

4 S i n g l e A r e I n d e x i n g

Every edge on the schema graph connects a pair of related classes. It is con-
ceivable that for every such edge there exist a query that requires tra.versing it.
Thus, it is desirable to be able to provide efficient traversal of every edge of the
logical schema in both directions, independently of its kind, type, or cardinality
ratio. Providing the needed efficiency is straightforward via. gmap definitions.

4.1 P r e v i o u s T e c h n i q u e s

�9 Secondary indices in relational databases. This ca.tegory includes the conven-
tional, single-key indices of relational databases. The arc properties of these
secondary indices are [kind = tel, type = A --+ C, card = 1 --4 1 or 1 --+ N].
�9 Secondary indices on set attributes. In contrast to relational systems, object-
oriented and nested relational systems allow multivalued attributes. This cate-
gory includes all indices on such attributes. Examples of systems that allow the
definition of such indices are ObjectStore [7] and Orion [3]. The arc properties
of these indices are [kind = tel , type = A --+ C].
�9 Join indices [13]. They have been proposed to enhance the performance of joins
over many- to-many relationships. The related pairs are stored in two indices,
each one ordered according to the two classes part icipating in the relationship.
The two indices offer two different elusterings of the relationship da ta as well
as associative access from both classes. The technique applies to any arc with
properties [kind = tell that connects entity classes. An example follows:

187

def_gmap join_index_partl as btree by
given Student select Course where Student attends Course

def_gmap join_index_part2 as btree by

given Course select Student where Student attends Course.

�9 M u l t i - i n d i c e s . These also use mult ip le single arc indices. Since their introduc-
t ion [3, 8], mult i - indices have been i m p l e m e n t e d in at least one commerc ia l prod-
uct [7]. They allow efficient traversal of a path on the s chema graph, by adding
indices along the arcs of the path. The important property that these indices
should have is that, the output of one should be usable as input of the next. This
property allows chaining of indices, essentially piping the output of one to the
next without accessing any other storage structure. Gmaps have this property,
since they use a c o m m o n object id representation for both output and input
objects. For example, the following two gmap definitions create a multi-index
that returns the oids of faculty members that work in a department specified by
a given name:

def_gmap m u l t i i n d e x _ p a r t l as b t r e e by
given Dept.name select Dept

def_gmap multiindex_part2 as btree by

given Dept select Faculty where Faculty works Dept.

Both multi-index proposals [3, 9] impose the following restrict, ions on the index
arc propert, ies: [kind = t e l , type ~ --+ C]. In addition, the proposal by Maier
and Stein enforces the restriction [card = 1 --+ 1 or 1 -+ N].

4.2 N e w A p p l i c a t i o n s

�9 Class to a t t r i b u t e ind ices . Indices thal. rel.urn tile vahle of an att, ril)ute given an
object id have never been considered, mainly because most systems do include
efficient structures to access an object given it.s id. However, it may be the case
that an object is very large, and therefore, the values of an attribute for many
objects may span a very large space. For such cases, single arc indices of type
C -+ A provide a. better clustering. For example, for a. query that requests tile
departments oids of several students, the gmap

def gmap DeptStudent as b t r e e by
g i v e n Student s e l e c t Dept where Student enrol led Dept

includes the needed data in fewer pages and potentially in a more convenient
order than ~he gma.p in Section 2.,.
�9 I nd i ce s on i n h e r i t a n c e a s soc ia t i ons . I s A arcs do not capture relationships
between distinct objects, but essentially between two different manifestations of
the same object. For example, the information about a TA may be stored in two
distinct objects, one for the attributes of the TA and the other tbr the generic
S tuden t attributes. In that case, an index may be valuable to find the old of
one of the objects given the old of the other.
�9 E x t e n d e d m u l t i - r a d i c e s . Any chain of gmaps such that the output nodes of one
are the input nodes of the other forms an extended multi-index, l%r example,
the following multi-index

def gmap multiindex_partl as btree by given Student.year select Student

def_gmap multiindex_part2 as btree by

given Student select TA where TA IsA Student

188

def_gmap multiindex_part3 as btree by given TA select TA.level

includes in its path both relationships and inheritance associations, both C -+ A
and A --+ C ares, and arcs of many cardinality ratios.

5 L inear P a t h Indexing
In the previous section, the input and the output classes ofgmaps were connected
with a single edge. We generalize this structure by allowing the input and output
classes to be connected via an arbitrarily long chain of edges.

5.1 Previous Techniques
�9 Nested indices. Consider a linear path with all classes, starting from the input
class, being attributes of the next class in the chain. Then, the input class is
called a nested attribute of the output class. An index that maps objects of the
nested attribute class to objects of the nesting class is called a nested index [3, 8].
The following statement defines a nested index over the same path we used to
define a multi-index in Section 4.1 (Figure 4).

def_gmap nested_index as bt ree by
given Dept.name select Faculty where Faculty works_in Dept.

Clearly, the chain of indices is replaced by a single index that performs the
end-to-end mapping. This results in increased performance since a single index
traversal is needed, but also implies reduced index usability and more expensive
updates [2]. Originally, nested indices were proposed with the same restrictions
on the arc properties as the multi-indices, i.e., [kind -- tel , type = A -* C] [3]
or [kind -- tel , type -- A -~ C, card -- 1 -+ 1 or 1 -+ N] [S].

works i: n a m e

F ..:~::~r s /

/_J
TA

works in::iiiii?~~ name

~ [S g .:.:,i! i~:'" i!~::"

TA
Fig. 4: Gmap "nested_index" Fig. 5: Gmap "field_replication

�9 Field replication. Consider the exactly opposite case from above, where all
classes starting fi'om tile output class are attributes of the next class in the
chain. Then, it is the output class that is a nested attribute of the input class.
Mapping objects of the nesting class to objects of the nested attribute is called
field replication [4, 11]. By changing the role of the input and output attributes
in the previous example, we derive an exmnple of field replication (Figure 5):

def_gmap field_replication as heap by
given Faculty select Dept.name where Faculty works_in Dept.

As in the case of class-to-attribute indices in Section 4.2, field replication allows
an alternative clustering of the data, which can be important for many appli-

189

cations. Originally, field replication was proposed with the following restrictions
on the arc properties: [kind = te l , type = C --+ A, card = 1 --+ 1 or N -+ 1].

5 . 2 N e w A p p l i e a t i o n s

�9 Extended nested indices. We Call generalize both previous techniques by re-
moving all restrictions on the type and kind of the arcs. Note that by chaining
nested indices together we obtain a generalization of the hybrid scheme originally
proposed for chaining ordinary nested indices [3].

6 M u l t i - O u t p u t I n d e x i n g

While arbitrary chains of arcs can be described using the previous types of
organizations, the output classes are always endnodes of a path. In this section,
we study the opportunities that arise by relaxing this restriction.

6.1 P r e v i o u s T e c h n i q u e s

�9 Path indices. When tile whole path is included in the index output, tile resulting
data. organization is called a path inde:c [3]. As an example, consider the path
that connects department names with courses taken by students enrolled ill the
department. The following gmap defines a path index on that path :

def_gmap path_ index as b tree by
g i v e n Dept.name s e l e c t Dept, S tudent , Course
where Student e n r o l l e d Dept and Course a t t ended Student .

By recording the whole path, the index is useful to snore queries tha.n the corre-
sponding nested index, and often allows more elIicient npdates. Originally, path
indices were proposed with the same restrictions on the arc properties as nested
indices, i.e., [kind -- tel, type = A -~ (7].

�9 Access ,q.upport lqelations (A S R s) [5, 6]. These are also full materializa.tions
of chains of edges. ASI/s are more flexible than path indices: they allow each are
to be either C: ~ A or A --+ C, but the type must be the same for all the arcs.

6.2 N e w A p p l i c a t i o n s

�9 F~:rtended path indices. Gmaps do not. need the restrictions on arc properties
originally imposed on path indices and ASRs. Furthermore, there is no reason to
require that every single node of the path be included in the output. For some
applications, it. may be convenient to include in the gmap data. only some of
the classes in the pat.Is. For example, ill the last example (Section 6.1), we lna5;
not be interested in Dept and S t u d e n t oids but only in Course old and Course
name. A path index that stores exactly what is needed follows:

def_gmap extended_path index as b t r e e by
g i v e n Dept.name s e l e c t Course, Course.name
where Student e n r o l l e d Dept and Course a t t ended Student .

By eliminating path nodes from the output, the size of the gmap da.ta may
decrease significantly. Thus, the resulting gmap offers the needed data in a snore
conrpact form, which implies better perfornrance.

190

7 G r a p h I n d e x i n g

In this section, we relax the restriction that one can only index along linear
paths. In general, the gma.p graph can be a tree or even have cycles. Although
such shapes may not look familiar in the context of indexing, many of the most
commonly used storage organizations belong in this category.

7.1 P r e v i o u s T e c h n i q u e s

�9 Relations. As mentioned earlier (Section 2.3), relations can easily be described
as gmaps. As a result, gmaps can be used to achieve a relational physical repre-
sentation for any given logical schema. Gmaps that correspond to relation files
imply the restrictions [kind = te l , type = C --+ A, card = 1 -+ lot N -+ 1].
�9 Class Ex ten t s and Nested Relations. Class extents are similar to relations. One
difference is that they may imply a different heap implementat ion to support
a logical oid access. Another is that they may include lnulti-valued attributes.
Thus, the only implied restrictions on arc properties are [kind = te l , type =
C --+ A]. Some systems allow storing in a class extent members of its subclasses
[1]. Describing such organizations requires gmap queries with the union operator;
hence, these variants cannot be represented within our framework.
�9 Hierarchical Join Indices [14]. These are a generalization of join indices that
also requires a nonlinear query graph for its description. An HJI captures the
structure of a complex object by recording the surrogates of the nested objects
included in each complex object. Since complex objects have in general a hier-
archical structure, the query graph for the index is a tree. For example, the HJI
for the F a c u l t y complex object can be defined as

def_gmap hierarchical_join_index as btree by

given Faculty select Dept, Student, Course, TA
where Faculty works_in Dept and Faculty advises Student and

Faculty teaches Course and Course assisted TA.

8 M u l t i - I n p u t I n d e x i n g

8.1 P r e v i o u s T e c h n i q u e s

�9 Indices with composite keys. A relational index with a composite key, i.e., a key
consisting of the concatenation of multiple relation fields, is tile most common
example of an organization whose query graph includes nmltiple inputs.

8 . 2 N e w A p p l i c a t i o n s

�9 Indices with composite key-paths. Nested indices allow the input class to be
many edges away from the output class; conventional indices with composite keys
allow multiple input classes that are one edge away from the output class. By
combining these, we have an organization with a composite key, such that every
component of the key may potentially belong in a separate path. An example
is shown in Figure 6. The index maps area/course-level pairs to faculty ill that
area who teach such courses:

def_gmap extended_composite as btree by
g i v e n Faculty.area, C o u r s e . l e v e l s e l e c t Facul ty
where Facul ty t eaches Course.

191

Tile order of the input classes is important and is captured a.s pa.rt of tile gmap
definition, a.lthough for simplicity it is not shown in the graphical representation.

J~;i

D~ienrolled

"IA

Fig. 6: Gmap "extended_composite" Fig. 7: Gmap "cs_collection"

9 P a r t i a l I n d e x i n g

9.1 P r e v i o u s Te(-hniques

�9 Collections o f Oltjects. Until now w(, ass, reed all extent-based system: queries
were expressed ill terms of classes, llowever, many objects-oriented DBMSs
maintain only user-defined object collections, which incl,de only a subset of
the class members. The following gmap uses a restriction to define a. collection
containing only computer science sl.udellt.s (Figure 7):

def_graap cs_collect;ion as heap by
given Student; select; Student;.name, Student.year
where Student enrolZed Dept; and Dept; = cs_oid.

In the above, cs_oid is the oid of the computer science depa.rtment.
�9 Indices on Collections of Objects. Syslelns that store instances ill explicit col-
lections rather than class extents also allow tile creation of indices on top of
these collections [8, 10]. These indices provide a fast access path only to tile
class members that are included in the collection. For example, an index on
student y e a r tbr students ill the conll)llter science clepa.rtment call be defined a.s

def_gmap cs_collection_index as btree by

given Student; .year select; Student

where St;udent enrolled Dept and Dept; = cs oid.

9.2 New Applications

�9 h~tention~El~l &f ined coll~ctwrl.~. In many cases, an alternative way to describe
the contents of a set is through its intention, i.e., by using a. query that defines
the characteristics of the object in the set. Our approach permits the crea.tion
of such intentionally defined collections ,sing arbitrary selection conditions in
gmap queries, thus allowing arbitrary horizontal decompositions of tile database.

10 C o n c l u s i o n s

gxplora.tion of the space of Mternative physical data. organiza.tion types has been
the focus of this paper. We have t.aken a mechanism that achieves genuine physi-
cal data. independence and ha.ve used it. as a conceptual, unifying, framework for

192

describing such organizations. Most. types of data. organizations proposed earlier
ill the context of relational or object-oriented systems follow natura.lly as special
cases of this Damework. Also, the framework has permitted the specification of
new useful data organizations that have not been proposed earlier. Given that
the entire space of these alternatives is realizable within the existing implemen-
tation of gmaps by using different gmap queries [12], one may immediately apply
our work to physical design problems.

R e f e r e n c e s

1. R. Agrawal and N. H. Gehani. ODE : The Language and the Data Model. In
Proc. of the ACM SIGMOD Conf., pages 36-45, 1989.

2. E. Bertino. Optimization of Queries using Nested Indices. In Proc. Int. Con[. on
Extending Database Technology, pages 44-59. Springer-Verlag, Mar. 1990.

3. E. Bertino and W. Kim. lndexhlg Techniques for Queries on Nested Objects. IEEE
Transactions on Knowledge and Data Engineering, 1(2):196 214, June 1989.

4. K. Kato and T. Masuda. Persistent Caching. IEEE Tronsactions on Software
Engineering, 18(7):631-645, .July 1.992.

5. A. Kemper and G. Moerkotte. Access Support in Object Bases. In Proc. of the
A CM SIGMOD Co@, pages 290-301, 1990.

6. A. Kemper and G. Moerkotte. Advanced Query Processing in Object Bases Using
Access Support Relations. In Proc. of the Int. VLDB Con.f., pages 290-301, 1990.

7. C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore datahase
system. Communications of the ACM, 34(10), Oct. 1991.

8. D. Maier and J. Stein. Indexing in an Object-Oriented DBMS. In 2nd Int. Work-
shop on Object-Oriented Database Systems, pages 171-182, Sept. 1986.

9. D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an Object Oriented
DBMS. In Proc. the Int. Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 472-482, Portland, Oregon, Sept. 1986.

10. J. Orenstein, S. Haradhvala, B. Marguiles, and D. Sakahara. Query Processing in
the ObjectStore Database System. In Proc. of the ACM SIGMOD Con]., 1992.

11. E. Shekita and M. Carey. Performance Enhancement Through Replication in an
Object-Oriented DBMS. In Proc. of the ACM SIGMOD Conf., 1989.

12. O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP: A Versatile Tool for
Physical Data Independence. In Proc. o.f the Int. VLDB Conf., Sept. 1994.

13. P. Valduriez. Join Indices. ACM Tronsactions on Database Systems, 12(2):218-
246, June 1987.

14. P. Valduriez, S. Khoshafian, and G. Copeland. Implementation Techniques of
Complex Objects. In Proe. of the ~nt. VLDB Conf., pages 101-109, 1986.

