
Generalized Précis Queries for Logical Database Subset Creation

Alkis Simitsis
Nat’l Techn. Univ. of Athens

Athens, Greece
asimi@dbnet.ece.ntua.gr

Georgia Koutrika
University of Athens

Athens, Greece
koutrika@di.uoa.gr

Yannis Ioannidis
University of Athens

Athens, Greece
yannis@di.uoa.gr

Abstract

As a large fraction of available information resides in
databases, the need for facilitating access for the large ma-
jority of users becomes increasingly more important. Précis
queries are free-form queries that generate entire multi-
relation databases, which are logical subsets of existing
ones. A logical subset contains not only items directly re-
lated to the given query selections but also items implicitly
related to them in various ways with the purpose of provid-
ing to the user much greater insight into the original data.
This paper is concerned with the definition and generation
of logical database subsets based on précis queries under
a generalized perspective that removes several restrictions
of previous work and handles queries containing multiple
terms combined using the operators AND, OR, and NOT .

1 Introduction

Emergence of the World Wide Web has made informa-
tion access possible to a growing number of people. As
libraries, museums, and other organizations publish their
electronic contents on the Web, a large fraction of informa-
tion resides in databases. The need for facilitating access to
information stored in databases becomes increasingly more
important. Towards this direction, current commercial and
research efforts have adopted an Information-Retrieval ap-
proach and have focused on keyword-based searches over
databases that relieve the user of the need to have any
knowledge about schemas, query languages or even the
schema of a particular database, to form their own struc-
tured queries [1, 2, 3, 4, 5, 6, 8].

Recently, précis queries were introduced as free-form
queries that generate entire multi-relation databases, which
are logical subsets of existing ones, instead of individual re-
lations [7]. A logical subset contains not only items directly
related to the given query selections but also items implic-
itly related to them in various ways. Its purpose is to provide

to the user greater insight into the original data and it may
be used for different purposes ranging from data extraction
to information discovery. Thus, the logical database sub-
set that should be extracted from a database given a query
may vary depending on various factors such as the applica-
tion, the type of the query, and the user issuing the query.
Consequently, supporting précis queries using a relational
database system is not straightforward.

This paper is concerned with the generation of logical
database subsets based on précis queries. Earlier work has
been restricted to précis queries with a single keyword,
which was searched for in all attributes of all database re-
lations. Although a step forward, this is still quite restric-
tive. For example, single-keyword précis queries on a mu-
seum database would allow one to find everything related
to “Da Vinci”, but not everything related to “Da Vinci” and
“Michelangelo”. In this paper, we examine logical database
subsets and précis queries under a generalized model. In
doing so, we address several technical challenges that arise
on the way.

Contributions. In particular, the contributions of this
paper are the following. We extend précis query semantics
considering that queries may contain multiple terms com-
bined using the operators AND, OR, and NOT . Based on
these extended semantics, we consider the logical subset of
a database, based not only on purely syntactic constraints,
but also in terms of relevance to a given query. Moreover,
we provide algorithms for the generation of logical database
subsets. Finally, we present a set of experimental results
that demonstrate the efficiency and benefits of our approach.

Due to space limitations, more details about this work
can be found in the long version of this paper [9].

2 General Framework

A Database Schema Graph G(V,E) is a directed graph
corresponding to a database schema D. There are two types
of nodes in V: (a) relation nodes, R, one for each relation
in the schema; and (b) attribute nodes, A, one for each at-
tribute of each relation in the schema. Likewise, edges in E

1-4244-0803-2/07/$20.00 ©2007 IEEE 1382

are: (a) projection edges, Π, each one connects an attribute
node with its container relation node, representing the pos-
sible projection of the attribute in the system’s answer; and
(b) join edges, J, from a relation node to another relation
node, representing a potential join between these relations.
A weight w∈[0, 1] assigned to an edge of a graph G repre-
sents the significance of the association between the nodes
connected. Formally, a database schema graph is a directed
graph G(V,E), where: V = R ∪ A and E = Π ∪ J.

We consider queries formulated as combinations of
terms with the use of logical operators. A term may be a
word, e.g., “Leonardo”, or a phrase, e.g., “Mona Lisa”, en-
closed in quotation marks. Operators include AND, OR,
and NOT . Given a database D and a query Q, we define as
initial tuple one in which at least one query term has been
found, and as initial relation any database relation that con-
tains at least one initial tuple.

A logical database subset L of D contains a set of re-
lations that are a subset of those in the original database.
For each relation in L, its set of attributes in L is a subset
of its set of attributes in D and its set of tuples is a subset
of the set of tuples in the original relation (when projected
on the set of attributes that are present in the result). Sim-
ilarly to the database schema graph G(V,E), we consider
the logical subset schema graph G′(V′,E′) as a directed
graph corresponding to a logical subset L.

Query Semantics. The result of applying Q on database
D given a set of constraints C is a logical database subset
L of D that satisfies the following:
• In the case of OR-semantics, L contains initial tu-

ples for Q and any other tuple in D that is transitively
reachable by some initial tuple through joins on G,
subject to the constraints in C.

• In the case of AND-semantics, L contains any tuple
in D (including initial tuples) that is transitively reach-
able by all keywords combined with AND in Q, sub-
ject to the constraints in C.

• In the case of NOT -semantics, L contains any tuple in
D (including initial tuples), except those that are tran-
sitively reachable by keywords associated with NOT
in Q, subject to the constraints in C.

Example. Consider a museum collection and the follow-
ing queries issued.

q1: “Da V inci” AND “Painting”
q2: “Da V inci” NOT “Painting”

The answer of q1 would contain joining tuples in which
all terms are found plus all tuples that are connected to
these in various ways. Thus, the answer would contain in-
formation about paintings created by Da Vinci, paintings
depicting Da Vinci, and so forth. The answer of q2 would
contain information about Da Vinci except anything related
to paintings. Thus, all tuples of q1 are excluded from the
logical subset of q2.

What prevents a query from returning the entire database
as an answer is the set of constraints C that restricts the
schema and tuples included in the logical database sub-
set. Such constraints may be stored in the system or speci-
fied by the user at query time and their particular form de-
pends on the application and the user characteristics. For
example, given a large database, a developer who needs
a smaller subset that conforms to the original schema for
application testing, may provide structural constraints on
the database schema graph itself, such as # of relations,
of attributes per relation, and # of joins (per path).
Alternatively, a web user who is interested in specific items,
may provide relevance constraints on the weights on the
database schema graph. Different sets of weights and/or
different constraints on them result in different answers for
the same précis query, offering adjustability and flexibility.

Schema of a Logical Subset. Given a database D and an
AND/NOT -query Q, an initial subgraph (IS) is a rooted
DAG SG(VG, EG) on the database schema graph G(V,E)
such that: (a) VG contains at least one initial relation per
query term, along with other relations that interconnect
those, (b) EG is a subset of E interconnecting the nodes
in VG, and (c) the root and all sink relations are initial rela-
tions. In an OR-query Q, there are at least as many initial
subgraphs as terms in Q, each with an initial relation as its
sole node.

Given a query Q, a database D, constraints C, and an
initial subgraph SG, an expanded graph is a connected sub-
graph on the database schema graph G that includes SG

and satisfies C. The set of all possible expanded subgraphs
comprises the schema of the logical database subset G′ that
contains the most relevant information for the given query
based on the constraints provided.

3 Logical Subset Schema Creation

Given a query Q, constraints C, and the database schema
graph G, initial relations are retrieved with the use of an in-
verted index. (No tuples are retrieved in this phase.) The
creation of the LS schema is realized in two phases: the ini-
tial subgraph creation and the initial subgraph expansion.

The first phase performs the construction of the set SG of
initial subgraphs that correspond to Q. For OR-semantics,
each initial relation comprises an initial subgraph in SG.
The case of AND-semantics is confronted by the algorithm
FIS. For each combination ξ of initial relations containing
all terms in Q, the most significant initial subgraph sub-
ject to constraints C, if such subgraph exists, is placed in
SG. For this aim, a best-first traversal of graph G is per-
formed, starting from all initial relations. Hence, multiple
subgraphs are progressively built. Each time an initial sub-
graph is identified that interconnects a different combina-
tion of the initial relations, containing all query terms, it is

1-4244-0803-2/07/$20.00 ©2007 IEEE 1383

Algorithm Find Initial Subgraphs (FIS)

Input: a database schema graph G(E,V), constraints,
and a set of initial relations IR

Output: a set of initial subgraphs SG

Begin
0. QP := {}, G′ := G
1. Foreach Ri∈IR {

1.1 mark each relation Ri in G′ with different s-id
1.2 Foreach e(Ri, x)∈E, x∈V {

1.2.1 If e satisfies constraints {
wsid := fG(we)
mark respective e in G′ with s-id
add(QP , <e, s-id>)

}}}
2. While QP not empty and constraints hold {

2.1 get head <e(Ri, Rj), s-id> from QP
2.2 If destination relation Rj is not marked in G′

and subgraph s-id is retained acyclic {
2.2.1 mark respective Rj in G′ with s-id
2.2.2 Foreach e′(Rj , x)∈E, x∈V {

If e′ satisfies constraints {
wsid∪e′ := fG(WG ∪ we′)
mark respective e′ in G′ with s-id
add(QP , <e, s-id>)

}}}
2.3 If subgraph with s-id contains new combination ξ {

2.3.1 drop from subgraph all sink nodes n, s.t. n/∈ξ
2.3.2 add subgraph in SG

}}
3. return SG

End

Figure 1. Algorithm FIS

placed in SG. The logical operator NOT is confronted in
the same way as AND in this phase. In a further step, the
SG produced is enriched with the appropriate attributes and
projection edges w.r.t. constraints.

In the second phase, from each initial subgraph SG∈SG,
an expanded subgraph is derived with respect to C (algo-
rithm EIS). EIS extends initial subgraphs by considering ad-
ditional relations, in order to collect information “around”
initial relations that is related to the query. Therefore, it
builds a set of expanded subgraphs from SG, subject to the
constraints, which comprises the LS schema graph G′. New
edges are gradually added in a subgraph SG∈SG in order
of weight, as long as the target relation is significant for all
initial relations in SG with respect to C.

Theorem. Given a set of initial subgraphs and con-
straints C, algorithm EIS constructs correctly the set of ex-
panded subgraphs, i.e., for each initial subgraph SG, it finds
all relations around SG, such that each of them is significant
for all initial relations in SG with respect to constraints C.

Proof. The proof is omitted due to space considerations.

Algorithm Extend Initial Subgraphs (EIS)

Input: a database schema graph G(E,V), constraints,
a set of initial subgraphs SG, and a list QP

Output: LS schema graph G′(E′,V′)
Begin
1. While QP not empty and constraints hold {

1.1. get head <e(Ri, Rj), s-id> from QP
1.2. If destination Rj is not marked on G (i.e. Rj /∈V ′),

is significant for SG, and satisfies constraints {
1.2.1 mark corresponding node on G
1.2.2 create a new node in V′ for Rj

1.2.3 create attribute nodes and projection edges
in G′ for attributes of Rj satisfying constraints

}
1.3. If Rj∈V′, e(Ri, Rj)/∈E′ and e satisfies constraints

{ 1.3.1 insert e in E′ }
1.4. annotate e∈E′ with s-id
1.5. update SG identified by s-id
1.6. Foreach join edge e′(Rj , x)∈E, x∈V, that retains

SG acyclic and satisfies constraints {
1.6.1 add(QP , <e′, s-id>)

}}
2. return G′

End

Figure 2. Algorithm EIS

4 Logical Subset Population

Given a database D and the schema graph G′ of the log-
ical database subset L for a query Q and constraints C,
L contains the set of relations and attributes determined
by the graph G′ and a subset of tuples from D such that:
∀tj∈Ri,∀Ri belonging to G′, the following hold (based on
the join edges on G′): (a) tj does not contain any query
term associated with NOT in Q and does not transitively
join to any initial tuple containing such query terms; (b)
in case of OR-semantics, tj is an initial tuple or transi-
tively joins to an initial tuple; and (c) in case of AND-
semantics, tj transitively joins to initial tuples containing
all query terms that are not contained in itself.

Naı̈ve approach. In order to populate a logical subset,
one approach is to consider the set of subgraphs marked
on G′, and for each one, build an appropriate query that
retrieves tuples taking into account the initial relations con-
tained in this subgraph and the semantics of query Q. The
inverted index is used for retrieval of the id’s of initial tu-
ples. These queries are executed, and results obtained are
used to populate each relation in the logical database sub-
set L. Special care is required so that duplicate tuples and
tuples not satisfying constraints are not inserted in the rela-
tions of the result. This approach is called NaiveLSP.

Algorithm PLSP. In [7], a different approach is used for
the population of logical subsets corresponding to single-

1-4244-0803-2/07/$20.00 ©2007 IEEE 1384

term queries. The logical subset is generated by a series of
simple selection queries without joins. In particular, initial
tuples are retrieved first; then, tuples from any other relation
in L are retrieved based on a list of values for the attribute
that joins this relation to the logical subset. A heuristic is
used in order to reduce the number of queries executed: if
a relation in L collects tuples that transitively join to more
than one initial relation, then the algorithm tries to collect
them all, before joining another relation to this one.

We extend these ideas for the generalized précis queries
under the query semantics considered in this work. The al-
gorithm PLSP (Figure 3) consists of two phases. First, it
populates initial subgraphs in order of decreasing weight
(Ln: 1). Then, more tuples are retrieved and inserted into
L by join queries starting from relations in the initial sub-
graphs and transitively expanding on G′ (Ln: 2). For this
purpose, a best-first traversal of the graph is performed. A
critical observation is that subgraphs defined on G′ may
share joins and these may be executed multiple times. In or-
der to minimize the number of joins executed and to avoid
creating duplicate tuples, a join from Ri to Rj is not ex-
ecuted, w.r.t. the given constraints, until all subgraphs in
which this join belongs have populated relation Ri.

Algorithm LSP. The algorithm LS Population, LSP, pop-
ulates each expanded subgraph S of G′ as follows. Initial
relations in S that contain terms combined with AND are
considered in increasing order of the estimated number of
their tuples in the logical subset, by taking into account that:
(a) a keyword in a relation may be found in more than one
attribute, (b) more than one keyword may be found in a re-
lation, and (c) the frequencies of keyword occurrences in a
relation kept in the inverted index. Next, each time, the al-
gorithm populates G′ with the initial tuples of the smallest
initial relation stored, along with all tuples that can be tran-
sitively joined with these initial tuples. Each tuple stored in
L is marked; thus, duplicate tuples are not created. When
a tuple that contains a NOT -term is found, its set of initial
relations is emptied and this tuple and any tuple joining to it
in the results obtained so far, will not be produced. Finally,
when all initial relations of S have been visited, LSP exam-
ines the next expanded subgraph. For the interest of space,
we omit the formal representation of LSP.

5 Experiments
We conducted experiments to evaluate the efficiency of

the methods proposed taking into consideration the follow-
ing parameters: (a) the number of subgraphs #S that com-
prise a logical database subset, which depends on the num-
ber of query terms and the data; (b) the number of relations
per subgraph #RS, which is determined by the constraints
provided; (c) the number of initial relations per subgraph
#IRS, which depends on the number of query terms and the
data (for OR-semantics, it is equal to 1); (d) the number

Algorithm Progressive LS Population (PLSP)

Input: LS schema graph G′(E′,V′), constraints,
and a set of initial subgraphs SG

Output: logical subset L
Begin
0. QP := {}
1. Foreach initial subgraph SG∈SG satisfying constraints {

1.1 execute query corresponding to SG

1.2 Foreach relation Rj in SG {
1.2.1 populate relation Rj with result tuples
1.2.2 annotate tuples in Rj with matching s-id’s

from s-id′s
1.2.3 {QP ,G′} ← addinQP(Rj ,G′,QP ,constraints)

}}
2. While ((QP not empty or ∃ joins in G′ not fully executed)

and (constraints hold)) {
2.1 If QP is not empty {

2.1.1 get head <e(x, Rj), s-id′s> from QP , x∈V′

2.1.2 populate Rj with ExeJoin(e,s-id′s,constraints)
2.1.3 annotate tuples in Rj with matching s-id’s

from s-id′s
2.1.4 {QP ,G′} ← addinQP(Rj ,G′,QP ,constraints)
Else
2.1.5 populate Rj with ExeJoin(most important

pending join e in G′ with destination Rj ,
s-id′s,constraints)

2.1.6 annotate tuples in Rj with matching s-id’s
from s-id′s

2.1.7 {QP ,G′} ← addinQP(Rj ,G′,QP ,constraints)
}}

3. Return L as the G′ populated with tuples
End

addinQP(relation Rj , graph G′, list QP , constraints) {
Foreach join edge e(Rj , x)∈E′, x∈V′ {

mark those s-id’s of e that have already populated Rj

If e has all s-id’s marked or due to constraints
{ add(QP ,<e(Rj , x), s-id′s>) }

}}

Figure 3. Algorithm PLSP

of tuples in the logical subset #TLS, which also depends
on the data; and (e) the database size #DB, which is con-
sidered as the number of relations in the whole database.
Times shown in the results are in seconds.

LS Schema Creation. Figure 4a shows the behavior
of the LS schema creation procedure, LSSC, for varying
database size, ranging from 10 to 100. As defaults, we have
used #IRS=4. Figure 4b depicts execution times of the algo-
rithm for varying number of initial relations, ranging from 1
to 10, and for two databases comprising 20 and 30 relations
respectively. In both cases, LSSC needs less than 0.7 sec to
build initial subgraphs containing combinations of 1 to 10
initial relations.

LS Population. We compare the three methods presented

1-4244-0803-2/07/$20.00 ©2007 IEEE 1385

0,00

2,00

4,00

6,00

8,00

10 20 30 40 50 60 70 80 90 100

Database size (DB)

E
x
e
c
u
ti
o
n
 T
im
e

(a)

0

0,2

0,4

0,6

1 2 3 4 5 6 7 8 9 10

Number of initial relations per subgraph (#IRS)

E
x

e
c
u

t
i
o

n

T

i
m

e

#RS=20

#RS=30

(b)

0.00

2.00

4.00

6.00

8.00

1 2 3 4

Number of initial relations per subgraph (#IRS)

E
x
e
c
u
ti
o
n
 T
im
e

LSP

NAÏVE_LSP

P_LSP

(c)

0

10000

20000

30000

1 2 3 4

Number of initial relations per subgraph (#IRS)

S
iz
e
 o
f
lo
g
ic
a
l
s
u
b
s
e
t
 (
#
T
L
S
)

(d)

0.00

2.00

4.00

6.00

8.00

1 2 3 4

Number of initial relations per subgraph (#IRS)

E
x
e
c
u
ti
o
n
 T
im
e

LSP

LSSC

(e)

0.00

2.00

4.00

1 2 3 4

Number of subgraphs (#S)

E
x
e
c
u
ti
o
n
 T
im
e LSP

LSSC

(f)

Figure 4. Experimental evaluation of logical subset characteristics

before: NaiveLSP, PLSP, and LSP. Figure 4c presents exe-
cution times for varying #IRS, #S=1, and #RS=4. #IRS=1
means that query terms are combined with OR, while
#IRS>1 means that query terms are combined with AND.
Overall, execution times decrease as the number of initial
relations increases, because more initial relations result in a
stricter query that generates a smaller answer. This is shown
in Figure 4d: for #IRS>1, #TLS significantly decreases (<
100 tuples). Results not shown here due to space considera-
tions show that performance of NaiveLSP and PLSP deteri-
orates significantly, whereas LSP remains more efficient for
queries containing NOT .

Overall Performance. Finally, we present representa-
tive experiments regarding the overall performance of our
approach. Figure 4e presents execution times for varying
#IRS, #S=1, and #RS=4. Figure 4f compares execution
times for #S ranging from 1 to 4, #RS=4, and #IRS=2.

The general observation is that although the LS schema
creation, LSSC, and LS population, LSP, execution times
depend on parameters, such as number of subgraphs and
number of initial relations per subgraph, execution times of
LSP determine the total time required for the construction
of a logical database subset.

6 Conclusions

A logical subset of a database generated by a précis
query contains not only items directly related to the query
selections but also items implicitly related to them in var-
ious ways. In this paper, we elaborating on the idea of
précis queries by allowing them to contain multiple key-
words, combined with OR, AND, and NOT operators.

We described algorithms that generalize the functionality
and optimize the performance of précis queries, as the ex-
periments conducted indicate.

An interesting approach for future work is the incorpo-
ration of the logical subset into the internals of the RDBMS
and the possible extension of SQL language to support it.

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system
for keyword-based search over relational databases. In ICDE,
pages 5–16, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Su-
darshan. Keyword searching and browsing in databases using
banks. In ICDE, pages 431–440, 2002.

[3] D. Florescu, D. Kossmann, and I. Manolescu. Integrating key-
word search into xml query processing. Computer Networks,
33(1-6), 2000.

[4] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
ir-style keyword search over relational databases. In VLDB,
pages 850–861, 2003.

[5] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. In VLDB, pages 670–681,
2002.

[6] V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on xml graphs. In ICDE, pages 367–378,
2003.

[7] G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The
essence of a query answer. In ICDE, 2006.

[8] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective key-
word search in relational databases. In SIGMOD, 2006.

[9] A. Simitsis, G. Koutrika, and Y. Ioannidis. Generalized Précis
Queries for Logical Database Subset Creation. Technical Re-
port, 2006.

1-4244-0803-2/07/$20.00 ©2007 IEEE 1386

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

