

Personalization of Queries in Database Systems

 Georgia Koutrika Yannis Ioannidis
 Department of Informatics and Telecommunications
 University of Athens, Hellas
 {koutrika, yannis}@di.uoa.gr

Abstract
As information becomes available in increasing
amounts to a wide spectrum of users, the need for
a shift towards a more user-centered information
access paradigm arises. We develop a personal-
ization framework for database systems based on
user profiles and identify the basic architectural
modules required to support it. We define a pref-
erence model that assigns to each atomic query
condition a personal degree of interest and pro-
vide a mechanism to compute the degree of inter-
est in any complex query condition based on the
degrees of interest in the constituent atomic ones.
Preferences are stored in profiles. At query time,
personalization proceeds in two steps: (a) prefer-
ence selection and (b) preference integration into
the original user query. We formulate the main
personalization step, i.e. preference selection, as
a graph computation problem and provide an ef-
ficient algorithm for it. We also discuss results of
experimentation with a prototype query personal-
ization system.

1. Introduction

When asking Lisa, your favourite bookseller,

‘Are there any good new books?’,
you would prefer to receive an answer like

‘The Order of the Phoenix’ and ‘Matisse and Picasso’
if you like author J.K. Rowling and you are also a fan of
20th century art, instead of an answer like

‘Essentials of Asian Cuisine’
if you are not into cooking, or even

‘The new releases are in aisles 4 and 5’.
The personal relationship this bookseller has with you and
her other favourite customers allows her to give the first
answer to you, the second answer to someone else, and the
third answer to no-one but brand new customers.

Such personalized behaviour is now found not only in

humans but also in several websites and other information
retrieval systems, where the system response to a request
is different based on various characteristics of the re-
questor. Unfortunately, such behaviour is absent from da-
tabase systems, which always provide the same response
to everyone. Nevertheless, several emerging trends de-
mand a shift towards a more user-centered and generally
context-dependent database access paradigm.

Motivating Example. Consider a movies database de-
scribed by the schema below; primary keys are underlined.

THEATRE(tid, name, phone, region),
PLAY(tid, mid, date), MOVIE(mid, title, year),
CAST(mid, aid, award, role), ACTOR(aid, name),
DIRECTED(mid, did), DIRECTOR(did, name),
GENRE(mid, genre)
Consider two users, Julie and Rob, both inquiring about

what is shown tonight. Typically, this is done through
some simple interface, which translates their requests in
this SQL query:

select MV.title
from MOVIE MV, PLAY PL
where MV.mid=PL.mid and PL.date=‘2/7/2003’

However, Julie likes comedies and thrillers, while Rob
likes sci-fi movies and actress J. Roberts. Each user’s
preferences could be stored in a user profile. Then, the
system could automatically integrate them into the origi-
nal, predefined query, saving effort from the part of a user
or a programmer, and it could return results ranked accord-
ing to their interest to the user. Julie would be more
pleased with the results of the following query:

select MV.title
from MOVIE MV, PLAY PL, GENRE GN
where MV.mid=PL.mid and PL.date=‘2/7/2003’ and

MV.mid=GN.mid and (GN.genre=‘comedy’
or GN.genre=‘thriller’)

Rob would prefer the results of this query:
select MV.title
from MOVIE MV, PLAY PL, GENRE GN, CAST CA,ACTOR AC
where MV.mid=PL.mid and PL.date=‘2/7/2003’ and

MV.mid=GN.mid and MV.mid=CA.mid and
CA.aid=AC.aid and (GN.genre=‘sci-fi’ or
AC.name=‘J. Roberts’)

In this paper, we take a step towards such personalized

query answering in database systems. The general archi-
tecture of a Personalized Database System is depicted in
Figure 1 and includes several modules surrounding a tradi-
tional Content Access module. The system keeps a reposi-
tory of user information (User Profiles) that is either in-
serted explicitly by the user or collected implicitly by
monitoring user interaction with the system (Profile Crea-
tion). This profile information is integrated into an incom-
ing request both during content selection (Query Personal-
ization) as well as result presentation (Presentation Per-
sonalization) and thus the overall user experience is per-
sonalized. This paper concentrates on taking advantage of
User Profiles for Query Personalization for conjunctive
queries in the relational model. It is not concerned with
how the profiles were generated or with how result presen-
tation may be personalized, both of which are part of our
future work.

Contributions. The main contributions of the paper are
the following:
� Query personalization framework. The major steps for
personalization of database queries based on information
stored in atomic user profiles are: (a) preference selection,
where the preferences relevant to the query and most in-
teresting to the user are derived from the user profile, and
(b) preference integration, where the derived preferences
are integrated logically into the original query producing a
modified, personalized one, which is actually executed.
We formulate the main personalization step, i.e., prefer-
ence selection, as a graph computation problem and pro-
vide an efficient algorithm for it.
� Preference model for user profiles. User preferences
are stored as degrees of interest in atomic query elements
(e.g., individual selection conditions), which may be used
to transform a query. The degree of interest expresses the
interest of a person to include the associated condition into
the qualification of a given query. Specific logic is intro-
duced for derivation of preferences for complex query
structures building on stored atomic ones. In this way,
results of a query are ranked based on the estimated degree
of interest in the combination of preferences they satisfy.
� Experimental results. The proposed mechanism has
been implemented and it is discussed through a set of ex-
periments that show its potential.

To the best of our knowledge, this work represents the
first solution towards smooth integration of personaliza-
tion and database queries with the use of structured user
profiles.

Outline. The rest of the paper is organized as follows:
Section 2 presents related work. Section 3 describes the
preference model for user profiles. Section 4 establishes
the query personalization framework. Sections 5 and 6
describe the preference selection and preference integra-
tion steps of personalization, respectively. Section 7 pre-
sents results of experimentation with a prototype system.

Finally, Section 8 presents ongoing and future work and
conclusions.

Figure 1. Figure 1. Figure 1. Figure 1. A Personalized Database SystemA Personalized Database SystemA Personalized Database SystemA Personalized Database System

2. Related Work

We will discuss related work using the following axes:

content selection approaches, user profiles, user prefer-
ences and ranking of results.

Content selection approaches can be broadly classi-
fied into three main categories.

(a) Query-based approaches. Content selection is per-
formed on the basis of a query issued. Traditional Data-
base and IR systems fall in this category as well as two
recent lines of database research inspired from IR, namely
keyword searches [2, 3, 10, 11] and best-match query an-
swering [1, 7, 12, 14, 4].

(b) Filter-based approaches. Content selection is driven
by a long-term information need stored in a user profile,
which is considered as a form of a continuously executing
query [18, 5, 15].

(c) Personalized approaches. Content selection is based
on a combination of a user query and preferences stored in
a profile. The role of user profiles is twofold: they are used
to focus searches and to rank results returned. Few IR sys-
tems [17] use them for both purposes simultaneously.
Most of them [19] perform only result ranking. Database
systems [8] focus on the construction of personal web
views over database views using rules for embedding user
data and propagating changes. In this paper, we propose a
personalization framework for database queries based on
user preferences stored in profiles. We use these to focus
searches and to rank results. Preferences are dynamically
extracted from a profile and incorporated into a user re-
quest. Results are ranked based on the preferences they
satisfy. The whole process is independent of any changes
taking place in the profiles. As far as we know, this ap-
proach is absent from the field of databases.

User profiles have been broadly used for information
retrieval and filtering [17, 18, 19] of text-based data items
and they typically represent user preferences in terms of a
single or multiple keyword vectors. User profiles have also
been used for providing data management hints for pre-
loading and pre-staging caches in distributed environments

[6, 16]. In this paper, we store user preferences in terms of
atomic query constructs in profiles and we use them for
individualizing user requests.

User preferences provided either as query criteria or
stored in profiles are of various types [7]: unconditional,
conditional, multi-value etc. They are expressed as (a)
hard constraints, that are either satisfied or not satisfied at
all; or (b) soft constraints, that should be fulfilled as
closely as possible [1, 12, 4]. Traditional SQL treats pref-
erences as hard constraints. Soft preferences may be asso-
ciated with a number indicating user satisfaction depend-
ing on how close a value is to the preferred one. Prefer-
ences on numerical data can be expressed as soft con-
straints (e.g., price near $20), while preferences on cate-
gorical data can be expressed as hard constraints (e.g., I
prefer W. Allen). In this paper, we are concerned with
unconditional, single-value preferences expressed as hard
constraints. Each preference is associated to a number,
which, in our case, indicates the user interest in results that
exactly satisfy this preference. Moreover, we build on the
database structure to derive implicit preferences, i.e., pref-
erences not stored in the profile but inferred from the asso-
ciations of objects in the database. Incorporating other
types of preferences within our framework is part of ongo-
ing work.

Ranking of results is performed in several approaches:
results are ordered based on the number of joins they in-
volve [2, 3, 11] or based on how closely they match user
preferences [1, 12]. In this paper, we provide a mechanism
for estimating the degree of interest in a combination of
preferences and we rank results returned by a personalized
query, based on the combined degree of interest of the
preferences they satisfy. For instance, if a user prefers ac-
tor W. Allen to R. Atkinson, a query that considers both of
these preferences would return first results satisfying both,
followed by these satisfying the top preference and then,
those matching the second one.

3. User Preference Model

Without loss of generality, we focus on SPJ (Select-

Project-Join) queries over relational databases. In par-
ticular, we focus on queries, whose qualification is a com-
bination of disjunctions and conjunctions of atomic selec-
tion and join conditions, producing a result from atomic
projections of attributes.

Given our focus on personalization of queries, our pref-
erence model assigns preferences to query constructs,
which may then be used to transform, i.e., personalize, a
given query. For instance, Julie’s interest in director W.
Allen is expressed as a preference for the condition:

DIRECTOR.name=‘W. Allen’

Furthermore, as entities are mutually related, prefer-
ences on one imply preferences on the other. For example,
if Julie is interested in director W. Allen, then she also

likes movies directed by him, expressed as a preference for
the condition:

MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’

Note how the particular database schema affects prefer-
ences, in the sense that the condition associated with a
desired preference is expressed through joins dictated by
the schema. Finally, in a similar fashion, preferences may
be expressed on arbitrary logical combinations of condi-
tions, e.g., comedies directed by W. Allen.

In the following subsections, we provide a formal de-
scription of the preference model illustrated above, starting
from the simplest of conditions and building up.

3.1. Stored Atomic User Preferences

Our approach to personalization is based on maintain-

ing, for every user, a user profile whose structure is inti-
mately related to the features of the data and query mod-
els. In particular, we assume that user preferences are
stored at the level of atomic elements of queries, i.e.,
atomic selection or join conditions, which are therefore
called atomic user preferences. A user's interest in an
atomic query element is expressed in the form of a degree
of interest, which is a real number in the range [0, 1].
Value 0 indicates lack of any interest in the atomic condi-
tion from the user part, while value 1 indicates extreme
(‘must-have’) interest. In practice, zero-valued preferences
are not stored in a user profile.

The degree of interest associated with an atomic condi-
tion expresses the interest of the user to include the condi-
tion into the qualification of a given query (if appropriate)
to further restrict (or sometimes expand) the universe of
data that generates the query result. For the sake of sim-
plicity in our examples, we concentrate only on equality
selections and joins.

A particular user’s preferences over the contents of a
database can be expressed on top of the personalization
graph of the database. This is a directed graph G(V, E) (V
is the set of nodes and E is the set of edges) that is an ex-
tension of the traditional schema graph. There are three
types of nodes in V:
� relation nodes, one for each relation in the schema
� attribute nodes, one for each attribute of each relation

in the schema
� value nodes, potentially one for each possible value of

each attribute of each relation in the schema. In es-
sence, only those that have any interest to a particular
user need to be specified

Likewise, there are two types of edges in E:
� selection edges, from an attribute node to a value node;

such an edge represents the potential selection condi-
tion connecting the corresponding attribute and value

� join edges, from an attribute node to another attribute
node; such an edge represents the potential join condi-

tion between the corresponding attributes. These could
be joins that arise naturally due to foreign key con-
straints, but could also be other joins that are meaning-
ful to the designer. Finally, for reasons that will become
clear later, two attribute nodes could be connected
through two different join edges, in the two possible di-
rections
Moreover, given the one-to-one mapping between

edges in the personalization graph and atomic query ele-
ments, it is natural to indicate degrees of interest as labels
on the graph's edges.

Example. Julie prefers theatres located downtown. She
is a fan of comedies, enjoys thrillers, and likes adventures
to a lesser extent. As far as directors are concerned, her
favourite is D. Lynch followed by W. Allen. With respect
to actors, she likes N. Kidman followed by A. Hopkins
and I. Rossellini. These preferences are expressed as de-
grees of interest in specific atomic selections. Moreover,
she has preferences expressed over the joins between the
relations of the schema, to allow queries on one to take
into account her preferences on the others. For example,
she considers the director of a movie more important than
the cast. All of Julie’s preferences are stored in her profile,
part of which is given in Figure 2. Her profile is also de-
picted graphically in the personalization graph of Figure 3.

[THEATRE.tid=PLAY.tid, 1]
[PLAY.tid=THEATRE.tid, 1]
[PLAY.mid=MOVIE.mid, 1]
[MOVIE.mid=PLAY.mid, 0.8]
[MOVIE.mid=GENRE.mid, 0.9]
[ACTOR.name=‘A. Hopkins’, 0.8]
[GENRE.genre=‘comedy’, 0.9]
[GENRE.genre=‘thriller’, 0.7]

Figure 2. Figure 2. Figure 2. Figure 2. Part of aPart of aPart of aPart of a user user user user prprprproooofilefilefilefile

Figure Figure Figure Figure 3333. . . . A personalization graphA personalization graphA personalization graphA personalization graph
The level of a user's desire to include a join into a query

qualification may be different depending on which relation
of the join is already there. For this reason, a join condi-
tion may be associated with two different degrees of inter-
est. For example, when Julie inquires about theatres, she
considers information on movies more significant than the
other way around. Thus, two distinct entries (rows 3 and 4)

for the same join between relations MOVIE and PLAY but
with different degrees are stored in her profile as shown in
Figure 2. The left part of a join of the profile corresponds
to the relation already included in the query qualification.
This is indicated in the personalization graph with two
distinct edges with different labels corresponding to this
condition, one for each possible direction from the node
already included in the query to the one that is not.

Preferences may evolve through time. Thus, Figure 2
and Figure 3 illustrates an instance of Julie’ profile for a
given point in time. The query personalization process is
not affected by changes in the profiles, since it automati-
cally integrates recorded preferences in user requests.

3.2. Implicit/Transitive User Preferences

By composing atomic user preferences that are adjacent

in the personalization graph (hence, composable), one is
able to build transitive user preferences, i.e., preferences
expressed through relationships. Given the one-to-one
mapping between edges in the personalization graph and
atomic query elements, a transitive user preference is
mapped to a directed path in the personalization graph.

In analogy to atomic user preferences (atomic selec-
tions and joins), we consider the following types of transi-
tive preferences:
� Transitive Join is mapped to a path in the personaliza-

tion graph between two attribute nodes. The path is
comprised of composable atomic join edges and repre-
sents the potential “implicit” join condition between the
corresponding attributes.

� Transitive Selection is mapped to a path in the personal-
ization graph from an attribute node to a value node.
Such a path is comprised of n-1 atomic join edges and
one selection edge and represents the potential “im-
plicit” selection condition connecting the corresponding
attribute and value. That is, a transitive selection is the
combination of a transitive join and an atomic selection
that are composable.
A transitive query element is defined as the conjunction

of the constituent atomic ones.
In analogy to atomic user preferences, the degree of in-

terest associated with a transitive preference expresses the
interest of the user to include the corresponding transitive
query element into a given query, if appropriate. More-
over, the degree of interest in a transitive preference
should be a function of the degrees of interest in the par-
ticipating atomic preferences. In principle, one may imag-
ine several such functions. Any one of them, however,
should satisfy the condition below, in order to be intuitive.

Transitive Preference. Consider a set PN of N compos-
able atomic preferences and the set DN of corresponding
degrees of interest:

DN = {di | di: degree of interest in Pi∈PN, i = 1… N}.
For any function f⊗ calculating the degree of interest in

a transitive preference formed by the atomic preferences in
PN, the following must hold:

f⊗(DN) ≤ min(DN).
In other words, the degree of interest in a transitive

preference decreases as the length of the corresponding
directed path increases, capturing human intuition and
cognitive evidence [9]. Thus, we have decided to choose
multiplication as the function f⊗:

f⊗(DN) = d1d2 … dN.
This transitive preference function essentially ap-

proaches 0 as more and more preferences are added to the
combination.

Example. Julie likes the actress N. Kidman, which is
expressed as a preference for the selection ACTOR.
name=‘N. Kidman’ with a degree of interest equal to
0.9. Then, she also likes movies starring the same actress,
expressed as an implicit preference for the condition:

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and

ACTOR.name=‘N. Kidman’

The degree of interest associated with the correspond-
ing transitive preference is the product of the degrees of
the constituent conditions, which based on her profile,
gives 0.8*1*0.9=0.72.

Note that any directed path in the personalization graph
could map to a transitive preference. However, based on
human intuition and cognitive evidence [9], we deal with
acyclic paths only. It is rather unlikely and unnatural that a
cyclic directed path would express a confirmed user pref-
erence. Moreover, cycles have termination problems.

3.3. Logical Combination of User Preferences

Given a set of user preferences, whether atomic or tran-

sitive, one may form logical combinations of them,
through the Boolean operators ‘and’ and ‘or’. These
result in complex conjunctive and disjunctive preferences,
respectively, with the natural corresponding semantics.

Again, as with transitive preferences, the degree of in-
terest in complex preferences should be a function of the
degrees of interest in the participating preferences. In prin-
ciple, one may imagine several such functions for either
conjunctive or disjunctive preferences, the appropriateness
of each one being judged only by the philosophy of the
approach taken towards personalization. Nevertheless,
there are certain conditions that these functions should
satisfy to be intuitive. These are stated below. Consider a
set PN of N preferences (atomic or transitive) and the set
DN of corresponding degrees of interest:

DN = {di | di: degree of interest in Pi∈PN, i = 1… N}.
Conjunctive Preference. For any function f

∧∧∧∧
 calculating

the degree of interest in the conjunction of the preferences
in PN, the following must hold:

f
∧∧∧∧ (DN) ≥ max(DN).

In other words, the degree of interest in multiple prefer-
ences satisfied together increases with the number of these
preferences.

Disjunctive Preference. For any function f
∨∨∨∨
 calculating

the degree of interest in the disjunction of the preferences
in PN, the following must hold:

min(DN) ≤ f
∨∨∨∨ (DN) ≤ max(DN).

That is, the degree of interest in satisfying one of sev-
eral preferences is between the highest and the lowest de-
gree of interest among the original preferences.

In our approach, we have decided to choose functions
f
∧∧∧∧ and f

∨∨∨∨
 that place equal weight on each member of DN

maintaining some smoothness properties as more degrees
of interest are inserted in it. In particular, we have chosen
the following functions:

f
∧∧∧∧ (DN) = 1 – (1-d1) (1-d2) … (1-dN),

 f
∨∨∨∨ (DN) = (d1 + d2 + … + dN)/N.

The conjunctive preference function essentially ap-
proaches 1 as more and more preferences are added to the
combination, each participating degree of interest reducing
the overall difference from 1 by a factor that is equal to its
own difference from 1. The disjunctive preference func-
tion is just the average of the participating degrees of in-
terest. Clearly, each function satisfies the corresponding
condition mentioned above and both treat the degrees of
interest in their input in a balanced way, as desired.

Example. Consider the following transitive selections,
expressing interest in movies directed by W. Allen and
comedies, respectively:

MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’

Based on Julie’s profile, the degree of interest in come-
dies directed by W. Allen, i.e., in the conjunction of the
above conditions is equal to 1-(1-1*1*0.7)(1-

0.9*0.9)=0.943. On the other hand, her degree of inter-
est in going to either a comedy or a W. Allen movie, i.e.,
in the disjunction of the above, is equal to
(0.7+0.81)/2=0.755.

Although there is no formal justification that functions
f
∧∧∧∧
 and f

∨∨∨∨
 are appropriate for their role, the following theo-

rem provides some strong indication. Recall that PN is a
set of N (atomic and transitive) preferences and DN the
corresponding set of degrees of interest. Without loss of
generality, further assume that di ≥ di+1 (1 ≤ i < N).

Theorem: Let Ω be the set of all conditions that repre-
sent logical combinations of preferences in PN according
to the personalization model, i.e., expressing satisfaction
of any L of the K most interesting preferences of PN, (L ≤
K ≤ N). For any ω1ω1ω1ω1, ω2ω2ω2ω2 in Ω with degrees of interest d1
and d2, if ω1ω1ω1ω1 is subsumed by ω2ω2ω2ω2 for all databases, i.e., re-
sult(ω1ω1ω1ω1) ⊆ result(ω2ω2ω2ω2), then d1 ≥ d2.

This theorem captures the intuition that strictly smaller
query answers are of strictly higher interest to the user,
thus indirectly providing justification for the appropriate-
ness of the particular choices of f

∧∧∧∧
 and f

∨∨∨∨. Its proof is rela-
tively tedious and is omitted due to lack of space. It takes
advantage of the earlier work on conjunctive query con-
tainment and properties of f

∧∧∧∧
 and f

∨∨∨∨.
Having established a preference model for user profiles,

we now turn to describing how it can be used for query
personalization.

4. Query Personalization Framework

Query personalization is the process of enhancing a

query with user-specific preferences stored in a profile.
Given a query Q and a user profile U, a personalized query
is built with the use of the following parameters:
� the number K of top preferences derived from the user

profile that should affect the query
� the number M (0 ≤ M ≤ K) of top preferences from the

set of the selected K ones that should be considered as
mandatory, i.e. that should be definitely satisfied by all
generated results

� the number L (L ≤ K - M) of the remaining K - M pref-
erences that should at least be met by the results
Parameters K, M, and L can be specified with the use of

various criteria. For example, a criterion for K could be
that the top five preferences should affect the user request.
A criterion for M could be that preferences with a degree
of interest equal to 1 are considered mandatory. A criterion
for L could be that at least two of the K - M preferences
should be satisfied as well. These criteria may be provided
at query time by the user or retrieved from the user profile
based on information collected by the system. Alterna-
tively, they may be automatically derived at query time
considering various aspects that comprise the context of a
query. These include desired response time, available
bandwidth, etc. For instance, if the user sends a request
using her mobile phone, then the system may decide to
consider a few top preferences; when the user switches to
her computer, then the system may decide to consider all
her preferences. Analysis of aspects comprising the query
context is out of the scope of this paper.

Given a query Q, a user profile U and criteria for the
specification of parameters K, M, and L, query personaliza-
tion proceeds in two phases:

(a) Preference Selection is the identification and extrac-
tion of the set of top K preferences recorded in the user
profile that are relevant to the given query.

(b) Preference Integration is the integration of the K se-
lected preferences into the query in order to produce a per-
sonalized one that will return results satisfying M of them
and any L of the remaining ones.

Execution of a personalized query returns a ranked list
of results, where most interesting results (based on their
estimated degree of interest) come first followed by results
that are less interesting to the user.

Example. We will consider the initial request about
movies given in the motivating example. We assume that
Julie has specified that at least L = 2 of her top K = 3 pref-
erences should be satisfied by the results; thus M = 0. We
will see how the initial query can be personalized by the
proposed framework given Julie’s profile.

5. Preference Selection

The first step of the personalization process deals with

the extraction of the set PK of top K preferences from the
user profile. A preference is extracted provided that it has
the following properties:

Property 1: It is related to the query.
Property 2: It is not conflicting with the query.
A preference may be related to or conflicting with a

query at two different levels.
Semantic level. In order to decide whether a preference

is related to or conflicting with a query at this level, addi-
tional knowledge about the data is needed other than in-
formation derived from the data schema. For instance, a
preference for W. Allen is semantically related to a query
about comedies. On the other hand, a preference for M.
Tarkowski is semantically conflicting with the same query,
and, if conjunctively combined with it, no results will be
returned.

Figure Figure Figure Figure 4444.... AAAA query query query query on top of a personalization on top of a personalization on top of a personalization on top of a personalization graphgraphgraphgraph

Syntactic level. A preference is related to or conflicting
with a query at this level, according to information pro-
vided by the data schema, as described below.
� Syntactically related preferences

A query can be represented as a sub-graph on top of the
personalization graph. This sub-graph includes all the
nodes corresponding to relations that participate in the
query (possibly replicated if multiple tuple variables
range over them) and all the selection and join edges

corresponding to the atomic conditions of the query
qualification. In all but the most artificial queries, this
query graph should be connected. In addition, user
preferences map to directed paths in the personalization
graph. Thus a preference is syntactically related to a
query, if it maps to a path that is attached to the query
graph, specifically to a node involved in it, and expands
outwards (i.e., it does not traverse this graph).
In Figure 4, Julie’s initial query is depicted as a graph
in grey colour on top of the personalization graph cor-
responding to her profile. An example of a (transitive)
preference syntactically related to this query is this one.
MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’
Preferences that are semantically related to a query are
also syntactically related to it. The inverse is not gener-
ally true.

� Syntactically conflicting preferences
A preference is conflicting with a query, if it is conflict-
ing with a condition already there. Two conditions are
syntactically conflicting, if they are comprised of a
common transitive join and atomic selection conditions
on the same attribute of a table and all constituent
atomic joins, in the direction of the selection, are to-
one. For example, assume a query containing the condi-
tion theatre.region=‘uptown’; then the preference
theatre.region=‘downtown’ cannot be included in
the query, since a theatre can only be at one place. In
the most general case, a preference may be conflicting
with a query due to the existence of more than one con-
dition. To illustrate this, consider a query that contains
the conjunction of these conditions:
THEATRE.tid=PLAY.tid and PLAY.mid=MOVIE.mid and
MOVIE.title=‘The Last Dictator’

THEATRE.tid=PLAY.tid and PLAY.mid=MOVIE.mid and
MOVIE.title=‘The Last Mohican’

In addition, consider the condition:
THEATRE.tid=PLAY.tid and PLAY.date=‘2/7/2003’
Although the latter is not conflicting with each query
condition individually, the conjunction of the three re-
turns no results, since the given schema indicates that a
theatre can play one movie at a time.
We provide an algorithm for preference selection that is

independent of the level at which conditions are consid-
ered related to or conflicting with a query. In the prototype
system we have implemented, we deal with related and
conflicting preferences at the syntactic level and we handle
pair-wise conflicts.

5.1. Problem Formulation

The problem of preference selection is formulated as a

graph computation problem as described below.
The preference selection problem. Consider the per-

sonalization graph GP corresponding to a user profile, a
query Q represented as a sub-graph on top of this graph,

and a criterion CI, referred to as interest criterion, that is
used for the specification of the top K preferences to be
selected. We consider the set PN of all paths Pi in GP that
are related to but not conflicting with Q in decreasing or-
der of their degree of interest, i.e.:

PN = {Pi | i ∈ [1, N], di-1 ≥ di }.
Then, the set of K preferences that must be selected

based on the given interest criterion, is the ordered subset
PK = {Pi | i ∈ [1, K], di-1 ≥ di } of PN such that:
K = max({ t | t∈ [1, N]: CI(Pt) holds }).
Possible expressions of CI(.) are given in Table 1.

Table 1Table 1Table 1Table 1. . . . ExExExExpressions for interest criteriapressions for interest criteriapressions for interest criteriapressions for interest criteria
Expression Description
t ≤ r selects at most r preferences
dt > d selects preferences with degree of in-

terest greater than d
 selects preferences whose disjunction

has a degree of interest greater than d

selects preferences whose conjunction
has a degree of interest greater than d

5.2. Preference Selection Algorithm

The Preference Selection algorithm takes as input a

user query Q, a user profile U and an interest criterion CI.
It generates a set of preferences PK derived from the user
profile, that are related to but not conflicting with the
query and whose number K is decided with the help of the
criterion CI.

The algorithm, presented in Figure 5, is based on a
best-first traversal of the personalization graph Gp that
corresponds to the profile U. The basic idea is to gradually
construct directed paths in decreasing order of their de-
grees of interest, which begin from the query graph and
expand outwards. In this way, all preferences that are syn-
tactically related to Q, are derived from the user profile in
decreasing order of their degrees of interest. If we are in-
terested in semantic related preferences, then the algorithm
may output only these, since they comprise a subset of the
set of syntactically related ones. Thus the algorithm does
not depend on the assumptions regarding related or con-
flicting preferences. Preferences that are conflicting with
Q are discarded. When a path that corresponds to a selec-
tion is constructed, it is output, provided that it satisfies the
interest criterion. The algorithm stops when no other pref-
erences that satisfy the interest criterion can be derived
from the profile.

More specifically, a queue QP of candidate preferences
is kept in order of decreasing degree of interest. Initially, it
contains all atomic query elements that are syntactically
related to and not in conflict with the query. In each round,
the algorithm picks from QP the candidate preference P
with the highest degree of interest. Depending on the type

dd
t

i
i >

−− ∏

=1
)1(1

dtd
t

i
i >

∑
=1

of the preference, we distinguish two cases:
� P is a selection: If CI(PK ∪ {P}) holds and P is related
to Q, then it is added to the set PK; If CI(PK ∪ {P}) does
not hold, then the algorithm terminates.
� P is a join: If CI(PK ∪ {P}) holds, then P is expanded
into longer paths which are placed into QP; otherwise the
algorithm terminates. A path P is expanded according to
the following rule: a new path P ∧ ACi is generated for
each atomic element ACi that is composable with P (i.e.
adjacent to P in the personalization graph). Thus each P ∧
ACi is syntactically related to Q. Query elements ACis are
considered in order of decreasing degree of interest. This
helps pruning, as explained shortly, and it improves the
time of insertion of new paths in the ordered QP.
The new candidate is added to QP unless pruning takes
place. A path P ∧ ACi is pruned under the following cir-
cumstances: (i) it expands to a relation already existent in
P, or to a relation belonging to the query Q, in which case
a cycle is generated; (ii) it is conflicting with the query Q;
(iii) it is not semantically related to Q (if we are interested
only in them); (iv) it does not satisfy the interest criterion.
In the latter case, the algorithm stops expansion of P, since
all paths generated from the remaining (not yet examined
ACis) are guaranteed not to satisfy the criterion, since they
are considered in order of decreasing degree of interest.

Paths in QP are always in order of decreasing degree of
interest. When a new path is added, it should be placed
after the last path with degree greater than or equal to its
degree, in order to favour the selection of preferences that
correspond to shorter paths among those with the same
degree of interest.

Subsequently, we will show that the algorithm is com-
plete, i.e. it generates the desired set PK as defined in the
previous subsection.

Theorem 1: The algorithm processes preferences that
are (syntactically) related to query Q in decreasing order
of degree of interest.

Proof: The algorithm keeps an ordered queue QP of
paths. In each round, the head P of the queue (which has
the greatest degree of interest) is picked and processed.
Assume that P is a selection condition with degree of in-
terest d and CI(PK ∪ {P}) holds. Then, it will be inserted
into PK. In order to prove the theorem, we will show that:
(a) d is greater than (or equal to) the degree of interest of
any other selection in QP, and
(b) d is greater than (or equal to) the degree of interest of
any other selection that will be generated by successive
expansions of the preferences in QP.

Since QP is ordered (a) holds. In addition, for each join
condition Pj ∈ QP with degree of interest dj, it holds that
d>dj. If Pj is expanded to Pj ∧ AC and AC has a degree of
interest da then: 1 ≥ da ⇒ dj ≥ djda. Combining the two
relations, it follows that d ≥ djda. It is clear that any selec-

tion that will be generated by successive expansions of the
preferences already in QP, will have a lower degree of
interest than d. Consequently (b) holds.�

Based on the above theorem, the algorithm stops in-
spection of preferences in QP, when it encounters one that
does not satisfy the interest criterion, since it is guaranteed
that the remaining ones have lower degrees of interest.
Furthermore, when the algorithm picks a join condition
that does not meet the criterion, it stops on the ground that
all preferences that will be generated by extending this
join (and any subsequent join) shall not meet the criterion.
Consequently, theorem 2 follows.

Theorem 2 (Completeness): The algorithm is com-
plete i.e., it generates the set PK that contain all related
preferences according to an interest criterion.

Example. Returning to our example, after completion
of the preference selection step, the personalization system
has extracted the following selections from Julie’s profile:

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’,

MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘D. Lynch’,

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘N. Kidman’

Preference Selection Algorithm
Input: User profile U
 User query Q
 Interest Criterion CI
Output: Set of selections PK

PK ={}, QP={}
1. Foreach atomic element ACi∈U syntactically related to Q
1.1 If (ACi is conflicting with Q) Then discard ACi

Else QP � ACi End if
End for

2. While (QP not empty)
2.1 Get head P from QP
2.2 If (P is selection) Then

If (CI(PK ∪ {P})=TRUE) Then PK �P
Else Stop End if

End if
2.3 If (P is join) Then

If (CIS(PK ∪ {P})=TRUE) Then
Foreach atomic element ACi∈U composable with P

If (CI(PK ∪ {P ∧ ACi})=FALSE) Then Exit For
End if
If Not ((ACi joins to relation R∈P or R∈Q) or (P∧ACi
is conflicting with Q)) and (P is related to Q) Then

 QP�P ∧ ACi End if
End for

Else
Stop

End if
End if

End while
3. Output PK

Figure Figure Figure Figure 5555.... Preference Selection Algorithm Preference Selection Algorithm Preference Selection Algorithm Preference Selection Algorithm

6. Preference Integration

The purpose of this step is to integrate the K selected

preferences into the original query and produce a new,
personalized query that will generate satisfactory results
for the user, i.e., those satisfying the M top preferences of
those and at least L preferences from the remaining K - M
ones.

Towards this direction, we consider the set of K prefer-
ences derived from the profile, in order of decreasing de-
gree of interest. We consider the first M conditions of this
set as mandatory. M is an integer in the range [0, K] and it
is specified (explicitly or implicitly) with the help of a
criterion, whose expression may be one of those used for
interest criteria. For example, such a criterion may specify
that preferences with a degree of interest equal to 1 are
considered mandatory. In addition, the number L, which is
an integer in the range [0, K - M], may be specified either
explicitly or implicitly by specifying the minimum degree
of interest d for every row in the results (each row may
satisfy one or more preferences).

Given the parameters M and L, the personalized query
can be constructed following two different (but equivalent)
approaches.

The most straightforward way is to build a single com-
plex qualification that is a conjunction of:
� The conjunction of the mandatory conditions, and
� The disjunction of all possible conjunctions of L con-
ditions from the remaining K - M ones.

The qualification is embedded into the original query
and any repeated conditions are removed. Furthermore,
any additional tuple variables required for the preference
conditions are also incorporated into the query.

We refer to this approach as SQ (Single Query).
Example. Returning to our example, Julie’s initial re-

quest is transformed into the following personalized query:
select distinct MV.title
from MOVIE MV, PLAY PL, CAST CA, ACTOR AC,

GENRE GN, DIRECTED DD, DIRECTOR DI
where MV.mid=PL.mid and PL.date=‘2/7/2003’ and (

((MV.mid=GN.mid and GN.genre=‘comedy’
and MV.mid=CA.mid and CA.aid=AC.aid
and AC.name=‘N. Kidman’)) or

((MV.mid=CA.mid and CA.aid=AC.aid
and AC.name=‘N. Kidman’
and MV.mid=DD.mid and DD.did=DI.did
and DI.name=‘D. Lynch’)) or

((MV.mid=GN.mid and GN.genre=‘comedy’
and MV.mid=DD.mid and DD.did=DI.did
and DI.name=‘D. Lynch’)))

The second approach is to formulate a set of K - M que-
ries, each one containing a simpler qualification, which is
a conjunction of the mandatory conditions, and one condi-
tion from the remaining K - M ones. Each of these queries

is built around the initial query extending it with the corre-
sponding qualification and the set of new tuple variables
used in the latter. The expected results are obtained by
taking the union of the partial results, grouping by the pro-
jected attributes of the initial query, and excluding all
groups containing less than L rows.

We refer to this approach as MQ (Multiple Queries).
Example. Following this approach, Julie’s initial re-

quest is transformed into the following personalized query:
select MV.title
from ((select distinct MV.title

from MOVIE MV, PLAY PL, MGENRE GN
where MV.mid=PL.mid and

PL.date=‘2/7/2003’ and
MV.mid=GN.mid and
GN.genre=‘comedy’)

Union All
(select distinct MV.title

from MOVIE MV, PLAY PL,
CAST CA, ACTOR AC

where MV.mid=PL.mid and
PL.date=‘2/7/2003’ and
MV.mid=CA.mid and
CA.aid=AC.aid and
AC.name=‘N. Kidman’)

Union All
(select distinct MV.title

from MOVIE MV, PLAY PL,
DIRECTED DD, DIRECTOR DI

where MV.mid=PL.mid and
PL.date=‘2/7/2003’ and
MV.mid=DD.mid and
DD.did=DI.did and
DD.name=‘D. Lynch’)) TEMP

group by MV.title
having count(*) >= 2

The MQ approach has some obvious advantages com-
pared to the first one. Provided that each partial query re-
turns results accompanied with their degree of interest, the
following options are possible:
� L may also be specified implicitly by providing a de-
sired minimum degree of interest d in every row in the
results. Using the MQ approach, it is easy to build a query
that returns results that have an estimated degree of inter-
est greater than d. The only modification required is the
replacement of the having part of the query with this one:

having DEGREE_OF_CONJUNCTION(*) > d
where DEGREE_OF_CONJUNCTION is an aggregate

function that calculates the degree of interest in a row re-
turned that satisfies a conjunction of preferences, i.e., is
returned by a set of partial queries.
� It is easy to rank results based on their estimated de-
gree of interest. The afore-mentioned aggregate function is
included into the select part of the query and results are
ordered based on the values returned by this function us-
ing an appropriate order by clause.

An apparent drawback of MQ compared to SQ seems to
be the repetitive execution of the mandatory part of the
query. We have implemented and evaluated both ap-
proaches.

Independent of the preference integration method used
(SQ vs. MQ), construction of conjunctions of conditions is
not straightforward. Two issues must be considered:

(a) Conflicting conditions
As already mentioned in a previous section, conflicting

conditions cannot be concurrently satisfied, i.e., combined
into a conjunction. Therefore, they can only be combined
using disjunction, and they are essentially treated as “one”
condition. This has the same effect to excluding from the
qualification of a query all conjunctions that contain con-
flicting conditions, and results in a reduction of the size of
the SQL query that must be parsed and executed with ob-
vious benefits.

In the current implementation, we deal with syntacti-
cally conflicting conditions as defined in section 5.

(b) Common tuple variables
Conditions may share common relations (apart from

those belonging to the original query). This fact gives rise
to the question of whether common or different tuple vari-
ables should be used, when building conjunctions of the
former. This may occur in the following cases.

Case 1: Conditions map to paths that traverse different
sets of nodes on the personalization graph till they meet at
a node (relation). The same or different tuple variables
may be possibly used for this relation.

Case 2: Conditions share a common initial transitive
join followed by atomic selections or different transitive
joins. In the latter case, if common atomic joins are to-one
in the direction of the selection, then using common tuple
variables for all common relations is the only option. If
these conditions are conflicting, then the use of disjunction
is mandatory. On the other hand, if there is a common
atomic join in the direction of the selection that is to-
many, it is possible to use different tuple variables at this
point. If more than one such joins exist, then the decision
may be taken in any of these points.

In both cases 1 and 2, the use of common tuple vari-
ables imposes an additional constraint that all conditions
should be met by the same object. However, such a con-
straint is not expressed in the preference model, which
assumes single, independent preferences. For instance,
consider the following preferences:

MOVIE.mid=CAST.mid and CAST.role=‘Batman’

MOVIE.mid=cast.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘A. Hopkins’

Their conjunction using the same tuple variables quali-
fies films in which A. Hopkins played the role of Batman.

Furthermore, if common variables are used, preferences
on the same attribute that are not conflicting are forced to
be treated as “one” condition. Consider the following pref-
erences:

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘I. Rossellini’

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘A. Hopkins’

If common tuple variables are used, a conjunction that

explicitly qualifies movies that both actors star is excluded
from the qualification of the desired results.

Based on the above observations, when a choice is pos-
sible, different tuple variables should be used and this ac-
tion should be performed as close as possible to the start of
the paths (i.e. at the first to-many common atomic join of
these paths).

7. Experimental Results

In order to evaluate the proposed framework, we have

implemented a prototype system on top of Oracle 9i. In
this section, we present results of our experiments. Our
data primarily comes from the Internet Movies Database
[13]. The schema described in the motivating example
represents part of the actual database created for the ex-
periments, which contains information about over 340000
movies. User profiles are stored in a separate table. For the
experiments we have used both synthetic and real user
profiles. The former were automatically produced with the
use of a profile generator. Real profiles were populated by
individuals.

We ran four different sets of experiments. In all these
experiments, we used a set of 100 randomly created que-
ries and we considered the number of mandatory prefer-
ences M equal to zero. (All times are shown in millisec-
onds).

Effect of Profile Size on Preference Selection Time.
In this set of experiments, we measured the execution time
of the preference selection algorithm (Preference Selection
Time) for varying profile sizes. We consider the number of
atomic selections in a profile as the profile size. For each
different value of it, we used 100 profiles of that size. We
measured the Preference Selection Time for each query
and profile combination, for L=1. We ran the experiments
three times, using a different number of preferences (K=5,
10, 15). Figure 6 summarizes our results. In this figure, we
have calculated the average Preference Selection Time,
grouped by the profile size for different values of K.

Preference Selection Time with Profile Size

0

0,01

0,02

0,03

0,04

0,05

0,06

10 20 30 40 50 60 70 80 90 100

Profile Size

Pr
ef

er
en

ce
 S

el
ec

tio
n

Ti
m

e

K=5

K=10

K=15

Figure Figure Figure Figure 6666. P. P. P. Prefrefrefref.... Selection Time with Profile Size Selection Time with Profile Size Selection Time with Profile Size Selection Time with Profile Size

We show that, when the size of the profile is smaller,
Preference Selection Time is longer. This is primarily due
to the fact that, in small profiles, there is a greater prob-
ability that preferences are sparsely placed over the
schema graph, resulting in more database accesses.

Size of the Results of personalized queries. In this set
of experiments, we measured the change in the size of the
results obtained from the personalized queries compared to
those obtained from the original ones. We chose 200 ran-
dom user profiles and ran the personalization algorithm for
several different values of K and L parameters. In each
run, we calculated the percentage of rows returned by the
personalized query to those returned by the initial one.

(a)

Size of the Results of Personalized Queries with K

0
10
20
30
40

50
60
70
80
90

10 20 30 40 50

Number of Preferences K

%
 o

f
Ro

w
s

of
 th

e
In

iti
al

 Q
ue

ry

(b)

Size of the Results of Personalized Queries with L (K=10)

0

2
4

6

8

10
12

14

16
18

20

1 2 3 4 5 6 7 8 9 10

Minimum Number of Preferences L

%
 o

f R
ow

s
of

 th
e

In
iti

al
 Q

ue
ry

(c)

Size of the Results of Personalized Queries with L (K=60)

0
10
20
30
40
50
60
70
80
90

1 5 10 15 20 25
Minimum Number of Preferences L

%
 o

f R
ow

s
of

 th
e

In
iti

al
 Q

ue
ry

Figure Figure Figure Figure 7777. . . . Size of rSize of rSize of rSize of resultsesultsesultsesults ofofofof ppppersonalized querersonalized querersonalized querersonalized queriesiesiesies
The results follow the trends expected by the nature of

K and L: Figure 7(a) shows the increase in the relative size
of the query results as K ranges between 10 and 50 and
L = 1. Figures 7(b) and 7(c) show the reduction in the rela-
tive result size as L ranges between 1 and 10 and K is 10
and 60, respectively. It is interesting to observe that de-
spite the expected difference in scales of the axes of the
last two graphs, the shapes of the two curves are very simi-
lar to each other.

Comparison of SQ and MQ. In this set of experiments,
we compared the performance of SQ and MQ integration
approaches. We chose a set of 200 random profiles and ran
each preference integration method for several different
values of K and L parameters. The results are presented in
Figures 8 and 9. Figure 8 shows that, for varying K and
L = 1, the preference integration time using MQ is practi-
cally zero. For SQ, this time increases, mostly because it
spends time on trying to eliminate repeated conditions and
build a minimal query. Experiments not presented in this

paper, have shown that if a small query is built, then the
execution time of the personalized query is significantly
reduced and overall performance of the method is im-
proved. Nevertheless, MQ execution times are better. This
is explained by the fact that as more preferences come into
the query, each result is returned more times by SQ (due to
the existence of many joins and the semantics of SQL) and
then the duplicates need to be eliminated.

Preference Integration Times with K

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0 5 10 20 30 40 50 60

Number of Preferences K

Pr
ef

er
en

ce
 In

te
gr

at
io

n
Ti

m
e

SQ
MQ

Execution Times with K

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 5 10 20 30 40 50 60

Number of Preferences K
Ex

ec
ut

io
n

Ti
m

e

SQ
MQ

Figure Figure Figure Figure 8888. . . . Comparison of Comparison of Comparison of Comparison of SQSQSQSQ and and and and MQMQMQMQ withwithwithwith K

Figure 9 shows that, for varying L and K = 10 prefer-
ence integration times using MQ are practically zero. In
addition, execution times of queries constructed using MQ
are better than those for SQ’s. This is due to the fact that
SQ depends on the number

)!(!

)!(

LMKL

MK
L

MK

−−

−

=

−

 of com-

binations it has to build, while MQ depends on the number
K - M of simple queries it has to construct.

Preference Integration Times with L (K=10)

0

0,001

0,002

0,003

0,004

0,005

0,006

1 2 3 4 5 6 7 8 9 10

Minimum Number of Preferences L

Pr
ef

er
en

ce
 In

te
gr

at
io

n
Ti

m
e

SQ
MQ

Execution Times with L (K=10)

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10

Minimum Number of Preferences L

Ex
ec

ut
io

n
Ti

m
e

SQ
MQ

Figure Figure Figure Figure 9999. . . . Comparison of Comparison of Comparison of Comparison of SQSQSQSQ and and and and MQMQMQMQ withwithwithwith L

Performance of Personalization. In this set of ex-
periments, we evaluated the performance of personaliza-
tion. We chose a set of 200 random profiles. We have em-
ployed the MQ approach. As Figure 10 shows, the overall
time for personalization of a query and execution of the
personalized one is less than the time required for the exe-
cution of the initial one. Most specifically, personalization
performs well with K and is independent of L.

Performance of Personalization with K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 20 30 40 50 60

Number of Preferences K

Ti
m

e

Initial Query Exec.Time

Personal. Query Exec.Time

Personalization Time

Performance of Personalization with L (K=10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Minimum Number of Preferences L

Ti
m

e

Initial Query Exec.Time

Personal. Query Exec.Time

Personalization Time

Figure Figure Figure Figure 10101010. . . . Performance of PPerformance of PPerformance of PPerformance of Personalizationersonalizationersonalizationersonalization

8. Conclusions and Future Work

We have presented a personalization framework for da-

tabase queries based on information stored in structured
user profiles that keep single, unconditional preferences.
We have formulated the main personalization step as a
graph computation problem and we have presented and
evaluated, through a number of experiments, algorithms
for the personalization of a query.

We are currently working towards extending our model
in order to encompass more types of preferences, such
negative and soft ones, and personalizing queries using
these types. We are also interested in combining personal
preferences with other aspects of a query’s context that
call for query customization, such as time of day, user lo-
cation, device used for querying, etc, and see what kind of
statistics may be additionally needed and how they are
obtained. Experiments with humans are performed to so-
lidify the evidence on the effectiveness of the approach.

We are also interested in investigating ways of optimiz-
ing personalized queries in terms of running time and re-
sult size constraints. Our future plans include the study of
other ways for the efficient execution of personalized que-
ries and the delivery of top-N results in order of the esti-
mated of degree of interest. Other challenging issues in-
clude the identification of related and conflicting prefer-
ences at the semantic level, the evaluation of various func-

tions for disjunctive and conjunctive preferences and the
automatic construction of structured profiles. Finally, it is
interesting to see how database technology can be ex-
tended in order to support such functionality from
“within”, instead of implementing a system on top of a
database management system.
References
[1] R. Agrawal, E. Wimmers. A Framework for Expressing and

Combining Preferences. In Proc. of ACM SIGMOD, 2000.
[2] S. Agrawal, S. Chaudhuri, G. Das. DBXplorer: A System

For Keyword-Based Search Over Relational Databases. In
Proc. of Intl. Conf. on Data Engineering, 2002.

[3] G. Bhalotia, C. Nakhey, A. Hulgeri, S. Chakrabarti, S. Su-
darshan. Keyword Searching and Browsing in Databases
using BANKS. In Proc. of Intl. Conf. on Data Engineering,
2002.

[4] S. Chaudhuri, L. Gravano. Evaluating Top-k Selection
Queries. In Proc. of the 25th Int’l Conf. On VLDB, 1999.

[5] J. Chen, D. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A Scal-
able Continuous Query System for Internet Databases. In
Proc. of SIGMOD, 2000.

[6] M. Cherniack, E. Galvez, M. Franklin, S. Zdonik. Profile-
Driven Cache Management. In Proc. of Intl. Conf. on Data
Engineering, 2003.

[7] J. Chomicki. Querying with Intrinsic Preferences. In Proc. of
the 8th EDBT 2002.

[8] K. T. Claypool, L. Chen and E. Rundensteiner. Personal
Views for Web Catalogs. Bulletin of the Technical Commit-
tee on DE, March 2000 Vol. 23 No. 1.

[9] A. Collins, M. Quillian. Retrieval Time from Semantic
Memory. J. of Verbal Learning and Verbal Behaviour, Vol
8, pp. 240-247, 1969.

[10] D. Florescu, D. Kossmann, I. Manolescu. Integrating Key-
word Search into XML Query Processing. 9th WWW Con-
ference 2000, Computer Networks, 33(1-6): 119-135.

[11] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. In Proc. of the 28th Int’l
Conf. On VLDB, 2002.

[12] V. Hristidis, N. Koudas, Y. Papakonstantinou. PREFER: A
System for the Efficient Execution of Multi-parametric
Ranked Queries. In Proc. of ACM SIGMOD, 2001.

[13] Internet Movies Database. Available at www.imdb.com
[14] W. Kießling, G. Köstler. Preference SQL-Design, Imple-

mentation, Experiences. In Proc. of the 28th Int’l Conf. On
VLDB 2002.

[15] L. Liu, C. Pu, W. Tang. Continual Queries for Internet Scale
Event-Driven Information Delivery. TKDE 11(4), pages
610-628, 1999.

[16] F. Perich, S. Avancha, D. Chakraborty, A. Joshi, Y. Yesha.
Profile driven Data Management for Pervasive Environ-
ments. DEXA 2002, LNCS 2453, pp.361 –370, 2002.

[17] J. Pitkow, H. Schutze, T. Cass, R. Cooley, D. TurnBull, A.
Edmonds, E. Adar, T. Breuel. Personalized Search.
Communications of the ACM, Vol. 45(9) September2002.

[18] C. Shahabi, F. Banaei-Kashani, Y. Chen, D. McLeod. Yoda:
An Accurate and Scalable Web-based Recommendation
System. In Proc. of 9th Int’l Conf. On COOPIS, 2001.

[19] B. Smyth, K. Bradley, R. Rafter. Personalization Techniques
for Online Recruitment Services. Communications of the
ACM Vol 45, 2002.

