Schema Equivalence in Heterogeneous
Systems: Bridging Theory and Practice
(Extended Abstract)*

R. J. Miller ** Y. E. Ioannidis *** R. Ramakrishnan f

Department of Computer Sciences, University of Wisconsin-Madison
{rmiller, yannis, raghu}@cs.wisc.edu

1 Introduction

Current theoretical work offers measures of schema equivalence based on the
information capacity of schemas. This work is based on the existence of abstract
functions satisfying various restrictions between the sets of all instances of two
schemas. In considering schemas that arise in practice, however, it is not clear
how to reason about the existence of such abstract functions. Further, these
notions of equivalence tend to be too liberal in that schemas are often considered
equivalent when a practitioner would consider them to be different. As a result,
practical integration methodologies have not utilized this theoretical foundation
and most of them have relied on ad-hoc approaches.

We present results that seek to bridge this gap. First, we consider the prob-
lem of deciding information capacity equivalence and dominance of schemas that
occur in practice, i.e., those that can express inheritance and simple integrity con-
straints. We show that this problem is undecidable. This undecidability suggests
that in addition to the overly liberal nature of information capacity equivalence,
we should look for alternative, more restrictive notions of equivalence that can
be effectively tested. To this end, we develop several tests that each serve as
sufficient conditions for information capacity equivalence or dominance. Each
test is characterized by a set of schema transformations in the following sense:
a test declares that Schema S1 is dominated by Schema S2 if and only if there
is a sequence of transformations that converts S1 to S2. Thus, each test can be
understood essentially by understanding the individual transformations used to
characterize it. Each of the transformations we consider is a local, structural
schema change with a clear underlying intuition. These tests permit reasoning
about the equivalence and dominance of quite complex schemas. Because our
work is based on structural transformations, the same characterizations that
underly our tests can be used to guide designers in modifying a schema to meet
their equivalence or dominance goals.

* In Extending Database Technology (EDBT), Cambridge, U.K., March 1994.
** Partially supported by NSF Grant IRI-9157368.
*** Partially supported by NSF Grants TRI-9113736 and TRI-9157368 (PYI Award) and
by grants from DEC, IBM, HP, and AT&T.
t Partially supported by a David & Lucile Packard Fellowship, by NSF PYI Award
and NSF grant IRI-9011563, and by grants from DEC, Tandem, and Xerox.

2 Motivation

Schema equivalence plays a central role in many schema integration tasks. For
example, algorithms for detecting equivalent schemas can be used to automate
the detection and resolution of structural schema mismatches (or type conflicts).
Schema equivalence also plays an important and less recognized role in many
other problems encountered in heterogeneous systems. Below, we describe one
such problem, that of providing automated support for ad hoc changes to a
schema that is being used as a view onto data stored under another schema.

Consider a schema translation tool in which a schema is translated into a
schema in a different data model. Many tools produce a translated schema
that can be used as a view to pose queries on data stored under the original
schema. Within such tools, the translation process produces not only the trans-
lated schema, but a set of correspondences between the schemas that defines how
an instance of the former corresponds to an instance of the latter. We call these
correspondences instance mappings. For example, the Pegasus import tool [2]
translates relational schemas to Iris schemas (Iris is a functional object model).
For each Iris type, the result of translation includes a rule over a collection of
relations in the original schema that defines the instances of the type.

Such translation tools fully automate the production of instance mappings. A
designer need only be concerned with the resulting schema; all details of estab-
lishing schema correspondences are hidden. We now want to permit the designer
to change the translated schema. Again, we want the tool to automatically infer
and record any changes necessary to the instance mapping.

For example, suppose Schema R1 of Figure 1 is produced by a translation
tool from an underlying schema in another data model. A designer may wish
to change the default translation and represent Grant as an attribute of Work-
station not Project as in Schema R2. If the tool can test for equivalence (or
dominance) and automatically produce an instance mapping between schemas,
then the designer does not need to manually update the instance mapping as a
result of this change. Currently, translation tools, such as Pegasus, do not give
such support for ad hoc view changes. Rather, they provide some form of data
definition language in which default mappings are expressed and which may be
used by a designer to manually change a mapping.

Project [ProjectNo, Leader, Grant] Project [ProjectNo, Leader]
Workstation [SerialNo, Name] Workstation [SerialNo, Name,Grant]
Schema R1 Schema R2

Fig. 1. Parts of two relational schemas. Keys are depicted in bold.

This problem is clearly not restricted to translation and applies to a number
of applications in heterogeneous databases in which one schema is maintained

as a view over other schemas. Our study of schema equivalence has been mo-
tivated by the needs of such applications. For these applications, the notion of
equivalence must be based on the capacity of schemas to store information. In
addition to algorithms for producing equivalent schemas (this is the translation
or transformation problem), these applications also require algorithms for both
deciding if two schemas are equivalent and for producing the correspondence
between the schemas (that is, an instance mapping).

3 Schema Intension Graphs

In this section, we briefly sketch the basic constructs of the Schema Intension
Graph (SIG) data model, which will be used to present our results. A discussion
of the motivation for using SIGs and a full definition are given elsewhere [8].

The basic building blocks of the model are sets of data values (represented
by the nodes of a graph). These sets may be combined by nested applications
of union and product constructors to form new sets. The model also permits
the expression of binary relations between pairs of sets (represented by graph
edges) and simple constraints on them, i.e., totality, surjectivity, functionality
and injectivity (represented by annotations on the edges).

Let 7 be a finite set of mutually exclusive abstract types, where each 7 € T
is an infinite set of symbols. The universe U is the union of symbols in all types.
Let 7* be the closure of 7 under finite products and sums. A SIG is a graph,
G = (N, E), defined by two finite sets N and E. The set N contains simple nodes
and constructed nodes, which are the products and sums of other nodes. Each
simple node A € N, is assigned a type, 7(4) € T*. The type of a constructed
node is the product or union of the types of its constituent nodes. The set FE
contains labeled edges between nodes in N. Each e € E is denoted e : A — B, for
A,B € N. For each edge e € E, its inverse, denoted €°, is in E. If 7(A4) = 7(B)
then e : A — B may optionally be designated as a selection edge. We use the
term constraint to refer to any annotation or selection constraint on an edge.

An instance S of G is a function whose domain is the sets NV of nodes and E
of edges. For each simple node, A € N, S[A] is a finite subset of 7(A). For each
product node, A x B € N, S[A x B] is the full cross product of the sets J[A]
and Q[B]. For each sum node, A + B € N, S[A + B] is the union of the sets
3[4] and J[B]. For each edge, e : A — B € E, Se] is any subset of the product
of S[A] and S[B]. For each selection edge, 0 : A — B, S[o] is a subset of the
identity relation on S[A]. The set of all instances of G is denoted I(G).

An annotation of a SIG G = (N, E) is a function .4 whose domain is the set of
edges E. For all e € E, A(e) C {f,i,s,t}. A SIG schema Sis a pair S = (G, A).
An instance & of G is a walid instance of A if for all e € E, whenever f €
A(e) (respectively i,s or t € A(e)), Sle] is a functional (respectively injective,
surjective or total) binary relation. The set of all valid instances of S is denoted
I(S). The set of symbols of an instance, denoted Sym(S), is the set of elements
of U that appear in the range of 3. For a subset of the universe, Y C U, Iy (S5)
denotes the set of instances of S that contain only symbols in Y.

4 Information Capacity

We consider formal notions of correctness for schema transformations that are
based on the preservation of the information content of schemas[3, 4, 7, 9]. For
a schema S, the latter is the set of valid instances, I(S). Intuitively, a schema
S2 has more information capacity than a schema S1 if every instance of S1 can
be mapped to an instance of S2 without loss of information. Specifically, it must
be possible to recover the original instance from its image under the mapping.
Absolute equivalence characterizes the minimum that is required to achieve
information capacity equivalence and provides a foundation on which more spe-
cialized definitions of equivalence may be built. It is based on the existence of
invertible (i.e., injective) maps between the sets of instances of schemas.

Definition 1. An information (capacity) preserving mapping between the in-
stances of two schemas S1 and S2 is a total, injective function f : Iy (S1) —
Iy (S82), for some Y C U. An equivalence preserving mapping is a bijection
f : Iy(Sl) — Iy(SQ)

Definition 2. The schema S2 dominates S1 absolutely, denoted S1=<,,552, if
there is a finite Z C U such that for each Y O Z there exists an information
preserving mapping f : Iy (S1) — Iy (S2). Also, S1 and S2 are absolutely equiva-
lent, denoted S1~p5S2, if for each Y O Z there exists an equivalence preserving
mapping f : Iy (S1) — Iy (S2).

Decidable characterization of absolute equivalence are known for relational
schemas with (primary) key dependencies and for types formed by the recursive
application of product, set or union constructors on finite and infinite base types
[1, 4, 5]. SIGs permit the representation of sets formed from nested product
and union constructors, as well as simple constraints between these sets. These
additions make testing for equivalence (and therefore dominance undecidable.

Theorem 3. Testing for absolute equivalence of SIGs is undecidable.

In principle, arbitrary mappings f may be used to satisfy the definitions of
absolute dominance and equivalence. In fact, the definitions do not even require
that the mappings can be finitely specified; they can simply be an infinite list
of pairs of schema instances. Clearly, such mappings are of little use in a prac-
tical system. Furthermore, there exist very simple schemas with no “natural”
correspondence between them that satisfy the definition of absolute dominance
through a very complex instance level mapping [4]. This result, coupled with
our undecidability result, show that absolute equivalence and dominance do not
provide a sufficient foundation for analyzing practical integration problems.

To overcome the limitations of absolute equivalence, various abstract prop-
erties have been proposed that restrict the class of allowable instance mappings
[4]. For example, internal equivalence states that two instances can be associated
by an instance mapping only if they contain (almost) the same set of symbols.
However, testing for both internal equivalence and dominance of SIG schemas is
also undecidable [8].

5 Structural Transformations

Given Theorem 3 and other similar results, the question remains as to how
practitioners can develop rigorous methodologies. Our response is to propose
sets of schema transformations on SIGs that preserve or augment information
capacity and are similar to transformations in existing integration and transla-
tion methodologies [3, 6, 7, 9]. For each set of transformations, we characterize
precisely when a schema can be created from another through any arbitrary
sequence of transformations. Qur characterizations are couched in terms of def-
initions of dominance and equivalence having the following properties: 1-each is
a sufficient condition for internal dominance or equivalence, respectively; 2-each
is complete for a given set of transformations; and 3-each leads to a decidable
procedure for testing if one schema can be transformed into another and for pro-
ducing an information preserving (respectively, equivalence preserving) instance
mapping between the schemas.

In the following definitions, S1 and S2 denote SIG schemas. A transformation

T on S1 that produces S2 is denoted by $1-5552. An arbitrary (possibly empty)

sequence of transformations T is denoted —» . For each class of transforma-
tions, an intuitive description is presented first, followed by a formal definition.

5.1 Definition of the Transformations

An annotation transformation (or a-transformation) removes constraints from
an edge of a SIG schema. An example is shown in Figure 2.

Key
Piol T Vinjective ——— | A__° B A B
! surjecive ———} functional :)) » [
--- = IS
e < e P : P tr
H H — H [¢} H
A=}=B _ A B ¢ b) C——D

An annotation transformation A composition transformation

Fig. 2. An a-transformation and a o-transformation.

Definition 4. Let S1 contain an edge e. Let S2 be identical to S1 except that
the constraints on e in S2 may be any subset of the constraints on e in S1. Then

514452 and a, is called an annotation transformation (a-transformation).

Theorem 5. If S1-2552 then S1<;n;S2.%

® Subscripts or superscripts indicating specific edges or nodes involved in the trans-
formations may be omitted in denoting a transformation.

A composition transformation (or o-transformation) replaces an edge e :
A — B with another edge g : C — D. An example is shown in Figure 2. Such
transformations permit attributes and entities to be moved in a schema. The
instance mapping populates an instance of the edge g with an instance of the
path r° oceop.

Definition 6. Let e: A— B be an edge of Sl andlet p: C— A andr: D — B be
(possibly trivial) surjective functional paths in S1 not containing e. Let G2 = G1
except e is replaced by g : C — D and the constraints on g in S2 are exactly

o°
the constraints on the path r° oceop in S1. Then S1—%52 is called a simple
composition transformation (a simple o-transformation).

Theorem 7. Let o, be a simple o-transformation that uses the surjective func-

oc
tional paths p and r. If S1—5S2 then S1=;,:S2. If Al(p) = Al(r) = {f,i,s,t}
and constraints of g are equal to the constraints of e then S1~;,;:S2.

We can also construct information preserving mappings for simple o-transfor-
mations applied in parallel and o-transformations that move an edge to multiple
edges. We therefore define a larger class of transformations.

Definition 8. A o-transformation is a set of one or more simple o-transforma-

el en
051+ Ogn}

tions. A o-transformation is denoted S1 “— """ 52 where the ozﬁ are simple
o-transformations and all g; are distinct.

ocl ...ocn .
Theorem 9. If Sl{ 258 then S1=4niS2. If each component simple o-
transformation is equivalence preserving and all e; are distinct then S1~;,:S2.

A selection transformation (or s-transformation) creates or deletes nodes and
edges. The ¢-transformations we consider are depicted in Figure 3.

a, g,
A = A=FEA A = Ai)% Aé’—A’%A’E A A

Node creation Edge creation Edge Deletion

Fig. 3. Selection transformations.

A node creation ¢-transformation creates a new node that is isomorphic to
an existing node. A bijective selection edge between the two nodes enforces the
constraint that the nodes be assigned identical sets in any valid instance.

Definition 10. Let A be a node of S1. Let A" be a new node not in S1 and
o4+ A4 A" a new bijective selection edge. Let S2 be S1 with the addition
of A" and o 4/. Then, S1°4,89 is called a node creation s-transformation, and
525481 is called a node deletion s-transformation.

An edge creation ¢-transformation creates a new edge. To preserve informa-
tion capacity, the new edge is a bijective selection edge on a node.

An edge deletion ¢-transformation removes an edge. If information capacity
is to be preserved, arbitrary edges cannot be removed from a SIG. However,
instances of bijective selection edges are fully defined by the instances of the
incident nodes. Such edges may therefore be removed.

Definition 11. Let 04 : A<+ A’ be a new bijective selection edge between
So
nodes A and A’ of S1 and let S2 be S1 with the addition of 0 4. Then, $2--451

So
is an edge deletion ¢-transformation and if A = A’ then S1--352 is an edge
creation ¢-transformation.

Theorem 12. Let S1-2552. If < is a node creation, node deletion or edge cre-
ation ¢-transformation, then S1~;,:S2. If ¢ is an edge deletion ¢-transformation
that removes an edge from a node to itself, then S1~;,:S2, otherwise, S1=<;,:S2.

When ¢-transformations, o-transformations and a-transformations are com-
bined, they permit complex additions and modifications to be made to a schema.
Also, the information preserving mappings created by ¢-transformations, o-trans-
formations and a-transformations can be composed.

Corollary 13. If S12°5°S2 then S1=,,:52.

5.2 Characterization of Dominance and Equivalence

We develop a characterization of dominance and equivalence that is complete
with respect to all three types of transformations considered.

Definition 14. S2 aog-dominates S1, denoted S1=<po¢ S2, if there exist a sur-
jective, injective node map ¢ : N1 — N2 and a surjective, injective edge map
6: (E1UN1) — E2 satisfying the following.

1. If A € N1 and 9 is not defined on A, then there exists a bijective selection
path in S1 from A to a node B where ¢ is defined on B.

2. If A € Nlthenforall g’ € (A) (whereg' € E2andg': C'=D',¢1(C") =C
and 1~ 1(D') = D), there exist surjective functional paths p : C' — A and
r: D—Ain S1 and the constraints on ¢’ in S2 are a subset of the constraints
on the path r° opin S1.

3. If e € E1 and 6 is not defined on e, then e is a bijective selection edge in S1.

4. If e : A— B € E1 then for all ¢’ € 0(e) (where ¢’ € E2 and ¢' : C' — D',
p~1(C") = C and ¢ 1(D’) = D), there exist surjective functional paths
p:C—Aandr:D— B in S1 (not containing e) and the constraints on ¢’
in S2 are a subset of the constraints on the path r° oeopin S1.

S1 is aos-equivalent to S2, denoted Sl~goc S2, if S1=<p0c S2 and S2=<qo¢ S1.

One can show that aoc-dominance is complete with respect to ¢-transfor-
mations, o-transformations and a-transformations. This result and Corollary 13
imply that aoc-dominance is a sufficient condition for internal dominance.

Theorem 15. Let S1 and S2 be two SIG schemas. Then, Slg*SQ iff
S1=noc S2' where S2' = S2.

5.3 Testing for Dominance

Definition 14 essentially gives an algorithm to test if two SIG schemas are in an
aos-dominance relation, which by Theorem 15, also determines if a schema may
be obtained from another through a sequence of transformations. Furthermore,
our proof is constructive so we have the following result.

Corollary 16. If S1=<n0¢ S2 then we can construct a sequence of a-transfor-

mations, o-transformations and ¢-transformations such that S12%5° 52 via this
sequence and an information preserving mapping f : [(S1) — 1(S2).

The complexity of algorithms for testing aog-equivalence and aog-dominance
and producing instance mappings is examined elsewhere [8].

References

1. S. Abiteboul and R. Hull. Restructuring Hierarchical Database Objects. Theoreti-
cal Computer Science, 62:3-38, 1988.

2. J. Albert, R. Ahmed, M. A. Ketabchi, W. Kent, and M. C. Shan. Automatic Im-
portation of Relational Schemas in Pegasus. In Proc. of the 3rd Int’l Workshop
on Research Issues in Data Eng.: Interoperability in Multidatabase Systems, pages
105-113, Vienna, Austria, Apr. 1993.

3. C. F. Eick. A Methodology for the Design and Transformation of Conceptual
Schemas. In Proc. of the Int’l Conf. on Very Large Data Bases, pages 25-34,
Barcelona, Spain, Sept. 1991.

4. R. Hull. Relative Information Capacity of Simple Relational Database Schemata.
SIAM Journal of Computing, 15(3):856-886, Aug. 1986.

5. R. Hull and C. K. Yap. The Format Model: A Theory of Database Organization.
Journal of the ACM, 31(3):518-537, 1984.

6. L. A. Kalinichenko. Methods and Tools for Equivalent Data Model Mapping Con-
struction. In Proc. of the Int’l Conf. on Eztending Database Technology, pages
92-119, Venice, Ttaly, Mar. 1990.

7. V. M. Markowitz and A. Shoshani. Representing Extended Entity-Relationship
Structures in Relational Databases: A Modular Approach. ACM Transactions on
Database Systems, 17(3):423-464, Sept. 1992.

8. R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema Equivalence in Hetero-
geneous Systems: Bridging Theory and Practice. Information Systems, 19(1):3-31,
1994.

9. A. Rosenthal and D. Reiner. Theoretically Sound Transformations for Practical
Database Design. In Proc. of the Int’l Conf. on Entity-Relationship Approach, pages
115-131, New York, NY, Nov. 1987.

This article was processed using the I¥TEX macro package with LLNCS style

