
Schema Equivalence in HeterogeneousSystems: Bridging Theory and Practice(Extended Abstract)?R. J. Miller ?? Y. E. Ioannidis ??? R. Ramakrishnan yDepartment of Computer Sciences, University of Wisconsin-Madisonfrmiller, yannis, raghug@cs.wisc.edu1 IntroductionCurrent theoretical work o�ers measures of schema equivalence based on theinformation capacity of schemas. This work is based on the existence of abstractfunctions satisfying various restrictions between the sets of all instances of twoschemas. In considering schemas that arise in practice, however, it is not clearhow to reason about the existence of such abstract functions. Further, thesenotions of equivalence tend to be too liberal in that schemas are often consideredequivalent when a practitioner would consider them to be di�erent. As a result,practical integration methodologies have not utilized this theoretical foundationand most of them have relied on ad-hoc approaches.We present results that seek to bridge this gap. First, we consider the prob-lem of deciding information capacity equivalence and dominance of schemas thatoccur in practice, i.e., those that can express inheritance and simple integrity con-straints. We show that this problem is undecidable. This undecidability suggeststhat in addition to the overly liberal nature of information capacity equivalence,we should look for alternative, more restrictive notions of equivalence that canbe e�ectively tested. To this end, we develop several tests that each serve assu�cient conditions for information capacity equivalence or dominance. Eachtest is characterized by a set of schema transformations in the following sense:a test declares that Schema S1 is dominated by Schema S2 if and only if thereis a sequence of transformations that converts S1 to S2. Thus, each test can beunderstood essentially by understanding the individual transformations used tocharacterize it. Each of the transformations we consider is a local, structuralschema change with a clear underlying intuition. These tests permit reasoningabout the equivalence and dominance of quite complex schemas. Because ourwork is based on structural transformations, the same characterizations thatunderly our tests can be used to guide designers in modifying a schema to meettheir equivalence or dominance goals.? In Extending Database Technology (EDBT), Cambridge, U.K., March 1994.?? Partially supported by NSF Grant IRI-9157368.??? Partially supported by NSF Grants IRI-9113736 and IRI-9157368 (PYI Award) andby grants from DEC, IBM, HP, and AT&T.y Partially supported by a David & Lucile Packard Fellowship, by NSF PYI Awardand NSF grant IRI-9011563, and by grants from DEC, Tandem, and Xerox.

2 MotivationSchema equivalence plays a central role in many schema integration tasks. Forexample, algorithms for detecting equivalent schemas can be used to automatethe detection and resolution of structural schema mismatches (or type con
icts).Schema equivalence also plays an important and less recognized role in manyother problems encountered in heterogeneous systems. Below, we describe onesuch problem, that of providing automated support for ad hoc changes to aschema that is being used as a view onto data stored under another schema.Consider a schema translation tool in which a schema is translated into aschema in a di�erent data model. Many tools produce a translated schemathat can be used as a view to pose queries on data stored under the originalschema. Within such tools, the translation process produces not only the trans-lated schema, but a set of correspondences between the schemas that de�nes howan instance of the former corresponds to an instance of the latter. We call thesecorrespondences instance mappings. For example, the Pegasus import tool [2]translates relational schemas to Iris schemas (Iris is a functional object model).For each Iris type, the result of translation includes a rule over a collection ofrelations in the original schema that de�nes the instances of the type.Such translation tools fully automate the production of instance mappings. Adesigner need only be concerned with the resulting schema; all details of estab-lishing schema correspondences are hidden. We now want to permit the designerto change the translated schema. Again, we want the tool to automatically inferand record any changes necessary to the instance mapping.For example, suppose Schema R1 of Figure 1 is produced by a translationtool from an underlying schema in another data model. A designer may wishto change the default translation and represent Grant as an attribute of Work-station not Project as in Schema R2. If the tool can test for equivalence (ordominance) and automatically produce an instance mapping between schemas,then the designer does not need to manually update the instance mapping as aresult of this change. Currently, translation tools, such as Pegasus, do not givesuch support for ad hoc view changes. Rather, they provide some form of datade�nition language in which default mappings are expressed and which may beused by a designer to manually change a mapping.
Schema R1 Schema R2

Project [ProjectNo, Leader, Grant]

NameWorkstation [SerialNo,]

Project [ProjectNo,]Leader

Workstation Grant[SerialNo,]Name,Fig. 1. Parts of two relational schemas. Keys are depicted in bold.This problem is clearly not restricted to translation and applies to a numberof applications in heterogeneous databases in which one schema is maintained

as a view over other schemas. Our study of schema equivalence has been mo-tivated by the needs of such applications. For these applications, the notion ofequivalence must be based on the capacity of schemas to store information. Inaddition to algorithms for producing equivalent schemas (this is the translationor transformation problem), these applications also require algorithms for bothdeciding if two schemas are equivalent and for producing the correspondencebetween the schemas (that is, an instance mapping).3 Schema Intension GraphsIn this section, we brie
y sketch the basic constructs of the Schema IntensionGraph (SIG) data model, which will be used to present our results. A discussionof the motivation for using SIGs and a full de�nition are given elsewhere [8].The basic building blocks of the model are sets of data values (representedby the nodes of a graph). These sets may be combined by nested applicationsof union and product constructors to form new sets. The model also permitsthe expression of binary relations between pairs of sets (represented by graphedges) and simple constraints on them, i.e., totality, surjectivity, functionalityand injectivity (represented by annotations on the edges).Let T be a �nite set of mutually exclusive abstract types, where each � 2 Tis an in�nite set of symbols. The universe U is the union of symbols in all types.Let T � be the closure of T under �nite products and sums. A SIG is a graph,G = (N;E), de�ned by two �nite sets N and E. The set N contains simple nodesand constructed nodes, which are the products and sums of other nodes. Eachsimple node A 2 N , is assigned a type, �(A) 2 T �. The type of a constructednode is the product or union of the types of its constituent nodes. The set Econtains labeled edges between nodes in N . Each e 2 E is denoted e : A�B, forA;B 2 N . For each edge e 2 E, its inverse, denoted e�, is in E. If �(A) = �(B)then e : A � B may optionally be designated as a selection edge. We use theterm constraint to refer to any annotation or selection constraint on an edge.An instance = of G is a function whose domain is the sets N of nodes and Eof edges. For each simple node, A 2 N , =[A] is a �nite subset of �(A). For eachproduct node, A � B 2 N , =[A � B] is the full cross product of the sets =[A]and =[B]. For each sum node, A + B 2 N , =[A + B] is the union of the sets=[A] and =[B]. For each edge, e : A� B 2 E, =[e] is any subset of the productof =[A] and =[B]. For each selection edge, � : A � B, =[�] is a subset of theidentity relation on =[A]. The set of all instances of G is denoted I(G).An annotation of a SIG G = (N;E) is a function A whose domain is the set ofedges E. For all e 2 E, A(e) � ff; i; s; tg. A SIG schema S is a pair S = (G;A).An instance = of G is a valid instance of A if for all e 2 E, whenever f 2A(e) (respectively i; s or t 2 A(e)), =[e] is a functional (respectively injective,surjective or total) binary relation. The set of all valid instances of S is denotedI(S). The set of symbols of an instance, denoted Sym(=), is the set of elementsof U that appear in the range of =. For a subset of the universe, Y � U , IY (S)denotes the set of instances of S that contain only symbols in Y .

4 Information CapacityWe consider formal notions of correctness for schema transformations that arebased on the preservation of the information content of schemas[3, 4, 7, 9]. Fora schema S, the latter is the set of valid instances, I(S). Intuitively, a schemaS2 has more information capacity than a schema S1 if every instance of S1 canbe mapped to an instance of S2 without loss of information. Speci�cally, it mustbe possible to recover the original instance from its image under the mapping.Absolute equivalence characterizes the minimum that is required to achieveinformation capacity equivalence and provides a foundation on which more spe-cialized de�nitions of equivalence may be built. It is based on the existence ofinvertible (i.e., injective) maps between the sets of instances of schemas.De�nition 1. An information (capacity) preserving mapping between the in-stances of two schemas S1 and S2 is a total, injective function f : IY (S1) !IY (S2), for some Y � U . An equivalence preserving mapping is a bijectionf : IY (S1)! IY (S2).De�nition 2. The schema S2 dominates S1 absolutely, denoted S1�absS2, ifthere is a �nite Z � U such that for each Y � Z there exists an informationpreserving mapping f : IY (S1)! IY (S2). Also, S1 and S2 are absolutely equiva-lent, denoted S1�absS2, if for each Y � Z there exists an equivalence preservingmapping f : IY (S1)! IY (S2).Decidable characterization of absolute equivalence are known for relationalschemas with (primary) key dependencies and for types formed by the recursiveapplication of product, set or union constructors on �nite and in�nite base types[1, 4, 5]. SIGs permit the representation of sets formed from nested productand union constructors, as well as simple constraints between these sets. Theseadditions make testing for equivalence (and therefore dominance undecidable.Theorem 3. Testing for absolute equivalence of SIGs is undecidable.In principle, arbitrary mappings f may be used to satisfy the de�nitions ofabsolute dominance and equivalence. In fact, the de�nitions do not even requirethat the mappings can be �nitely speci�ed; they can simply be an in�nite listof pairs of schema instances. Clearly, such mappings are of little use in a prac-tical system. Furthermore, there exist very simple schemas with no \natural"correspondence between them that satisfy the de�nition of absolute dominancethrough a very complex instance level mapping [4]. This result, coupled withour undecidability result, show that absolute equivalence and dominance do notprovide a su�cient foundation for analyzing practical integration problems.To overcome the limitations of absolute equivalence, various abstract prop-erties have been proposed that restrict the class of allowable instance mappings[4]. For example, internal equivalence states that two instances can be associatedby an instance mapping only if they contain (almost) the same set of symbols.However, testing for both internal equivalence and dominance of SIG schemas isalso undecidable [8].

5 Structural TransformationsGiven Theorem 3 and other similar results, the question remains as to howpractitioners can develop rigorous methodologies. Our response is to proposesets of schema transformations on SIGs that preserve or augment informationcapacity and are similar to transformations in existing integration and transla-tion methodologies [3, 6, 7, 9]. For each set of transformations, we characterizeprecisely when a schema can be created from another through any arbitrarysequence of transformations. Our characterizations are couched in terms of def-initions of dominance and equivalence having the following properties: 1-each isa su�cient condition for internal dominance or equivalence, respectively; 2-eachis complete for a given set of transformations; and 3-each leads to a decidableprocedure for testing if one schema can be transformed into another and for pro-ducing an information preserving (respectively, equivalence preserving) instancemapping between the schemas.In the following de�nitions, S1 and S2 denote SIG schemas. A transformationT on S1 that produces S2 is denoted by S1 T�!S2. An arbitrary (possibly empty)sequence of transformations T�! is denoted T�!�. For each class of transforma-tions, an intuitive description is presented �rst, followed by a formal de�nition.5.1 De�nition of the TransformationsAn annotation transformation (or �-transformation) removes constraints froman edge of a SIG schema. An example is shown in Figure 2.
<

C

p r

D

A e B

C

p
g

r

A B

DBA
e <

BA
e

An annotation transformation A composition transformation

total

surjective
injective
functional

Key

Fig. 2. An �-transformation and a �-transformation.De�nition 4. Let S1 contain an edge e. Let S2 be identical to S1 except thatthe constraints on e in S2 may be any subset of the constraints on e in S1. ThenS1 �e�!S2 and �e is called an annotation transformation (�-transformation).Theorem 5. If S1 ��!S2 then S1�intS2.55 Subscripts or superscripts indicating speci�c edges or nodes involved in the trans-formations may be omitted in denoting a transformation.

A composition transformation (or �-transformation) replaces an edge e :A � B with another edge g : C � D. An example is shown in Figure 2. Suchtransformations permit attributes and entities to be moved in a schema. Theinstance mapping populates an instance of the edge g with an instance of thepath r� � e � p.De�nition 6. Let e : A�B be an edge of S1 and let p : C�A and r : D�B be(possibly trivial) surjective functional paths in S1 not containing e. Let G2 = G1except e is replaced by g : C � D and the constraints on g in S2 are exactlythe constraints on the path r� � e � p in S1. Then S1 �eg�!S2 is called a simplecomposition transformation (a simple �-transformation).Theorem 7. Let �eg be a simple �-transformation that uses the surjective func-tional paths p and r. If S1 �eg�!S2 then S1�intS2. If A1(p) = A1(r) = ff; i; s; tgand constraints of g are equal to the constraints of e then S1�intS2.We can also construct information preserving mappings for simple �-transfor-mations applied in parallel and �-transformations that move an edge to multipleedges. We therefore de�ne a larger class of transformations.De�nition 8. A �-transformation is a set of one or more simple �-transforma-tions. A �-transformation is denoted S1f�e1g1;:::�engng�! S2 where the �eigi are simple�-transformations and all gi are distinct.Theorem 9. If S1f�e1g1;:::�engng�! S2 then S1�intS2. If each component simple �-transformation is equivalence preserving and all ei are distinct then S1�intS2.A selection transformation (or &-transformation) creates or deletes nodes andedges. The &-transformations we consider are depicted in Figure 3.
A

σ

A A’
A’

Node creation
A σA A

Edge creation

A A’
σ

A A’
A’ <

Edge DeletionFig. 3. Selection transformations.A node creation &-transformation creates a new node that is isomorphic toan existing node. A bijective selection edge between the two nodes enforces theconstraint that the nodes be assigned identical sets in any valid instance.De�nition 10. Let A be a node of S1. Let A0 be a new node not in S1 and�A0 : A !j j A0 a new bijective selection edge. Let S2 be S1 with the additionof A0 and �A0 . Then, S1 &A�!S2 is called a node creation &-transformation, andS2 &A�!S1 is called a node deletion &-transformation.

An edge creation &-transformation creates a new edge. To preserve informa-tion capacity, the new edge is a bijective selection edge on a node.An edge deletion &-transformation removes an edge. If information capacityis to be preserved, arbitrary edges cannot be removed from a SIG. However,instances of bijective selection edges are fully de�ned by the instances of theincident nodes. Such edges may therefore be removed.De�nition 11. Let �A : A !j j A0 be a new bijective selection edge betweennodes A and A0 of S1 and let S2 be S1 with the addition of �A. Then, S2&�A�!S1is an edge deletion &-transformation and if A = A0 then S1&�A�!S2 is an edgecreation &-transformation.Theorem 12. Let S1 &�!S2. If & is a node creation, node deletion or edge cre-ation &-transformation, then S1�intS2. If & is an edge deletion &-transformationthat removes an edge from a node to itself, then S1�intS2, otherwise, S1�intS2.When &-transformations, �-transformations and �-transformations are com-bined, they permit complex additions and modi�cations to be made to a schema.Also, the information preserving mappings created by &-transformations, �-trans-formations and �-transformations can be composed.Corollary 13. If S1��&�!�S2 then S1�intS2.5.2 Characterization of Dominance and EquivalenceWe develop a characterization of dominance and equivalence that is completewith respect to all three types of transformations considered.De�nition 14. S2 ��&-dominates S1, denoted S1���& S2, if there exist a sur-jective, injective node map : N1 � N2 and a surjective, injective edge map� : (E1 [N1)�E2 satisfying the following.1. If A 2 N1 and is not de�ned on A, then there exists a bijective selectionpath in S1 from A to a node B where is de�ned on B.2. If A 2 N1 then for all g0 2 �(A) (where g0 2 E2 and g0 : C 0�D0, �1(C 0) = Cand �1(D0) = D), there exist surjective functional paths p : C � A andr : D�A in S1 and the constraints on g0 in S2 are a subset of the constraintson the path r� � p in S1.3. If e 2 E1 and � is not de�ned on e, then e is a bijective selection edge in S1.4. If e : A � B 2 E1 then for all g0 2 �(e) (where g0 2 E2 and g0 : C 0 � D0, �1(C 0) = C and �1(D0) = D), there exist surjective functional pathsp : C � A and r : D � B in S1 (not containing e) and the constraints on g0in S2 are a subset of the constraints on the path r� � e � p in S1.S1 is ��&-equivalent to S2, denoted S1���& S2, if S1���& S2 and S2���& S1.

One can show that ��&-dominance is complete with respect to &-transfor-mations, �-transformations and �-transformations. This result and Corollary 13imply that ��&-dominance is a su�cient condition for internal dominance.Theorem 15. Let S1 and S2 be two SIG schemas. Then, S1��&�!�S2 i�S1���& S20 where S20 �= S2.5.3 Testing for DominanceDe�nition 14 essentially gives an algorithm to test if two SIG schemas are in an��&-dominance relation, which by Theorem 15, also determines if a schema maybe obtained from another through a sequence of transformations. Furthermore,our proof is constructive so we have the following result.Corollary 16. If S1���& S2 then we can construct a sequence of �-transfor-mations, �-transformations and &-transformations such that S1��&�!�S2 via thissequence and an information preserving mapping f : I(S1)! I(S2).The complexity of algorithms for testing ��&-equivalence and ��&-dominanceand producing instance mappings is examined elsewhere [8].References1. S. Abiteboul and R. Hull. Restructuring Hierarchical Database Objects. Theoreti-cal Computer Science, 62:3{38, 1988.2. J. Albert, R. Ahmed, M. A. Ketabchi, W. Kent, and M. C. Shan. Automatic Im-portation of Relational Schemas in Pegasus. In Proc. of the 3rd Int'l Workshopon Research Issues in Data Eng.: Interoperability in Multidatabase Systems, pages105{113, Vienna, Austria, Apr. 1993.3. C. F. Eick. A Methodology for the Design and Transformation of ConceptualSchemas. In Proc. of the Int'l Conf. on Very Large Data Bases, pages 25{34,Barcelona, Spain, Sept. 1991.4. R. Hull. Relative Information Capacity of Simple Relational Database Schemata.SIAM Journal of Computing, 15(3):856{886, Aug. 1986.5. R. Hull and C. K. Yap. The Format Model: A Theory of Database Organization.Journal of the ACM, 31(3):518{537, 1984.6. L. A. Kalinichenko. Methods and Tools for Equivalent Data Model Mapping Con-struction. In Proc. of the Int'l Conf. on Extending Database Technology, pages92{119, Venice, Italy, Mar. 1990.7. V. M. Markowitz and A. Shoshani. Representing Extended Entity-RelationshipStructures in Relational Databases: A Modular Approach. ACM Transactions onDatabase Systems, 17(3):423{464, Sept. 1992.8. R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema Equivalence in Hetero-geneous Systems: Bridging Theory and Practice. Information Systems, 19(1):3{31,1994.9. A. Rosenthal and D. Reiner. Theoretically Sound Transformations for PracticalDatabase Design. In Proc. of the Int'l Conf. on Entity-Relationship Approach, pages115{131, New York, NY, Nov. 1987.This article was processed using the LATEX macro package with LLNCS style

