Using the Graphics Processor Unit to Realize
Data Streaming Operations

Konstantinos Tsakalozos
University of Athens
Athens 15784, Greece
k.tsakalozos@di.uoa.gr

ABSTRACT

Software development kits (SDKs) and supporting tools for
Graphics Processor Units (GPUs) have matured and they
now enable the implementation of complex middleware that
takes advantage of the additional processing power. Work-
ing in synergy with CPUs, GPUs are suitable for executing
highly parallelized tasks on streams of data. In this pa-
per, we investigate the realization of effective operations
on streams of data using GPU resources. We suggest a
model for computing basic SQL-like queries that include
unary/binary logical operators, membership queries as well
as joins based on nested-loops. We also propose a framework
that exploits the above core operations to offer a general-
ized computing environment for managing streams of data.
Through experimentation with the NVIDIA CUDA SDK,
we show sizable benefits in obtaining shorter response times
not only for simple operations but also for more complex
queries on streams.

Keywords

Data Streams Operations using GPUs, Graphics Processor
Unit programing, GPU Execution Model.

1. INTRODUCTION

Placing dedicated co-processors in a computing systems
is not a new idea. The aim of such efforts has always been
to boost system performance by offloading the work of the
central processing unit (CPU). It has been traditionally the
case that co-processors tend very specific tasks that other-
wise would have been consuming considerable amounts of
CPU cycles. The Graphics Processor Unit (GPU) is a co-
processor helping in the materialization of fast visual as-
pects. Nowadays, the absence of such co-processors may
render a system inoperable; for example disabling the DMA
would with certainty result into severe performance degra-
dation for the system as a whole.

Current GPUs feature noteworthy processing capabilities
as they employ a multi-threading model whose threads can

Permission to make digital or hard copies of all or part o tvork for
personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuires prior specific
permission and/or a fee.

MDS 09, November 30, 2009 Urbana Champaign, lllinois, USA
Copyright 2009 ACM XXX-X-XXXXX-XXX-X/XX/XX ...$10.00.

Manolis Tsangaris
University of Athens
Athens 15784, Greece
mmt@di.uoa.gr

Alex Delis
University of Athens
Athens 15784, Greece
ad@di.uoa.gr

be run in truly parallel fashion. The internal design of such
co-processor is aligned with the Single Instruction Multiple
Data (SIMD) model used to apply a single transformation
(i.e., numerical operation) on a number of points (located
in the 3 - dimensional space) simultaneously. Hence, archi-
tectures and computing systems designed for stream pro-
cessing [1, 3] are set to benefit from the exploitation of now
available and underutilized GPUs.

Implementing applications that can effectively harvest the
GUPs resources was made feasible through specialized lan-
guages such CUDA and others [8, 9, 2]. The public re-
lease of both SDKs and support tools by companies such as
NVIDIA and ATI for programming GPUs essentially war-
rants new avenues for middleware to exploit existing pow-
erful resources. In this paper, we examine the design and
implementation of fundamental data stream operations, pro-
vide a framework for the deployment of such operations,
and investigate their performance on a prototype. More
specifically, we: a) develop a set of algorithms required in
evaluating basic relational algebraic queries on streams in-
cluding binary and unary operators, b) identify and present
the limitations imposed when programming such operators
on the GPU, c) propose a framework that effectively uses
our proposed operators in a way that amortizes the above-
mentioned limitations.

Our work in this paper builds on earlier efforts [6, 5] that
have shown the feasibility and effectiveness of implementing
database operations with low-level functionalities of GPUs.
It has been shown that a GPU can outperform the CPU in
the evaluation of predicates, aggregation operations and in
the sorting of large numerical arrays. Thus far, such tech-
niques have been device-specific and confined to very spe-
cific pieces of hardware without having the ability to even
“move” between different versions of the same GPU product
line. We overcome this limitation by using higher level lan-
guages recently available for the programming of GPUs such
as CUDA [8]. To effectively function on streaming data, tu-
ples and/or values, our framework also takes into account
changes that have been suggested in the relational model [7]
to render traditional database operations suitable for stream
processing.

The rest of this paper is organized as follows: Section 2
provides an architectural overview for GPUs and Section 3
outlines our proposed operations and our framework. In Sec-
tion 4, we present preliminary results from our experimenta-
tion with a prototype. Section 5 presents related work and
conclusions are found in Section 6.



2. GRAPHICS SYSTEM ARCHITECTURE
AND PROGRAMMING MODEL

We briefly discuss how the GPU inter-operates with other
components of a computing system and subsequently present
its internal structure as abstracted by the programming tools
available today. By presenting the GPUs Single Instruction
Multiple Data (SIMD) architecture we also sketch out the
applications such processors are suitable for.

Figure 1 shows a typical system with a graphics card unit
featuring its own substantial buffer space. The PCI Express
through the North Bridge, helps connect the GPU to both
main memory and CPU at a rate of multiple GBytes per
second in both directions. It is worth point out at this stage
that despite the significant transfer rates that a PCI Ez-
press may attain, by comparison such transfers demonstrate
a functional latency that has to be considered.

CPU
jﬁ PCI Express

in— < p GPU
Main-Memory North Bridge

Buffers Device RAM

@ Graphics
Processor  Unit

South Bridge

Figure 1: Overview of the chipset placement and
communication in a modern computing system.

Graphics cards are built with a single operational objec-
tive: to apply the same transformation to a number of tri-
angles and texture points at the same time. This naturally
calls for the adoption of a SIMD execution model. Figure 2
depicts a high level abstract model for GPUs consisting of
the GPU chip and the main-memory of the device. It is
in the GPU chip that a number of threads may simulta-
neously execute the exact same part of code, called kernel.
These threads have access to three types of memory a) local
registers b) on chip memory shared among all threads and
¢) the global device memory. These memory resource types
play respective role to those found in a classic multi-level
cache system working with a CPU. However, there is a dis-
tinction here as there exist no transparent caching manage-
ment mechanism. It is up to the programmer to request that
specific data segments to be copied from the global memory
to either shared memory and/or the local registers of the
GPU unit. Shared memory can only hold a small fraction of
data resident in the global memory. Transferring data from
the global to the shared area is not negligible in terms of
GPU-cycles.

Figure 3 shows the interaction between the various devices
in a cooperative execution between CPU and the GPU ele-
ments. In order for the GPU to carry out a task, the CPU
has to dispatch a specific code compiled for this purpose, the
kernel. The CPU also has to transfer all requisite data to
the global memory of the graphics card. Kernels are kept in
specific instruction caches that are on the GPU chip and are
dedicated for this purpose. Once CPU completes this initi-
ation of the graphics processor it instructs it to commence
operation and asynchronously may return to other pending
tasks in the system. With its turn, the GPU executes the
kernel present on the chip on data and places results back

Shared Memory
] ] ] ]
Thread Thread Thread Thread

On chip Registers Registers Registers Registers

RAM

on Global Memory

Device

Figure 2: The GPU SIMD-architectural model

along with global, shared memories and registers.

in the memory of the card. At this stage, it is the job of the
CPU to orchestrate to fetch any results, if applicable, trans-
port more data between the main buffers and the global area,
and trigger once again the execution of the kernel.

cPU

. :.j..,_o_rphestrate
initiate -y x 2: Process
1:Copy input data
_data&kernel | maM on
S — .
bank 3:Copy output Device
data

Main-memory

Figure 3: Flow of execution in an application taking
advantage of the GPU resources.

GPUs are ideal components for handling high-frequency
data streams at the application level. Overall this is achieved
by the following unique characteristics:

1. the SIMD /multi-threaded co-processor architecture,

2. high throughput interconnects between main memory

and device memory

3. latency between memory banks (main memory and de-

vice) that remains nearly-constant regardless of the
volume of data transferred.

3. THE PROPOSED FRAMEWORK

Our framework is made of a number of GPU implemented
operators and a component that orchestrates their execu-
tion. Here, we first give an overview of the most important
features of the CUDA SDK, second we describe the imple-
mentation details of the operators and finally we present the
executor component that wraps all operators in a frame-
work.

3.1 The CUDA Functionalities

In a transparent to the programmer manner, CUDA trans-
ports the kernel from the main memory to the GPU (in-
struction caches) so that its execution can start. Kernels
are written in C' with the use of specialized tags. One of the
most important such tag is the __shared__ which designates
that a specific variable is placed in the shared-area thus ac-
cessible by a number of threads. CUDA also makes available
a set of memory management functions through which the
programmer can allocate and copy memory segments in the
global memory on the device.



The graphics card hardware provides a number of threads
that may execute in “true”—parallel fashion. A layer is added
over the hardware threads to seal the user from low-level
operational threading aspects. CUDA organizes such logi-
cal threads into blocks whose size is programmer set. For
instance while our hardware allowed for 32 parallel threads,
we were using 256 threads grouped in the same block *. Ker-
nels may require more threads than those of a single block,
as a result the same kernel may be executing by threads be-
longing to different blocks. For example if we had a block
of 256 threads and we wanted to perform an operation on
an array with 512 elements, we could have one block where
each thread would manage two elements or we could have
two blocks of threads where each thread would handle a sin-
gle element.

All threads in a block are able to access a single spe-
cific shared memory bank. We should point out that logical
threads might not follow the “pure” SIMD execution model
(discussed in the previous section) since the hardware may
provide fewer actual threads. To overcome synchronization
problems and address potential write-after-write, read-after-
write and write-after-read hazards, the CUDA SDK provides
appropriate synchronization functions.

In the modified SIMD abstraction —realized by CUDA-,
all threads execute the same instruction. This may introduce
some delays when threads follow different paths of execution.
For instance, in case a kernel features an if statement and
some threads evaluate it into true while others into false,
the execution should evaluate the outcome of instructions
in both the if and else code blocks. While instruction evalu-
ation takes place in an execution path that a thread has not
followed, this thread stays idle. In this way, a single thread
may stall all the others causing the under-utilization of the
GPU.

3.2 Relational Operationsin GPU

For the time being, we assume that the streaming data
are floating point numbers buffered in the main-memory of
the system and are transferred in “batches” to the global
memory region of the GPU. Processing of data mainly takes
place through applying a series of relational stream opera-
tions over available data arrays. Most of operations required
on streams can be expressed either as simple unary/binary
SQL statements or simple algebraic trees involving a few data
sources [3]. The select clause designates the shape of the
result, the from indicates the source(s) and the where the
predicate used for evaluation. We use bitmaps as the mech-
anism to communicate final results from the GPU to the
CPU and intermediate outcomes from successive kernel ex-
ecutions. In this regard, every array of numbers (data) is
accompanied with a bitmap of the same length indicating
whether a number has been “selected”. When the query
evaluation reaches its final phase, it simply needs to check
the entries of the bitmap that have been set and produce
the corresponding output. The use of bitmaps allows us to
perform many operations on a particular set of arrays inside
the GPU without requiring the explicit return of intermedi-
ate results to the main-memory. All our GPU kernels take
at least one bitmap as input and all —with the exception of
join— have a bitmap as output. By using the output of a ker-

!From the programmers perspective each thread is uniquely
identified by the block ID and the thread ID within the
block.

nel as input to another, we may pipeline the GPU functions
eliminating in this way the need to write data back to the
memory of the host system. For instance when evaluating
predicates expressed as a series of boolean operations that
refer to the same data array, a single bitmap is used both as
input and output in the all kernels.

While carrying out a join, the GPU produces a set of
paired numbers that comply with the predicate. This set is
sent back to the main memory of the host system. Clearly,
this main memory access might “break” the pipeline of ker-
nels and could hamper performance. Hence, it has to be
avoided whenever possible.

In what follows we discuss: a simple binary predicate
(greater-than) and a join operator based on nested-loops.

e GREATER: Algorithm 1 shows the implementations of
the “greater-than” predicate for the GPU. The CPU imple-
mentation would be trivial, we essentially scan through the
entire set of data and accordingly set the bitmap entries that
correspond to qualifying data. In the case of GPU, we have
one logical thread working on a single data value.

Provided that each block of threads may feature a finite
number of logical such threads, we have to use a number
of blocks any time we deal with arrays larger than 256
elements. Consequently, the first statement in the GPU-
implementation of Algorithm 1 indicates the logical thread-
ID that will work on a corresponding data element of array
A. For example if A has 4,096 elements, the GPU will trans-
parently deploy 16 blocks each using 256 logical threads to
carry out the greater-than predicate computation.

The implementation of other binary operators such as <,
<, >, and # is identical to the greater-than predicate. The
same is also the case for both unary (not) and binary (and,
or) logical operations.

Algorithm 1 GPU-Implementation of “>” predicate

Input: A[ ]: Data array to be checked,
Val : Selected elements should be greater than this value.
Output: Bitmap[ ]: Bitmap of the selected elements,
Begin

ID = Thread.ID + Block.ID*ThreadsPerBlock

if A[ID]> Val then

Bitmap [ID ] =1

end if

End

oJOIN: Algorithm 2 depicts the realization of join in GPU-
implementations. The equivalent CPU-version is the classic
nested-loops approach where we assume that the two arrays
to be joined A and B are main-memory resident.

In Algorithm 2, each thread copies an element of A on an
on-chip register. Variable localAelement serves as a place-
holder. Subsequently, the thread reads a portion of B into
shared memory so that other threads (from the same block)
can re-use it any time this is required. As we only have
ThreadsPerBlock threads in a block, B is placed on the
shared memory in parts of ThreadsPerBlock floating num-
bers. The outer loop in the GPU-implementation serves
as an iterator over all parts of B. Before proceeding with
the data processing we have to ensure that all threads have
fetched their portions of B. Thus, we have to synchronize
all threads by issuing a CudaSynchronizeThreads call.

A bitmap that could hold the result of this operation



would call for unnecessary inter-memory movement: should
we join two arrays of size N, the output bitmap would have
been of N? size. As a solution to this problem we choose to
produce a list of pairs with index-IDs to the array elements
that are equal.

Algorithm 2 GPU-Implementation of Join
Input: A[ 1, B[ ]: Arrays of data to be crosschecked,
BitmapB[ ]: Bitmap of the “active” elements of B,
Output: PairList[ ]: List of the matching elements,
Begin
ID = Thread.ID + Block.ID*ThreadsPerBlock
localAelement = A[ID] {"Fetch locally’}

for Bpart=0;Bpart < Size 0f B;
Bpart += ThreadsPerBlock do

_shared__ ShrBitB[Thread.ID] =

BitmapB[Thread.ID+Bpart*ThreadsPerBlock]

_shared__ ShrB[Thread.ID] =
B[Thread.ID+Bpart*ThreadsPerBlock]

CudaSynchronizeThreads()

{"Now BitmapB and B are in shared memory’}

for Belement = 1 to ThreadsPerBlock do
if localAelement == ShrB [ Belement |
AND ShrBitB [ Belement ] > 0 then
BitmapA [ Aelement | = 1
Append to PairList
pair(ID,Belement+Bpart* ThreadsPerBlock)
end if
end for

end for
End

3.3 Operator Orchestration

The operators as described above are the building blocks
of the proposed framework. It is the task of an external
component to orchestrate them in an attempt to evaluate
queries. Figure 4 shows the main components of our frame-
work as well as how they are handled by the ezecutor.

The input of the ezecutor is a graph describing the stream
operations involved in the evaluation of simple queries. For
instance, the graph of Figure 4 has three nodes, two binary
“greater-than” predicates and one join. The graph edges de-
scribe the input and/or output of each operator involved.

In the example of Figure 4 the two “greater-than” predi-
cates require the transfer of the two arrays 7p.C' and T7.C
and the two values Do and D to the global GPU memory
before they can be evaluated whereas the join requires that
the output of the two “greater-than” predicates is available
along with the Ty.B and T3.B data arrays.

The executor is capable of identifying that the two output
bitmaps (Bitmap 1 and 2) are intermediate results and thus
they do not have to be transferred back to the main mem-
ory but instead they should be used as inputs to the join
operator. In this way the operators are pipelined through
the bitmaps used both as kernel inputs and outputs. By co-
ordinating the kernel pipeline but also by setting the array
size, and thus the window size of the streaming operators,
the executor regulates the delays and latencies imposed by
the hardware.

To sum-up, executor takes a graph as input and controls
the graph execution by:

1. Allocating buffers both in system’s and card’s RAM

2. Transferring data to be used as input and/or output
to/from the graphics card

3. Initiating the execution of the appropriate kernels on
the GPU fed with the appropriate input data

4. Managing the bitmaps so as to correctly evaluate pred-
icates in boolean operations

SELECT To.A T4.A
FROM T, T,
WHERE Ty.B=T;B and Top.C>Dgand § .C>DQ

M[To-“%] (recoo
\ Bitmap 2

Bitmap 1
> To.B =T, B
\
Executor MAIN RAM

) Main Memory
Triger Device Memory
ST G --Transfers-----,
: | :
Kernels <ﬁ>— GPU RAM
Data TTTTTTTITTTT]
Transfers

Graphics Card

Figure 4: Simple graph of operations to take place
in the GPU.

4. EXPERIMENTATION - EVALUATION

In our evaluation we first examine each kernel separately
and compare it against the corresponding algorithm imple-
mented in CPU. After kernel evaluation we move to examine
the entire framework by feeding query graphs to the executor
component.

4.1 Testing Environment and Metrics

The development, testing and evaluation of the framework
took place on a Sony Vaio VGN-FZ11M laptop featuring an
Intel Centrino Core 2 Duo T7100 at 1.8 GHz. The total sys-
tem’s RAM is 2 GB (2 x 1024 MB) DDR2 RAM at 667 MHz.
The graphics card this laptop is equipped with is an NVIDIA
GeForce 8400M GT with 64 MB of device dedicated RAM.
The card is on a PCI Express 16x bus capable of transfer-
ring up to 6.4 GBps. The GPU has its 2 cores speed set
at 450 MHz. Each core includes 16 multi-processors indicat-
ing that the hardware capabilities of this co-processor is at
least comparable to the systems general purpose CPU. The
internal bit representation of the stored numbers in both
processors is the same, meaning that no extra cycles are lost
in transformations.

Throughout our evaluation we measured execution time.
This is the time required to read the input float arrays and
bitmaps from the system’s RAM, process them and write the
results back. In the case of the CPU implementation this is
the actual code execution time since the default behavior is
to read and write data from/to main system’s RAM. On the
other hand evaluation of the GPU code segments includes



the time required to copy the input data from main memory
to the device’s memory and transfer the results back to main
memory. As this is a time consuming task the GPU should
be fast enough to overcome this handicap.

4.2 Evaluation of Basic kernel Operations

By testing the Algorithms presented in Section 3.2 we
identify the circumstances under which exploiting the GPU
resource is beneficial.

e GREATER: To test the performance of this algorithm we
vary the input size. We gradually increase the number of
values to be checked from 15,000 to 165,000 floating point
numbers. The output is a bitmap whose size is of equal
size with the input. Figure 5 presents the results of this
evaluation.

Execution time milliseconds

1 1 1 1 1 1 1 1 1 1 1
15 30 45 60 75 90 105 120 135 150 165
Thousants of values to be checked

Figure 5: Evaluation of the “greater-than” predicate
when increasing the input size (i.e., the number of
values to be checked)

We find two points worth mentioning. First, the CPU has
a small advantage over the GPU but as the amount of data
processed increases this advantage diminishes. Second, the
memory transfers between device and main memory impose
an overhead that stems from the latency introduced by the
PCI Express bus. This latency effect intensifies when the
data to be transferred is less.

e JOIN: A join operation may produce output that by far
exceeds the size of the input. Since the joined elements
are copied back to the main system’s RAM the output size
may impose significant delays. To evaluate the performance
of the implementation at hand we vary the join selectiv-
ity. First, we gradually increase the percentage of elements
in one of the two input arrays that have join matches. In
this step 100% matching corresponds to all elements pro-
ducing a single join pair each. Here, in terms of output size,
the amount of join pairs produced starts from zero and ulti-
mately reaches the size of the input. In the second evaluation
step we further increase the join selectivity by introducing
element replication. In doing so we force elements to have
multiple join matches and thus produce more than just one
join pair. In this way the output becomes several times the
size of the input. In our case we have the output ranging
from one to the twenty times the size of the input arrays.
Figure 6 present the first step evaluation results whereas
Figure 7 present the experimentation results of the second
evaluation step. When evaluating this join operator we use
input batches of 9,000 elements each.

Our experimentation shows that the GPU implementa-
tion has to transfer the output from the device to the main
memory thus its performance greatly depends on the join se-

2 05— , :
S TPU ——

o 04r GPU ——-x—- |1
2]

—
£ L :
g 0.3
= 02f VI — S o
c -

i) %~

5 0.1 4

3

i} 0 L L I I |
10 25 50 75 100

Percentage of matching elements (%)

Figure 6: Evaluating the join operation when vary-
ing the element matching percentage.

lectivity. It would have been beneficial to delegate the join
operation to the graphics card when selectivity is low.

8L 08 T T T

5 CPU ——

g 07f GPU —-x-— [

Z 06 o

- L

g 05 /__/,,x’/

s 04r oxemT —

= +,4—'¢74/\",’¢—p

3 03f T X g

L|>j 0.2 Lx 1 1 1 1 1
x1 x3 x5 x8 x15 x20

Joined pairs in respect to the number of input elements

Figure 7: Evaluating the join operation when having
elements produce multiple join pairs.

4.3 Framework Evaluation

To test the effectiveness of our framework we establish a
test case: we prepare a graph to be fed as input to the ez-
ecutor component. The graph at hand is comprised out of a
number of kernel calls and memory management operations.
We measure the execution time with a) our framework in
use, b) having each kernel execute as an autonomous com-
ponent (i.e. return any results to the systems main memory)
and c¢) a CPU only version of all kernels.

The graph of operations we use is presented in Figure 8.
First two binary predicates are evaluated (called A and B).
Their results are added by applying an “or” operation. The
result along with an extra array, C, are joined in the last
step. This sequence of operations could be the product of
an SQL query:

SELECT To.P,Ty.P

FROM Ty, Th
WHERE T10.C > Dg or 1T9.E > Dy and 1y.B =T1,.B;

Bitmap 2

) o(ts )

[ JOIN T,.B = Tl.BJ

[OR

Bitmap 3

Figure 8: The graph used as a test case.



In this use-case, we chose all input arrays to be of size:
15,000 floating point numbers. During execution the first
predicate (A) results in masking out 7,679 elements. After
the OR operation between Bitmap I and Bitmap 2, 13,068
entries reach the join operation through Bitmap 3. In the
final step 6,790 pairs are produced through the join operator.
All involved operators are triggered only once under a single
input batch.

In Figure 9 we present the results of the execution time
required to evaluate the graph of Figure 8. “Our GPU”
represents our framework, the “One Op GPU” shows the ex-
ecution time when we trigger the GPU kernels without the
intervention of the executor component, the third column
depicts the milliseconds it takes for the CPU to evaluate the
same query graph. The essential difference between “Our
GPU” and “One Op GPU” is that the later has to return
the output data back to the main system memory. In our
framework the use of bitmaps allows us to pipeline the ker-
nels thus resulting in less main memory interactions and
enhanced performance. The CPU comes third in terms of
performance in our test case. In light of data whose size
exceeds that of the arrays we used here, successive execu-
tion of the same execution graph is required. This will only
expand the lead of the GPU has over the CPU.

1400

OurG;?U
1200 -lone Op GPU mmmm
1000 CPU ==

800
600
400
200

0

Execution time (in ms)

Figure 9: Evaluation of the proposed framework.

5. RELATED WORK

Early efforts to create systems capable of processing streams

of data are discussed in [10, 3, 1]. The main objectives of
these systems were to help in network analysis, security and
serving monitoring applications. What all the above appli-
cation systems share is their “modified” view of the rela-
tional algebra. This is necessitated by the streaming nature
of data.

The potential for harvesting the GPU co-processor re-
sources for data processing has been identified and even
GPUs enhancements have been proposed [4]. The deploy-
ment of highly parallelized bitonic sorting algorithms has
been proposed and their performance has been optimized
in [5]. In a similar spirit, [6] demonstrated that it is feasi-
ble to implement fundamental relational algebra operations.
The aforementioned efforts are precursors of our own work
as we seek to harvest the additional GPU resources using
high-level programming options available to the end-user.

6. CONCLUSIONS

Based on our GPU-implementation of fundamental op-
erators, we proposed a framework for the materialization of
(complex) algebraic query graphs built around the notions of

SIMD execution of GPU threads and pipelining of interme-
diate results. Preliminary results using a prototype demon-
strate faster wall times for the execution of various query
types. Nevertheless, intensive and repetitive data transfer
between the main-memory of the host system and the global
memory of the GPU have yielded a number of occasions
in which GPU materialization of the query graphs may be
less effective than of its CPU-based counterpart. We plan
to improve our framework by offering facilities for handling
non-numeric data effectively and incorporating a hybrid ap-
proach that helps dynamically decide when to use both CPU
and GPU resources simultaneously.

7. REFERENCES

[1] D. J. Abadi and et al. Aurora: a new model and
architecture for data stream management. The VLDB
Journal, 2003.

[2] 1. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and
H. Pat. Brook for gpus: Stream computing on graphics
hardware. ACM Transactions on Graphics, 2004.

[3] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk. Gigascope: a stream database for
network applications. In SIGMOD ’03: Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, pages 647-651, New York, NY,
USA, 2003. ACM.

[4] W. W. L. Fung, I. Sham, G. Yuan, and T. M.
Aamodt. Dynamic warp formation and scheduling for
efficient gpu control flow. In MICRO ’07: Proceedings
of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 407-420,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
Gputerasort: high performance graphics co-processor
sorting for large database management. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data,
pages 325-336, New York, NY, USA, 2006. ACM.

[6] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 215226,
New York, NY, USA, 2004. ACM.

[7] Y.-N. Law, H. Wang, and C. Zaniolo. Query languages
and data models for database sequences and data
streams. In VLDB ’0/4: Proceedings of the Thirtieth
international conference on Very large data bases,
pages 492-503. VLDB Endowment, 2004.

[8] NVIDIA. The cuda toolkit.
"http://www.nvidia.com/object /cuda_home.html,
February 2007.

[9] Rapidmind. http://www.rapidmind.net/, January
2008.

[10] M. Sullivan. Tribeca: A stream database manager for
network traffic analysis. In VLDB ’96: Proceedings of
the 22th International Conference on Very Large Data
Bases, page 594, San Francisco, CA, USA, 1996.
Morgan Kaufmann Publishers Inc.



