
Autonomic Query Allocation based on Microeconomics Principles ∗

Fragkiskos Pentaris and Yannis Ioannidis
Department of Informatics and Telecommunications, University of Athens,

Panepistemioupolis, 15771, Athens, Greece,
E-mail:{frank,yannis}@di.uoa.gr

Abstract

In large federations of autonomous database systems,
automatic distribution of the query workload to those sys-
tems is a critical issue. We examine this problem under the
perspective of microeconomics theory and show how the
latter can be used to construct an efficient decentralized
mechanism that maximizes system throughput. In partic-
ular, we introduce a solution that is based on the notion of
query markets. We examine the properties of these markets
and show that they result in Pareto-optimal allocations of
resources to queries. An extensive set of experiments with
both a simulator and an actual implementation on top of
a commercial DBMS demonstrate significant improvements
in the overall system throughput when our technique is used.

1 Introduction

Several emerging applications depend on distributed sys-
tems that loosely integrate autonomous data management
servers. Examples include federated DBMSs operating in
intranets of large companies as well as GRID-based sys-
tems. Since the workload of nodes may exhibit large fluctu-
ations, their administrators spend much of their time with
query monitoring tools, designing workload-distribution
policies that avoid overloading of critical nodes. Unfortu-
nately, the effectiveness of these policies is hard to predict
as they usually assume a static workload distribution.

Typically, a large distributed system follows a multi-way
data mirroring policy to reach the scalability and availability
levels required by its users. The hardware used is selected in
such a way that under normal conditions, peek load does not
exceed a threshold that is safely below total system capacity.
There are always cases, however, where load temporarily

∗This research was partially supported by the Information Society
Technologies (IST) Program of the European Commission under the DE-
LOS Network of Excellence on Digital Libraries (Contract G038-507618)
and the BRICKS Integrated Project (Contract 507457).

q1q1

N
1

N
2

QA

q1q1
N

1

N
2

Load
Balancing

400+500+600+700+800+900+450+950

8
=662ms

Average query response timeMechanism Query allocation map

q1q1

q1q1

q2q2 q2q2 q2q2 q2q2 q2q2 q2q2

q2q2 q2q2 q2q2 q2q2 q2q2

q2q2

500ms 1000ms0ms

100+200+300+400+500+600+450+900

8
=431ms

Figure 1: Performance optimization vs Load Balancing.

exceeds this limit or even total system capacity itself. This
can be due, for example, to multiple node failures or even
to singularities of the business logic of the system. Using
an automated, self-tuning, and quickly reacting query al-
location mechanism that maximizes system query through-
put during these conditions [3] is very important. It ensures
that system capacity stays as high as possible and, in case of
temporary overloads, the duration of resource unavailability
is minimized.

Existing query allocation mechanisms (e.g., [1,2,4,8,10]
balance the load of all system nodes hoping that, as a
side-effect, system performance will also be optimized.
Unfortunately, this is not always true. For instance, consider
a system with only two nodes, N1 and N2, having a work-
load consisting of queries q1 and q2. Node N1 evaluates q1

and q2 in 400ms and 100ms, respectively, whereas N2 does
so in 450ms and 500ms, respectively. For simplicity, as-
sume that no node can evaluate two queries simultaneously.
The system uses a typical greedy load balancing (LB) al-
gorithm that assigns each incoming query to the node that
would result in the least load imbalance among all nodes.
Supposed now that, in a very short time period, different ap-
plications running at node N1 ask from the distributed sys-
tem to evaluate one q1 and six q2 queries. Similarly, node
N2 asks for the evaluation of one q1. For simplicity, let re-
quests for q1 arrive to the system before those for q2. The
LB algorithm will assign the first two q1 queries to nodes
N1 and N2 to reduce load imbalance. Subsequently, it will
assign the first three q2 queries to N1, the fourth q2 to N2,

1-4244-0803-2/07/$20.00 ©2007 IEEE. 266

and finally, the last two q2 to N1. Figure 1 shows that with
this assignment, N1 and N2 will be busy processing queries
for 900ms and 950ms, respectively (50ms total load imbal-
ance) and the average query response time experienced by
the applications will be 662ms per query.

To minimize query response time, there is actually a
much better query allocation strategy, which is labeled QA
in Figure 1. QA has nodes N1 and N2 accept only q2 and
q1 queries, respectively. The average query response time
in this case is 431ms. Note that, not only LB is 54% slower
than QA, but also dangerously prolongs the overload period
(i.e., the period where all nodes are busy) by 50%, as QA
leaves node N1 idle after 600ms whereas LB does so after
900ms.

In this paper, we present a self-tuning, completely decen-
tralized, and dynamic query allocation mechanism suitable
for autonomous federations of DBMSs. It is inspired by mi-
croeconomics and maintains its efficiency even during load
fluctuations. To the best of our knowledge, it is the first al-
gorithm of its kind, fully respecting the autonomy of partic-
ipating systems. Furthermore, its novelty lies also with the
fact that it is allocating queries not by equalizing the load of
nodes, but by optimizing system performance instead.

The remainder of the paper is organized as follows: In
Section 2, the query allocation problem is formally pre-
sented. In Section 3, we present our solution. In Section
4, we discuss the differences of our approach to other exist-
ing ones, and in Section 5, we experimentally evaluate our
algorithm.

2. Description of the Problem

2.1. Execution Environment

Our execution environment is a disparate network of au-
tonomous relational DBMSs, which may act in a coopera-
tive or a competitive manner. All nodes are treated as black
boxes that externally understand a common relational data
schema. Each of them may have different processing capa-
bilities and a different set of locally held relations or parti-
tions of them. Nodes may act as servers, evaluating queries
on behalf of other nodes, clients, asking from other nodes
to evaluate certain queries, or both.

During query processing, a node communicates with
other nodes that may have necessary data or resources that
the original node is missing and, subsequently, assigns
query evaluation tasks to the nodes that have offered the best
solutions for the corresponding query parts (under some
definition of optimality). Examples of such query opti-
mization mechanisms are MARIPOSA [15] and the QT and
SQPT algorithms in the recently proposed Query and Pro-
cess Trading framework [13, 14]. Describing in detail such
mechanisms is beyond the scope of this paper.

Although our mechanism is independent of the type of
queries and the data model used, for readability reasons
and without loss of generality, we assume that the work-
load consists of read-only, SQL-like select-join-project-sort
queries. Many query allocation mechanisms, including
ours, classify queries into a large number of disjoint classes,
e.g., few 1000s. We assume a set Q of K query tem-
plates/classes, Q = {q1, q2, . . . , qK}, where each template
represents a family of queries differing only in some selec-
tion constant(s) in their qualification. These constants are
such that, queries of the same template use similar resources
and have similar estimated execution cost when run on the
same node (could be different on different nodes). If a query
can be derived from template qk, it is a qk-class query.

In a disparate and dynamic environment, identification
of set Q is difficult and requires pieces of information that
compromise node autonomy. As we show later, our algo-
rithm allows each node to proceed with its own private clas-
sification of queries, without harming node autonomy. Nev-
ertheless, for readability, our presentation assumes that all
nodes identify the same query-class set Q.

2.2. Problem Modeling

Let I be the number of nodes in the system and K be
the number of different query classes. During a small time
period τ with duration T , the behavior of each node i (1 ≤
i ≤ I) can be completely captured using the query demand,
consumption, and supply vectors.

The demand vector �di = (di1, di2, . . . , diK) ∈ N
K

contains the number of queries (q1, q2, . . . , qK) posed to
node i during τ . The respective consumption vector �ci =
(ci1, ci2, . . . , ciK) contains the number of those queries that
are actually evaluated by the system, either locally or at a
distant node (cik ≤ dik, 1 ≤ i ≤ I, 1 ≤ k ≤ K). Finally,
the supply vector �si = (si1, si2, . . . , siK) ∈ N

K contains
the number of queries (q1, q2, . . . , qK) evaluated by node i
during τ (whether initiated at i or elsewhere). The set of all
feasible supply vectors �si of node i depends on its available
hardware resources and is the supply set (Si) of node i.

For instance, in our earlier example, I = K = 2. As-
suming that T = 500ms, then in the first time period τ
(0ms-499ms), the demand vector of node N1 was �d1 =
(1, 6), and using the LB mechanism, its consumption vec-
tor was �c1 = (1, 1). That is, N1 asked from the distributed
system to evaluate one q1 and six q2 queries, but only one
q1 and one q2 of those were actually evaluated. Finally, the
respective supply vector of N1 was also �s1 = (1, 1), since
in that time period it evaluated one q1 and one q2 queries.

Given the nodes’ demand vectors �di for a time period
τ and supply sets Si, (i = 1, 2, . . . , I), a query allocation
mechanism finds consumption and supply vectors that sat-
isfy certain optimality criteria or other constraints. Such a

1-4244-0803-2/07/$20.00 ©2007 IEEE. 267

Figure 2: The aggregate demand, supply and consumptions
vectors.

solution is denoted as <[�si], [�ci]>, where �si ∈ Si, �ci ∈ N
K ,

1 ≤ i ≤ I . Generally, if the distributed system is not over-
loaded, we expect from query allocation mechanisms to find
solutions having �di = �ci, i = 1, 2, . . . , I , i.e., nodes getting
answers for all queries within τ . Otherwise, some queries
will be delayed and will be counted in the demand vectors
of subsequent time periods as well.

In addition to individual nodes’ vectors, we also use
system-wide aggregate demand (�d), supply (�s), and con-
sumption (�c) vectors defined as:

�d =
I∑

i=1

�di, �s =
I∑

i=1

�si, �c =
I∑

i=1

�ci (1)

In the same spirit, one may obtain the aggregate supply set
S capturing the capabilities of all nodes of the system, by
combining the individual supply sets of the nodes, each time
summing up one supply vector from each node:

S = {�s ∈ N
K : �s =

I∑

i=1

�si, �si ∈ Si} (2)

Based on the semantics of aggregate vectors, at any time pe-
riod τ , the aggregate query supply is equal to the aggregate
query consumption, which is at most equal to the aggregate
query demand:

�s = �c ≤ �d, �s ∈ S (3)

Figure 2 refers to our earlier example system and its first
time period, and shows the aggregate query demand vector
�d and the aggregate consumption and supply vectors �c and
�s, for both the LB and the QA strategies. The gray area
represents the aggregate supply set S of the system.

Note that the aggregate demand vector �d is outside the
gray area, implying that there was no feasible way for the
system to evaluate all queries requested in the first time pe-
riod. In such cases, each node i selects its consumption
vector based on a preference relation (�i) over the set of all
possible such vectors, i.e., there is some type of negotiation
among nodes. The semantics of �i is that, if �ci, �ci

′ ∈ N
K

and �ci �i �ci
′, then node i prefers the �ci query consumption

vector over �ci
′.

In the remainder of this paper and without loss of gen-
erality, we assume that all nodes prefer to evaluate as many
queries as possible, independent of what these queries are:
�ci �i �ci

′ iff
∑K

k=1 cik ≥ ∑K
k=1 c′ik . Using this preference

relation, our algorithm will find solutions that maximize the
number of queries evaluated in each time period.

Continuing with our earlier example and the first time
period, Figure 1 shows that both LB and QA used the same
resources. However, according to Figure 2, LB does not fol-
low the nodes’ preference relation: the difference between
the demand vector �d and the aggregate supply vector of LB
is larger than that of QA.

The role of preference relations in optimizing the
choice of consumption vectors by query allocation mecha-
nisms is formalized through the notion of Pareto optimality.

Definition 1 (Pareto Optimality) A solution <[�si], [�ci]>
(1 ≤ i ≤ I) Pareto dominates a solution <[�si

′], [�ci
′]> iff

∀ 1 ≤ i ≤ I : �ci �i �ci
′, and

∃ g, 1 ≤ g ≤ I : �cg 	g �cg
′

That is, all nodes prefer their consumption vector �ci to �ci
′

(�ci �i �ci
′) and at least one of them (i.e., node g) strictly

prefers �cg to �cg
′ (�cg 	g �cg

′). A solution is Pareto optimal if
it is not Pareto dominated by any other solution.

Since node preferences maximize the number of queries
evaluated per time period, a Pareto optimal allocation is
one that no node can further increase the number of queries
consumed without reducing those of another node. For in-
stance, in our case example, the LB solution was not Pareto,
as nodes N1 and N2 consumed 2 and 1 queries, respectively,
which is Pareto dominated by the QA allocation that had
nodes N1 and N2 consume 5 and 1 queries, respectively.
Note that the definition of Pareto optimality involves only
the consumption vectors of nodes. Their supply vectors are
involved indirectly through equations (1) and (3). In gen-
eral, more than one Pareto optimal solution may exist.

Based on all the above, the problem presented in the
introduction of this paper is formally stated as follows:

Problem 1 (Query Allocation (QA)) Given a federation
of autonomous database systems with supply sets Si, pref-
erence relations �i (i = 1, 2, . . . , I), and for a time period
τ of length T , query demand vectors �di (i = 1, 2, . . . , I),
Query Allocation (QA) seeks to find a Pareto optimal solu-
tion <[�si], [�ci]>, i = 1, 2, . . . I , for τ .

The goal of our work is to solve the QA problem in a com-
pletely decentralized and autonomous way. Our solution to
this challenging task is given in the next section.

3. The Query Markets

The main idea of this paper is to use microeconomics
theory to find Pareto optimal query allocations in a com-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 268

pletely distributed way. The feasibility of this attempt
steams from the First Theorem of Welfare Economics
(FTWE) [9]. According to FTWE, market economies com-
posed of self-interested consumers and firms achieve alloca-
tions of resources and goods that are Pareto optimal. More-
over, the behavior of consumers and firms is such as if an
invisible hand is guiding their actions toward a state benefi-
cial to all.

To use microeconomics theory for Query Allocation, we
must do the following:

(i) map the entities of the QA problem (e.g., server and
client nodes) to those used in traditional microeco-
nomics (e.g., sellers and buyers, respectively);

(ii) define a competitive market using the mapped entities;
(iii) use this market to solve the problem in microeco-

nomics that is equivalent to QA.
We discuss each of these steps separately below.

3.1. Mapping Between QA and Microeco-
nomics

The idea binding the QA problem and FTWE is that we
consider queries as the traded commodities. Query process-
ing is then modeled as a task of query trading between nodes
holding information relevant to the contents of the queries
being evaluated. Buying nodes (consumers) are those that
are unable to answer some query, either because they lack
the necessary resources (e.g., relevant data or CPU cycles),
or simply because outsourcing the query is better than ex-
ecuting it locally. Selling nodes (firms) are those having
data relevant to some parts of these queries or having ex-
cess resources. Each node may play any of those two roles
(buyer and seller) depending on the query being evaluated
and the data it locally holds. Thus, the role of servers and
clients in the QA problem are played by sellers/firms and
buyers/consumers in the competitive market, respectively.

A central construct of all competitive markets is that
commodities have values(prices) measured using a mone-
tary unit. This is a microeconomics mechanism designating
the importance of each piece of commodity to the society.
In the QA problem there is no such mechanism, therefore,
we use a virtual monetary unit and assign a virtual value
pk ∈ R+ (1 ≤ k ≤ K) to each qk query. The resulting
virtual query prices are only used by our solution and are
otherwise uselless.

If we use vector notation, then the price vector
�p = (p1, p2, . . . , pK) ∈ R

K
+ will describe the (virtual) value

of a unit of each of the K query classes. The value of a con-
sumption vector �ci can be calculated as

∑K
k=1 pkcik, which

is written in vector notation as �p · �ci. Similarly, the value of
a supply vector of seller i is �p · �si.

Table 1 summarizes the way we mapped the entities of
the QA problem to microeconomics.

3.2. Query Market Definition

What remains for FTWE to hold is to make nodes act
as if they participate in traditional competitive commodity
markets. We do so in this section and show that this be-
havior implicitly leads clients and servers to make Pareto
optimal allocations of queries to nodes.

In competitive markets, each seller is assumed selfish
and selects to supply the vector �s�

i ∈ Si with the largest
(virtual) value. That is, sellers/servers solve the following
problem:

�p · �si
� = max�si∈Si

(�p · �si) i = 1, 2, . . . , I (4)

In general commodities markets, the purchasing power of
buyers (i.e., client nodes in our problem) is limited by their
wealth. In our case, we want to maximize the number of
queries evaluated per time period. Therefore, we put no
consumption limit to nodes, apart from the fact that the re-
sulting aggregate supply (�s� =

∑I
i=1

�s�
i) and consumption

(�c� =
∑I

i=1
�c�
i) vectors should be equal.

If we choose a random price vector �p and solve equation
(4) we end up with demand and supply vectors that do not
satisfy (3). This is captured in microeconomics using the
notion of excess demand defined below:

Definition 2 (Excess demand) Given prices �p, the excess
demand zk(�p) for qk-queries is given by

zk(�p) =
I∑

i=1

dik − sik (5)

The excess demand of all query classes will be denoted by
the vector �z(�p) = (z1(�p), z2(�p), . . . , zK(�p)).

The sign of the excess demand zk(�p) for qk reveals whether
they supply of qk by server (seller) nodes is larger (zk(�p) <
0) or smaller (zk(�p) > 0) than what the current client
(buyer) workload demands.

We can now formally define the term market equilibrium
that was first mentioned in FTWE.

Definition 3 (Market competitive equilibrium) A
market is in a competitive equilibrium iff commodities
prices �p� are such that z(�p�) = 0.

FTWE asserts that in equilibrium the resulting distribution
of queries is Pareto optimal. Thus, if we calculate the equi-
librium price vector �p�, the resulting virtual query market
will solve the QA problem. This is shown in the next sec-
tion.

3.3. The Pricing Mechanism

Traditionally, microeconomic theory finds equilibrium
prices using a tâtonnement process (TP) which iteratively
adjusts prices until the excess demand is zero for all
commodities. It assumes that there is a single entity
called umpire that has the role of market coordinator. It

1-4244-0803-2/07/$20.00 ©2007 IEEE. 269

Microeconomics QA problem
Commodities markets Query processing framework
Commodities Queries
Buyers ⇐⇒ Client nodes
Sellers (Firms) Server nodes
Commodity value: Monetary units Query value: Virtual monetary units

Table 1: Mapping between microeconomics theory entities and entities of the QA problem.

iteratively announces to all entities a single market price
(per commodity), collects their consumption and supply
vectors for these commodities, adjusts prices, and then a
new iteration is started by announcing the new prices. The
iteration is stopped when consumption equals supply. The
iterative price adjustment process is given by

�p(t+1) = �p(t) + λz(�p(t)) (6)

where �p(t+1) is the new price vector at time (t + 1) given
prices �p(t) and excess demand z(�p(t)) caused by these
prices �p(t). The adjustment process increases the prices of
queries that are in excess demand (i.e., zj(�p(t)) > 0) and
reduces the prices of those that are excess supplied (i.e.,
zj(�p(t)) < 0). This indirectly causes nodes to increase sup-
ply of the former queries and reduce the supply of the latter.
The value of parameter λ ∈ R

�
+ affects the number of itera-

tions required by �p(t) to converge to equilibrium prices �p�.
Higher values reduce the number of iterations but decrease
the accuracy of the estimated vector �p�.

It is possible to modify the tâtonnement process in such
a way that no centralized authority is required and trading
takes place before equilibrium is reached. Examples of such
modifications are given in [9, 11, 12]. Trading between two
nodes in disequilibrium (i.e., non-equilibrium) prices is al-
lowed according to the following rule:

Definition 4 (Non-tâtonnement trading rule) Let
c
(t)
i and s

(t)
j denote the consumption and supply vec-

tor of node i and j at time t, respectively. We allow nodes
i and j to increase their consumption and supply vectors
by �d, respectively, even in disequilibrium prices, iff the
following hold

1. the new supply vector �sj
(t+1) = �sj

(t) + �d of node j is
an element of its supply set, i.e., it is feasible.

2. exhausts all possibilities of other trade. That is

�ci
(t+1) �i �ci

(t) + �ε

for all �ε ∈ N
K s.t. the supply vector �sj

(t) + �ε belongs
to the supply set of node j, respectively.

Rule 1 ensures that the trading is feasible. Rule 2 ensures
that the non-tâtonnement process converges to a unique
equilibrium. Any buyer (seller) that does not manage to
consume (supply) the queries it wants to acquire (produce)
immediately infers that prices are not in equilibrium and

adjusts its own prices up (down) proportionally to the quan-
tity that was not consumed (supplied). These trading fail-
ures are the only reason for adjusting prices. The follow-
ing decentralized algorithm (QA-NT) describes the non-
tâtonnement process:

QA-NT: Non-tâtonnement price adjustment algo-
rithm (runs at each server node i)

1 Repeat for ever
2 Given the current prices �p of queries, solve (4) (first

order conditions). This will calculate the optimal
supply vector �si ∈ NK of the node.

3 While a time period τ has not elapsed do.
4 If a client node asks to evaluate a query qk and

sik > 0 then
5 Offer to evaluate the query.
6 If offer is accepted set sik = sik − 1.
7 Else
8 Do not offer to evaluate query qk .
9 Set pk = pk + λpk.
10 End If
11 End while
12 For each k s.t. sik > 0 do
13 Set pk = pk − sikλpk

14 End For
15 End Repeat

The description of the non-tâtonnement algorithm shows
that no centralized authority is needed. Query prices are
never disclosed or exchanged over the network. Each node
calculates its own set of prices and uses them only to calcu-
late its own supply vector (step 2 of the QA-NT algorithm).
Thus, there is no need for all nodes to use the same K
query classes, which is difficult to calculate in a decentral-
ized way. The only restriction is that for each node, queries
belonging to the same query class should require similar re-
sources for their evaluation on that node.

Step 4 of the non-tâtonnement algorithm describes the
negotiation strategy of servers, i.e., they do not try to be fair
and immediately accept a request to evaluate query qk iff
sik > 0. If all available servers reject a request for a query,
the respective client resubmits it in the next time period.

Proposition 3.1 If the non-tâtonnement algorithm is left
running for a long time period, then limt→∞ z(�p) = �0.

Proof 1 The proof is quite complicated and is given for the
general case of non-tâtonnement processes in [11].

To make more concrete to the reader how the query mar-
ket solution distributes query workload among nodes, con-
sider again our test case example and assume that equilib-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 270

Mechanism Distri- Workload Conflict Auto- Perfor-
buted type with nomy mance

query
optimi-
zation

QA-NT X Dynamic - X Very Good
Greedy X Dynamic X - Very Good
Random X Dynamic X X Poor
Round-robin X Dynamic X X Poor
BNQRD X Dynamic X - Poor
Markov - Static X - Excellent

Table 2: Comparison of query allocation mechanisms

rium prices are initially �p� = (1, 1). By solving (4), node
N1 will supply only q2 queries. Assume now that query dis-
tribution is modified and demand for queries q1 cannot be
satisfied (by node N2). Then, prices of q1 queries will start
increasing until node N1 starts to also supply q1. The ac-
tual query optimization and processing mechanisms of the
system do not have to use any economics-based ideas or the
fictitious prices of queries. We simply let an economy run in
parallel with the actual query processing mechanisms. The
only role of the query economy is to calculate the supply of
queries from nodes at each time period. That is, our mech-
anism is a kind of query admission control.

Before going on to discuss existing work on query al-
location mechanisms it is worth to briefly mention that the
mapping between the query allocation problem and query
markets is such that all requirements of the Second Theorem
of Welfare Economics (STWE) [9] are satisfied. This means
that any Pareto optimal solution produced by any non-
microeconomics based query allocation algorithm can also
be calculated using a modified version of our algorithm,
that is, our approach is very general. The modifications
required are not discussed in this paper due to paper-size
constraints but can be found in standard microeconomics
textbooks such as [7].

4. Related Work

Automatic load balancing has recently attracted a lot of
attention due to spreading of grid-based and cluster-based
distributed databases. For instance, a leading commercial
DBMS provider has recently implemented a client-level
load balancing mechanism for its cluster solution. Clients
use either a random or a round-robin strategy. That is, they
attempt to balance the servers’ load by randomly selecting
the servers that will run their transactions, or simply by
choosing servers in a round-robin mechanism. These ap-
proaches work well in homogeneous distributed databases
(i.e., all nodes have the same schema and similar resources),
but as we show in the experiments section, perform poorly
in heterogeneous environments.

Another heuristic approach, frequently used for its sim-
plicity, is to distribute queries in a greedy manner, i.e., im-

mediately assign queries to server nodes that can evaluate
them in the least time. A small amount of randomization
may also be used to further improve performance. The
greedy algorithm is easy to implement and performs sur-
prisingly well, yet, it violates server node administrative au-
tonomy, as clients unilaterally assign queries to servers.

In [4], a stochastic mechanism based on Markov chains
and queueing theory is described that enables nodes to op-
timally assign queries to nodes. This mechanisms has ex-
cellent performance and produces Pareto optimal solutions,
yet it suffers from scalability problems (it is a centralized
mechanism). Furthermore, it assumes that query execution
times are constant and workload is static, which is a major
drawback. Finally, it is not compatible with autonomous
systems due to pieces of information needed from nodes,
like for instance the node capabilities.

In [1] and [2] the BNQRD algorithm for load balanc-
ing a locally distributed database system is examined. This
algorithm uses a centrally calculated unbalance factor for
each network node and assigns queries in such a way that
CPU and I/O usage is evenly spread over the network. The
BNQRD algorithm does not respect node autonomy since
it requires from nodes to disclose information concerning
their current load. Furthermore, BNQRD does not produce
Pareto optimal results and thus, as we show in the experi-
ments section, is inferior to our solution.

In [10], a simple load balancing technique that probes
two eligible servers at random and chooses the one that has
the least current load is presented. This two-random probes
technique requires very few network messages and shows
the advantages of using some randomness to prevent queries
from overloading certain servers of a system. Still, the per-
formance of this algorithm is far from optimal.

Although QA-NT requires more network messages than
the previously mentioned algorithms, it usually outperforms
all of them under dynamic loads and comes close to the
Markov-based algorithm under static ones. This is because
it treats each class of queries separately. Furthermore, it
does not harm node autonomy by requiring very few pieces
of information to properly work. In fact, it is the only one
that truly respects administrative node autonomy by letting
nodes decide for themselves the queries they will (offer to)
evaluate. It can even work without problems in cases where
only a subset of the nodes is using QA-NT, in which case it
will still optimize global system throughput by modifying
the behavior of only those nodes. All other previously men-
tioned algorithms will optimize the throughput of only the
part of the system that uses them.

Complementary to query allocation is the effort in [5]
and [6] on a schema optimization mechanism for DBMSs
based on microeconomic theory. This mechanism improves
query performance by distributing, a priori, the database
tables in a Pareto optimal way. That is, the mechanism

1-4244-0803-2/07/$20.00 ©2007 IEEE. 271

works by slowly modifying node schemas so that future
query workloads can be better distributed by an optimal
query allocation mechanism. Our algorithm QA-NT uses
microeconomic theory as well but solves a completely dif-
ferent problem: having fixed the node schemas, it optimizes
query workload distribution. In principle, QA-NT can work
in parallel with any schema optimization mechanism, in-
cluding that presented in [6].

Another related area of work is distributed query opti-
mization for autonomous systems, where algorithms such
as Mariposa [15] and Simultaneous Query and Process
Trading (SQPT) [13, 14] split queries into pieces (sub-
queries) and then, assign these pieces to nodes so that
queries response time is minimized. MARIPOSA [15] uses
an economics-based two-phase mechanism for both query
optimization and data distribution, whereas SQPT uses e-
commerce techniques to split and assign both queries and
processing to nodes. However, the corresponding pricing
dynamics of the query markets used and the other proper-
ties of their pricing schemes have not yet been examined for
either of the two approaches (to the best of our knowledge
in the case of Mariposa). The QA-NT algorithm fills this
gap and restricts the number of nodes offering to evaluate
certain (sub)queries in a matter compatible with these algo-
rithms. This is in contrast to other algorithms, which phys-
ically select a single node for each query, and thus, conflict
with or render completely useless the existing distributed
query optimization algorithms.

Table 2 summarizes our discussion on query allocation
algorithms.

5. Experiment Study

In order to benchmark our algorithm (QA-NT) we imple-
mented it over both a large simulated distributed network
of DBMSs and a small one running the latest version of
a leading commercial RDBMS. Testing the algorithm in a
simulation was the only way to ensure its scalability in large
networks, whereas testing it in a real (but inevitably small)
network enabled us to see how QA-NT cooperates with real
DBMSs.

5.1. Simulation

Experiments setup

Using C++, we implemented from scratch a simulator of a
large federation of 100 autonomous RDBMSs. We imple-
mented all algorithms presented in Section 4 except for the
Markov-based one, since the latter cannot handle dynamic
workloads. We run experiments with both homogeneous
nodes (i.e., nodes with common local schema and capabil-
ities) and heterogeneous ones (i.e., nodes having different

Parameter
type

Parameter Value

Network Total size of Network 100 nodes
Join capabilities Merge-scan: All nodes.

Hash-join:95 nodes
RDBMSs CPU resources One CPU 1-3.5GHz (2.3GHz

avg.)
Sorting/Hashing buffer size 2-10Mb per query per node

(6Mbytes avg.)
I/O Speed per node 5-80Mb/s (42.5Mb/s avg.)
of different relations 1,000
Size of relations 1-20 Mbytes, (10.5Mbytes avg.)

Dataset # of attributes per relation 10 attributes
of mirrors per relation 5 (avg.)
Joins per query 0 - 49 (24 average)
Queries inter-arrival time 10-20000 ms (Zipf distribution)

Workload Average best execution
time of queries

2000 ms

Number of query classes 100
Number of queries 10,000

Table 3: Simulation parameters.

schemas and capabilities). In the former case, all algorithms
tested performed similar, therefore, we discuss only the re-
sults concerning heterogeneous environments. These are
the most difficult to optimize, yet the most common ones
in autonomous systems.

The parameters used in the experiments are displayed in
Table 3. The dataset was synthetically created and consisted
of 1,000 different relations with a size of 1-20Mbytes (avg.
10.5Mbytes). Each relation had 5 mirrors, one average, that
where distributed randomly over the 100 RDBMSs. Each
node had approximately 50 different relations.

The performance of QA-NT depends on the length T
of each time period. Larger values of T increase QA-NT
performance in static load but harms its flexibility with dy-
namic ones. In the experiments presented, T was set to
500ms. In each time period, we measured the number of
queries executed and the average query response time of
the algorithms. The latter was normalized by dividing it
with the respective response time of QA-NT.

Figure 3: Example of sinusoid workload.

We run two sets of experiments. The first one exam-
ined QA-NT with regard to workload dynamics. We used a
workload consisting of only two queries, Q1 and Q2, with
an average execution time of 1000ms and 500ms, respec-
tively (We have tried several other values for these as well

1-4244-0803-2/07/$20.00 ©2007 IEEE. 272

Figure 4: Average normalized query response time of the
algorithms tested.

as other parameters but the nature of the results remain the
same). We used two different queries, Q1 and Q2, to avoid
trivial solutions. They were selected in such a manner that
Q1 could be evaluated by all nodes, whereas Q2 could be
evaluated by only half of the available nodes (i.e., only half
of the nodes had the data required to answer them). The
arrival rate of Q1 and Q2 always followed a sinusoid wave-
form with a 900 degrees phase difference between Q1 and
Q2. The peek arrival rate of Q1 was always twice that of
Q2. An example of such a workload is shown in Figure 3.
The horizontal axis is the experiment time and the vertical
one is the number of queries entering the distributed sys-
tem per half second. Note that we did not use impulse loads
(i.e., large loads of very small duration) or unit-step shaped
ones, as these cannot be used to measure the behavior of
non-linear algorithms like the ones tested in this Section.

The second set of experiments measured the behavior of
our algorithm under a zipf-distributed workload. We syn-
thetically created a workload having 10,000 queries belong-
ing to 100 different query classes (select-join-project-sort
queries having 0 to 49 joins). The average execution cost
of these queries, when executed at the fastest (simulated)
RDBMS without any other workload was approximately
2,000ms. The inter-arrival time of queries belonging to the
same query class followed a zipf distribution with param-
eter a = 1. The maximum inter-arrival time between two
queries was constraint to 30,000ms and the average inter-
arrival time (t) was varied from 10ms to 20,000ms. Note
that smaller query inter-arrival times mean larger rate of in-
coming queries and thus increased workload.

The Results

Sinusoids Workloads Initially we run some experiments
using a 0.05Hz sinusoid load. Peek load was slightly bel-
low total system capacity. Figure 4 presents the normal-
ized query response time of all algorithms tested. The QA-
NT and the Greedy algorithms performed substantially bet-
ter than the load balancing ones. The random and round-

robing algorithms had the worst performance as they as-
signed equal amounts of queries to all nodes. Since nodes
had different capacities, the resulting query distribution was
far from optimal. The BNQRD algorithm balanced sys-
tem load but still performed poorly, as it equalized the load
of both the fast and the slow nodes. The QA-NT and the
Greedy algorithms avoided doing so and assigned queries to
slow nodes only when this maximized system throughput.
Finally, the two-random probes algorithm performed better
than the round-robin one but still, failed to completely bal-
ance the load across nodes, and thus, performed worse than
BNQRD.

The behavior of our approach under different levels of
dynamic workloads was tested using a 20 seconds, 0.05Hz
sinusoid workload with a varying amplitude. Average sys-
tem workload in these 20s was varied between 10% and
300% of total system capacity. The resulting query response
times were normalized by dividing them with the respective
ones of QA-NT. This is because most of the time, QA-NT
found the best solution (It was not possible to find the exact
optimal solution due to the complexity of the problem). The
load balancing algorithms performed very poorly, therefore,
in Figure 5a we show only the normalized response time of
the Greedy algorithm.

For small workloads (less than 75% of system capac-
ity) Greedy performed roughly 5% better than QA-NT. The
reason is that the (market) equilibrium amounts of Q1 and
Q2 queries that each node should evaluate are very small
real numbers, whereas our algorithm computes in each time
period (500ms) an integer-valued number of Q1 and Q2
queries. This rounding procedure effectively leads our al-
gorithm to error. For workloads above 75%, the signifi-
cance of rounding errors is reduced and the query response
time of the Greedy algorithm was 15%-32% worse than that
of QA-NT. Furthermore, in additional experiments that we
run, we found that if the number of query classes is large or
the workload is static, then our algorithm converges close
to market equilibrium and has superior performance in all
possible workloads.

The above results show that our algorithm is especially
recommended for distributed systems at times of high work-
load, when a good query allocation mechanism is most crit-
ical. QA-NT provides a native, decentralized way for nodes
to understand when the whole systems is overloaded, which
is when query prices are high. Thus, it is easy to implement
QA-NT in a distributed system which will properly track
query prices but will only use them to calculate the nodes’
query supply vectors if they are above a specific threshold.

Figure 5b presents the behavior of our algorithm when
the frequency of the sinusoid workload is varied between
0.05Hz and 2Hz. The average workload was 80% of to-
tal system capacity. In all cases, QA-NT proved that it can
follow the dynamics of the load by performing better than

1-4244-0803-2/07/$20.00 ©2007 IEEE. 273

(a) (b) (c)

Figure 5: Behavior of QA-NT algorithm in dynamic environments.

Figure 6: Results of simulated experimental study with
workloads following a zipf distribution.

the Greedy algorithm. As expected, the improvement is re-
duced as frequency increases. Note that even a 0.05Hz si-
nusoid workload is difficult to be observed in real cases, as
it represents a senario where total workload goes from 0%
to 80% in just 10s.

Figure 5c gives details on how QA-NT and Greedy han-
dle temporary loads close to the total capacity of the sys-
tem. The graph shows the number of Q1 queries arriving
per half second and the number of Q1 queries executed
by QA-NT and by Greedy in the same time period. Since
the Q2 queries sinusoid workload has a 900 degrees phase
difference to that of Q1, in the presented time period (0-
15,000ms) the algorithms had to handle the simultaneous
allocation of both Q1 and Q2 queries, though the latter are
fewer than the former. In the specific experiment, both al-
gorithms perfectly allocated all Q2 queries (i.e., the least
expensive ones) therefore, we show only the differences in
the allocation of Q1 queries. Figure 5c shows that QA-
NT manages to closely follow the presented load, whereas
the Greedy algorithm overloaded the system and could not
serve all Q1 queries. QA-NT allocated Q2 queries to the
slower network nodes and thus left enough free resources
to handle the Q1 queries. The Greedy algorithm did not
make any such distinction between queries Q1 and Q2.

Heterogeneous workload Figure 6 summarizes our find-
ing from running our simulator with the zipf workload of

the second set of experiments. The figure presents the
normalized query response time of the Greedy algorithm,
when the minimum query inter-arrival time is varied from
10ms to 17,000ms. For small inter-arrival times (less than
5,000ms), QA-NT manages to improve the performance of
the system by 13-24%, though the improvement falls as
inter-arrival time is reduced (i.e., workload is increased). In
moderate overload conditions (i.e., interarrival time arround
10,000ms) QA-NT improves system performanc by approx-
imately 26%. Finally, as the interarrival time is further in-
creased, the system recovers from the overload condition
and thus, the gains of our QA-NT mechanism are reduced.
For minimum inter-arrival times larger than 17,000ms, the
system is not overloaded and QA-NT provides no improve-
ment.

Note that a 10%-20% improvement is significant, as this
equivalently means that the same workload can be handled
by approximately 10%-20% less nodes. This is very impor-
tant for very large federations of DBMSs.

5.2. Testing of a Real Implementation of
QA-NT

Experiments setup

We implemented the Non-tâtonnement pricing mechanism
in C++ and deployed it into 5 Windows PC nodes. These
nodes were equipped with one or two processors with a
speed of 1.3GHz-3.06GHz and 1Gbyte of main memory.
Their network interconnection was based on a dedicated
100Mb full duplex Hub with the exception of one PC that
was connected with a P2P 54Mb wireless connection.

The data of the experiments consisted of 20 tables that
occupied 1Gb of tablespace and 80 select-project views
over these tables. Each table/view had 2-4 copies. The
workload consisted of select-join-project-group star-queries
with an average execution time of approximately 1s in the
fastest machine and 14s in the slowest one.

The implementations of both the Greedy and the QA-NT
algorithms initially estimated the execution time of a query

1-4244-0803-2/07/$20.00 ©2007 IEEE. 274

Figure 7: Results of experiments run over a small dis-
tributed network of RDBMSs.

using the EXPLAIN PLAN statement of the DBMS. Un-
fortunately, this estimation was usually incorrect as it did
not take into account the contents of the DBMS buffers.
Thus we ended up with the following algorithm: First the
EXPLAIN PLANwas used to find the execution plan of the
query and the relevant data statistics. Then, we used past ex-
ecution information concerning queries with the same plan
to estimate the execution time of the new query.

We run two experiments where 300 queries were evalu-
ated using both Greedy and QA-NT. The query interarrival
time had a uniform distribution with an average of 300ms
and 400ms, respectively. We measured the time required by
Greedy and QA-NT to assign a query to a node and the total
query evaluation time (time to assign + execute query).

Results

Figure 7 shows the results of the two experiments run. In
both cases, QA-NT performs better than Greedy. What is
worth noticing is the relative long time it took for both al-
gorithms to find the node that would actually execute in-
coming queries. This is because both algorithms waited for
a reply from all nodes before deciding on the node assign-
ment of queries. This caused large delays as the slowest
of the PCs took up to 3 seconds to evaluate an EXPLAIN
PLAN statement.

6. Conclusion

We have presented a microeconomics-based, decentral-
ized query allocation mechanism, suitable for federations of
autonomous database management systems. Our approach
is unique in that it respects node autonomy and is compati-
ble with existing distributed query optimization algorithms.
We have run an extensive number of experiments using both
a simulator and a real commercial system and compared our
solution with existing load balancing approaches. In most
cases, especially those of system overload, our algorithm
has exhibited substantially superior performance compared
to all alternatives.

In the future, we indent to extend our algorithm to con-
sider the role of game theory and Baysian Nash equilibrium
in query markets. In particular, we will introduce the con-
straint of equitable allocation, in which the utility (satisfac-
tion) of all nodes is equalized. We will also examine the
case of load balancing under uncertainty, the case of multi-
ple discriminating queries properties (multi-objective), and
the use of insurance from economic theory to ensure QoS.

References

[1] M. J. Carey, M. Livny, and H. Lu. Dynamic task allocation
in a distributed database system. In ICDCS, pages 282–291,
1985.

[2] M. J. Carey and H. Lu. Load balancing in a locally dis-
tributed database system. In SIGMOD Conference, pages
108–119, 1986.

[3] S. Chaudhuri and G. Weikum. Rethinking database system
architecture: Towards a self-tuning risc-style database sys-
tem. In VLDB 2000, 2000.

[4] P. E. Drenick and E. J. Smith. Stochastic query optimiza-
tion in distributed databases. ACM Trans. Database Syst.,
18(2):262–288, 1993.

[5] D. F. Ferguson. The Application of Microeconomics to
the Design of Resource Allocation and Control Algorithms.
Ph.d., Graduate School of Arts and Sciences, Columbia Uni-
versity, 1989.

[6] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yem-
ini. Economic Models for Allocating Resources in Computer
Systems. World Scientific, Hong Kong, 1996.

[7] H. Gravelle and R. Rees. Microeconomics (3rd edition).
Pearson Education, England, 2004.

[8] L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, editors. Pro-
ceedings of the 22nd International Conference on Data En-
gineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA.
IEEE Computer Society, 2006.

[9] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeco-
nomic Theory. Oxford University Press, New York, 1995.

[10] M. Mitzenmacher. How useful is old information. IEEE
Transactions on Parallel and Distributed Systems, 11(1),
January 2000.

[11] A. Mukherji. Competitive equilibria: Convergence, cycles
or chaos, The seventh Int. meeting of the society for social
choice and welfare, discussion papers. Technical report, In-
stitute of Social and Economic Research, Osaka University,
Japan, July 2003.

[12] K. Nakatsuka, H. Yamaki, and T. Ishida. Market-based net-
work resource allocation with non-tatonnement process. In
Design and Applications of Intelligent Agents: Third Pacific
Rim Int. Workshop on Multi-Agents (proceedings), PRIMA,
Melbourne, Australia, 2000. Springer-Verlag Heidelberg.

[13] F. Pentaris and Y. E. Ioannidis. Distributed query optimiza-
tion by query trading. In EDBT 2004, 2004.

[14] F. Pentaris and Y. E. Ioannidis. Query optimization in dis-
tributed networks of autonomous database systems. ACM
Trans. on Database Systems, 31(2):537 – 583, June 2006.

[15] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeller, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A wide-area dis-
tributed database system. VLDB Journal, 5(1):48–63, 1996.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 275

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

