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Abstract gCube Information Retrieval Engine differentiates from federated search. Data
and services are scattered over the infrastructure instead of being contained
in confined sub-sections, made accessible via narrow interfaces. Grid, where
gCube runs, is not meant for interactive work, but offers a vast pool of resources
for processing large amounts of information. In such domain it comes as natural
consequence the preference of machinery that can employ the afforementioned
resources for offering a different range of services, over a traditional search fa-
cility.
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1. Introduction
In traditional Information Retrieval (IR), managed or federated, systems ex-

ploit domain-specific constructs targeting the needs of a particular application
scenario. Query execution on these systems generally assumes that the way to
exploit resources is predefined, while the optimal roadmap to obtain results is
roughly known a-priori to the system (in contrast to RDBMSs), with minimal
potential deviations driven from cardinalities and resource availability - in face
of failures and load.

These, otherwise stable assumptions, do not hold in case of Virtual Research
Environments (VREs) [2]. In these environments, the size and type of informa-
tion managed and the ways it can be exploited, might vary significantly due to
different user / application needs, a challenge which grows under the perspec-
tive of hosting them on a dynamic, uncontrolled vast environment, such as a
computational grid.

Under the herein described gCube framework [1], the aforementioned chal-
lenges are handled through the innovative approach of dynamic composition

Optimisation, Process Scheduling, Information Retrieval, Grid Computing, Work-
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and execution of workflows of services that, step-by-step, carry out the in-
dividual tasks implied by an information retrieval request, in a near optimal
manner.

The rest of this paper is structured as follows: in section 2 we present the
rationale behind the complex Information Retrieval mechanism of gCube and
background information on the framework’s fundamental concepts and tech-
nologies. We describe in more details the gCube framework, in section 3, and
we unveil the details of how a simple user query is transformed into a standard-
based graph of service invocations and subsequently gets executed. The system
evaluation is presented in section 4 along with intentions for future work and
system enhancements.

2. Background Information
2.1 gCube

gCube is a middleware for the realisation of Virtual Research Environments
on top of a grid-enabled infrastructure. Being multidisciplinary in nature,
spreads over domains which, among others include: Knowledge Management /
Information Retrieval, Data Management / Data Processing, Distributed Com-
puting, Resource Management, Service Semantics Definition and Service Or-
chestration. In the context of this paper we introduce Workflows as a mecha-
nism that enables Information Retrieval on the Grid Computing domain:

In Grid Computing, a Computational Grid [4] represents a vast pool of
resources, interconnected via networks and protocols, that form the substrate
where storage and computational demands can be satisfied at large, in a cross-
organisational scope. The enabling software (middleware) that brings the in-
frastructure together and its capabilities can vary significantly, yet, it is gen-
erally expected that it offers mechanisms to allow infrastructure and security
management, such as information services, authentication mechanisms etc.

Information Retrieval is an empowering concept [5], of Knowledge Man-
agement, satisfied nowadays mainly through two architectural models: au-
tonomous systems and federated ones, the latter being a model which fits the
SOA paradigm and leaves space for independent realisations of local services.
Despite the hard to beat performance of dedicated systems, be it autonomous,
federated, network (web) or desktop based, bringing Information Retrieval to
the Grid is quite attractive because, on this new joint-domain, VREs can ex-
ploit:

shared, generic resources, with significant lower cost than dedicated in-
frastructures, for hosting their Knowledge Banks

large capacities for on demand processing of information beyond the
typical mechanisms of the IR domain
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opportunities for exploiting highly demanding IR techniques over the
hosted content, such as, but not limited to, Feature Extraction and Query
By Example over multimedia content

Under these assumptions, the provision of a standards-based, open system
that allows arbitrary realisation of Information Processing scenarios, utilising
resources not known a-priori, seems to be fundamental for exposing the bene-
fits of IR over the Grid.

gCube middleware attempts to capture the above-mentioned requirements
via a set of specifications and an entire mechanism that transforms user-queries
into workflows of service invocations and subsequently manages all the details
of communication and execution. It builds on top of OGSA, WS-* and WSRF
specifications and exploits the Globus Toolkit 4 provided WS-Core implemen-
tation of WSRF. It offers the means for building, managing and running an
infrastructure that hosts VREs and a complete set of tools for hosting data and
information and exploiting them efficiently in the Knowledge Management do-
main [3].

Among its core constructs and contents, the Information System, is the glue
that keeps the infrastructure together by offering the system-wide registry of
gCube and the machinery to interact with it. The gHN (gCube Hosting Node),
corresponds to the storage / computing resource of the infrastructure, being
correspondent to a container in a physical machine. Registring, exploring,
monitoring and running elements on the infrastructure, all pass through these
two tightly collaborating elements.

On top of gHNs live the Resources, which can be fairly diverse in nature.
Services, Web Service Resources, software components, or even "files" can
be resources that may be published and consumed. Every publishable entity
exposes a profile in the IS, which renders the set of information upon which
it is discovered by its potential consumers. Due to the aforementioned hetero-
geneity of resources in this infrastructure, the profiles are classified in several
subclasses, while more generic ones exist for arbitrary usage. Among these
profiles we distinguish the Running Instance and the WebResource profiles,
which describe entities that contain "executable logic", i.e. web services, un-
der the WS Resource perspective.

2.2 Services and Resources
gCube is inherently Service Oriented. Service Oriented Architecture (SOA)

[6]) is a model ideal for the realisation of large scale systems, essentially dis-
tributed. Composing individual entities (services) that encapsulate state, physi-
cal resources and logic behind narrow interfaces, is achieved via the numerous
protocols on which service interaction is based. The publisher / subscriber
model, for declaring the availability and the requests for consumption of Ser-
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vices, is essential for rendering a Service Oriented System able to modify its
internal flow of information and control and take advantage of the composition
in a manner other than statically binding pieces of logic together.

Service Oriented conceptualisation has received wide acceptance and a wide
proliferation after the emergence of XML based technologies of Web Services /
HTTP / SOAP stack ([8]). The grid computing community, through its official
standardisation body, the Open Grid Forum (OGF), having early recognised
that computational grids should be build on service oriented foundations, has
proposed the Open Grid Services Architecture (OGSA) [10] as the blueprint
for building and deploying grid tools and infrastructures. The cornerstone of
this architecture is the Web Services Resource Framework (WSRF) [9].

Web Services in principle are stateless. They avoid formalising the handling
of state among interactions, letting the designer apply home-grown techniques
for offering feature rich systems, in a similar way this is handled in the stateless
HTTP world. This gap in specification is filled by the WSRF, a set of concepts
([7]), specifications, practices and tools, which do not specify just a formal
way for stateful service interactions but defines the Web Service Resource en-
tity as an undividable, identifiable, discoverable and utilisable composition of
logic, soft-state and physical resources with a life-time. WSRF builds upon
Web Service specifications, like WSDL, WS-Notifications , WS-Addressing
, and adds new ones consequence of its new concepts (XML infoset , WS-
ResourceProperties , WS-Resource Lifetime, ERP etc) ([8]), [9]). These are
currently incarnated in reference implementations such as WS-Core (included
with the Globus Toolkit 4 [11]) that provides the basic tooling for building
Web Service grids. WS Resources are integral part of the gCube architecture
and raise a number of challenges for the workflow composition and execution
engine.

2.3 Workflows on Grids
As will be shortly shown, IR queries in gCube are transformed into work-

flows for execution on the Grid. Naturally Workflow management and process-
ing have attracted tremendous interest in the context of computational grids and
scientific computing [14], being employed by almost every non-trivial compu-
tation / data-intensive application. Under this observation, reuse is quite de-
sirable, thus tools and abstractions are needed to define, execute and monitor
such workflows.

In the business world, WS-BPEL (Business Process Execution Language for
WebServices) [12] has become the standard notation for defining workflows (or
"processes") of web services. The standard is supported by many commercial
and open-source platforms providing tooling for programming, deploying and
executing BPEL processes. Yet, in the context of scientific computing and
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computational grids, BPEL has witnessed limited proliferation till now. This
is mainly due to the fact that the standard unit of execution currently on the
large grid infrastructures, remains the job, rather than the service.

A job encapsulates an application and its dependencies, that is autonomously
being executed on a cloud of physical grid resources. The execution of such
workflows typically is based in the implicit flow of data between jobs, which
can have sequential or parallel control dependencies.

This model of workflow definition is provided by almost all of the popular
workflow tools. For instance Condor [13], one of the most well known middle-
ware for setting up campus-wide and corporate-wide grids, provides DAGMan
(Directed Acyclic Graph Manager). The same approach has been adopted by
gLite middleware [18] developed in the context of EGEE project [17], and
by P-Grade which builds above the previous tools and provides a portal and
workflow execution engine for inter-grid workflows.

On the other hand there exist high level tools that break the barriers of DAGs
and go beyond jobs, either by supporting pure web service integration or hy-
brid solutions, where web services wrap local applications, remote applica-
tions or complete jobs. Nevertheless, the majority of these tools don’t use
any standardised workflow representation and provide capabilities for defining
and running only static workflows. Two good examples of generic engines are
the Taverna and MOTEUR which both use SCUFL (Simple Conceptual Uni-
fied Flow Language) as the workflow description language. Other examples
of traditional scientific workflow tools, with web service extensions, include
Triana, Kepler and Karajan. For more details on the above tools/activities see
[14].K-Wf [15] uses stateful WSRF services as the main unit of execution and
supports knowledge based execution in which the workflow enactment is based
on stored ontologies of the subsystems involved. It also uses its own workflow
definition language based on Petri-nets.

OGSA-DAI (OGSA-Data Access and Integration) [16], can be also consid-
ered as data-centric workflow execution framework. It captures three aspects of
distributed data-management: acquisition / delivery, processing (transforma-
tions) and transportation. Beside the built-in constructs, extending the frame-
work allows custom application logic to be invoked in all sections of the work-
flow.

2.4 Service Composability
The composability of the various web services into a meaningful workflow

is an essential yet not easily tackled, multifaceted issue:
Service semantics: The roles to be undertaken by an entity in a workflow

is an integral property of the entity. In typical SOA, consumers of services are
a-priori explicit on their requirements. Yet dynamic service composition sce-
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Figure 1. gCube Workflow Composition and Execution Architecture

narios require sufficient flexibility in their selection mechanisms, which can
be achieved by describing the entities at a higher level of abstraction. Ser-
vice Semantics capture not only the internal operation of an entity, but also its
interfacing (parameters / results).

Communication mechanism: The various entities of a workflow commu-
nicate via technologies that are determined by their nature. For instance, in
Web Services, communication is based upon W3C specifications, which, un-
fortunately do not supply sufficient support for managing large data sets or
streams, which pushes towards proprietary implementations.

Data integration: Normalising the data for exchange among the various
stake-holders is prerequisite of composition. Ontologies can be employed for
resolving schema mappings, yet in several cases simpler solutions (direct map-
ping) can be applied. Data integration can be conceived as a sub case of service
semantics, yet in applied systems it is often realised separately with simpler
mechanisms (transformations).

3. Query Processing in gCube
In Figure 1 we render the main operational blocks of gCube workflow com-

position and execution mechanism, which us being s in the following para-
graphs.
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3.1 From query to workflow
gCube search engine exposes its capabilities via a functional, relational-

algebra-like, well-formed query language. By the term "functional" we mean
that every query operation acts as a function that applies to a given set of input
arguments and produces a certain output. In this way, query operations can be
put together, with one consuming the output of the other, forming an operation
tree. Schematically, it resembles lisp function calls, in a pipelined manner. All
traditional relational operations are supported (sort, project, join, etc.) along
with several others stemming from the IR domain, such as full-text , geospa-
tial, and content based search. The functional nature of the query language,
offers true extensibility, allowing developers to add their own custom-made
operations, while conditional execution allows true/false branching.

Behind this language, the framework follows a three step procedure for car-
rying out its operation, roughly assimilating the operation of modern RDBMSs,
with several modifications in order to fit in the distributed nature of wide area
networks and more specifically the Grid:

Query Parsing. User-defined queries are fed to the query parser, which
processes the requests, validates the queries and forms the corresponding in-
ternal query representations as strongly-typed graphs. The validation process
includes checks against data source definition, argument incompatibilities and
obviously the necessary syntactic conformance.

Query Planning. The query planner is responsible for producing an exe-
cution plan that computes the original query expression. This plan is actually a
web service workflow. Its nodes represent invocations of service instantiations
and its edges communication channels between pairs of instantiations, in other
words, producer-consumer relations. The input data stream of the producer
service instance are being transported to the consumer instance for further pro-
cessing via a transportation leveraging mechanism called gRS (gCube Result
Set) [3].

The planner exploits registered service semantic descriptions 1, in order to
decide which service instances can compute given query operations. Through
the same mechanism the instance invocation parameters are generated, in ac-
cordance with the user query expression. Finally, data incompatibilities are
resolved based on (data) source descriptions registered in the infrastructure.

As a result the planner creates an initial (non-optimal) execution plan. Al-
though optimisation and service scheduling are left for subsequent stages, pre-

1metadata descriptions of service capabilities and instantiation procedures, expressed in XML Schema for-
mat [XSD]
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liminary query optimisation is also applied here, based on heuristics and pre-
defined cost estimations that take advantage of IR domain-specific knowledge.

The execution plan, which is still in an internal representation form, goes
through the BPELBuilder component which produces the BPEL process, which
along with some supplementary information, specific to each BPEL implemen-
tation, can be redirected to any BPEL engine. Due to the Workflow creation
cost a caching mechanism is employed which, in the case of identical queries,
requires the minor cost of validating against potential stale instances.

3.2 Process Optimisation
The gCube Process Optimisation Services (POS) implement core function-

ality in the form of libraries and web services for Process scheduling and ex-
ecution planning. POS is comprised by a core optimisation library (POSLib)
and two Web Services (RewriterService and PlannerService) that expose part
of the library’s functionality. POSLib implements three core components of
process optimisation. POS is an integral part of query execution in gCube,
since it is responsible for the optimised scheduling of workflows produced by
the query planner and consequently is a key player in alleviating the grid over-
head in query execution

Rewriter Provides structural optimisation of a process. It receives as input
a BPEL process, analyses the structure, identifies independent invocations and
formulates them in parallel constructs (BPEL flow elements) in order to accel-
erate the overall process execution. It is the first step of optimisation that takes
place before the process arrives at the execution engine.

Planner Performs the pre-planning of the process execution. Receives an
abstract BPEL process and generates various scheduling plans for execution.
The generation of an executable plan implies that all references to abstract ser-
vices are replaced by invocations to concrete, instantiated services in a gCube
infrastructure. The Planner uses information provided by the gIS which keeps
up-to-date metrics for resources employed in the grid (physical machines, ser-
vices, etc). This information is input to various cost functions (applied by the
paired Cost Estimator) that calculate the individual execution cost of a candi-
date plan.

The selection of best plans is performed by a custom implementation of the
Simulated Annealing algorithm. The outcome of the planning is a set of exe-
cutable BPEL processes that are passed to the workflow execution engine. Cost
calculation can be guided by various weighted optimisation policies passed by
the author (human or application) of the BPEL process inside the BPEL de-
scription.

ActivePlanner Provides run-time optimised scheduling of a gCube process.
It is invoked during the process execution before any invocation activity to en-
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sure that the plan generated by the Planner (during pre-planning) is still valid
(e.g. the selected service end-point is still reachable) and optimal (according
to the user-defined optimisation policies). If any of the former criteria has been
violated the ActivePlanner re-evaluates a optimal service instance for the cur-
rent process invocation. It can also work without pre-planning being available.

3.2.1 Optimisation Policies. The Planner and ActivePlanner compo-
nents perform optimised scheduling of abstract BPEL processes based on user
defined policies. Optimisation policies are declared within the BPEL docu-
ment and can apply to individual partnerLinkTypes or to the whole process.

The selection of a specific Web Service instance to be used in a particular
process invocation is driven by the optimisation policy applied either on the
process level or on a partnerLink level. Currently POS supports six different
optimisation policies:

Host load: Hosts with the lowest system load take precedence.
Fastest CPU: Hosts are ranked based on their CPU capabilities and the best

is selected.
Memory Utilisation: Hosts are ranked according to the percentage of avail-

able memory as reported by the Java VM. The one with the highest percentage
is selected.

Storage Utilisation: Hosts are ranked according to their total available disk
space. The one with the larger available space is preferred.

Reliability: Hosts are ranked based on their total uptime. Precedence is
given to hosts which have been running without interruption for longer time.

Network Utilisation: When the Planner evaluates multiple possible schedul-
ing plans it will show preference to those plans where the web services are
located close to each other (based on the reported host locality information).
The Planner will avoid co-scheduling invocations to the same host in order not
to overload it.

3.2.2 BPEL Optimisation Extensions. gCube POS functionality heav-
ily depends on the BPEL standard (notation based on BPEL4WS v1.1). BPEL
XML schema has been extended to include optimisation information such as
process policy information per partnerLinks, the definition of abstract or con-
crete services, allocation relationship between invocations etc.

To define process wide optimisation policies we introduce the optimisation-
Policy attribute at the BPEL process element. For example the process defined
by the BPEL excerpt in Figure 2 will be scheduled according to the fastest cpu
policy (with higher weight) and the storage utilization policy (lower weight).

If no policy is defined the default used is the host load policy.
The policies defined on process-wide level pertain the planning of all part-

nerLinks included in the process unless a specific policy is defined on the part-
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Figure 2. Process wide optimisation policy definition in BPEL

nerLink element. To define such policy we use the partnerLinkPolicyType at-
tribute of the BPEL partnerLink element. This attribute is used similarly to
the above example, except that the network utilization policy, if defined, is ig-
nored, since this policy makes sense only for the whole process and not for a
particular web service.

3.3 Execution Stage
Apart from the execution engine, which does not fall within the scope of this

paper and can be mostly outsourced, two important aspects of the Execution
Stage are the services themselves and the data transport mechanism. Although
potentially any Web Service can be employed in such a workflow as long as
it gets sufficiently described for the framework, gCube comes with a rich set
of components that implement core logic of structured and semi-structured
data processing and information retrieval. Furthermore, as already mentioned,
gRS is the special mechanism employed for data transports, that overcomes
conceptual limitations and performance issues of Web Services and actually is
the means via which data are streamed back to their requester.

4. Evaluation - Future Work
One inherent problem of Web Services based interactions is that they are

not designed for low-latency, high-speed data transfers, while the SOAP pro-
cessing stack, in practice proves to be quite a bottleneck for High Performance
Computing.

The gCube framework has been exposing its facilities to selected user com-
munities, through a Web Based user interface, which has given valuable feed-
back to the implementation team. Although the performance for interactive
use cannot yet compete with the well known search facilities, the results are
quite encouraging. Several optimisations, at various levels, allow for an ac-
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ceptable response of the system to the interactive user even in non-optimally
allocated resource schemes. The benefits of the system are materialised when
the infrastructure is automatically reorganised and when data / computing in-
tensive operations take place, such as the on-the-fly production of thumbnails
of 100MB-sized images, or the extraction of the features of 1000s of images,
without the employment of a pre-allocated infrastructure.

Practical issues rise with caching mechanisms, due to the size of the infor-
mation they target and partially the insufficient support by underlying systems,
which upon departs and arrivals of resources might become stale for short pe-
riods.

Today, gCube framework has reached a mature stage and is currently un-
der way to production environments [19]. In this operational context, beyond
the primary objective of maximum robustness, the aspects of optimisation and
openness will be further elaborated. Optimisation techniques currently under
development will exploit intermediate size estimations methods (via statistics,
curve fitting etc). Steps considered for the future include rate-based optimi-
sation methods for streamed flows and ontological matching of services. A
low-level step towards performance will be the ability to dynamically combine
executables (jars) under the encapsulation of a hosting web service.

Finally, driven from user requirements and system evolution, the Query Lan-
guage will be revised in order to allow seamless integration of fundamentally
different data sources.
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