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Abstract 
As information becomes available in increasing 
amounts to a wide spectrum of users, the need for 
a shift towards a more user-centered information 
access paradigm arises. We develop a personal-
ization framework for database systems based on 
user profiles and identify the basic architectural 
modules required to support it. We define a pref-
erence model that assigns to each atomic query 
condition a personal degree of interest and pro-
vide a mechanism to compute the degree of inter-
est in any complex query condition based on the 
degrees of interest in the constituent atomic ones. 
Preferences are stored in profiles. At query time, 
personalization proceeds in two steps: (a) prefer-
ence selection and (b) preference integration into 
the original user query. We formulate the main 
personalization step, i.e. preference selection, as 
a graph computation problem and provide an ef-
ficient algorithm for it. We also discuss results of 
experimentation with a prototype query personal-
ization system. 
 
 

1. Introduction 
 
When asking Lisa, your favourite bookseller, 

‘Are there any good new books?’, 
you would prefer to receive an answer like 

‘The Order of the Phoenix’ and ‘Matisse and Picasso’ 
if you like author J.K. Rowling and you are also a fan of 
20th century art, instead of an answer like 

‘Essentials of Asian Cuisine’ 
if you are not into cooking, or even  

‘The new releases are in aisles 4 and 5’. 
The personal relationship this bookseller has with you and 
her other favourite customers allows her to give the first 
answer to you, the second answer to someone else, and the 
third answer to no-one but brand new customers. 

Such personalized behaviour is now found not only in 

humans but also in several websites and other information 
retrieval systems, where the system response to a request 
is different based on various characteristics of the re-
questor. Unfortunately, such behaviour is absent from da-
tabase systems, which always provide the same response 
to everyone. Nevertheless, several emerging trends de-
mand a shift towards a more user-centered and generally 
context-dependent database access paradigm.  

Motivating Example. Consider a movies database de-
scribed by the schema below; primary keys are underlined. 

THEATRE(tid, name, phone, region),  
PLAY(tid, mid, date),  MOVIE(mid, title, year),  
CAST(mid, aid, award, role),  ACTOR(aid, name),  
DIRECTED(mid, did),  DIRECTOR(did, name),  
GENRE(mid, genre)  
Consider two users, Julie and Rob, both inquiring about 

what is shown tonight. Typically, this is done through 
some simple interface, which translates their requests in 
this SQL query:  

select MV.title
from MOVIE MV, PLAY PL
where MV.mid=PL.mid and PL.date=‘2/7/2003’

However, Julie likes comedies and thrillers, while Rob 
likes sci-fi movies and actress J. Roberts. Each user’s 
preferences could be stored in a user profile. Then, the 
system could automatically integrate them into the origi-
nal, predefined query, saving effort from the part of a user 
or a programmer, and it could return results ranked accord-
ing to their interest to the user. Julie would be more 
pleased with the results of the following query: 

select MV.title
from MOVIE MV, PLAY PL, GENRE GN
where MV.mid=PL.mid and PL.date=‘2/7/2003’ and

MV.mid=GN.mid and (GN.genre=‘comedy’
or GN.genre=‘thriller’)

Rob would prefer the results of this query: 
select MV.title
from MOVIE MV, PLAY PL, GENRE GN, CAST CA,ACTOR AC
where MV.mid=PL.mid and PL.date=‘2/7/2003’ and

MV.mid=GN.mid and MV.mid=CA.mid and
CA.aid=AC.aid and (GN.genre=‘sci-fi’ or
AC.name=‘J. Roberts’)

In this paper, we take a step towards such personalized 



query answering in database systems. The general archi-
tecture of a Personalized Database System is depicted in 
Figure 1 and includes several modules surrounding a tradi-
tional Content Access module. The system keeps a reposi-
tory of user information (User Profiles) that is either in-
serted explicitly by the user or collected implicitly by 
monitoring user interaction with the system (Profile Crea-
tion). This profile information is integrated into an incom-
ing request both during content selection (Query Personal-
ization) as well as result presentation (Presentation Per-
sonalization) and thus the overall user experience is per-
sonalized. This paper concentrates on taking advantage of 
User Profiles for Query Personalization for conjunctive 
queries in the relational model. It is not concerned with 
how the profiles were generated or with how result presen-
tation may be personalized, both of which are part of our 
future work.  

Contributions. The main contributions of the paper are 
the following: 
� Query personalization framework. The major steps for 
personalization of database queries based on information 
stored in atomic user profiles are: (a) preference selection, 
where the preferences relevant to the query and most in-
teresting to the user are derived from the user profile, and 
(b) preference integration, where the derived preferences 
are integrated logically into the original query producing a 
modified, personalized one, which is actually executed. 
We formulate the main personalization step, i.e., prefer-
ence selection, as a graph computation problem and pro-
vide an efficient algorithm for it.  
� Preference model for user profiles. User preferences 
are stored as degrees of interest in atomic query elements 
(e.g., individual selection conditions), which may be used 
to transform a query. The degree of interest expresses the 
interest of a person to include the associated condition into 
the qualification of a given query. Specific logic is intro-
duced for derivation of preferences for complex query 
structures building on stored atomic ones. In this way, 
results of a query are ranked based on the estimated degree 
of interest in the combination of preferences they satisfy. 
� Experimental results. The proposed mechanism has 
been implemented and it is discussed through a set of ex-
periments that show its potential. 

To the best of our knowledge, this work represents the 
first solution towards smooth integration of personaliza-
tion and database queries with the use of structured user 
profiles.  

Outline. The rest of the paper is organized as follows: 
Section 2 presents related work. Section 3 describes the 
preference model for user profiles. Section 4 establishes 
the query personalization framework. Sections 5 and 6 
describe the preference selection and preference integra-
tion steps of personalization, respectively. Section 7 pre-
sents results of experimentation with a prototype system. 

Finally, Section 8 presents ongoing and future work and 
conclusions. 
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2. Related Work 

 
We will discuss related work using the following axes: 

content selection approaches, user profiles, user prefer-
ences and ranking of results. 

Content selection approaches can be broadly classi-
fied into three main categories.  

(a) Query-based approaches. Content selection is per-
formed on the basis of a query issued. Traditional Data-
base and IR systems fall in this category as well as two 
recent lines of database research inspired from IR, namely 
keyword searches [2, 3, 10, 11] and best-match query an-
swering [1, 7, 12, 14, 4].  

(b) Filter-based approaches. Content selection is driven 
by a long-term information need stored in a user profile, 
which is considered as a form of a continuously executing 
query [18, 5, 15]. 

(c) Personalized approaches. Content selection is based 
on a combination of a user query and preferences stored in 
a profile. The role of user profiles is twofold: they are used 
to focus searches and to rank results returned. Few IR sys-
tems [17] use them for both purposes simultaneously. 
Most of them [19] perform only result ranking. Database 
systems [8] focus on the construction of personal web 
views over database views using rules for embedding user 
data and propagating changes. In this paper, we propose a 
personalization framework for database queries based on 
user preferences stored in profiles. We use these to focus 
searches and to rank results. Preferences are dynamically 
extracted from a profile and incorporated into a user re-
quest. Results are ranked based on the preferences they 
satisfy. The whole process is independent of any changes 
taking place in the profiles. As far as we know, this ap-
proach is absent from the field of databases. 

User profiles have been broadly used for information 
retrieval and filtering [17, 18, 19] of text-based data items 
and they typically represent user preferences in terms of a 
single or multiple keyword vectors. User profiles have also 
been used for providing data management hints for pre-
loading and pre-staging caches in distributed environments 



[6, 16]. In this paper, we store user preferences in terms of 
atomic query constructs in profiles and we use them for 
individualizing user requests.  

User preferences provided either as query criteria or 
stored in profiles are of various types [7]: unconditional, 
conditional, multi-value etc. They are expressed as (a) 
hard constraints, that are either satisfied or not satisfied at 
all; or (b) soft constraints, that should be fulfilled as 
closely as possible [1, 12, 4]. Traditional SQL treats pref-
erences as hard constraints. Soft preferences may be asso-
ciated with a number indicating user satisfaction depend-
ing on how close a value is to the preferred one. Prefer-
ences on numerical data can be expressed as soft con-
straints (e.g., price near $20), while preferences on cate-
gorical data can be expressed as hard constraints (e.g., I 
prefer W. Allen). In this paper, we are concerned with 
unconditional, single-value preferences expressed as hard 
constraints. Each preference is associated to a number, 
which, in our case, indicates the user interest in results that 
exactly satisfy this preference. Moreover, we build on the 
database structure to derive implicit preferences, i.e., pref-
erences not stored in the profile but inferred from the asso-
ciations of objects in the database. Incorporating other 
types of preferences within our framework is part of ongo-
ing work. 

Ranking of results is performed in several approaches: 
results are ordered based on the number of joins they in-
volve [2, 3, 11] or based on how closely they match user 
preferences [1, 12]. In this paper, we provide a mechanism 
for estimating the degree of interest in a combination of 
preferences and we rank results returned by a personalized 
query, based on the combined degree of interest of the 
preferences they satisfy. For instance, if a user prefers ac-
tor W. Allen to R. Atkinson, a query that considers both of 
these preferences would return first results satisfying both, 
followed by these satisfying the top preference and then, 
those matching the second one. 

 
3. User Preference Model  

 
Without loss of generality, we focus on SPJ (Select-

Project-Join) queries over relational databases. In par-
ticular, we focus on queries, whose qualification is a com-
bination of disjunctions and conjunctions of atomic selec-
tion and join conditions, producing a result from atomic 
projections of attributes.  

Given our focus on personalization of queries, our pref-
erence model assigns preferences to query constructs, 
which may then be used to transform, i.e., personalize, a 
given query. For instance, Julie’s interest in director W. 
Allen is expressed as a preference for the condition: 

DIRECTOR.name=‘W. Allen’

Furthermore, as entities are mutually related, prefer-
ences on one imply preferences on the other. For example, 
if Julie is interested in director W. Allen, then she also 

likes movies directed by him, expressed as a preference for 
the condition: 

MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’

Note how the particular database schema affects prefer-
ences, in the sense that the condition associated with a 
desired preference is expressed through joins dictated by 
the schema. Finally, in a similar fashion, preferences may 
be expressed on arbitrary logical combinations of condi-
tions, e.g., comedies directed by W. Allen.  

In the following subsections, we provide a formal de-
scription of the preference model illustrated above, starting 
from the simplest of conditions and building up. 

 
3.1. Stored Atomic User Preferences 

 
Our approach to personalization is based on maintain-

ing, for every user, a user profile whose structure is inti-
mately related to the features of the data and query mod-
els. In particular, we assume that user preferences are 
stored at the level of atomic elements of queries, i.e., 
atomic selection or join conditions, which are therefore 
called atomic user preferences. A user's interest in an 
atomic query element is expressed in the form of a degree 
of interest, which is a real number in the range [0, 1]. 
Value 0 indicates lack of any interest in the atomic condi-
tion from the user part, while value 1 indicates extreme 
(‘must-have’) interest. In practice, zero-valued preferences 
are not stored in a user profile.   

The degree of interest associated with an atomic condi-
tion expresses the interest of the user to include the condi-
tion into the qualification of a given query (if appropriate) 
to further restrict (or sometimes expand) the universe of 
data that generates the query result. For the sake of sim-
plicity in our examples, we concentrate only on equality 
selections and joins. 

A particular user’s preferences over the contents of a 
database can be expressed on top of the personalization 
graph of the database. This is a directed graph G(V, E) (V 
is the set of nodes and E is the set of edges) that is an ex-
tension of the traditional schema graph. There are three 
types of nodes in V: 
� relation nodes, one for each relation in the schema 
� attribute nodes, one for each attribute of each relation 

in the schema 
� value nodes, potentially one for each possible value of 

each attribute of each relation in the schema. In es-
sence, only those that have any interest to a particular 
user need to be specified 

Likewise, there are two types of edges in E: 
� selection edges, from an attribute node to a value node; 

such an edge represents the potential selection condi-
tion connecting the corresponding attribute and value 

� join edges, from an attribute node to another attribute 
node; such an edge represents the potential join condi-



tion between the corresponding attributes. These could 
be joins that arise naturally due to foreign key con-
straints, but could also be other joins that are meaning-
ful to the designer. Finally, for reasons that will become 
clear later, two attribute nodes could be connected 
through two different join edges, in the two possible di-
rections 
Moreover, given the one-to-one mapping between 

edges in the personalization graph and atomic query ele-
ments, it is natural to indicate degrees of interest as labels 
on the graph's edges.  

Example. Julie prefers theatres located downtown. She 
is a fan of comedies, enjoys thrillers, and likes adventures 
to a lesser extent. As far as directors are concerned, her 
favourite is D. Lynch followed by W. Allen. With respect 
to actors, she likes N. Kidman followed by A. Hopkins 
and I. Rossellini. These preferences are expressed as de-
grees of interest in specific atomic selections. Moreover, 
she has preferences expressed over the joins between the 
relations of the schema, to allow queries on one to take 
into account her preferences on the others. For example, 
she considers the director of a movie more important than 
the cast. All of Julie’s preferences are stored in her profile, 
part of which is given in Figure 2. Her profile is also de-
picted graphically in the personalization graph of Figure 3. 

[ THEATRE.tid=PLAY.tid, 1 ]
[ PLAY.tid=THEATRE.tid, 1 ]
[ PLAY.mid=MOVIE.mid, 1 ]
[ MOVIE.mid=PLAY.mid, 0.8 ]
[ MOVIE.mid=GENRE.mid, 0.9 ]
[ ACTOR.name=‘A. Hopkins’, 0.8 ]
[ GENRE.genre=‘comedy’, 0.9 ]
[ GENRE.genre=‘thriller’, 0.7 ]
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The level of a user's desire to include a join into a query 

qualification may be different depending on which relation 
of the join is already there. For this reason, a join condi-
tion may be associated with two different degrees of inter-
est. For example, when Julie inquires about theatres, she 
considers information on movies more significant than the 
other way around. Thus, two distinct entries (rows 3 and 4) 

for the same join between relations MOVIE and PLAY but 
with different degrees are stored in her profile as shown in 
Figure 2. The left part of a join of the profile corresponds 
to the relation already included in the query qualification. 
This is indicated in the personalization graph with two 
distinct edges with different labels corresponding to this 
condition, one for each possible direction from the node 
already included in the query to the one that is not. 

Preferences may evolve through time. Thus, Figure 2 
and Figure 3 illustrates an instance of Julie’ profile for a 
given point in time. The query personalization process is 
not affected by changes in the profiles, since it automati-
cally integrates recorded preferences in user requests.  

 
3.2. Implicit/Transitive User Preferences 

 
By composing atomic user preferences that are adjacent 

in the personalization graph (hence, composable), one is 
able to build transitive user preferences, i.e., preferences 
expressed through relationships. Given the one-to-one 
mapping between edges in the personalization graph and 
atomic query elements, a transitive user preference is 
mapped to a directed path in the personalization graph. 

In analogy to atomic user preferences (atomic selec-
tions and joins), we consider the following types of transi-
tive preferences:  
� Transitive Join is mapped to a path in the personaliza-

tion graph between two attribute nodes. The path is 
comprised of composable atomic join edges and repre-
sents the potential “implicit” join condition between the 
corresponding attributes. 

� Transitive Selection is mapped to a path in the personal-
ization graph from an attribute node to a value node. 
Such a path is comprised of n-1 atomic join edges and 
one selection edge and represents the potential “im-
plicit” selection condition connecting the corresponding 
attribute and value. That is, a transitive selection is the 
combination of a transitive join and an atomic selection 
that are composable. 
A transitive query element is defined as the conjunction 

of the constituent atomic ones. 
In analogy to atomic user preferences, the degree of in-

terest associated with a transitive preference expresses the 
interest of the user to include the corresponding transitive 
query element into a given query, if appropriate. More-
over, the degree of interest in a transitive preference 
should be a function of the degrees of interest in the par-
ticipating atomic preferences. In principle, one may imag-
ine several such functions. Any one of them, however, 
should satisfy the condition below, in order to be intuitive. 

Transitive Preference. Consider a set PN of N compos-
able atomic preferences and the set DN of corresponding 
degrees of interest: 

DN = {di | di: degree of interest in Pi∈PN, i = 1… N}. 
For any function f⊗ calculating the degree of interest in 



a transitive preference formed by the atomic preferences in 
PN, the following must hold: 

f⊗(DN) ≤ min(DN). 
In other words, the degree of interest in a transitive 

preference decreases as the length of the corresponding 
directed path increases, capturing human intuition and 
cognitive evidence [9]. Thus, we have decided to choose 
multiplication as the function f⊗: 

f⊗(DN) = d1d2 … dN. 
This transitive preference function essentially ap-

proaches 0 as more and more preferences are added to the 
combination.  

Example. Julie likes the actress N. Kidman, which is 
expressed as a preference for the selection ACTOR.
name=‘N. Kidman’ with a degree of interest equal to 
0.9. Then, she also likes movies starring the same actress, 
expressed as an implicit preference for the condition: 

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and

ACTOR.name=‘N. Kidman’

The degree of interest associated with the correspond-
ing transitive preference is the product of the degrees of 
the constituent conditions, which based on her profile, 
gives 0.8*1*0.9=0.72.  

Note that any directed path in the personalization graph 
could map to a transitive preference. However, based on 
human intuition and cognitive evidence [9], we deal with 
acyclic paths only. It is rather unlikely and unnatural that a 
cyclic directed path would express a confirmed user pref-
erence. Moreover, cycles have termination problems. 

 
3.3. Logical Combination of User Preferences 

 
Given a set of user preferences, whether atomic or tran-

sitive, one may form logical combinations of them, 
through the Boolean operators ‘and’ and ‘or’. These 
result in complex conjunctive and disjunctive preferences, 
respectively, with the natural corresponding semantics. 

Again, as with transitive preferences, the degree of in-
terest in complex preferences should be a function of the 
degrees of interest in the participating preferences. In prin-
ciple, one may imagine several such functions for either 
conjunctive or disjunctive preferences, the appropriateness 
of each one being judged only by the philosophy of the 
approach taken towards personalization. Nevertheless, 
there are certain conditions that these functions should 
satisfy to be intuitive. These are stated below. Consider a 
set PN of N preferences (atomic or transitive) and the set 
DN of corresponding degrees of interest: 

DN = {di | di: degree of interest in Pi∈PN, i = 1… N}. 
Conjunctive Preference. For any function f

∧∧∧∧
 calculating 

the degree of interest in the conjunction of the preferences 
in PN, the following must hold: 

f
∧∧∧∧ (DN) ≥ max(DN). 

In other words, the degree of interest in multiple prefer-
ences satisfied together increases with the number of these 
preferences. 

Disjunctive Preference. For any function f
∨∨∨∨
 calculating 

the degree of interest in the disjunction of the preferences 
in PN, the following must hold: 

min(DN) ≤ f
∨∨∨∨ (DN) ≤ max(DN). 

That is, the degree of interest in satisfying one of sev-
eral preferences is between the highest and the lowest de-
gree of interest among the original preferences. 

In our approach, we have decided to choose functions 
f
∧∧∧∧ and f

∨∨∨∨
 that place equal weight on each member of DN 

maintaining some smoothness properties as more degrees 
of interest are inserted in it. In particular, we have chosen 
the following functions: 

f
∧∧∧∧ (DN) = 1 – (1-d1) (1-d2) … (1-dN), 

 f
∨∨∨∨ (DN) = (d1 + d2 + … + dN)/N. 

The conjunctive preference function essentially ap-
proaches 1 as more and more preferences are added to the 
combination, each participating degree of interest reducing 
the overall difference from 1 by a factor that is equal to its 
own difference from 1. The disjunctive preference func-
tion is just the average of the participating degrees of in-
terest. Clearly, each function satisfies the corresponding 
condition mentioned above and both treat the degrees of 
interest in their input in a balanced way, as desired. 

Example. Consider the following transitive selections, 
expressing interest in movies directed by W. Allen and 
comedies, respectively: 

MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’

Based on Julie’s profile, the degree of interest in come-
dies directed by W. Allen, i.e., in the conjunction of the 
above conditions is equal to 1-(1-1*1*0.7)(1-

0.9*0.9)=0.943. On the other hand, her degree of inter-
est in going to either a comedy or a W. Allen movie, i.e., 
in the disjunction of the above, is equal to 
(0.7+0.81)/2=0.755. 

Although there is no formal justification that functions 
f
∧∧∧∧
 and f

∨∨∨∨
 are appropriate for their role, the following theo-

rem provides some strong indication. Recall that PN is a 
set of N (atomic and transitive) preferences and DN the 
corresponding set of degrees of interest. Without loss of 
generality, further assume that di ≥ di+1 (1 ≤ i < N). 

Theorem: Let Ω be the set of all conditions that repre-
sent logical combinations of preferences in PN according 
to the personalization model, i.e., expressing satisfaction 
of any L of the K most interesting preferences of PN, (L ≤ 
K ≤ N). For any ω1ω1ω1ω1, ω2ω2ω2ω2 in Ω    with degrees of interest    d1 
and d2, if ω1ω1ω1ω1 is subsumed by ω2ω2ω2ω2 for all databases, i.e., re-
sult(ω1ω1ω1ω1) ⊆ result(ω2ω2ω2ω2), then d1 ≥ d2. 



This theorem captures the intuition that strictly smaller 
query answers are of strictly higher interest to the user, 
thus indirectly providing justification for the appropriate-
ness of the particular choices of f

∧∧∧∧
 and f

∨∨∨∨. Its proof is rela-
tively tedious and is omitted due to lack of space. It takes 
advantage of the earlier work on conjunctive query con-
tainment and properties of f

∧∧∧∧
 and f

∨∨∨∨. 
Having established a preference model for user profiles, 

we now turn to describing how it can be used for query 
personalization. 

 
4. Query Personalization Framework 

 
Query personalization is the process of enhancing a 

query with user-specific preferences stored in a profile. 
Given a query Q and a user profile U, a personalized query 
is built with the use of the following parameters: 
� the number K of top preferences derived from the user 

profile that should affect the query  
� the number M (0 ≤ M ≤ K) of top preferences from the 

set of the selected K ones that should be considered as 
mandatory, i.e. that should be definitely satisfied by all 
generated results  

� the number L (L ≤ K - M) of the remaining K - M pref-
erences that should at least be met by the results   
Parameters K, M, and L can be specified with the use of 

various criteria. For example, a criterion for K could be 
that the top five preferences should affect the user request. 
A criterion for M could be that preferences with a degree 
of interest equal to 1 are considered mandatory. A criterion 
for L could be that at least two of the K - M preferences 
should be satisfied as well. These criteria may be provided 
at query time by the user or retrieved from the user profile 
based on information collected by the system. Alterna-
tively, they may be automatically derived at query time 
considering various aspects that comprise the context of a 
query. These include desired response time, available 
bandwidth, etc. For instance, if the user sends a request 
using her mobile phone, then the system may decide to 
consider a few top preferences; when the user switches to 
her computer, then the system may decide to consider all 
her preferences. Analysis of aspects comprising the query 
context is out of the scope of this paper. 

Given a query Q, a user profile U and criteria for the 
specification of parameters K, M, and L, query personaliza-
tion proceeds in two phases: 

(a) Preference Selection is the identification and extrac-
tion of the set of top K preferences recorded in the user 
profile that are relevant to the given query.  

(b) Preference Integration is the integration of the K se-
lected preferences into the query in order to produce a per-
sonalized one that will return results satisfying M of them 
and any L of the remaining ones. 

Execution of a personalized query returns a ranked list 
of results, where most interesting results (based on their 
estimated degree of interest) come first followed by results 
that are less interesting to the user.  

Example. We will consider the initial request about 
movies given in the motivating example. We assume that 
Julie has specified that at least L = 2 of her top K = 3 pref-
erences should be satisfied by the results; thus M = 0. We 
will see how the initial query can be personalized by the 
proposed framework given Julie’s profile.  

 
5. Preference Selection 

 
The first step of the personalization process deals with 

the extraction of the set PK of top K preferences from the 
user profile. A preference is extracted provided that it has 
the following properties: 

Property 1: It is related to the query. 
Property 2: It is not conflicting with the query. 
A preference may be related to or conflicting with a 

query at two different levels. 
Semantic level. In order to decide whether a preference 

is related to or conflicting with a query at this level, addi-
tional knowledge about the data is needed other than in-
formation derived from the data schema. For instance, a 
preference for W. Allen is semantically related to a query 
about comedies. On the other hand, a preference for M. 
Tarkowski is semantically conflicting with the same query, 
and, if conjunctively combined with it, no results will be 
returned.  
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Syntactic level. A preference is related to or conflicting 
with a query at this level, according to information pro-
vided by the data schema, as described below.  
� Syntactically related preferences 

A query can be represented as a sub-graph on top of the 
personalization graph. This sub-graph includes all the 
nodes corresponding to relations that participate in the 
query (possibly replicated if multiple tuple variables 
range over them) and all the selection and join edges 



corresponding to the atomic conditions of the query 
qualification. In all but the most artificial queries, this 
query graph should be connected. In addition, user 
preferences map to directed paths in the personalization 
graph. Thus a preference is syntactically related to a 
query, if it maps to a path that is attached to the query 
graph, specifically to a node involved in it, and expands 
outwards (i.e., it does not traverse this graph).  
In Figure 4, Julie’s initial query is depicted as a graph 
in grey colour on top of the personalization graph cor-
responding to her profile. An example of a (transitive) 
preference syntactically related to this query is this one. 
MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’ 
Preferences that are semantically related to a query are 
also syntactically related to it. The inverse is not gener-
ally true. 

� Syntactically conflicting preferences  
A preference is conflicting with a query, if it is conflict-
ing with a condition already there. Two conditions are 
syntactically conflicting, if they are comprised of a 
common transitive join and atomic selection conditions 
on the same attribute of a table and all constituent 
atomic joins, in the direction of the selection, are to-
one. For example, assume a query containing the condi-
tion theatre.region=‘uptown’; then the preference 
theatre.region=‘downtown’ cannot be included in 
the query, since a theatre can only be at one place. In 
the most general case, a preference may be conflicting 
with a query due to the existence of more than one con-
dition. To illustrate this, consider a query that contains 
the conjunction of these conditions: 
THEATRE.tid=PLAY.tid and PLAY.mid=MOVIE.mid and
MOVIE.title=‘The Last Dictator’

THEATRE.tid=PLAY.tid and PLAY.mid=MOVIE.mid and
MOVIE.title=‘The Last Mohican’

In addition, consider the condition:  
THEATRE.tid=PLAY.tid and PLAY.date=‘2/7/2003’ 
Although the latter is not conflicting with each query 
condition individually, the conjunction of the three re-
turns no results, since the given schema indicates that a 
theatre can play one movie at a time. 
We provide an algorithm for preference selection that is 

independent of the level at which conditions are consid-
ered related to or conflicting with a query. In the prototype 
system we have implemented, we deal with related and 
conflicting preferences at the syntactic level and we handle 
pair-wise conflicts. 

 
5.1. Problem Formulation 

 
The problem of preference selection is formulated as a 

graph computation problem as described below. 
The preference selection problem. Consider the per-

sonalization graph GP corresponding to a user profile, a 
query Q represented as a sub-graph on top of this graph, 

and a criterion CI, referred to as interest criterion, that is 
used for the specification of the top K preferences to be 
selected. We consider the set PN of all paths Pi in GP that 
are related to but not conflicting with Q in decreasing or-
der of their degree of interest, i.e.: 

PN = {Pi | i ∈ [1, N],   di-1 ≥ di }. 
Then, the set of K preferences that must be selected 

based on the given interest criterion, is the ordered subset 
PK = {Pi | i ∈ [1, K],   di-1 ≥ di } of PN such that:  
K = max({ t | t∈ [1, N]: CI(Pt) holds }). 
Possible expressions of CI(.) are given in Table 1. 

Table 1Table 1Table 1Table 1. . . . ExExExExpressions for interest criteriapressions for interest criteriapressions for interest criteriapressions for interest criteria    
Expression Description 
t ≤ r selects at most r preferences 
dt > d selects preferences with degree of in-

terest greater than d 
 selects preferences whose disjunction 

has a degree of interest greater than d 

 

selects preferences whose conjunction 
has a degree of interest greater than d 

 
5.2. Preference Selection Algorithm 

 
The Preference Selection algorithm takes as input a 

user query Q, a user profile U and an interest criterion CI. 
It generates a set of preferences PK derived from the user 
profile, that are related to but not conflicting with the 
query and whose number K is decided with the help of the 
criterion CI.  

The algorithm, presented in Figure 5, is based on a 
best-first traversal of the personalization graph Gp that 
corresponds to the profile U. The basic idea is to gradually 
construct directed paths in decreasing order of their de-
grees of interest, which begin from the query graph and 
expand outwards. In this way, all preferences that are syn-
tactically related to Q, are derived from the user profile in 
decreasing order of their degrees of interest. If we are in-
terested in semantic related preferences, then the algorithm 
may output only these, since they comprise a subset of the 
set of syntactically related ones. Thus the algorithm does 
not depend on the assumptions regarding related or con-
flicting preferences. Preferences that are conflicting with 
Q are discarded. When a path that corresponds to a selec-
tion is constructed, it is output, provided that it satisfies the 
interest criterion. The algorithm stops when no other pref-
erences that satisfy the interest criterion can be derived 
from the profile. 

More specifically, a queue QP of candidate preferences 
is kept in order of decreasing degree of interest. Initially, it 
contains all atomic query elements that are syntactically 
related to and not in conflict with the query. In each round, 
the algorithm picks from QP the candidate preference P 
with the highest degree of interest. Depending on the type 
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of the preference, we distinguish two cases: 
� P is a selection: If CI(PK ∪ {P}) holds and P is related 
to Q, then it is added to the set PK; If CI(PK ∪ {P}) does 
not hold, then the algorithm terminates.  
� P is a join: If CI(PK ∪ {P}) holds, then P is expanded 
into longer paths which are placed into QP; otherwise the 
algorithm terminates. A path P is expanded according to 
the following rule: a new path P ∧ ACi is generated for 
each atomic element ACi that is composable with P (i.e. 
adjacent to P in the personalization graph). Thus each P ∧ 
ACi is syntactically related to Q. Query elements ACis are 
considered in order of decreasing degree of interest. This 
helps pruning, as explained shortly, and it improves the 
time of insertion of new paths in the ordered QP.  
The new candidate is added to QP unless pruning takes 
place. A path P ∧ ACi is pruned under the following cir-
cumstances: (i) it expands to a relation already existent in 
P, or to a relation belonging to the query Q, in which case 
a cycle is generated; (ii) it is conflicting with the query Q; 
(iii) it is not semantically related to Q (if we are interested 
only in them); (iv) it does not satisfy the interest criterion.  
In the latter case, the algorithm stops expansion of P, since 
all paths generated from the remaining (not yet examined 
ACis) are guaranteed not to satisfy the criterion, since they 
are considered in order of decreasing degree of interest.  

Paths in QP are always in order of decreasing degree of 
interest. When a new path is added, it should be placed 
after the last path with degree greater than or equal to its 
degree, in order to favour the selection of preferences that 
correspond to shorter paths among those with the same 
degree of interest. 

Subsequently, we will show that the algorithm is com-
plete, i.e. it generates the desired set    PK as defined in the 
previous subsection. 

Theorem 1: The algorithm processes preferences that 
are (syntactically) related to query Q in decreasing order 
of degree of interest. 

Proof:  The algorithm keeps an ordered queue QP of 
paths. In each round, the head P of the queue (which has 
the greatest degree of interest) is picked and processed. 
Assume that P is a selection condition with degree of in-
terest d and CI(PK ∪ {P}) holds. Then, it will be inserted 
into PK. In order to prove the theorem, we will show that: 
(a) d is greater than (or equal to) the degree of interest of 
any other selection in QP, and 
(b) d is greater than (or equal to) the degree of interest of 
any other selection that will be generated by successive 
expansions of the preferences in QP. 

Since QP is ordered (a) holds. In addition, for each join 
condition Pj ∈ QP with degree of interest dj, it holds that 
d>dj. If Pj is expanded to Pj ∧ AC and AC has a degree of 
interest da then: 1 ≥ da ⇒ dj ≥ djda. Combining the two 
relations, it follows that d ≥ djda. It is clear that any selec-

tion that will be generated by successive expansions of the 
preferences already in QP, will have a lower degree of 
interest than d. Consequently (b) holds.� 

Based on the above theorem, the algorithm stops in-
spection of preferences in QP, when it encounters one that 
does not satisfy the interest criterion, since it is guaranteed 
that the remaining ones have lower degrees of interest. 
Furthermore, when the algorithm picks a join condition 
that does not meet the criterion, it stops on the ground that 
all preferences that will be generated by extending this 
join (and any subsequent join) shall not meet the criterion. 
Consequently, theorem 2 follows.  

Theorem 2 (Completeness): The algorithm is com-
plete i.e., it generates the set PK that contain all related 
preferences according to an interest criterion. 

Example. Returning to our example, after completion 
of the preference selection step, the personalization system 
has extracted the following selections from Julie’s profile: 

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’,

MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘D. Lynch’,

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘N. Kidman’

Preference Selection Algorithm 
Input: User profile U 
 User query Q 
 Interest Criterion CI  
Output:  Set of selections PK 

PK ={}, QP={} 
1.  Foreach atomic element ACi∈U syntactically related to Q 
1.1  If (ACi is conflicting with Q) Then discard ACi  

Else QP � ACi   End if 
End for 

2.  While (QP not empty)  
2.1 Get head P from QP 
2.2  If (P is selection) Then   

If (CI(PK ∪ {P})=TRUE) Then   PK �P       
Else   Stop   End if 

End if 
2.3 If (P is join) Then   

If (CIS(PK ∪ {P})=TRUE) Then   
Foreach atomic element ACi∈U composable with P 

If (CI(PK ∪ {P ∧ ACi})=FALSE) Then   Exit For   
End if 
If Not ((ACi joins to relation R∈P or R∈Q) or (P∧ACi 
is conflicting with Q)) and (P is related to Q) Then   

  QP�P ∧ ACi   End if 
End for 

Else 
Stop 

End if 
End if 

End while 
3. Output PK 

Figure Figure Figure Figure 5555.... Preference Selection Algorithm Preference Selection Algorithm Preference Selection Algorithm Preference Selection Algorithm    



 
6. Preference Integration 

 
The purpose of this step is to integrate the K selected 

preferences into the original query and produce a new, 
personalized query that will generate satisfactory results 
for the user, i.e., those satisfying the M top preferences of 
those and at least L preferences from the remaining K - M 
ones.  

Towards this direction, we consider the set of K prefer-
ences derived from the profile, in order of decreasing de-
gree of interest. We consider the first M conditions of this 
set as mandatory. M is an integer in the range [0, K] and it 
is specified (explicitly or implicitly) with the help of a 
criterion, whose expression may be one of those used for 
interest criteria. For example, such a criterion may specify 
that preferences with a degree of interest equal to 1 are 
considered mandatory. In addition, the number L, which is 
an integer in the range [0, K - M], may be specified either 
explicitly or implicitly by specifying the minimum degree 
of interest d for every row in the results (each row may 
satisfy one or more preferences). 

Given the parameters M and L, the personalized query 
can be constructed following two different (but equivalent) 
approaches.  

The most straightforward way is to build a single com-
plex qualification that is a conjunction of: 
� The conjunction of the mandatory conditions, and 
� The disjunction of all possible conjunctions of L con-
ditions from the remaining K - M ones. 

The qualification is embedded into the original query 
and any repeated conditions are removed. Furthermore, 
any additional tuple variables required for the preference 
conditions are also incorporated into the query.  

We refer to this approach as SQ (Single Query). 
Example. Returning to our example, Julie’s initial re-

quest is transformed into the following personalized query: 
select distinct MV.title
from MOVIE MV, PLAY PL, CAST CA, ACTOR AC,

GENRE GN, DIRECTED DD, DIRECTOR DI
where MV.mid=PL.mid and PL.date=‘2/7/2003’ and (

((MV.mid=GN.mid and GN.genre=‘comedy’
and MV.mid=CA.mid and CA.aid=AC.aid
and AC.name=‘N. Kidman’)) or

((MV.mid=CA.mid and CA.aid=AC.aid
and AC.name=‘N. Kidman’
and MV.mid=DD.mid and DD.did=DI.did
and DI.name=‘D. Lynch’)) or

((MV.mid=GN.mid and GN.genre=‘comedy’
and MV.mid=DD.mid and DD.did=DI.did
and DI.name=‘D. Lynch’)))

The second approach is to formulate a set of K - M que-
ries, each one containing a simpler qualification, which is 
a conjunction of the mandatory conditions, and one condi-
tion from the remaining K - M ones. Each of these queries 

is built around the initial query extending it with the corre-
sponding qualification and the set of new tuple variables 
used in the latter. The expected results are obtained by 
taking the union of the partial results, grouping by the pro-
jected attributes of the initial query, and excluding all 
groups containing less than L rows. 

We refer to this approach as MQ (Multiple Queries).  
Example. Following this approach, Julie’s initial re-

quest is transformed into the following personalized query:  
select MV.title
from ((select distinct MV.title

from MOVIE MV, PLAY PL, MGENRE GN
where MV.mid=PL.mid and

PL.date=‘2/7/2003’ and
MV.mid=GN.mid and
GN.genre=‘comedy’)

Union All
( select distinct MV.title

from MOVIE MV, PLAY PL,
CAST CA, ACTOR AC

where MV.mid=PL.mid and
PL.date=‘2/7/2003’ and
MV.mid=CA.mid and
CA.aid=AC.aid and
AC.name=‘N. Kidman’)

Union All
( select distinct MV.title

from MOVIE MV, PLAY PL,
DIRECTED DD, DIRECTOR DI

where MV.mid=PL.mid and
PL.date=‘2/7/2003’ and
MV.mid=DD.mid and
DD.did=DI.did and
DD.name=‘D. Lynch’)) TEMP

group by MV.title
having count(*) >= 2

The MQ approach has some obvious advantages com-
pared to the first one. Provided that each partial query re-
turns results accompanied with their degree of interest, the 
following options are possible: 
� L may also be specified implicitly by providing a de-
sired minimum degree of interest d in every row in the 
results. Using the MQ approach, it is easy to build a query 
that returns results that have an estimated degree of inter-
est greater than d. The only modification required is the 
replacement of the having part of the query with this one: 

having DEGREE_OF_CONJUNCTION(*) > d 
where DEGREE_OF_CONJUNCTION is an aggregate 

function that calculates the degree of interest in a row re-
turned that satisfies a conjunction of preferences, i.e., is 
returned by a set of partial queries. 
� It is easy to rank results based on their estimated de-
gree of interest. The afore-mentioned aggregate function is 
included into the select part of the query and results are 
ordered based on the values returned by this function us-
ing an appropriate order by clause. 

An apparent drawback of MQ compared to SQ seems to 
be the repetitive execution of the mandatory part of the 
query. We have implemented and evaluated both ap-
proaches. 



Independent of the preference integration method used 
(SQ vs. MQ), construction of conjunctions of conditions is 
not straightforward. Two issues must be considered: 

(a) Conflicting conditions 
As already mentioned in a previous section, conflicting 

conditions cannot be concurrently satisfied, i.e., combined 
into a conjunction. Therefore, they can only be combined 
using disjunction, and they are essentially treated as “one” 
condition. This has the same effect to excluding from the 
qualification of a query all conjunctions that contain con-
flicting conditions, and results in a reduction of the size of 
the SQL query that must be parsed and executed with ob-
vious benefits. 

In the current implementation, we deal with syntacti-
cally conflicting conditions as defined in section 5.  

(b) Common tuple variables  
Conditions may share common relations (apart from 

those belonging to the original query). This fact gives rise 
to the question of whether common or different tuple vari-
ables should be used, when building conjunctions of the 
former. This may occur in the following cases.  

Case 1: Conditions map to paths that traverse different 
sets of nodes on the personalization graph till they meet at 
a node (relation). The same or different tuple variables 
may be possibly used for this relation.  

Case 2: Conditions share a common initial transitive 
join followed by atomic selections or different transitive 
joins. In the latter case, if common atomic joins are to-one 
in the direction of the selection, then using common tuple 
variables for all common relations is the only option. If 
these conditions are conflicting, then the use of disjunction 
is mandatory. On the other hand, if there is a common 
atomic join in the direction of the selection that is to-
many, it is possible to use different tuple variables at this 
point. If more than one such joins exist, then the decision 
may be taken in any of these points.  

In both cases 1 and 2, the use of common tuple vari-
ables imposes an additional constraint that all conditions 
should be met by the same object. However, such a con-
straint is not expressed in the preference model, which 
assumes single, independent preferences. For instance, 
consider the following preferences: 

MOVIE.mid=CAST.mid and CAST.role=‘Batman’

MOVIE.mid=cast.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘A. Hopkins’

Their conjunction using the same tuple variables quali-
fies films in which A. Hopkins played the role of Batman. 

Furthermore, if common variables are used, preferences 
on the same attribute that are not conflicting are forced to 
be treated as “one” condition. Consider the following pref-
erences: 

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘I. Rossellini’

MOVIE.mid=CAST.mid and CAST.aid=ACTOR.aid and
ACTOR.name=‘A. Hopkins’

If common tuple variables are used, a conjunction that 

explicitly qualifies movies that both actors star is excluded 
from the qualification of the desired results.  

Based on the above observations, when a choice is pos-
sible, different tuple variables should be used and this ac-
tion should be performed as close as possible to the start of 
the paths (i.e. at the first to-many common atomic join of 
these paths). 

 
7. Experimental Results 

 
In order to evaluate the proposed framework, we have 

implemented a prototype system on top of Oracle 9i. In 
this section, we present results of our experiments. Our 
data primarily comes from the Internet Movies Database 
[13]. The schema described in the motivating example 
represents part of the actual database created for the ex-
periments, which contains information about over 340000 
movies. User profiles are stored in a separate table. For the 
experiments we have used both synthetic and real user 
profiles. The former were automatically produced with the 
use of a profile generator. Real profiles were populated by 
individuals. 

We ran four different sets of experiments. In all these 
experiments, we used a set of 100 randomly created que-
ries and we considered the number of mandatory prefer-
ences M equal to zero. (All times are shown in millisec-
onds). 

Effect of Profile Size on Preference Selection Time. 
In this set of experiments, we measured the execution time 
of the preference selection algorithm (Preference Selection 
Time) for varying profile sizes. We consider the number of 
atomic selections in a profile as the profile size. For each 
different value of it, we used 100 profiles of that size. We 
measured the Preference Selection Time for each query 
and profile combination, for L=1. We ran the experiments 
three times, using a different number of preferences (K=5, 
10, 15). Figure 6 summarizes our results. In this figure, we 
have calculated the average Preference Selection Time, 
grouped by the profile size for different values of K.  
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Figure Figure Figure Figure 6666. P. P. P. Prefrefrefref.... Selection Time with Profile Size Selection Time with Profile Size Selection Time with Profile Size Selection Time with Profile Size 

We show that, when the size of the profile is smaller, 
Preference Selection Time is longer. This is primarily due 
to the fact that, in small profiles, there is a greater prob-
ability that preferences are sparsely placed over the 
schema graph, resulting in more database accesses. 



Size of the Results of personalized queries. In this set 
of experiments, we measured the change in the size of the 
results obtained from the personalized queries compared to 
those obtained from the original ones. We chose 200 ran-
dom user profiles and ran the personalization algorithm for 
several different values of K and L parameters. In each 
run, we calculated the percentage of rows returned by the 
personalized query to those returned by the initial one.  
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Size of the Results of Personalized Queries with L (K=10)
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Size of the Results of Personalized Queries with L (K=60)
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The results follow the trends expected by the nature of 

K and L: Figure 7(a) shows the increase in the relative size 
of the query results as K ranges between 10 and 50 and    
L = 1. Figures 7(b) and 7(c) show the reduction in the rela-
tive result size as L ranges between 1 and 10 and K is 10 
and 60, respectively. It is interesting to observe that de-
spite the expected difference in scales of the axes of the 
last two graphs, the shapes of the two curves are very simi-
lar to each other. 

Comparison of SQ and MQ. In this set of experiments, 
we compared the performance of SQ and MQ integration 
approaches. We chose a set of 200 random profiles and ran 
each preference integration method for several different 
values of K and L parameters. The results are presented in 
Figures 8 and 9. Figure 8 shows that, for varying K and    
L = 1, the preference integration time using MQ is practi-
cally zero. For SQ, this time increases, mostly because it 
spends time on trying to eliminate repeated conditions and 
build a minimal query. Experiments not presented in this 

paper, have shown that if a small query is built, then the 
execution time of the personalized query is significantly 
reduced and overall performance of the method is im-
proved. Nevertheless, MQ execution times are better. This 
is explained by the fact that as more preferences come into 
the query, each result is returned more times by SQ (due to 
the existence of many joins and the semantics of SQL) and 
then the duplicates need to be eliminated. 
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Figure 9 shows that, for varying L and K = 10 prefer-
ence integration times using MQ are practically zero. In 
addition, execution times of queries constructed using MQ 
are better than those for SQ’s. This is due to the fact that 
SQ depends on the number 
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  of com-

binations it has to build, while MQ depends on the number 
K - M of simple queries it has to construct. 
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Performance of Personalization. In this set of ex-
periments, we evaluated the performance of personaliza-
tion. We chose a set of 200 random profiles. We have em-
ployed the MQ approach. As Figure 10 shows, the overall 
time for personalization of a query and execution of the 
personalized one is less than the time required for the exe-
cution of the initial one. Most specifically, personalization 
performs well with K and is independent of L. 
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8. Conclusions and Future Work 

 
We have presented a personalization framework for da-

tabase queries based on information stored in structured 
user profiles that keep single, unconditional preferences. 
We have formulated the main personalization step as a 
graph computation problem and we have presented and 
evaluated, through a number of experiments, algorithms 
for the personalization of a query.  

We are currently working towards extending our model 
in order to encompass more types of preferences, such 
negative and soft ones, and personalizing queries using 
these types. We are also interested in combining personal 
preferences with other aspects of a query’s context that 
call for query customization, such as time of day, user lo-
cation, device used for querying, etc, and see what kind of 
statistics may be additionally needed and how they are 
obtained. Experiments with humans are performed to so-
lidify the evidence on the effectiveness of the approach.  

We are also interested in investigating ways of optimiz-
ing personalized queries in terms of running time and re-
sult size constraints. Our future plans include the study of 
other ways for the efficient execution of personalized que-
ries and the delivery of top-N results in order of the esti-
mated of degree of interest. Other challenging issues in-
clude the identification of related and conflicting prefer-
ences at the semantic level, the evaluation of various func-

tions for disjunctive and conjunctive preferences and the 
automatic construction of structured profiles. Finally, it is 
interesting to see how database technology can be ex-
tended in order to support such functionality from 
“within”, instead of implementing a system on top of a 
database management system. 
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