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Abstract 

Wide spread use of database systems in modern society 
has brought the need to provide inexperienced users with 
the ability to easily search a database with no specific 
knowledge of a query language. Several recent research 
efforts have focused on supporting keyword-based 
searches over relational databases. This paper presents an 
alternative proposal and introduces the idea of précis 
queries. These are free-form queries whose answer (a 
précis) is a synthesis of results, containing not only 
information directly related to the query selections but also 
information implicitly related to them in various ways. Our 
approach to précis queries includes two additional 
novelties: (a) queries do not generate individual relations 
but entire multi-relation databases; and (b) query results 
are personalized to user-specific and/or domain 
requirements. We develop a framework and system 
architecture for supporting such queries in the context of a 
relational database system and describe algorithms that 
implement the required functionality. Finally, we present a 
set of experimental results that evaluate the proposed 
algorithms and show the potential of this work. 

1. Introduction 
“précis /'preIsi�

�

: [(of)] a shortened form of a piece of 
writing or of what someone has said, giving only the 
main points.” (Longman Dictionary) 

A précis is often what one expects in order to satisfy an 
information need expressed as a question or as a starting 
point towards that direction. For example, if one asks 
about ‘Woody Allen’, a possible response might be in the 
form of the following précis: 

“Woody Allen was born on December 1, 1935 in 
Brooklyn, New York, USA. As a director, Woody Allen’s 
work includes Match Point (2005), Melinda and Melinda
(2004), Anything Else (2003). As an actor, Woody Allen’s 
work includes Hollywood Ending (2002), The Curse of the 
Jade Scorpion (2001).”

Likewise, returning a précis of information in response 
to a user query is extremely valuable in the context of web 
accessible databases, which have emerged as libraries, 
museums, and other organizations publish their electronic 
contents on the Web. With the abundance of available 

information, exploring the contents of a web database and 
finding anything useful is a difficult and often fruitless 
procedure. However, “end users want to achieve their 
goals with a minimum of cognitive load and a maximum 
of enjoyment. ... humans seek the path of least cognitive 
resistance and prefer recognition tasks to recall tasks” [1]. 
In addition, they often have very vague information needs 
or know a few buzzwords. Based on the above, support of 
free-form queries over databases and generation of 
answers in the form of a précis comprises an advanced 
searching paradigm helping users to gain insight into the 
contents of a database. A précis may be incomplete in 
many ways; for example, the abovementioned précis of 
‘Woody Allen’ includes a non-exhaustive list of his works. 
Nevertheless, it provides sufficient information to help 
someone learn about Allen and identify new keywords for 
further searching. For example, the user may decide to 
issue a new query about “Anything Else” or follow 
underlined topics (hyperlinks) to pages containing more 
relevant information. 

Supporting précis queries using a relational database 
system is not straightforward. Pre-specified queries 
embedded in user-interface forms are not a realistic 
approach. Neither should web users be expected to have 
any knowledge about the relational data model, schemas, 
structured query languages, or even the schema of a 
particular database, to form their own structured queries. 

In addition, relational queries produce a single relation 
whose tuples are therefore forced to contain attributes 
from numerous relations. Such flattened out results are 
often unnatural and unusable in constructing a meaningful 
précis. Queries should be able to generate a whole new 
database, with its own schema, constraints, and contents, 
derived from their counterparts in the original database.  
Through the concepts and relationships captured in them, 
such results will provide the knowledge necessary to 
derive semantically rich précis for the user. 

Database-type query results are very useful in other 
situations as well. Given large databases, enterprises often 
need smaller subsets that conform to the original schema 
and satisfy all of its constraints in order to perform 
realistic tests of new applications before deploying them to 
production. Likewise, software vendors need such smaller 
but correct databases to demonstrate new software product 
functionality. Generating such databases with current 
relational technology, one relation at a time and manually 
deriving the appropriate constraints, is not acceptable. 
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Contributions. Motivated by the above, this paper 
presents a comprehensive effort to generalize relational 
queries in two directions. First, query conditions should be 
free-form, containing only selection clauses. The system 
will dynamically decide the joins and other predicates that 
are relevant to the conditions specified and construct the 
complete qualifications that the query results should 
satisfy. Second, the above process will generate sets of 
queries resulting in sets of interconnected relations that 
together conform to the appropriate schema constraints. 
Furthermore, these generalized forms of queries will also 
be customized to the inquiring user’s preferences and 
requirements, which could be specified at query time or 
could be retrieved from a user profile. In detail, the 
following are our main contributions.  
- Précis Queries Framework. We introduce the concept 
of précis queries in the context of databases and describe a 
framework for their support. The major steps for 
answering précis queries are (a) result schema generation, 
where the database part that contains information related 
to the query is recognized, and (b) result data generation, 
where tuples are extracted from the database with the use 
of appropriate SQL queries. Our approach is applicable to 
other types of (semi-) structured data as well. However, 
for presentation reasons, we focus on relational data here.  
- System Architecture and Customized Query Processing 
Algorithms. We describe the architecture of a system that 
supports précis queries, and we provide appropriate 
algorithms for each module of it. We also illustrate a semi-
automatic method that translates the relational output of a 
précis query into a “natural language” synthesis of results.
- Experiments. Finally, we present a set of results 
evaluating each part of the system.

2. Related Work 
Précis queries are free-form queries. The need for free-

form queries has been early recognized in the context of 
databases. Motro [4] described the idea of using tokens,
i.e. value of either data or metadata, when accessing 
information instead of structured queries, and proposed an 
interface that understands such utterances by interpreting 
them in a unique way, i.e., complete them to proper 
queries. BAROQUE [3] used a network representation of a 
database and defined several types of relationships in order 
to support functions that scan this network. With the 
advent of the World Wide Web, the idea has been 
revisited. In particular, recent approaches on keyword 
searches in databases [5, 6, 7, 8] extended the idea of 
tokens to values that may be part of attribute values. 

These approaches work on some kind of graph (data 
graph [5], schema graph [7, 8], dependency graph [4]). 
Based on this graph, the interpretation for a given set of 
database tokens is a query that corresponds to a sub-graph 
connecting their corresponding nodes. An answer to a 
keyword search is a set of ranked tuples based on some 

criterion (the number of joins [8], IR-style answer-
relevance ranking [9]). On the other hand, Oracle 9i Text 
[15], Microsoft SQL Server 2000 [16] and IBM DB2 Text 
Information Extender [17] create full text indexes on text 
attributes of relations and then perform keyword queries. 
Keyword search over XML databases has also attracted 
interest recently [12, 13, 14]. 

Our main differences from existing approaches can be 
summarized as follows. First, we work on the database 
schema graph. However, instead of simply locating and 
connecting values in tables as other approaches do [7, 8], 
we also consider information around these values that may 
be related to them. For example, the answer provided by 
existing approaches for “Woody Allen” would be in the 
form of relation-attribute pair, such as (Name, Director). 
On the contrary, the answer to a précis query might also 
contain information found in other parts of the database, 
e.g. movies directed by Woody Allen. This information 
needs to be “assembled” –in perhaps unforeseen ways– by 
joining tuples from multiple relations. Second, existing 
approaches return flattened out results. Instead, we 
generate a whole new database, with its own schema, 
constraints, and contents, derived from their counterparts 
in the original database. In addition, using the information 
conveyed by the database graph, which may be properly 
annotated to further enhance its semantics, we try to 
construct a close to natural language representation of an 
answer. Finally, we allow generating customized answers 
in response to a query by making use of weights on the 
database schema graph that may be specified by a domain 
expert or each user. This is inspired by work on user 
preferences [11]. 

3. Framework 
3.1 Data Model 

A relation schema Si is denoted as Ri(A1i,A2i,…,Aki)
and consists of a relation name Ri and a set of attributes 
Ai={Aji:1�j�ki}. A database schema D is a set of 
relation schemas { Si: 1 � i � m }. When populated with 
data, relation and database schemas generate relations and 
databases, respectively. We use Ri to denote a relation 
following relation schema Si and D to denote a database 
following database schema D.

We consider the database schema graph G(V,E)as a 
directed graph corresponding to a database schema D.
There are two types of nodes in V: (a) relation nodes, R,
one for each relation in the schema; and (b) attribute 
nodes, A, one for each attribute of each relation in the 
schema. Likewise, edges in E are the following: (a) 
projection edges, �, each one connects an attribute node 
with its container relation node, representing the possible 
projection of the attribute in the system’s answer; and (b) 
join edges, J, from a relation node to another relation 
node, representing a potential join between these relations. 
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These could be joins that arise naturally due to foreign key 
constraints, but could also be other joins that are 
meaningful to a domain expert. Joins are directed for 
reasons explained later. For simplicity in presentation, we 
assume (a) that primary keys are not composite; thus, an 
attribute from a relation joins to an attribute from another 
relation, and (b) that these attributes have the same name. 
For convenience, we do not depict the joining attributes in 
both relations; instead, the common name of the joining 
attributes is tagged on the respective join edge between the 
two relations. Therefore, a database graph is defined as a 
directed graph G(V,E), where: V = R∪A, and E = �∪J.

Weights. A weight, w ∈ [0,1] , is assigned to each 
edge of the graph G showing the significance of the bond 
between the corresponding nodes. w = 1 expresses strong 
relationship: if one node of the edge appears in an answer, 
then the edge should be taken into account making the 
other node appear as well. w = 0, occurrence of one node 
of the edge in an answer does not imply occurrence of the 
other node. Based on the above, two relation nodes could 
be connected through two different join edges, in the two 
possible directions, between the same pair of attributes, 
but carrying different weights. A directed join edge 
expresses the dependence of the left part of the join on the 
right part. The left part indicates the relation already 
considered for the answer and the right one corresponds to 
the relation that may be included influencing the final 
result, if the join is taken into account. For simplicity, we 
assume that there is at most one directed edge from one 
node to the same destination node. 

Example. Consider a movies database described by the 
schema below; primary keys are underlined. 

THEATRE(tid,name,phone,region)
PLAY(tid,mid,date), GENRE(mid,genre)
MOVIE(mid,title,year,did)
CAST(mid,aid,role)
ACTOR(aid,aname,blocation,bdate)
DIRECTOR(did,dname,blocation,bdate)

The database graph is depicted in Figure 1. For 
instance, observe the two directed edges between MOVIE
and GENRE. Movies and genres are related but one may 
consider that genres are more dependent on movies than 
the other way around. In other words, an answer regarding 
a genre should always contain information about related 
movies, while an answer regarding a movie may not 
necessarily contain information about its genres. For this 
reason, the weight of the edge from GENRE to MOVIE is 1,
while the weight of the edge from MOVIE to GENRE is 0.9.

Using different weights on graph’s edges allows 
constructing different answers to the same query. 
− Weights may be set by the user at query time using an 
appropriate user interface. This option enables interactive 
exploration of the contents of a database. In particular, 
changing weights associated with the underlying database 
results in a different set of queries executed in order to 
obtain related tuples from this part of the database and 

essentially affects the part of the database explored. The 
user may explore different regions of the database starting, 
for example, from those containing objects closely related 
to the topic of a query and progressively expanding to 
parts of the database containing objects more loosely 
related to it. 
− Sets of weights may be created by a designer targeting 
different groups of users. For instance, reviewers and 
cinema fans have access to a movies database. The former 
may be typically interested in in-depth, detailed answers; 
using an appropriate set of weights would enable these 
users to explore larger parts of the database around a 
single précis query. Cinema fans usually prefer shorter 
answers. A different set of weights would allow producing 
answers containing only highly related objects.  
− Finally, multiple sets of weights corresponding to 
different user profiles may be stored in the system. Using 
user-specific weights allows generating personalized 
answers. For example, a user may be interested in the 
region where a theatre is located, while another may be 
interested in a theatre’s phone. As a result, different users 
may see different answers to the same query. 
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Figure 1. An example database graph 

3.2 Transfer of Weight over Paths in the Graph 

A directed path p between two relation nodes, 
comprising adjacent join edges, represents the “implicit” 
join between these relations. Similarly, a directed path 
between a relation node and an attribute node, comprising 
a set of adjacent join edges and a projection edge 
represents the “implicit” projection of the attribute on this 
relation. In correspondence to edges, we call these paths, 
transitive join and transitive projection paths, respectively. 

The weight of a path is a function of the weight of 
constituent edges, and should decrease as the length of the 
path increases [10]. In our implementation, we have 
chosen multiplication as this function. 

Example. In Figure 1, the weight of the projection of 
attribute PHONE over THEATRE equals to 0.8, while its 
weight with respect to MOVIE is 0.7*1*0.8 = 0.56.
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3.3 Query model 

Consider a database D and a précis query Q which is a 
set of tokens, i.e. Q={k1,k2,…,km}. The result of applying 
Q on D, called précis, is a new database D� satisfying these: 
1. The set of relation names in the result schema D� is a 

subset of that in D.
2. For each relation name Ri in the result D�, its set of 

attributes Bi={Bji:1�j�li} in D� is a subset of its set of 
attributes Ai={Aji:1�j�ki} in D. That is, the result of 
the query involves some of the attributes of each relation 
schema present. 

3. For each relation name Ri in the result D�, the set of 
tuples in the corresponding relation Ri� is a subset of the 
set of tuples in the original relation Ri (when projected 
on the set of attributes B that are present in the result). 

4. The result database D� is generated by (foreign-key) join 
queries starting from the relations where the keywords 
in Q appear and transitively expanding on the database 
schema D. The final set of relation names, attributes, and 
tuples in D� are determined by constraints.

We define two types of such constraints: (a) A degree 
constraint d determines attributes and relations in D�, and 
(b) A cardinality constraint c determines the number of 
tuples in D�. In order to describe the result of a query Q, a 
pair of constraints, one of each category should be 
provided. Possible degree constraints could include these: 
− The maximum number of attributes in D�

− The minimum weight of projection paths in the 
database schema graph G
Constraints on the edge weights of the database 

schema graph G are more immune to the effects of 
database normalization or database restructuring. For 
example, in the example movies database depicted in 
Figure 1, each movie has only one director. Assume that 
we want to associate a movie with more than one director. 
For this purpose, a new relation, DIRECTED_BY(mid,
did), would be added. As a result, the length of the path 
between MOVIE and DIRECTOR would increase, as well as 
the number of relations required in D�, in order to show 
information about movies and related directors. 
Consequently, the first and the third constraint from the 
previous list should be adapted accordingly; on the 
contrary, the second constraint would remain valid as long 
as the weight of the path between MOVIE and DIRECTOR
would not change. This can be accomplished by assigning 
appropriate weights on constituent edges. 

Possible cardinality constraints could include these:  
− The maximum number of tuples in D�

− The maximum number of tuples per relation in D�

Using different constraints allows generating different 
answers for the same query and the same set of weights 
over the edges of the database graph. Similarly to weights, 
constraints may be specified at query time by the user, or 
be pre-specified by a designer, or may be stored as part of 

a user’s profile. For example, in the graph of Figure 1, 
attributes of THEATRE have different weights. With the use 
of an appropriate criterion, an answer about a theatre may 
contain only its name or may also contain information 
about phone and region.

Inverted
Index

Result Schema
Generator

Q={k1,k2,…,km}

d

Result Database 
Generatorc

TranslatorTemplates

Precis

result schema D’

Data
result database D’

∀ki, ki �  {(Rj,Alj,Tidslj)}

Figure 2. System Architecture 

4. System architecture 
A high level representation of the system architecture 

for answering précis queries is depicted in Figure 2. First, 
the user submits a précis query Q={k1,k2,…,km}. In order 
to generate an answer, the following steps are performed. 

Inverted Index. An inverted index associates each 
token that appears in the database with a list of 
occurrences of the token. Each occurrence is recorded as 
an attribute-relation pair, (Rj, Alj). For each such pair, 
the list Tidslj of ids of tuples from Rj in which Alj
includes the token, is also returned. A token may be found 
in more than one tuples and attributes of a single relation 
and in more than one relations. We chose to build our own 
inverted index that allows efficient retrieval of all 
occurrences of a token. Given a query Q, the index returns 
for each token ki in Q, a list of all its occurrences, i.e. ki→
{(Rj,Alj,Tidslj)}, ∀ki in Q.

Result Schema Generator. This step is responsible for 
finding which part of the database schema may contain 
information related to Q. The output of this step is a result 
schema D� comprised of relations that contain the tokens 
of Q and relations transitively joining to the former and a 
subset of their attributes that should be present in the result 
according to an input degree constraint d.

Result Database Generator. This step produces the 
result database D� that corresponds to the schema D�. The 
result database D� is generated by (foreign-key) join queries 
starting from the relations where the tokens in Q appear 
and transitively expanding on the database schema D�. The 
final set of tuples in D� comprises tuples containing the 
query tokens and tuples joining to these, and its size is 
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determined by an input cardinality constraint c.
Translator. This step is required if a précis needs to be 

transformed into a narrative form. In particular, this step 
provides a query answer constructed as a proper structured 
management of individual results, according to certain 
rules and templates predefined by a designer or the 
administrator of the database. 

5. Answering a Précis Query 
For illustration purposes, we use this running example. 
Query Example. Consider the query Q={‘Woody 

Allen’}, and the constraint that only projections with 
weight equal to or greater than 0.9 should be present in 
the answer (degree constraint) and up to three tuples 
should be retrieved per relation (cardinality constraint).   

5.1 Result Schema Generator 

The Result Schema Generator is responsible for 
finding which part of the database schema may contain 
information most related to a given query Q. Its output is a 
result schema D� comprised of all relations containing 
query tokens and relations transitively joining to the 
former as well as a subset of their attributes that should be 
present in the result according to a degree constraint d
provided as input. We formulate the problem as follows. 

Problem formulation. Consider the database schema 
graph G corresponding to the database schema D, and the 
relation nodes on the graph corresponding to the relations 
where the query tokens have been found. Furthermore, 
consider the set Pn of all (transitive) acyclic projection 
paths in G that are attached to these relations in order of 
decreasing weight, i.e. 

Pn = {pi|i ∈ [1,n], wi-1 ≥ wi}
The result schema D� containing most related 

information to the query according to a given degree 
constraint d corresponds to the schema graph G�. This is a 
sub-graph of G including the nodes mapping the relations 
that contain the query tokens and the set of all (transitive) 
projection paths on G� attached to these nodes is the 
ordered subset Pd of Pn, such that: 

d = max({t | t∈[1, n]: d(Pt) holds } 
Possible expressions of d(.) are given in Table 1. 

Table 1. Possible degree constraints 

Algorithm. The Result Schema Generator algorithm 
takes as input the database schema graph G, the set of 
relations where the query tokens have been found, and a 
degree criterion d. It constructs a schema graph G� that 

represents the result schema for the query according to the 
degree constraint. 

Result Schema Algorithm 
Input: database schema graph G(E,V), degree criterion d(.)

{Rj | Rj relation containing query tokens}, 
Output:  result schema graph G’(E’,V’)

QP = ∅, Pd = ∅, G’= ∅
1. Foreach edge e attached to a relation Rj: e(Rj, x)∈E , x ∈V

QP� e
End for 

2. While (QP not empty)  
2.1 Get head p from QP
2.2 If (d (Pd ∪ { p }) does not holds) Then exit while End if
2.3 If (p is projection path) Then

Pd � p
Update edges, nodes and in-degrees in G’ accordingly  

End if
2.3 If (p is join path) Then

Foreach edge e ∈G that is attached to p
p’ is the concatenation of p and e and is acyclic 
If (d (Pd ∪ { p’}) does not holds) Then  Exit For End if 
QP� p’

End for 
End if

End while 
3. Output G’

Figure 3. Result Schema Algorithm 

The algorithm, presented in Figure 3, performs a best-
first traversal of the database schema graph G. The basic 
idea is to gradually construct projection paths on G
attached to the input relations in order of decreasing 
weight. Paths of equal weight are considered in order of 
increasing length. In other words, shorter paths are 
favoured among paths of equal weight based on the 
intuition that these may connect more closely related 
entities. If a projection path satisfies the degree constraint, 
then it is “added” into the sub-graph G�, i.e. edges and 
nodes of the path not already in G� are inserted into it. The 
algorithm stops when no other projection paths satisfying 
the constraint can be constructed on graph G.

More specifically, the algorithm keeps a queue QP of 
candidate paths in order of decreasing weight, and a set Pd
of projection paths on G� that are attached to the relations 
containing the query tokens. Initially, QP contains all 
edges on G attached to those relations. In each round, the 
algorithm picks from QP the candidate path p with the 
highest weight. If the degree constraint is not satisfied, 
then the algorithm stops and returns G�. If the constraint is 
satisfied, then different actions are performed depending 
on the type of path. If p is a projection path, the result 
schema graph, G�, is updated accordingly, and p is inserted 
into the set of projections, Pd, encountered so far. It is 
possible that projection paths starting from different 
relations containing the query tokens share common 
relations. In order to facilitate subsequent steps, and 

Expression Description 
t � r selects up to r top-weighted projections

w t ≥ w o
selects top-weighted projections with 
weight ≥ w o

length(pt)≤ lo
selects top-weighted projections with 
path length ≤ lo
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primarily result database generation, we mark each 
relation node on G� that is found in more than one path. In 
particular, we count the number of input relations whose 
paths include this relation (in-degree). We will see how 
this is used during result database generation. 

If p is a join path, then it is expanded into longer paths 
which are placed into QP. A path p is expanded according 
to the following rule: a new path p� is generated for each 
edge e that is adjacent to p in the graph G and is the 
concatenation of p and e. Edges are considered in order of 
decreasing weight. This helps pruning, as explained 
shortly, and improves the time of insertion of new paths in 
the ordered QP. A new path p� is pruned if it does not 
satisfy the degree constraint. Then, the algorithm stops 
expansion of p, since all paths subsequently generated will 
not satisfy the constraint.  

TITLE

YEAR
1

1 (MID)

1

DNAME

BLOCATION

BDATE

1

1

1

(DID) 1

DIRECTOR

MOVIE

ANAME
1

ACTOR

CAST

(AID) 1

GENRE
1

0.9(MID)

GENRE

Figure 4. Result Schema for the query example 

Query Example (cont’d). Given the query 
Q={‘Woody Allen’}, “Woody Allen” is a director and 
also an actor. Therefore, the inverted index returns 
relations DIRECTOR and ACTOR. Given the degree 
constraint that only projections with weight equal to or 
greater than 0.9 should be present in the answer, Figure 4 
shows the result schema graph output by this step with 
respect to the example database depicted in Figure 1. The 
input relations are shown in color. On this graph, there are 
paths from DIRECTOR or ACTOR, some of them having 
common relations, one such being relation MOVIE. For 
presentation reasons, this example is kept simple, in the 
sense that the set of paths arriving to a relation from 
DIRECTOR and the set of paths arriving to the same 
relation from ACTOR result in the projection of the same 
attributes of that relation. In a general case, paths from 
DIRECTOR to a relation could result in projection of 
different attributes on this relation than paths arriving to 
the same relation from ACTOR. We use Pd to keep track of 
the projection paths departing from each of the input 
relations. Moreover, observe in the result schema of the 
figure that MOVIE has an in-degree equal to 2.

In the example above, ‘Woody Allen’ is found in 
two different relations. In general, it is possible that a 
single value may be used to represent different objects 
(homonyms), e.g., ‘Woody Allen’ could correspond to 
two different persons, or different values may be used for 
the same object (synonyms); e.g., ‘W. Allen’ and 

‘Woody Allen’ that correspond to the same person. To 
tackle the former problem, in the absence of any additional 
knowledge stored in the system, we may return multiple 
answers, one for each homonym, or obtain additional 
information through interaction with the user. For the 
latter problem, there exist approaches [e.g., 19, 20] for 
cleaning and homogenizing string data, such as addresses, 
acronyms, names and so forth. However, both these 
problems are orthogonal to answering précis queries.  

5.2 Result Database Generator 
The Result Database Generator produces a result 

database D� corresponding to the schema D�. The result 
database is generated by selecting tuples in the relations 
containing the query tokens and tuples in other relations of 
D� transitively joining to the former. The final set of tuples 
in D� is determined by a cardinality constraint c. We 
formulate the problem as follows. 

Problem Formulation. Given are the database schema 
graph G� corresponding to the database schema D�, the 
relation nodes containing the query tokens, and a 
cardinality criterion c(.). In addition, for each of these 
relations, the list of tuples containing query tokens is 
considered. Based on the above, this is an initial database 
Do corresponding to the database schema D�. The set of 
possible result databases corresponding to schema D� in 
order of increasing cardinality is:  

D1 ← Do��R1 , D2 ← D1��R2 ,  …  , Dnj ← Dn
j-1

��Rn
j

At any point, a relation Ri is joined to Di-1 if there is a 
join edge in G� between this relation and a relation already 
populated in Di-1. If more than one joins may be executed, 
these are considered in order of decreasing weight. In this 
way, relations in D� that are most related to the query are 
populated first. Any relations that may not be eventually 
populated due to the cardinality constraint would be the 
most weakly connected to the query. A database Di
contains all tuples also contained in Di-1 plus any tuples 
from that join to those through the corresponding join edge 
ei. The number of tuples in Di is card(Di). According to 
the cardinality criterion, the result database D� is a 
database Dc, such that: 

c = max( { t | t∈[0,nJ]: c(Dt) holds }) 
For each relation Ri, a subset of its tuples, Ri�, is found 

in the result D�, projected on the set of attributes that are 
present in the result. Possible expressions of c(.) are 
given in Table 2. A combination of those is also possible. 

Table 2. Possible cardinality constraints 

Algorithm. The Result Database Generator algorithm 
has inputs: the result schema graph G� produced in the 
previous step; a cardinality constraint c(.), and the 

Expression Description 
card(Dt)≤co max. total number of tuples in D� is co
card(Rt)≤co max. number of tuples per relation  in D� is co
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relation nodes containing query tokens. In addition, for 
each of these relations, the list of tuple id’s containing 
query tokens is provided (returned by the inverted index). 
The output is the result database D� that is an instance of 
D� corresponding to graph G�.

Initially, D� contains all tuples involving query tokens. 
For each relation Rj with matching tuples, the algorithm 
retrieves them using their ids provided in Tidsj. In 
relational algebra, the query executed looks like this: 
�Tidsj(Rj)[�(Rj)], where �(Rj) is the set of attributes of 
Rj that is projected in the result schema D�. If the 
cardinality constraint allows only a subset of Rj’s 
matching tuples to be selected, then a random subset of 
those is retrieved using NaïveQ, which is described below. 

Subsequently, the algorithm loops through the set of 
join edges of G�. In each round, one or more joins may be 
possibly executed. In this case, as already explained, the 
join with the highest weight precedes. Execution of joins 
that depart from relations with an in-degree greater than 1
is postponed. Thus, the algorithm ensures that all tuples 
that may populate a relation in the result database as result 
of different joins arriving to it will be produced before 
moving from this relation further on the database graph. 
Also, any duplicates are removed. (Which of the tuples 
collected in a relation are used for subsequently joining 
tuples from other relations depends on the paths stored in 
Pd. For simplicity, we omit any details regarding this.) 

For each directed join Ri��Rj executed, with a subset of 
Ri, namely Ri�, already in D�, a subset of Rj is retrieved 
containing tuples joining to those in Ri�. The number of 
tuples in Rj� is determined by the cardinality criterion. The 
attributes projected in Rj� are specified by the projections 
edges attached to the corresponding relation and the join 
edges that depart from it to other relations in G�. In terms 
of the query executed for this purpose, this does not 
contain the actual join between the two relations. In 
relational algebra, the corresponding query is the 
following: �Idsj(Rj)[�(Rj)], where �(Rj) is the set of 
attributes of Rj that should be projected, and Idsj is the 
set of values of the attribute of Rj used for joining with Ri.
These are contained in the corresponding joining attribute 
of Ri�. Again, only a subset of Rj’s tuples may be required 
according to the criterion c(.). There are two possible 
ways to obtain this subset: NaïveQ and RoundRobin.

(NaïveQ) One way is to submit an SQL query and keep 
only the top tuples, whose number is determined based on 
the cardinality constraint. For instance, in Oracle, this can 
be performed using the pseudo-column RowNum.

If the join considered, Ri��Rj, is to-1, then the above 
method selects a random subset of tuples from Rj that join 
to all tuples in Ri in D� (assuming that each of Ri’s tuples 
in D� joins with one tuple in Rj). However, if the join is to-
n, then there is a risk of selecting a subset of Rj’s tuples 
that join to only a subset of Ri�’s tuples in D�. As a result 

of this selection, there will be tuples in Ri� that will not 
join to any tuples from Rj. To avoid this situation, an 
approach would be the following: assume that the total 
number of tuples that may be retrieved from Rj according 
to the cardinality constraint is T, and t is the number of 
tuples in Ri�. Then, the number of tuples retrieved per 
tuple of Ri� is T/t. A set of parameterized queries may be 
submitted, each one retrieving up to T/t joining tuples 
from Rj for each tuple in Ri�. This method attempts to 
retrieve tuples from Rj that are uniformly distributed over 
tuples of Ri�. However, since the real distribution in the 
database may be very different, we have adopted the 
following round-robin method. 

(Round-Robin) For each tuple in Ri�, a scan of joining 
tuples from Rj is opened. Each time, only one joining tuple 
from a scan is retrieved as long as the cardinality 
constraint holds. If there are no tuples to be retrieved from 
a scan, this is closed.  

Having executed the join Ri��Rj, the in-degree of Rj is 
reduced accordingly. The algorithm stops execution when 
either all join edges of G� have been considered or the 
cardinality constraint does not hold. 

Result Database Algorithm 
Input: {Rj | Rj relation containing query tokens }, 

{Tidsj | Tidsj a set of matching tuple id’s in Rj},
result schema graph G’,  cardinality criterion c(.)

Output: Result Database D�
1. D� ←  { naïveQ (�Tidsj(Rj)[�(Rj)], c(�Tidsj(Rj)[�(Rj)])), ∀ Rj}
2. Foreach applicable join edge inG’where destination Ri has in-

degree = 1 
2.1 If the join is to-n then 

D� ← RoundRobin (D���Ri, c (D���Ri))
Else

D� ← naïveQ (D���Ri, c (D���Ri))
End if 

2.2 decrease Ri’s in-degree 
3. Output D�

Figure 5. Result Database algorithm 

Query Example (cont’d). Given the query Q =
{‘Woody Allen’}, and the cardinality constraint that up 
to three tuples should be retrieved per relation, a part of 
the output of this step is depicted in Figure 6. (Attributes 
required for joins have been also projected in the result, 
but these will not show in the final answer, since they are 
not included in the result schema of Figure 4).  

5.3 Result Database Translator 
In this section, we illustrate a semi-automatic method 

to render the SQL-like response of a précis query to a 
more user-friendly synthesis of results. In the context of 
this work, the presentation of a query answer is defined as 
a proper structured management of individual results, 
according to certain rules and templates predefined by a 
designer or the administrator of the database. Clearly, we 

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE 



do not anticipate the construction of a human-intelligent 
system; rather, we try to provide a user-friendly response 
through the composition of simple clauses. We only sketch 
our approach due to space considerations. More details 
may be found in [21]. 

In our framework, in order to describe the semantics of 
a relation R along with its attributes in natural language, 
we consider that relation R has a conceptual meaning 
captured by its name, and a physical meaning represented 
by the value of at least one of its attributes that 
characterizes tuples of this relation. We name this attribute 
the heading attribute and we depict it as a hachured 
rounded rectangle. For example, in Figure 6, the relation 
MOVIE conceptually represents “movies” in real world; 
indeed, its name, MOVIE, captures its conceptual meaning. 
Moreover, the main characteristic of a “movie” is its title, 
thus, the relation MOVIE should have the TITLE as its 
heading attribute. By definition, the edge that connects a 
heading attribute with the respective relation has a weight 
1 and it is always present in the result of a précis query. A 
domain expert makes the selection of heading attributes. 

The synthesis of query results follows the database 
schema and the correlation of relations through primary 
and foreign keys. Additionally, it is enriched by 
alphanumeric expressions called template labels mapped 
to edges of the database schema graph.  

A template label, label(u,z) is assigned to each 
edge e(u,z)∈ E of the database schema graph G(V,E).
This label is used for the interpretation of the relationship 
between the values of nodes u and z in natural language.  

Each projection edge e ∈ � that connects an attribute 
node with its container relation node, has a label that 
signifies the relationship between this attribute and the 
heading attribute of the respective relation; e.g., the YEAR
of a MOVIE (.TITLE). If a projection edge is between a 
relation node and its heading attribute, then the respective 
label reflects the relationship of this attribute with the 
conceptual meaning of the relation; e.g., the TITLE of a 
MOVIE. Each join edge e ∈ J between two relations has a 
label that signifies the relationship between the heading 
attributes of the relations involved; e.g., the GENRE
(.GENRE) of a MOVIE (.TITLE). The label of a join edge 
that involves a relation without a heading attribute 
signifies the relationship between the previous and 
subsequent relations. 

We define as the label l of a node n the name of the 
node and we denote it as l(n). For example, the label of 
the attribute node TITLE is “title”. The name of a node is 
determined by the designer/administrator of the database. 

The template label label(u,z) of an edge e(u,z) 
formally comprises the following elements: (a) lid, a 
unique identifier for the label in the database graph; (b) 
l(u), the name of the starting node; (c) l(z), the name of 
the ending node; (d) expr1,expr2,expr3 alphanumeric 
expressions. A simple template label has the form: 

label(a,b) = expr1 + l(u) + expr2 + l(z) + expr3

where the operator “+” acts as a concatenation operator. 
In order to use template labels or to register new ones, 

we use a simple language for templates that supports 
variables, loops, functions, and macros.  

The translation is realized separately for every 
occurrence of a token. At the end, the précis query lists all 
the clauses produced. For each occurrence of a token, the 
analysis of the query result graph starts from the relation 
that contains the input token. The labels of the projection 
edges that participate in the query result graph are 
evaluated first. The label of the heading attribute 
comprises the first part of the sentence. It becomes 
obvious that for multiple attributes of the same relation we 
have to repeat several times the same subject. To avoid 
this, a domain expert should have attached suitable 
expressions in the projections edges, in order to allow the 
construction of complex sentences that make sense. 

After having constructed the clause for the relation that 
contains the input token, we compose additional clauses 
that combine information from more than one relation by 
using foreign key relationships. Each of these clauses has 
as subject the heading attribute of the relation that has the 
primary key. The procedure ends when the traversal of the 
databases graph is complete.  

MOVIE

TITLE

YEAR
DNAME

1

1

1 (DID)

1
“’s work includes”

BLOCATION

1
BDATE

1

DIRECTOR

Woody Allen ; 1 December, 1935 ; Brooklyn, New York, USA

Match Point         ; 2005
Melinda and Melinda ; 2004
Anything Else       ; 2003

Figure 6. A part of our example database  

Query Example (cont’d). Consider the database 
instance in Figure 6. At first, we consider the case of 
“Woody Allen” as a director. We construct the template 
clause for the DIRECTOR relation: 

@DNAME + “ was born on ” +
@BDATE +  “ in ” + @BLOCATION 

Afterwards, we built the template clause that derives 
from the MOVIE relation:  

@TITLE + “ (” + @YEAR + “)”

Then, we proceed with the second clause composed by 
the join relationship between the DIRECTOR and MOVIE
relations. The template label of this relationship is 
represented with the following formula:   
label(DIRECTOR,MOVIE) = 

expr_1 + @DNAME + expr_2 + MOVIE_LIST

The macro MOVIE_LIST and the expressions can be 
defined as: 
  DEFINE MOVIE_LIST as
   [i<arityOf(@TITLE)] 

{@TITLE[$i$]+“ (”+@YEAR[$i$]+“),”} 
   [i=arityOf(@TITLE)]

{@TITLE[$i$]+“ (”+@YEAR[$i$]+“).”} 
  expr_1 � “As a director, ”
  expr_2 � “’s work includes ”
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Similarly, we proceed with the clause composed by the 
join relationship between the MOVIE and GENRE relations. 
Therefore, the result of the précis query for the token 
“Woody Allen” located in the relation DIRECTOR will be: 

“Woody Allen was born on December 1, 1935 in Brooklyn, 
New York, USA. As a director, Woody Allen’s work includes 
Match Point (2005), Melinda and Melinda (2004), Anything Else 
(2003). Match Point is Drama, Thriller. Melinda and Melinda is 
Comedy, Drama. Anything Else is  Comedy, Romance.” 

Due to lack of space, we omit the presentation of the 
case of “Woody Allen” as an actor. As we mentioned 
before, in absence of any information that both instance 
values refer to the same physical entity, the answer of the 
précis query comprises one part for each token occurrence. 

6. Experimental Results 
Experiments were conducted using a prototype system 

implemented on top of Oracle 9i R2. Our data comes from 
the Internet Movies Database [18] with information about 
over 340000 films. We created indexes on all join 
attributes. Below, we discuss preliminary results of 
experiments evaluating the algorithms described. 

Evaluation of Result Schema Generator. The Result 
Schema Generator is responsible for finding which part of 
the database schema may contain information most related 
to Q. Its input is a set of relations containing the query 
tokens and a degree constraint d. In our experiments, we 
considered the degree d to be the maximum number of 
attributes projected in the answer, and we used 20
randomly generated sets of weights for the edges of the 
database schema graph.  

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50

Degree d

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Result Schema Generator

Figure 7. Result Schema generator execution time 

Figure 7 presents the execution time of the Result 
Schema Generator as a function of d and considering that 
query tokens are contained in a single relation Ro. We 
considered 10 different relations as Ro. Consequently, each 
point in this figure represents the average of 200 different 
experiment runs with the same characteristics. We observe 
that the execution time of the Result Schema Generator is 
very small even for large values of d. Overall, 
(considering also execution times shown in subsequent 
figures), Result Schema Generator execution time can be 
considered negligible. This is a safe assumption especially 
for applications where answers of very large d are not 
common since these would be far too detailed for serving 
the purpose of a précis. 

Evaluation of Result Database Generator. We first 
present a cost model for the execution time of the Result 
Database Generator, and then we discuss experimental 
results that evaluate the generator algorithm as well as the 
cost model.  

Cost model. The creation of the result database is 
performed by submitting to the database a series of 
selection queries without joins. In particular, having found 
tuples containing the query tokens, tuples from any other 
relation Rj are retrieved based on a list of values for the 
attribute that joins this relation to the result database. 
Furthermore, it is reasonable to assume that there are 
indexes on all join attributes, and that the result database 
fits in memory. Based on the aforementioned, we use the 
following cost model for the Result Database generator 
considering only I/O overhead and ignoring the initial 
overhead for finding the tuples that contain the query 
keywords: 

� +⋅=
iR

i )TupleTimeIndexTime()R(card)D(Cost (1)

where cost(D) is the cost of generating the result 
database, card(Ri) is the number of tuples retrieved from 
relation Ri, TupleTime is the time to read a tuple from a 
relation given its tuple id, and IndexTime is the time to 
find the tuple id for a given value from its index. Consider 
that we use a cardinality criterion that specifies a 
(maximum) number of tuples per relation in D’, i.e. cR,
then the previous formula can be written as follows: 

)TupleTimeIndexTime(nc)D(Cost RR +⋅⋅= (2)

where nR is the number of relations populated in D’.
We now discuss experimental results that evaluate the 

Result Database generator and its proposed cost model. 
Figure 8 presents the execution time of the Result 

Schema Generator as cR ranges between 1 and 91 and nR
equals to 4. For this experiment, we have turned off the 
capability of selecting tuples from a relation in a round-
robin fashion. Thus, all queries are executed using 
NaïveQ. We used 10 sets of 4 relations, making sure that 
there is no relation in any set that does not join with 
another relation of this set. For each set, we considered 
each of its relations as the initial relation Ro (containing 
the query token), and for each Ro, we considered 5 random 
sets of tuples as the seed for producing the instances of the 
remaining relations. Consequently, each point in the figure 
represents the average of 200 (10*4*5) different 
experiment runs with the same characteristics. The figure 
shows that time increases almost linearly with cR, which 
seems to be in agreement with Formula (2) as well. 

Figure 9 presents the execution time of the Result 
Database Generator as nR ranges between 1 and 8 and cR
equals to 5. Each point in the figure was generated 
following a similar philosophy as above (we do not 
describe its details for space constraints). Again, we 
measured the execution time having all queries executed 
using NaïveQ. The figure shows that time increases almost 
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linearly with nR, which again seems to be in agreement 
with Formula (2) as well. Based on the experimental 
results above, Formula (2) seems to be a reasonable 
approximation of the execution cost of the Result Database 
Generator. 
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Figure 8. Result Database generator execution time 

Figure 9 also plots the execution time of the generator, 
when round-robin is used. The performance of the 
generator deteriorates with round-robin. However, one has 
to take into account that, in order to make the execution 
times of naïve and round-robin comparable, round-robin 
has been used for every join, not just the to-n. In practice, 
however, the round robin method is applied only wherever 
required and the naïve is applied everywhere else. Thus, 
when we have for example 8 relations in the answer, the 
overall execution time of the generator will be less than 
the time required to execute round-robin with 8 relations. 
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Based on the experimental results above, Formula (2) 
seems to be a reasonable approximation of the execution 
cost of the Result Database Generator. Moreover, the 
Result Database Generator is the most time-consuming 
part of the system. Consequently, we could define 
cardinality constraints based on the desired response time 
of a query, costM. Then, Formula (2) may be solved for nR
or cR, and this would be a cardinality constraint. E.g.: 

)(
cos

TupleTimeIndexTimen
tc

R

M
R +

=     (3)

7. Conclusions and Future Work 
In this paper, we introduced the concept of précis 

queries in the context of databases and presented a 
framework along with algorithms for their support. Our 
approach is applicable to other types of (semi-) structured 
data as well. Also, we presented a semi-automatic method 
to render the sets of tuples returned in response to a précis 
query to a “natural language” synthesis of results. Finally, 
we presented a set of results evaluating each part of the 

system implemented showing the potential of this work. 
The long version of this paper [21] contains further details 
omitted due to space considerations. In ongoing work, we 
are investigating the possibility of having weights on data 
values as well. We are also interested in extending the 
translator and providing a graphical tool intended for use 
by a domain expert. Finally, an interesting continuation 
will be the further optimization of the whole process. 
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