
Précis: The Essence of a Query Answer *

Georgia Koutrika
University of Athens
koutrika@di.uoa.gr

Alkis Simitsis
Nat. Tech. Univ. of Athens

asimi@dblab.ntua.gr

Yannis Ioannidis
University of Athens

yannis@di.uoa.gr

Abstract

Wide spread use of database systems in modern society
has brought the need to provide inexperienced users with
the ability to easily search a database with no specific
knowledge of a query language. Several recent research
efforts have focused on supporting keyword-based
searches over relational databases. This paper presents an
alternative proposal and introduces the idea of précis
queries. These are free-form queries whose answer (a
précis) is a synthesis of results, containing not only
information directly related to the query selections but also
information implicitly related to them in various ways. Our
approach to précis queries includes two additional
novelties: (a) queries do not generate individual relations
but entire multi-relation databases; and (b) query results
are personalized to user-specific and/or domain
requirements. We develop a framework and system
architecture for supporting such queries in the context of a
relational database system and describe algorithms that
implement the required functionality. Finally, we present a
set of experimental results that evaluate the proposed
algorithms and show the potential of this work.

1. Introduction
“précis /'preIsi�

�

: [(of)] a shortened form of a piece of
writing or of what someone has said, giving only the
main points.” (Longman Dictionary)

A précis is often what one expects in order to satisfy an
information need expressed as a question or as a starting
point towards that direction. For example, if one asks
about ‘Woody Allen’, a possible response might be in the
form of the following précis:

“Woody Allen was born on December 1, 1935 in
Brooklyn, New York, USA. As a director, Woody Allen’s
work includes Match Point (2005), Melinda and Melinda
(2004), Anything Else (2003). As an actor, Woody Allen’s
work includes Hollywood Ending (2002), The Curse of the
Jade Scorpion (2001).”

Likewise, returning a précis of information in response
to a user query is extremely valuable in the context of web
accessible databases, which have emerged as libraries,
museums, and other organizations publish their electronic
contents on the Web. With the abundance of available

information, exploring the contents of a web database and
finding anything useful is a difficult and often fruitless
procedure. However, “end users want to achieve their
goals with a minimum of cognitive load and a maximum
of enjoyment. ... humans seek the path of least cognitive
resistance and prefer recognition tasks to recall tasks” [1].
In addition, they often have very vague information needs
or know a few buzzwords. Based on the above, support of
free-form queries over databases and generation of
answers in the form of a précis comprises an advanced
searching paradigm helping users to gain insight into the
contents of a database. A précis may be incomplete in
many ways; for example, the abovementioned précis of
‘Woody Allen’ includes a non-exhaustive list of his works.
Nevertheless, it provides sufficient information to help
someone learn about Allen and identify new keywords for
further searching. For example, the user may decide to
issue a new query about “Anything Else” or follow
underlined topics (hyperlinks) to pages containing more
relevant information.

Supporting précis queries using a relational database
system is not straightforward. Pre-specified queries
embedded in user-interface forms are not a realistic
approach. Neither should web users be expected to have
any knowledge about the relational data model, schemas,
structured query languages, or even the schema of a
particular database, to form their own structured queries.

In addition, relational queries produce a single relation
whose tuples are therefore forced to contain attributes
from numerous relations. Such flattened out results are
often unnatural and unusable in constructing a meaningful
précis. Queries should be able to generate a whole new
database, with its own schema, constraints, and contents,
derived from their counterparts in the original database.
Through the concepts and relationships captured in them,
such results will provide the knowledge necessary to
derive semantically rich précis for the user.

Database-type query results are very useful in other
situations as well. Given large databases, enterprises often
need smaller subsets that conform to the original schema
and satisfy all of its constraints in order to perform
realistic tests of new applications before deploying them to
production. Likewise, software vendors need such smaller
but correct databases to demonstrate new software product
functionality. Generating such databases with current
relational technology, one relation at a time and manually
deriving the appropriate constraints, is not acceptable.

* Partially supported by the Information Society Technologies (IST)
Program of the European Commission as part of the DELOS Network of
Excellence on Digital Libraries (Contract G038-507618)

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Contributions. Motivated by the above, this paper
presents a comprehensive effort to generalize relational
queries in two directions. First, query conditions should be
free-form, containing only selection clauses. The system
will dynamically decide the joins and other predicates that
are relevant to the conditions specified and construct the
complete qualifications that the query results should
satisfy. Second, the above process will generate sets of
queries resulting in sets of interconnected relations that
together conform to the appropriate schema constraints.
Furthermore, these generalized forms of queries will also
be customized to the inquiring user’s preferences and
requirements, which could be specified at query time or
could be retrieved from a user profile. In detail, the
following are our main contributions.
- Précis Queries Framework. We introduce the concept
of précis queries in the context of databases and describe a
framework for their support. The major steps for
answering précis queries are (a) result schema generation,
where the database part that contains information related
to the query is recognized, and (b) result data generation,
where tuples are extracted from the database with the use
of appropriate SQL queries. Our approach is applicable to
other types of (semi-) structured data as well. However,
for presentation reasons, we focus on relational data here.
- System Architecture and Customized Query Processing
Algorithms. We describe the architecture of a system that
supports précis queries, and we provide appropriate
algorithms for each module of it. We also illustrate a semi-
automatic method that translates the relational output of a
précis query into a “natural language” synthesis of results.
- Experiments. Finally, we present a set of results
evaluating each part of the system.

2. Related Work
Précis queries are free-form queries. The need for free-

form queries has been early recognized in the context of
databases. Motro [4] described the idea of using tokens,
i.e. value of either data or metadata, when accessing
information instead of structured queries, and proposed an
interface that understands such utterances by interpreting
them in a unique way, i.e., complete them to proper
queries. BAROQUE [3] used a network representation of a
database and defined several types of relationships in order
to support functions that scan this network. With the
advent of the World Wide Web, the idea has been
revisited. In particular, recent approaches on keyword
searches in databases [5, 6, 7, 8] extended the idea of
tokens to values that may be part of attribute values.

These approaches work on some kind of graph (data
graph [5], schema graph [7, 8], dependency graph [4]).
Based on this graph, the interpretation for a given set of
database tokens is a query that corresponds to a sub-graph
connecting their corresponding nodes. An answer to a
keyword search is a set of ranked tuples based on some

criterion (the number of joins [8], IR-style answer-
relevance ranking [9]). On the other hand, Oracle 9i Text
[15], Microsoft SQL Server 2000 [16] and IBM DB2 Text
Information Extender [17] create full text indexes on text
attributes of relations and then perform keyword queries.
Keyword search over XML databases has also attracted
interest recently [12, 13, 14].

Our main differences from existing approaches can be
summarized as follows. First, we work on the database
schema graph. However, instead of simply locating and
connecting values in tables as other approaches do [7, 8],
we also consider information around these values that may
be related to them. For example, the answer provided by
existing approaches for “Woody Allen” would be in the
form of relation-attribute pair, such as (Name, Director).
On the contrary, the answer to a précis query might also
contain information found in other parts of the database,
e.g. movies directed by Woody Allen. This information
needs to be “assembled” –in perhaps unforeseen ways– by
joining tuples from multiple relations. Second, existing
approaches return flattened out results. Instead, we
generate a whole new database, with its own schema,
constraints, and contents, derived from their counterparts
in the original database. In addition, using the information
conveyed by the database graph, which may be properly
annotated to further enhance its semantics, we try to
construct a close to natural language representation of an
answer. Finally, we allow generating customized answers
in response to a query by making use of weights on the
database schema graph that may be specified by a domain
expert or each user. This is inspired by work on user
preferences [11].

3. Framework
3.1 Data Model

A relation schema Si is denoted as Ri(A1i,A2i,…,Aki)
and consists of a relation name Ri and a set of attributes
Ai={Aji:1�j�ki}. A database schema D is a set of
relation schemas { Si: 1 � i � m }. When populated with
data, relation and database schemas generate relations and
databases, respectively. We use Ri to denote a relation
following relation schema Si and D to denote a database
following database schema D.

We consider the database schema graph G(V,E)as a
directed graph corresponding to a database schema D.
There are two types of nodes in V: (a) relation nodes, R,
one for each relation in the schema; and (b) attribute
nodes, A, one for each attribute of each relation in the
schema. Likewise, edges in E are the following: (a)
projection edges, �, each one connects an attribute node
with its container relation node, representing the possible
projection of the attribute in the system’s answer; and (b)
join edges, J, from a relation node to another relation
node, representing a potential join between these relations.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

These could be joins that arise naturally due to foreign key
constraints, but could also be other joins that are
meaningful to a domain expert. Joins are directed for
reasons explained later. For simplicity in presentation, we
assume (a) that primary keys are not composite; thus, an
attribute from a relation joins to an attribute from another
relation, and (b) that these attributes have the same name.
For convenience, we do not depict the joining attributes in
both relations; instead, the common name of the joining
attributes is tagged on the respective join edge between the
two relations. Therefore, a database graph is defined as a
directed graph G(V,E), where: V = R∪A, and E = �∪J.

Weights. A weight, w ∈ [0,1] , is assigned to each
edge of the graph G showing the significance of the bond
between the corresponding nodes. w = 1 expresses strong
relationship: if one node of the edge appears in an answer,
then the edge should be taken into account making the
other node appear as well. w = 0, occurrence of one node
of the edge in an answer does not imply occurrence of the
other node. Based on the above, two relation nodes could
be connected through two different join edges, in the two
possible directions, between the same pair of attributes,
but carrying different weights. A directed join edge
expresses the dependence of the left part of the join on the
right part. The left part indicates the relation already
considered for the answer and the right one corresponds to
the relation that may be included influencing the final
result, if the join is taken into account. For simplicity, we
assume that there is at most one directed edge from one
node to the same destination node.

Example. Consider a movies database described by the
schema below; primary keys are underlined.

THEATRE(tid,name,phone,region)
PLAY(tid,mid,date), GENRE(mid,genre)
MOVIE(mid,title,year,did)
CAST(mid,aid,role)
ACTOR(aid,aname,blocation,bdate)
DIRECTOR(did,dname,blocation,bdate)

The database graph is depicted in Figure 1. For
instance, observe the two directed edges between MOVIE
and GENRE. Movies and genres are related but one may
consider that genres are more dependent on movies than
the other way around. In other words, an answer regarding
a genre should always contain information about related
movies, while an answer regarding a movie may not
necessarily contain information about its genres. For this
reason, the weight of the edge from GENRE to MOVIE is 1,
while the weight of the edge from MOVIE to GENRE is 0.9.

Using different weights on graph’s edges allows
constructing different answers to the same query.
− Weights may be set by the user at query time using an
appropriate user interface. This option enables interactive
exploration of the contents of a database. In particular,
changing weights associated with the underlying database
results in a different set of queries executed in order to
obtain related tuples from this part of the database and

essentially affects the part of the database explored. The
user may explore different regions of the database starting,
for example, from those containing objects closely related
to the topic of a query and progressively expanding to
parts of the database containing objects more loosely
related to it.
− Sets of weights may be created by a designer targeting
different groups of users. For instance, reviewers and
cinema fans have access to a movies database. The former
may be typically interested in in-depth, detailed answers;
using an appropriate set of weights would enable these
users to explore larger parts of the database around a
single précis query. Cinema fans usually prefer shorter
answers. A different set of weights would allow producing
answers containing only highly related objects.
− Finally, multiple sets of weights corresponding to
different user profiles may be stored in the system. Using
user-specific weights allows generating personalized
answers. For example, a user may be interested in the
region where a theatre is located, while another may be
interested in a theatre’s phone. As a result, different users
may see different answers to the same query.

0.7

NAME

PHONE

REGION

DATE

TITLE

YEAR

1

1

1

0.8

0.7

1

(TID)

(TID)

0.6

1 (MID)

1

1(MID)
(MID)

TID
0

THEATRE

TID
0

MID
0

DID
0

MID
0

PLAY

1

DNAME

BLOCATION

BDATE

1

1

1

0.8 (DID)
(DID)

DID
0

DIRECTOR

MOVIE

BLOCATION

ANAME

BDATE

ROLE

1

0.6

0.7

0.3

AID0
ACTOR

MID
0

AID0

CAST

(AID) 1
1 (AID)

GENRE
1

0.9(MID)

MID 0

GENRE
1(MID)

0.7 (MID)

Figure 1. An example database graph

3.2 Transfer of Weight over Paths in the Graph

A directed path p between two relation nodes,
comprising adjacent join edges, represents the “implicit”
join between these relations. Similarly, a directed path
between a relation node and an attribute node, comprising
a set of adjacent join edges and a projection edge
represents the “implicit” projection of the attribute on this
relation. In correspondence to edges, we call these paths,
transitive join and transitive projection paths, respectively.

The weight of a path is a function of the weight of
constituent edges, and should decrease as the length of the
path increases [10]. In our implementation, we have
chosen multiplication as this function.

Example. In Figure 1, the weight of the projection of
attribute PHONE over THEATRE equals to 0.8, while its
weight with respect to MOVIE is 0.7*1*0.8 = 0.56.

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

3.3 Query model

Consider a database D and a précis query Q which is a
set of tokens, i.e. Q={k1,k2,…,km}. The result of applying
Q on D, called précis, is a new database D� satisfying these:
1. The set of relation names in the result schema D� is a

subset of that in D.
2. For each relation name Ri in the result D�, its set of

attributes Bi={Bji:1�j�li} in D� is a subset of its set of
attributes Ai={Aji:1�j�ki} in D. That is, the result of
the query involves some of the attributes of each relation
schema present.

3. For each relation name Ri in the result D�, the set of
tuples in the corresponding relation Ri� is a subset of the
set of tuples in the original relation Ri (when projected
on the set of attributes B that are present in the result).

4. The result database D� is generated by (foreign-key) join
queries starting from the relations where the keywords
in Q appear and transitively expanding on the database
schema D. The final set of relation names, attributes, and
tuples in D� are determined by constraints.

We define two types of such constraints: (a) A degree
constraint d determines attributes and relations in D�, and
(b) A cardinality constraint c determines the number of
tuples in D�. In order to describe the result of a query Q, a
pair of constraints, one of each category should be
provided. Possible degree constraints could include these:
− The maximum number of attributes in D�

− The minimum weight of projection paths in the
database schema graph G
Constraints on the edge weights of the database

schema graph G are more immune to the effects of
database normalization or database restructuring. For
example, in the example movies database depicted in
Figure 1, each movie has only one director. Assume that
we want to associate a movie with more than one director.
For this purpose, a new relation, DIRECTED_BY(mid,
did), would be added. As a result, the length of the path
between MOVIE and DIRECTOR would increase, as well as
the number of relations required in D�, in order to show
information about movies and related directors.
Consequently, the first and the third constraint from the
previous list should be adapted accordingly; on the
contrary, the second constraint would remain valid as long
as the weight of the path between MOVIE and DIRECTOR
would not change. This can be accomplished by assigning
appropriate weights on constituent edges.

Possible cardinality constraints could include these:
− The maximum number of tuples in D�

− The maximum number of tuples per relation in D�

Using different constraints allows generating different
answers for the same query and the same set of weights
over the edges of the database graph. Similarly to weights,
constraints may be specified at query time by the user, or
be pre-specified by a designer, or may be stored as part of

a user’s profile. For example, in the graph of Figure 1,
attributes of THEATRE have different weights. With the use
of an appropriate criterion, an answer about a theatre may
contain only its name or may also contain information
about phone and region.

Inverted
Index

Result Schema
Generator

Q={k1,k2,…,km}

d

Result Database
Generatorc

TranslatorTemplates

Precis

result schema D’

Data
result database D’

∀ki, ki � {(Rj,Alj,Tidslj)}

Figure 2. System Architecture

4. System architecture
A high level representation of the system architecture

for answering précis queries is depicted in Figure 2. First,
the user submits a précis query Q={k1,k2,…,km}. In order
to generate an answer, the following steps are performed.

Inverted Index. An inverted index associates each
token that appears in the database with a list of
occurrences of the token. Each occurrence is recorded as
an attribute-relation pair, (Rj, Alj). For each such pair,
the list Tidslj of ids of tuples from Rj in which Alj
includes the token, is also returned. A token may be found
in more than one tuples and attributes of a single relation
and in more than one relations. We chose to build our own
inverted index that allows efficient retrieval of all
occurrences of a token. Given a query Q, the index returns
for each token ki in Q, a list of all its occurrences, i.e. ki→
{(Rj,Alj,Tidslj)}, ∀ki in Q.

Result Schema Generator. This step is responsible for
finding which part of the database schema may contain
information related to Q. The output of this step is a result
schema D� comprised of relations that contain the tokens
of Q and relations transitively joining to the former and a
subset of their attributes that should be present in the result
according to an input degree constraint d.

Result Database Generator. This step produces the
result database D� that corresponds to the schema D�. The
result database D� is generated by (foreign-key) join queries
starting from the relations where the tokens in Q appear
and transitively expanding on the database schema D�. The
final set of tuples in D� comprises tuples containing the
query tokens and tuples joining to these, and its size is

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

determined by an input cardinality constraint c.
Translator. This step is required if a précis needs to be

transformed into a narrative form. In particular, this step
provides a query answer constructed as a proper structured
management of individual results, according to certain
rules and templates predefined by a designer or the
administrator of the database.

5. Answering a Précis Query
For illustration purposes, we use this running example.
Query Example. Consider the query Q={‘Woody

Allen’}, and the constraint that only projections with
weight equal to or greater than 0.9 should be present in
the answer (degree constraint) and up to three tuples
should be retrieved per relation (cardinality constraint).

5.1 Result Schema Generator

The Result Schema Generator is responsible for
finding which part of the database schema may contain
information most related to a given query Q. Its output is a
result schema D� comprised of all relations containing
query tokens and relations transitively joining to the
former as well as a subset of their attributes that should be
present in the result according to a degree constraint d
provided as input. We formulate the problem as follows.

Problem formulation. Consider the database schema
graph G corresponding to the database schema D, and the
relation nodes on the graph corresponding to the relations
where the query tokens have been found. Furthermore,
consider the set Pn of all (transitive) acyclic projection
paths in G that are attached to these relations in order of
decreasing weight, i.e.

Pn = {pi|i ∈ [1,n], wi-1 ≥ wi}
The result schema D� containing most related

information to the query according to a given degree
constraint d corresponds to the schema graph G�. This is a
sub-graph of G including the nodes mapping the relations
that contain the query tokens and the set of all (transitive)
projection paths on G� attached to these nodes is the
ordered subset Pd of Pn, such that:

d = max({t | t∈[1, n]: d(Pt) holds }
Possible expressions of d(.) are given in Table 1.

Table 1. Possible degree constraints

Algorithm. The Result Schema Generator algorithm
takes as input the database schema graph G, the set of
relations where the query tokens have been found, and a
degree criterion d. It constructs a schema graph G� that

represents the result schema for the query according to the
degree constraint.

Result Schema Algorithm
Input: database schema graph G(E,V), degree criterion d(.)

{Rj | Rj relation containing query tokens},
Output: result schema graph G’(E’,V’)

QP = ∅, Pd = ∅, G’= ∅
1. Foreach edge e attached to a relation Rj: e(Rj, x)∈E , x ∈V

QP� e
End for

2. While (QP not empty)
2.1 Get head p from QP
2.2 If (d (Pd ∪ { p }) does not holds) Then exit while End if
2.3 If (p is projection path) Then

Pd � p
Update edges, nodes and in-degrees in G’ accordingly

End if
2.3 If (p is join path) Then

Foreach edge e ∈G that is attached to p
p’ is the concatenation of p and e and is acyclic
If (d (Pd ∪ { p’}) does not holds) Then Exit For End if
QP� p’

End for
End if

End while
3. Output G’

Figure 3. Result Schema Algorithm

The algorithm, presented in Figure 3, performs a best-
first traversal of the database schema graph G. The basic
idea is to gradually construct projection paths on G
attached to the input relations in order of decreasing
weight. Paths of equal weight are considered in order of
increasing length. In other words, shorter paths are
favoured among paths of equal weight based on the
intuition that these may connect more closely related
entities. If a projection path satisfies the degree constraint,
then it is “added” into the sub-graph G�, i.e. edges and
nodes of the path not already in G� are inserted into it. The
algorithm stops when no other projection paths satisfying
the constraint can be constructed on graph G.

More specifically, the algorithm keeps a queue QP of
candidate paths in order of decreasing weight, and a set Pd
of projection paths on G� that are attached to the relations
containing the query tokens. Initially, QP contains all
edges on G attached to those relations. In each round, the
algorithm picks from QP the candidate path p with the
highest weight. If the degree constraint is not satisfied,
then the algorithm stops and returns G�. If the constraint is
satisfied, then different actions are performed depending
on the type of path. If p is a projection path, the result
schema graph, G�, is updated accordingly, and p is inserted
into the set of projections, Pd, encountered so far. It is
possible that projection paths starting from different
relations containing the query tokens share common
relations. In order to facilitate subsequent steps, and

Expression Description
t � r selects up to r top-weighted projections

w t ≥ w o
selects top-weighted projections with
weight ≥ w o

length(pt)≤ lo
selects top-weighted projections with
path length ≤ lo

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

primarily result database generation, we mark each
relation node on G� that is found in more than one path. In
particular, we count the number of input relations whose
paths include this relation (in-degree). We will see how
this is used during result database generation.

If p is a join path, then it is expanded into longer paths
which are placed into QP. A path p is expanded according
to the following rule: a new path p� is generated for each
edge e that is adjacent to p in the graph G and is the
concatenation of p and e. Edges are considered in order of
decreasing weight. This helps pruning, as explained
shortly, and improves the time of insertion of new paths in
the ordered QP. A new path p� is pruned if it does not
satisfy the degree constraint. Then, the algorithm stops
expansion of p, since all paths subsequently generated will
not satisfy the constraint.

TITLE

YEAR
1

1 (MID)

1

DNAME

BLOCATION

BDATE

1

1

1

(DID) 1

DIRECTOR

MOVIE

ANAME
1

ACTOR

CAST

(AID) 1

GENRE
1

0.9(MID)

GENRE

Figure 4. Result Schema for the query example

Query Example (cont’d). Given the query
Q={‘Woody Allen’}, “Woody Allen” is a director and
also an actor. Therefore, the inverted index returns
relations DIRECTOR and ACTOR. Given the degree
constraint that only projections with weight equal to or
greater than 0.9 should be present in the answer, Figure 4
shows the result schema graph output by this step with
respect to the example database depicted in Figure 1. The
input relations are shown in color. On this graph, there are
paths from DIRECTOR or ACTOR, some of them having
common relations, one such being relation MOVIE. For
presentation reasons, this example is kept simple, in the
sense that the set of paths arriving to a relation from
DIRECTOR and the set of paths arriving to the same
relation from ACTOR result in the projection of the same
attributes of that relation. In a general case, paths from
DIRECTOR to a relation could result in projection of
different attributes on this relation than paths arriving to
the same relation from ACTOR. We use Pd to keep track of
the projection paths departing from each of the input
relations. Moreover, observe in the result schema of the
figure that MOVIE has an in-degree equal to 2.

In the example above, ‘Woody Allen’ is found in
two different relations. In general, it is possible that a
single value may be used to represent different objects
(homonyms), e.g., ‘Woody Allen’ could correspond to
two different persons, or different values may be used for
the same object (synonyms); e.g., ‘W. Allen’ and

‘Woody Allen’ that correspond to the same person. To
tackle the former problem, in the absence of any additional
knowledge stored in the system, we may return multiple
answers, one for each homonym, or obtain additional
information through interaction with the user. For the
latter problem, there exist approaches [e.g., 19, 20] for
cleaning and homogenizing string data, such as addresses,
acronyms, names and so forth. However, both these
problems are orthogonal to answering précis queries.

5.2 Result Database Generator
The Result Database Generator produces a result

database D� corresponding to the schema D�. The result
database is generated by selecting tuples in the relations
containing the query tokens and tuples in other relations of
D� transitively joining to the former. The final set of tuples
in D� is determined by a cardinality constraint c. We
formulate the problem as follows.

Problem Formulation. Given are the database schema
graph G� corresponding to the database schema D�, the
relation nodes containing the query tokens, and a
cardinality criterion c(.). In addition, for each of these
relations, the list of tuples containing query tokens is
considered. Based on the above, this is an initial database
Do corresponding to the database schema D�. The set of
possible result databases corresponding to schema D� in
order of increasing cardinality is:

D1 ← Do��R1 , D2 ← D1��R2 , … , Dnj ← Dn
j-1

��Rn
j

At any point, a relation Ri is joined to Di-1 if there is a
join edge in G� between this relation and a relation already
populated in Di-1. If more than one joins may be executed,
these are considered in order of decreasing weight. In this
way, relations in D� that are most related to the query are
populated first. Any relations that may not be eventually
populated due to the cardinality constraint would be the
most weakly connected to the query. A database Di
contains all tuples also contained in Di-1 plus any tuples
from that join to those through the corresponding join edge
ei. The number of tuples in Di is card(Di). According to
the cardinality criterion, the result database D� is a
database Dc, such that:

c = max({ t | t∈[0,nJ]: c(Dt) holds })
For each relation Ri, a subset of its tuples, Ri�, is found

in the result D�, projected on the set of attributes that are
present in the result. Possible expressions of c(.) are
given in Table 2. A combination of those is also possible.

Table 2. Possible cardinality constraints

Algorithm. The Result Database Generator algorithm
has inputs: the result schema graph G� produced in the
previous step; a cardinality constraint c(.), and the

Expression Description
card(Dt)≤co max. total number of tuples in D� is co
card(Rt)≤co max. number of tuples per relation in D� is co

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

relation nodes containing query tokens. In addition, for
each of these relations, the list of tuple id’s containing
query tokens is provided (returned by the inverted index).
The output is the result database D� that is an instance of
D� corresponding to graph G�.

Initially, D� contains all tuples involving query tokens.
For each relation Rj with matching tuples, the algorithm
retrieves them using their ids provided in Tidsj. In
relational algebra, the query executed looks like this:
�Tidsj(Rj)[�(Rj)], where �(Rj) is the set of attributes of
Rj that is projected in the result schema D�. If the
cardinality constraint allows only a subset of Rj’s
matching tuples to be selected, then a random subset of
those is retrieved using NaïveQ, which is described below.

Subsequently, the algorithm loops through the set of
join edges of G�. In each round, one or more joins may be
possibly executed. In this case, as already explained, the
join with the highest weight precedes. Execution of joins
that depart from relations with an in-degree greater than 1
is postponed. Thus, the algorithm ensures that all tuples
that may populate a relation in the result database as result
of different joins arriving to it will be produced before
moving from this relation further on the database graph.
Also, any duplicates are removed. (Which of the tuples
collected in a relation are used for subsequently joining
tuples from other relations depends on the paths stored in
Pd. For simplicity, we omit any details regarding this.)

For each directed join Ri��Rj executed, with a subset of
Ri, namely Ri�, already in D�, a subset of Rj is retrieved
containing tuples joining to those in Ri�. The number of
tuples in Rj� is determined by the cardinality criterion. The
attributes projected in Rj� are specified by the projections
edges attached to the corresponding relation and the join
edges that depart from it to other relations in G�. In terms
of the query executed for this purpose, this does not
contain the actual join between the two relations. In
relational algebra, the corresponding query is the
following: �Idsj(Rj)[�(Rj)], where �(Rj) is the set of
attributes of Rj that should be projected, and Idsj is the
set of values of the attribute of Rj used for joining with Ri.
These are contained in the corresponding joining attribute
of Ri�. Again, only a subset of Rj’s tuples may be required
according to the criterion c(.). There are two possible
ways to obtain this subset: NaïveQ and RoundRobin.

(NaïveQ) One way is to submit an SQL query and keep
only the top tuples, whose number is determined based on
the cardinality constraint. For instance, in Oracle, this can
be performed using the pseudo-column RowNum.

If the join considered, Ri��Rj, is to-1, then the above
method selects a random subset of tuples from Rj that join
to all tuples in Ri in D� (assuming that each of Ri’s tuples
in D� joins with one tuple in Rj). However, if the join is to-
n, then there is a risk of selecting a subset of Rj’s tuples
that join to only a subset of Ri�’s tuples in D�. As a result

of this selection, there will be tuples in Ri� that will not
join to any tuples from Rj. To avoid this situation, an
approach would be the following: assume that the total
number of tuples that may be retrieved from Rj according
to the cardinality constraint is T, and t is the number of
tuples in Ri�. Then, the number of tuples retrieved per
tuple of Ri� is T/t. A set of parameterized queries may be
submitted, each one retrieving up to T/t joining tuples
from Rj for each tuple in Ri�. This method attempts to
retrieve tuples from Rj that are uniformly distributed over
tuples of Ri�. However, since the real distribution in the
database may be very different, we have adopted the
following round-robin method.

(Round-Robin) For each tuple in Ri�, a scan of joining
tuples from Rj is opened. Each time, only one joining tuple
from a scan is retrieved as long as the cardinality
constraint holds. If there are no tuples to be retrieved from
a scan, this is closed.

Having executed the join Ri��Rj, the in-degree of Rj is
reduced accordingly. The algorithm stops execution when
either all join edges of G� have been considered or the
cardinality constraint does not hold.

Result Database Algorithm
Input: {Rj | Rj relation containing query tokens },

{Tidsj | Tidsj a set of matching tuple id’s in Rj},
result schema graph G’, cardinality criterion c(.)

Output: Result Database D�
1. D� ← { naïveQ (�Tidsj(Rj)[�(Rj)], c(�Tidsj(Rj)[�(Rj)])), ∀ Rj}
2. Foreach applicable join edge inG’where destination Ri has in-

degree = 1
2.1 If the join is to-n then

D� ← RoundRobin (D���Ri, c (D���Ri))
Else

D� ← naïveQ (D���Ri, c (D���Ri))
End if

2.2 decrease Ri’s in-degree
3. Output D�

Figure 5. Result Database algorithm

Query Example (cont’d). Given the query Q =
{‘Woody Allen’}, and the cardinality constraint that up
to three tuples should be retrieved per relation, a part of
the output of this step is depicted in Figure 6. (Attributes
required for joins have been also projected in the result,
but these will not show in the final answer, since they are
not included in the result schema of Figure 4).

5.3 Result Database Translator
In this section, we illustrate a semi-automatic method

to render the SQL-like response of a précis query to a
more user-friendly synthesis of results. In the context of
this work, the presentation of a query answer is defined as
a proper structured management of individual results,
according to certain rules and templates predefined by a
designer or the administrator of the database. Clearly, we

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

do not anticipate the construction of a human-intelligent
system; rather, we try to provide a user-friendly response
through the composition of simple clauses. We only sketch
our approach due to space considerations. More details
may be found in [21].

In our framework, in order to describe the semantics of
a relation R along with its attributes in natural language,
we consider that relation R has a conceptual meaning
captured by its name, and a physical meaning represented
by the value of at least one of its attributes that
characterizes tuples of this relation. We name this attribute
the heading attribute and we depict it as a hachured
rounded rectangle. For example, in Figure 6, the relation
MOVIE conceptually represents “movies” in real world;
indeed, its name, MOVIE, captures its conceptual meaning.
Moreover, the main characteristic of a “movie” is its title,
thus, the relation MOVIE should have the TITLE as its
heading attribute. By definition, the edge that connects a
heading attribute with the respective relation has a weight
1 and it is always present in the result of a précis query. A
domain expert makes the selection of heading attributes.

The synthesis of query results follows the database
schema and the correlation of relations through primary
and foreign keys. Additionally, it is enriched by
alphanumeric expressions called template labels mapped
to edges of the database schema graph.

A template label, label(u,z) is assigned to each
edge e(u,z)∈ E of the database schema graph G(V,E).
This label is used for the interpretation of the relationship
between the values of nodes u and z in natural language.

Each projection edge e ∈ � that connects an attribute
node with its container relation node, has a label that
signifies the relationship between this attribute and the
heading attribute of the respective relation; e.g., the YEAR
of a MOVIE (.TITLE). If a projection edge is between a
relation node and its heading attribute, then the respective
label reflects the relationship of this attribute with the
conceptual meaning of the relation; e.g., the TITLE of a
MOVIE. Each join edge e ∈ J between two relations has a
label that signifies the relationship between the heading
attributes of the relations involved; e.g., the GENRE
(.GENRE) of a MOVIE (.TITLE). The label of a join edge
that involves a relation without a heading attribute
signifies the relationship between the previous and
subsequent relations.

We define as the label l of a node n the name of the
node and we denote it as l(n). For example, the label of
the attribute node TITLE is “title”. The name of a node is
determined by the designer/administrator of the database.

The template label label(u,z) of an edge e(u,z)
formally comprises the following elements: (a) lid, a
unique identifier for the label in the database graph; (b)
l(u), the name of the starting node; (c) l(z), the name of
the ending node; (d) expr1,expr2,expr3 alphanumeric
expressions. A simple template label has the form:

label(a,b) = expr1 + l(u) + expr2 + l(z) + expr3

where the operator “+” acts as a concatenation operator.
In order to use template labels or to register new ones,

we use a simple language for templates that supports
variables, loops, functions, and macros.

The translation is realized separately for every
occurrence of a token. At the end, the précis query lists all
the clauses produced. For each occurrence of a token, the
analysis of the query result graph starts from the relation
that contains the input token. The labels of the projection
edges that participate in the query result graph are
evaluated first. The label of the heading attribute
comprises the first part of the sentence. It becomes
obvious that for multiple attributes of the same relation we
have to repeat several times the same subject. To avoid
this, a domain expert should have attached suitable
expressions in the projections edges, in order to allow the
construction of complex sentences that make sense.

After having constructed the clause for the relation that
contains the input token, we compose additional clauses
that combine information from more than one relation by
using foreign key relationships. Each of these clauses has
as subject the heading attribute of the relation that has the
primary key. The procedure ends when the traversal of the
databases graph is complete.

MOVIE

TITLE

YEAR
DNAME

1

1

1 (DID)

1
“’s work includes”

BLOCATION

1
BDATE

1

DIRECTOR

Woody Allen ; 1 December, 1935 ; Brooklyn, New York, USA

Match Point ; 2005
Melinda and Melinda ; 2004
Anything Else ; 2003

Figure 6. A part of our example database

Query Example (cont’d). Consider the database
instance in Figure 6. At first, we consider the case of
“Woody Allen” as a director. We construct the template
clause for the DIRECTOR relation:

@DNAME + “ was born on ” +
@BDATE + “ in ” + @BLOCATION

Afterwards, we built the template clause that derives
from the MOVIE relation:

@TITLE + “ (” + @YEAR + “)”

Then, we proceed with the second clause composed by
the join relationship between the DIRECTOR and MOVIE
relations. The template label of this relationship is
represented with the following formula:
label(DIRECTOR,MOVIE) =

expr_1 + @DNAME + expr_2 + MOVIE_LIST

The macro MOVIE_LIST and the expressions can be
defined as:
 DEFINE MOVIE_LIST as
 [i<arityOf(@TITLE)]

{@TITLE[i]+“ (”+@YEAR[i]+“),”}
 [i=arityOf(@TITLE)]

{@TITLE[i]+“ (”+@YEAR[i]+“).”}
 expr_1 � “As a director, ”
 expr_2 � “’s work includes ”

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

Similarly, we proceed with the clause composed by the
join relationship between the MOVIE and GENRE relations.
Therefore, the result of the précis query for the token
“Woody Allen” located in the relation DIRECTOR will be:

“Woody Allen was born on December 1, 1935 in Brooklyn,
New York, USA. As a director, Woody Allen’s work includes
Match Point (2005), Melinda and Melinda (2004), Anything Else
(2003). Match Point is Drama, Thriller. Melinda and Melinda is
Comedy, Drama. Anything Else is Comedy, Romance.”

Due to lack of space, we omit the presentation of the
case of “Woody Allen” as an actor. As we mentioned
before, in absence of any information that both instance
values refer to the same physical entity, the answer of the
précis query comprises one part for each token occurrence.

6. Experimental Results
Experiments were conducted using a prototype system

implemented on top of Oracle 9i R2. Our data comes from
the Internet Movies Database [18] with information about
over 340000 films. We created indexes on all join
attributes. Below, we discuss preliminary results of
experiments evaluating the algorithms described.

Evaluation of Result Schema Generator. The Result
Schema Generator is responsible for finding which part of
the database schema may contain information most related
to Q. Its input is a set of relations containing the query
tokens and a degree constraint d. In our experiments, we
considered the degree d to be the maximum number of
attributes projected in the answer, and we used 20
randomly generated sets of weights for the edges of the
database schema graph.

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50

Degree d

E
xe

cu
tio

n
Ti

m
e

(s
)

Result Schema Generator

Figure 7. Result Schema generator execution time

Figure 7 presents the execution time of the Result
Schema Generator as a function of d and considering that
query tokens are contained in a single relation Ro. We
considered 10 different relations as Ro. Consequently, each
point in this figure represents the average of 200 different
experiment runs with the same characteristics. We observe
that the execution time of the Result Schema Generator is
very small even for large values of d. Overall,
(considering also execution times shown in subsequent
figures), Result Schema Generator execution time can be
considered negligible. This is a safe assumption especially
for applications where answers of very large d are not
common since these would be far too detailed for serving
the purpose of a précis.

Evaluation of Result Database Generator. We first
present a cost model for the execution time of the Result
Database Generator, and then we discuss experimental
results that evaluate the generator algorithm as well as the
cost model.

Cost model. The creation of the result database is
performed by submitting to the database a series of
selection queries without joins. In particular, having found
tuples containing the query tokens, tuples from any other
relation Rj are retrieved based on a list of values for the
attribute that joins this relation to the result database.
Furthermore, it is reasonable to assume that there are
indexes on all join attributes, and that the result database
fits in memory. Based on the aforementioned, we use the
following cost model for the Result Database generator
considering only I/O overhead and ignoring the initial
overhead for finding the tuples that contain the query
keywords:

� +⋅=
iR

i)TupleTimeIndexTime()R(card)D(Cost (1)

where cost(D) is the cost of generating the result
database, card(Ri) is the number of tuples retrieved from
relation Ri, TupleTime is the time to read a tuple from a
relation given its tuple id, and IndexTime is the time to
find the tuple id for a given value from its index. Consider
that we use a cardinality criterion that specifies a
(maximum) number of tuples per relation in D’, i.e. cR,
then the previous formula can be written as follows:

)TupleTimeIndexTime(nc)D(Cost RR +⋅⋅= (2)

where nR is the number of relations populated in D’.
We now discuss experimental results that evaluate the

Result Database generator and its proposed cost model.
Figure 8 presents the execution time of the Result

Schema Generator as cR ranges between 1 and 91 and nR
equals to 4. For this experiment, we have turned off the
capability of selecting tuples from a relation in a round-
robin fashion. Thus, all queries are executed using
NaïveQ. We used 10 sets of 4 relations, making sure that
there is no relation in any set that does not join with
another relation of this set. For each set, we considered
each of its relations as the initial relation Ro (containing
the query token), and for each Ro, we considered 5 random
sets of tuples as the seed for producing the instances of the
remaining relations. Consequently, each point in the figure
represents the average of 200 (10*4*5) different
experiment runs with the same characteristics. The figure
shows that time increases almost linearly with cR, which
seems to be in agreement with Formula (2) as well.

Figure 9 presents the execution time of the Result
Database Generator as nR ranges between 1 and 8 and cR
equals to 5. Each point in the figure was generated
following a similar philosophy as above (we do not
describe its details for space constraints). Again, we
measured the execution time having all queries executed
using NaïveQ. The figure shows that time increases almost

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

linearly with nR, which again seems to be in agreement
with Formula (2) as well. Based on the experimental
results above, Formula (2) seems to be a reasonable
approximation of the execution cost of the Result Database
Generator.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41 51 61 71 81 91

Tuples per relation

E
xe

cu
tio

n
Ti

m
e

(s
)

Result Database Generator Naive
(No. of Relations=4)

Figure 8. Result Database generator execution time

Figure 9 also plots the execution time of the generator,
when round-robin is used. The performance of the
generator deteriorates with round-robin. However, one has
to take into account that, in order to make the execution
times of naïve and round-robin comparable, round-robin
has been used for every join, not just the to-n. In practice,
however, the round robin method is applied only wherever
required and the naïve is applied everywhere else. Thus,
when we have for example 8 relations in the answer, the
overall execution time of the generator will be less than
the time required to execute round-robin with 8 relations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8
No. of Relations

E
xe

cu
tio

n
Ti

m
e

(s
)

Result Database Naive (card=5)
Result Database RRobin (card=5)

Figure 9. NaïveQ vs. RoundRobin execution times

Based on the experimental results above, Formula (2)
seems to be a reasonable approximation of the execution
cost of the Result Database Generator. Moreover, the
Result Database Generator is the most time-consuming
part of the system. Consequently, we could define
cardinality constraints based on the desired response time
of a query, costM. Then, Formula (2) may be solved for nR
or cR, and this would be a cardinality constraint. E.g.:

)(
cos

TupleTimeIndexTimen
tc

R

M
R +

= (3)

7. Conclusions and Future Work
In this paper, we introduced the concept of précis

queries in the context of databases and presented a
framework along with algorithms for their support. Our
approach is applicable to other types of (semi-) structured
data as well. Also, we presented a semi-automatic method
to render the sets of tuples returned in response to a précis
query to a “natural language” synthesis of results. Finally,
we presented a set of results evaluating each part of the

system implemented showing the potential of this work.
The long version of this paper [21] contains further details
omitted due to space considerations. In ongoing work, we
are investigating the possibility of having weights on data
values as well. We are also interested in extending the
translator and providing a graphical tool intended for use
by a domain expert. Finally, an interesting continuation
will be the further optimization of the whole process.

8. References
1. Marchionini, G. (1992). Interfaces for End-User Information
Seeking. J. of the American Society for Inf. Sci., 43(2), 156-163.
2. Balmin, A., Hristidis, V., Papakonstantinou, Y. (2004).
ObjectRank: Authority-Based Keyword Search in Databases. In
VLDB’04, 564-575.
3. Motro, A. (1986). BAROQUE: A Browser for Relational
Databases. ACM TOIS, 4(2), 4 1986, 164-181.
4. Motro, A. (1986). Constructing Queries from Tokens. In
SIGMOD’86, 120-131.
5. Bhalotia, G., Hulgeri A., Nakhe, C., Chakrabarti, S.,
Sudarshan, S. (2002). Keyword Searching and Browsing in
Databases using BANKS. In ICDE’02, 431-440.
6. Masermann, U., Vossen, G. (2000) Design and
Implementation of a Novel Approach to Keyword Searching in
Relational Databases. J. Stuller et al. (Eds.): ADBIS-DASFAA
2000, LNCS 1884, 171-184.
7. Agrawal, S., Chaudhuri, S., Das, G. (2002). DBXplorer: A
System for Keyword-Based Search over Relational Databases. In
ICDE’02, 5-16.
8. Hristidis, V. Papakonstantinou, Y. (2002). DISCOVER:
Keyword Search in Relational Databases. In VLDB’02, 670-681.
9. Hristidis, V., Gravano, L., Papakonstantinou, Y. (2003).
Efficient IR-Style Keyword Search over Relational Databases. In
VLDB’03, 850-861.
10. Collins, A., Quillian, M. (1969). Retrieval Time from
Semantic Memory. J. of Verbal Learning and Verbal Behaviour,
8, 240-247.
11. Koutrika, G., Ioannidis, Y. (2005). Personalized Queries
under a Generalized Preference Model. In ICDE’05.
12. Florescu, D., Kossmann, D., Manolescu, I. (2000). Inte-
grating keyword search into XML query processing. In WWW9.
13. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J. (2003).
XRANK: Ranked keyword search over XML documents. In
SIGMOD’03, 16-27.
14. Hristidis, V., Papakonstantinou, Y., Balmin, A. (2003).
Keyword proximity search on XML graphs. In ICDE’03.
15. Oracle 9i Text. url:
www.oracle.com/technology/products/text/index.html
16. MS SQL Server 2000. url: msdn.microsoft.com/library/
17. IBM DB2 Text Information Extender. url:
www.ibm.com/software/data/db2/extenders/textinformation/
18. Internet Movies Database. url: at www.imdb.com
19. Dong, X., Halevy, A., Madhavan, J. (2005). Reference
Reconciliation in Complex Information Spaces. In SIGMOD'05.
20. Sarawagi, S. (2000). Special Issue on Data Cleaning. Bulletin
of the Tech. Committee on Data Eng., Vol. 23, No. 4, 2000.
21. Koutrika, G., Simitsis, A., Ioannidis, Y. (2005). Précis: The
Essence of a Query Answer. Extended Version.
url: http://www.dblab.ntua.gr/~asimi/publications/KoSI05.pdf

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

