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Abstract— Many applications offer a form-based environment
for naı̈ve users for accessing databases without being familiar
with the database schema or a structured query language. User
interactions are translated to structured queries and executed.
However, as a user is unlikely to know the underlying semantic
connections among the fields presented in a form, it is often
useful to provide her with a textual explanation of the query.
In this paper, we take a graph-based approach to the query
translation problem. We represent various forms of structured
queries as directed graphs and we annotate the graph edges
with template labels using an extensible template mechanism.
We present different graph traversal strategies for efficiently
exploring these graphs and composing textual query descriptions.
Finally, we present experimental results for the efficiency and
effectiveness of the proposed methods.

I. INTRODUCTION

Structured query languages are powerful tools at the hands

of advanced searchers and experienced developers but the vast

majority of users are not familiar with them. For this reason,

many applications (e.g., museum portals, digital libraries, e-

commerce sites, and so forth) offer a form-based environment

for formulating queries to search (web-based) databases. In

addition, emerging Do-It-Yourself (DIY), database-driven web

application platforms empower non-programmers to rapidly

and cheaply create and evolve applications customized to their

needs by manipulating visual elements [1], [2]. In all these

scenarios (i.e., involving searching and programming over a

database), user interactions with the interface are translated

to structured queries. Explaining these implicitly built queries

without exposing the details of the underlying query language

becomes vital especially when executing a query may have a

different outcome or effect from what the user has anticipated.

Translation of a user’s choices on a certain form in a narrative

would assist her in forming queries correctly, even without

being familiar with a specific interface or a query language.

Especially in large forms, a user is likely to not know the

underlying semantic connections among the fields presented

in the form, and a textual explanation may come in handy.

Explaining queries in text may be useful in some cases for

users that use a structured query language for writing queries.

Before the query is sent for execution, it may be useful to see

the query expressed in a more familiar way in order to check

that it captures correctly the intended meaning. A user trying

to understand an error message concerning her mistaken query

would prefer to have an explanation of that query in a familiar

language, instead of getting back an error code and a generic

error description. As another example, when a query returns an

empty answer, an explanation of the query may help identify

parts of the query that are responsible for the failure. Similarly,

when a query returns a very large number of answers, a query

explanation may highlight the reasons, in case a rewrite would

reduce this number significantly and serve the user better.

In general, in any situation where explanation of queries

is warranted, such textual interpretation may be very useful

and effective. Insertions, deletions, and updates, especially

those with complicated qualifications or nested constructs, will

benefit from a translation into natural language. Likewise for

view definitions and integrity constraints, which borrow most

of their syntax from queries. Although here we focus on SQL,

similar arguments can be made about RDF queries in SPARQL

or RQL, even Datalog programs, and others.

The requirement for translating structured queries to text is

further dictated by current trends. Automating computer-to-

human speech translation is recognized as one of the seven

most important IT challenges for the next 25 years by Gartner

analysts who examine technologies that will have a broad

impact on all aspects of people’s lives [3].

Translating queries into narratives has been largely ignored

so far. Traditionally, the application of natural-language tech-

niques to the front-end of an information system environment

has been one-directional: from NL requests for information to

queries production (e.g., [4]). Unfortunately, the fact that NLP

tools are trying to match SQL query patterns with NL queries

significantly bounds the idea of reversing their functionality

for getting the NL translation of an SQL query.

The problem we are studying can be informally stated as

follows. Given a query q over a database D , we would like

to generate a narrative that captures the intended meaning or

objective of q. Translating a structured query to text is chal-

lenging due to a number of reasons, including insufficient SQL

semantics and the complexity of the queries, which may have

nested queries, complex query conditions and different query

constructs (group-by, order-by, etc.). In addition, there are

several alternative expressions of a query in a formal language

that are equivalent, based on associativity, commutativity, and

other algebraic properties of the query constructs. Capturing

the query elements in the right order so that the corresponding

textual expression is natural and meaningful independent of the

way the user has expressed the query is not straightforward.

We take a graph-based approach for representing various

forms of structured queries as directed graphs. We annotate

the graph elements with labels using an extensible template

mechanism. We present three translation strategies. In the first
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Departments(DepID, DepCode, Name) Courses(CourseID, DepID, Title)
Instructors(InstrID, Name) Students(SuID, Name, Class, GPA)
CourseSched(CourseID, Year, Term, InstrID, TimeSlot)
StudentHistory(SuID, CourseID, Year, Term, Grade)
Comments(SuID, CourseID, Year, Term, Text, Rating, Date)

Fig. 1. An example course database

one (BST algorithm), the translation consists of a composition

of clauses each one focusing on specific query semantics.

In the second strategy (MRP algorithm), the translation is

realized in a holistic manner, where information from all parts

of the query graph is blended in the translation as we traverse

the graph. The last strategy (TMT algorithm) enables the use

of predefined, richer, templates for query parts in an effort

to produce more concise translations. Our approach mainly

targets queries like those found in [2]. However, a query

language has different semantics than a spoken language.

In our previous work, we have presented a taxonomy of

queries based on their complexity and expressivity [5]. There

are queries that are very difficult or even impossible to be

translated in a meaningful way. We can still handle some of

these using pre-defined patterns.

Contributions. In summary, our contributions are:

• We introduce a novel query graph model for capturing the

possible semantics of a query.

• We give semantics to the various parts of a query by

annotating the query graph edges with template labels

using an extensible template mechanism.

• We present different, domain-independent graph traversal

strategies for efficiently exploring query graphs and com-

posing query descriptions as phrases in natural language.

• We present an algorithm for selecting the best templates for

a query given (possibly overlapping) templates for different

query parts.

• We compare the translation algorithms and show their ap-

plicability and effectiveness through experimental results.

II. QUERY REPRESENTATION

We focus on relational databases and SQL queries. In

this section, we introduce our query graph representation that

captures query elements and their semantic associations.

A. Database Graph

A database D comprises a set of relations. A relation Ri has

a set of attributes. We use Ai
j to refer to an attribute of Ri. We

represent the database D by its database graph G(V,E), a

directed graph corresponding to the schema of D extended to

capture the basic roles of attributes in queries over the relations

of the database. Nodes in V are: (a) relation nodes, R - one

for each relation in the schema; (b) attribute nodes, A - one

for each attribute in the schema. Edges in E are:

• membership edges, Eμ - connecting an attribute node to its

container relation node. A membership edge μ between an

attribute Ai
j and a relation Ri formally is: eμ : Ri

μ←− Ai
j .

• selection edges, Eσ - connecting each relation to each of its

attributes. A selection edge σ between a relation Ri and

its attribute Ai
j represents a possible selection of tuples

from Ri based on a condition that involves Ai
j . Formally:

eσ : Ri
σ−→ Ai

j or eσ : Ri
σ←− Ai

j .

• predicate edges, Eθ - emanating from an attribute node

and ending at another attribute node. A predicate edge θ
between two attributes Ai

j and Am
k represents a potential

join between two relations Ri and Rm using the attributes.

Formally: eθ : Ai
j

θ−→ Am
k .

Therefore, the database schema graph is a directed graph

G(V,E), where V = R ∪ A and E = Eμ ∪ Eσ ∪ Eθ.

For our examples, we consider an example course database

depicted in Figure 1. Figure 2 shows how a join between

two relations, Students and StudentHistory, is captured on

the database graph: we can start from Students and join to

StudentHistory using the path Students
σ−→ SuID

θ−→ SuID
σ−→

StudentHistory or vice versa using the path StudentHistory
σ−→

SuID
θ−→ SuID

σ−→ Students. This example shows how our

query graph representation captures the query semantics (in

contrast to other query representations [6], [7]): operationally

the two paths may be equivalent, e.g., in the case of equi-

joins. Semantically they may have different translations. As

we will see in Section IV, for the same join between two

relations, we may choose one path over the other (e.g. choose

between “courses taken by the students” or “students have

passed courses”) depending on the query and the translation.

B. Query Graphs

We first consider SPJ queries and then we extend our

graphs to handle queries that contain query elements, such

as functions and groupings, as well as subqueries.

A SPJ query q is represented by its query graph
Gq(Vq ,Eq), a directed graph that is an extension of the

database graph. Nodes in Vq are: (a) relation nodes - one

for each relation and tuple variable in the query; (b) attribute
nodes - one for each attribute in the query, possibly repeated

if the attribute is found in different parts of the query; and (c)

value nodes - one for each value or a set of values specified

in the query qualification. Edges in Eq are defined as follows:

• membership edges: for each attribute Ai
j projected from a

relation Ri, there is a membership edge: eμ : Ri
μ←− Ai

j .

• predicate edges: for each predicate of the form Ai
j θ Ω,

where Ω can be a single value or a set of values or an

attribute, and θ denotes a comparison operator (e.g., =,

<, >, <> and LIKE), there is a predicate edge. We

distinguish two cases: If Ω is a single value or a set of

values, then it is a selection predicate edge: eθ : Ai
j

θ−→ Ω.

If Ω is an attribute Am
k , then it is a join predicate edge:

eθ : Ai
j

θ−→ Am
k . In this case, we also capture the inverse

direction: eθ′ : Ai
j

θ←− Am
k , where θ′ is the inverse of θ

(e.g, if θ is > then θ′ is ≤).

• selection edges: for each predicate of the form Ai
j θ Ω,

where Ω is a value (or set of values), there is a selection

edge from its container relation Ri to Ai
j : eσ : Ri

σ−→ Ai
j .

If Ω is an attribute, then there is also eσ : Ri
σ←− Ai

j .
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�� StudentHistoryStudents
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Fig. 2. A join on database graph

Example 1 Let us consider the following query.

select s.name, s.GPA, c.title, i.name, co.text
from students s, comments co

studenthistory h, courses c, departments d,
coursesched cs, instructors i,

where s.suid = co.suid and
s.suid = h.suid and h.courseid = c.courseid and
c.depid = d.depid and
c.courseid = cs.courseid and cs.instrid = i.instrid and
s.class = 2011 and co.rating > 3 and
cs.term = ‘spring′ and d.name =′ CS′

Its graph representation is shown in Fig. 3. We observe that

each join in the query is mapped to two paths with inverse

directions between the relations joined. We also observe how

a condition involving an attribute and a value, e.g., s.class =

2011 is captured as a path composed of selection and predicate

edges, like Students
σ−→ class

=−→ 2011.

To capture functions, expressions, and renaming operations

as well as order-by, group-by and having clauses, we extend the

query graph with the following edge and node types:

• function nodes: A function node f is used for representing

a function, an expression or a renaming operation that is

applied on an attribute Ai
j or a set of attributes.

• transformation edges: A transformation edge r is used for

connecting an attribute Ai
j with a function f that is applied

to Ai
j . If Ai

j is in the select clause of the query, then the

edge is defined: er : Ai
j

r←− f . If Ai
j is in the where clause

of the query, then the edge is defined: er : Ai
j

r−→ f .

• order edges: An order edge o is used for representing an

ordering. If the query results are ordered based on the

attributes Ai
j , Ak

l , ... (in that order), then we consider a

set of order edges, the first one starting from the container

relation Ri to Ai
j (eo : Ri

o−→ Ai
j), and each of the

remaining ones starting from each attribute and ending at

the subsequent in the order attribute (Ai
j

o−→ Ak
l , ...). o

shows if it is an ascending or descending order.

• grouping edges: A grouping edge γ is used to represent

a grouping. If the grouping attributes are Ai
j , Ak

l , ... (in

that order), then we consider a set of grouping edges, the

first one starting from the container relation Ri to Ai
j (eγ :

Ri
γ−→ Ai

j), and each of the remaining ones starting from

each attribute and ending at the subsequent in the grouping

attribute (eγ : Ai
j

γ−→ Ak
l , ...).

• having edges: a having edge h is used to show attributes

in having clauses. For each participating attribute Ai
j of a

relation Ri, there is an edge: eh : Ri
h−→ Ai

j .

Example 2 Let us consider the following query.

select year, term, max(grade)
from studenthistory
group by year, term having avg(grade) > 3

Its graph representation is shown in Fig. 4(a). The grouping

attributes are year and term, hence there are two grouping

Students StudentHistory
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�

GPA

�

Comments

Rating

�

3

>

Text

�
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�

2011=
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�
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�
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=
=
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�
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�
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�
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=
=

CourseID
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=
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�
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�
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=
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Name
�
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CourseID�
�

CourseID
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�

=
=

CourseSched

Term

�

Spring=
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�

InstrID
�

�

=
=

Name

�

Instructors

Fig. 3. A SPJ query

edges γ, one from the relation where year belongs and the

other from year to the next attribute in the grouping order,

i.e., term. The projecting attributes are year, term and grade;

but the latter is an aggregated attribute, which is connected

with a transformation edge to an aggregate function node

max. Moreover, the attribute grade aggregated (with a different

function here) is in the having clause. This is captured as a

path involving a having edge, connecting the attribute with its

relation, a transformation edge, connecting the attribute with

the function node avg, and a predicate edge connecting the

function node with the value. If a function involved more

than one attribute, then more than one attribute node will

be connected to the same function node in the query graph

through transformation edges. Finally, we use two copies

of the attribute grade depending on its role for making the

example clear. We could have one instance of this attribute.

We now consider queries with nesting. A parenthesized

select-from-where statement (subquery) can be used in a num-

ber of places: in a from clause, where it is treated as a table

that is joined to other tables in the query, in a select, where it

is treated as a set of attributes to be projected or in a where

or having clause, where it can be treated as a list of values or

a single value that participates in a predicate in this clause.

We consider that in a predicate of the form Ai
j θ Ω, θ denotes

a comparison operator (e.g., =, <, ...), or a set comparison
operator, such as (NOT )EXISTS, (NOT )IN , θ′ANY and

θ′ALL, where θ′ is a comparison operator.

Given a query q (the “parent” query), each subquery block
qm in q is represented as a separate query subgraph. This

subgraph is treated as a “virtual” relation and it is connected

to the parent graph depending on its position as follows:

• Each predicate in q of the form Ai
j θ qm, where qm returns

an attribute Am
k , is represented as a path connecting the

attribute Ai
j with its relation Ri through a selection edge

and with the respective Am
k through a predicate edge that

starts from Ai
j and ends at Am

k , i.e.: Ri
σ−→ Ai

j
θ−→ Am

k .

• Each predicate of the form Ai
j θ A

m
k in q where Am

k is an

attribute returned by the subquery qm and Ai
j belongs to

a relation in the parent query is represented as usual.

• Each predicate of the form Ai
j θ Am

k defined in the
subquery qm, where Am

k is an attribute defined in the scope

of qm and Ai
j is an attribute defined outside qm (i.e., in the
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Fig. 4. Example queries

query q) is represented as a path connecting the attribute

Am
k with its relation Rm through a selection edge and with

the respective Ai
j through a predicate edge that starts from

Am
k and ends at Ai

j and Ai
j with its relation Ri in q with

a selection edge, i.e.: Rm
σ−→ Am

k
θ−→ Ai

j
σ−→ Ri.

A query in the where-clause is an example of the first case

above, unless queries are correlated; then it is the last case. A

query in the from-clause is an instance of the second case.

Example 3 Let us consider the following query.
select s.name from students s
where NOT EXISTS (select ∗ from students s2

where s2.GPA > s.GPA)

Figure 4(b) shows the query graph for this query. This

example covers the first and third cases: the subquery is in

the where-clause and it references an attribute of the parent

query (i.e., correlated queries). That is why we observe the

two paths between the two relation nodes: one going towards

the subquery (for the first case) and one coming out of it (for

the third case). Here we see that if θ is (NOT )EXISTS,

the subquery qm does not return any attributes. In that case,

we use dummy attribute nodes, one connected to the query

subgraph and one connected to the parent query graph. This

example also shows how multiple instances of a relation each

one corresponding to a different tuple variable over the relation

are mapped in the query graph.

III. CAPTURING QUERY SEMANTICS

In this section, we describe a template mechanism that

allows us to represent semantics of query graph elements.

Labels. Each node v that can be part of a query graph

over a database D has a conceptual meaning. For example,

the conceptual meaning of a relation node represents its entity

type; e.g., for Students the conceptual meaning is ‘students’.

The conceptual meaning of a function captures its outcome

(e.g., the function max represents “the greatest” of its input.)

For expressions or unknown functions, we consider default

labels, such as “an expression on” or “a function of”.

We define as the label l of a node v the conceptual meaning

of the node, and we denote it as l(v). For example, the label

l(Name) of the attribute node Name may be “name”. Values

are treated as literals, so for a value node val: l(val) = val.
Each edge (or path) connecting two nodes can be annotated

by a label that signifies the meaning, in natural language, of

the relationship between the source and destination nodes. For

example, each membership edge from an attribute Ai
j to its

container relation Ri is annotated by a label that signifies

the meaning of the relationship of Ai
j with Ri’s conceptual

meaning. Referring to Fig. 3, the membership edge connecting

Students to its attribute Name may have the label “of”, and

the predicate edge participating in the join of Students and

Courses (in this direction) may have the label “have taken”.

Fig. 5 shows example labels for the graph of Fig. 3.

Labels are stored on the database graph for both nodes and

edges. A query graph inherits these edges from the database

graph. Node labels can be automatically extracted from the

names of database constructs using schema matching and en-

tity resolution techniques. As a second step (or even first when

such names are not meaningful), the system designer should

correct or complement these findings. Our implementation

does support default labels (e.g., “of” for membership edges),

but as the designer provides the system with more fine-tuned

labels, the translation results are even more descriptive.

Templates. Our translation methods (Section IV) traverse

the query graph and create phrases by composing labels found

on the way. For producing more natural results, we define

template labels at different granularity levels and we provide

an extensible template mechanism to fuse these labels.

A template label, l((v, u)), is assigned to an edge (v, u) or,

if it is more generic, to a path connecting v to u. This template

is used for the interpretation of the relationship between v and

u in a narrative. A generic template label may have the form:

l((v, u)) = expr1 + l(v) + expr2 + l(u) + expr3 (1)

where expr1, expr2, expr3 are alphanumeric expressions and

the operator “+” acts as a concatenation operator. For using or

registering template labels, we use a template language (based

on [8]) that supports variables, loops, functions, and macros.

Example macros implemented in our system, are:

(a) lM (v), which creates a phrase containing information

of all template labels involving the membership edges of v (if

any); i.e., l((x, v)), ∀edge (x, v)∈Eμ.

(b) lV (v), which creates a phrase containing information

of all template labels involving the paths starting from v
and ending to its values (if any); i.e., l((v, y)), ∀(v, y)∈Eσ,
(y, z)∈Eθ, z is a value node.

(c) lMV (v) = lM (v) + expr1 + l(v) + expr2 + lV (v); this

macro provides a full translation of v, in the sense that it

translates anything related to v.

We consider templates of two types: generic and specific.

The former are defined on edges and are constructed automat-

ically following the form (1). Example generic templates are

depicted in Table I. A generic template is essentially database-

agnostic. Applying l(eσ) template to Students
σ−→ Name

gives the label “students whose name”. Templates for pred-

icates, l(eθ), contain labels for operators, l(θ) (Table I). Also,

for ensuring the extensibility of templates, we encourage the

use of template variables. For example, for combining a sen-

tence with a noun phrase, we use the variable CONJ NOUN

that coordinates this conjunction. Table I shows the default

values used in our implementation. The designer can change

these values globally or change a value corresponding to a

subset of constructs (e.g., only the label of a specific eμ).
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Operators Translation Translation variables Translation Template labels Description
l(=) ‘is’ V AL SEL “whose” l(eσ) l(Ri)+VAL SEL+l(Ai

j)

l(≤) “does not exceed” COORD CONJ “and” l(eθ) l(Ai
j) + l(θ) + l(Ω)

l(>) “greater than” CONJ NOUN “that” l(eμ) “ the ” + l(Ai
j) + “ of ” + l(Ri)

l(LIKE) “looks like’ CONJ PROJ , CONJ SEL “and” l(Ri
σ−→ Ai

j
θ−→ Ai

j
σ−→ Ri) l(Ri) + “ with the same ” + l(Ai

j)

TABLE I

EXAMPLE LABELS FOR TEMPLATE CONSTRUCTS

Students StudentHistory

‘students’ ‘ ’

Name

‘name’
GPA

‘GPA’

Courses

‘courses’

CoursesSched

‘’’

Instructors

‘instructors’

Term

‘term’

Spring=

Name

‘name’

Comments

Rating

‘rating’

3>

Departments

Name

‘name’

CS=

Text
‘’description’’

Class

‘class’

2011=

Title

‘title’

are offered

offer

is

are taught by

teach

is

have taken

taken by

is

gave

are given by

is greater than

of

of of of of

Fig. 5. Our running example with labels

Specific templates can be defined not only on edges,

but on paths as well. These are created manually by a

human, and can produce high-quality, concise text. Hence,

when they exist, they should be preferred for query trans-

lation. As a short example, a specific template for the

selection edge eσ(Students,Name) may be the following:

l(eσ(Students,Name)) = l(Students) + “ named ”.

Note, template labels follow the direction of edges; thus,

if between two nodes there exist two edges with inverse

directions, then template labels may be assigned to both.

IV. QUERY TRANSLATION

In this section, we present algorithms for the translation of

SPJ queries. We first discuss the selection of the query subject,

i.e., the primary entity of interest in a query, and then we

present three strategies for translating the information we wish

to know about the subject and the subject qualification, i.e.,

which particular entities are of interest. The query described

in the Example 1 and its query graph (Fig. 3) will serve as a

reference example. Fig. 5 depicts a simplified version of the

graph annotated with labels, where each join path has been

replaced by a single “virtual” edge. In Section IV-D, we extend

the translation algorithms to grouping and ordering semantics.

A. Query Subject

The query subject represents what the query refers to. Iden-

tifying the query subject is important because it determines

how we traverse the query graph, i.e., the query translation

direction, and what kind of clauses we generate. Naturally,

it is a relation with attributes projected in the select-clause.

Unfortunately, when more than one relation projects attributes,

the query subject cannot be determined solely based on

the select-clause, due to the limited semantics of SQL. For

example, a request for the names of students and the titles of

the courses they took and a request for the titles of the courses

and the names of the students that took these courses are both

expressed with the same SQL query.

Definition 1: Primary relation RP . A relation storing infor-

mation for a set of entities of the same type is called primary.

Definition 2: Secondary relation RS . A relation that stores

information for a relationship of entities that are stored in

different relations is called secondary.

For example, referring to Fig. 5, Students is a primary rela-

tion, whereas StudentHistory shows how courses and students

connect and is secondary. Primary relations can be identified

either by the designer or inferred during the construction

of the database schema from an E/R diagram (entities in a

E/R diagram make primary relations). The rest are secondary.

Primary relations whose attributes are projected in the query

result, are candidates for query subject. Intuitively, since the

query subject is a reference point around which the query

explanation is built, it is reasonable to select one that is

“central” in the query graph, so that all references to it can be

as short and concise as possible. A formal definition follows.

Consider a query q and its query graph Gq(Vq ,Eq). R is the

set of nodes corresponding to the query relations. The distance

δ(Ri,Rx) between two relations Ri and Rx on the graph Gq

is the length of the shortest path between the two relations.

Since in our context query graphs are typically connected it

holds that δ(Ri,Rx) > 0, ∀Ri,Rx ∈ R,Ri �= Rx.

Definition 3: Query subject, Rq. The query subject is a

primary relation Rq ∈ R with attributes projected in q s.t.:

max
Rx∈R

(δ(Rq,Rx)) ≤ {max
Rx∈R

(δ(Ri,Rx)) : ∀Ri ∈ R}.

In Fig. 5, primary relations with projected attributes in

the query are Students, Courses, Comments, and Instructors.

The longest path of each one of them has length: 12, 9, 15,

15, respectively (recall that each “virtual” edge between two

relations contains 3 edges). Courses has the minimum longest

path to a relation on the graph and becomes the query subject.
1) QSUB Algorithm: The algorithm for selecting the query

subject computes for each primary relation with attributes

projected in the query, the shortest paths on the query graph

to all reachable relation nodes and the resulting distances

performing a breadth-first traversal of the graph. The length

of the shortest path between each pair of nodes Ri and Rx

in the graph is stored in a distance matrix D in D[Ri][Rx].

Then, for each primary relation with projected attributes, the

longest path distance is found and the query subject is the

relation with the shortest longest path. We resolve ties by

preferring a relation with more attributes projected. If more

than one candidate meets the criteria, we pick one or show

alternative translations using different query subjects. If there

is no primary relation in the query (i.e., the query involves

only one secondary relation), then we use as query subject a

primary relation of the database graph, which is the closest to

the query relation (details are provided in [9].)
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B. Query graph traversal

1) BST Algorithm: Our first strategy composes separate

clauses for each part of the query. First, it translates the

membership edges (clause pStr), then it connects all query

relations to the subject through the joins in the query (clause

fStr), and finally it reads the paths that connect relations to

value nodes that are specified for attributes on these relations

(clause wStr). The translation is performed in a depth-first

way on the query graph Gq(Vq, Eq) starting from the query

subject Rq to all relations through the joins on the graph.

The generated clauses are enriched with a few descriptive

expressions (e.g., ‘Find’, ‘for’, etc.) and combined to the final

text, as follows:

‘Find ’ + pStr + ‘ for ’ + fStr + ‘.’ +
‘ Return results only for ’ +wStr +‘.’

BST is a recursive algorithm with inputs a graph g(Vg, Eg)
and a root node v. It also takes as input the strings pStr, fStr,

and wStr that comprise its output as well. The first time it is

called, its initial inputs are Gq(Vq, Eq) and the query subject

Rq (details can be found in [9]).

For creating the latter two, we need to translate paths that

start from the v node (ln:3). Hence, we examine the outgoing

edges e = (v, t) of v (see Fig. 6(left)). For looking for paths

that end at value nodes, we examine the outgoing edges eo =
(t, to) of the v’s neighbor t. If to is a value, then the translation

of this path v ��� to contributes to wStr (ln:3.1). Referring

to Fig. 5, if v=Students and t=CLASS, then (ln:3.1.1) str =

‘students’+V AL SEL+‘class’+‘ ‘+‘is’+‘ ’+‘2011’ = ‘students

whose class is 2011’. V AL SEL is used for automating the

conjunction of a noun (‘student’) to a noun clause. Since there

may exist more than one such path from v, we create a single

clause for each one and then, we combine the clauses with a

coordinating conjunction CONJ SEL (e.g., ‘and’).

If to is not a value, then we are interested only in the

edge e. If we haven’t visited t so far and if e is a selection

edge, i.e., e ∈ Eσ
g , the path v ��� t represents part of a

join and thus, it contributes to fStr (ln:3.1.2). The translation

of this part is stored in fStr and then, (ln:4) we enrich

the labels of v’s children with appropriate expressions, so

when these children are about to be translated their produced

phrases will be combined appropriately with the existing one.

In particular, for translating the contents of query’s from-

clause, we enrich the produced clauses with suitable words for

smoothing the conjunction of a main phrase to a noun clause

(i.e., CONJ NOUN – for example ‘that’) or for combining

equivalent phrases (i.e., COORD CONJ – for example ‘and’)

(ln:4). Referring again to Fig. 5, if v=Courses, then t can

be Courses’s ids used for joining eventually Courses with

Instructors and Departments (and Students too). Thus, the fStr
is created as follows:

v=Courses, fStr = ‘courses’

v=Instructors, fStr += ‘that are taught by instructors’

Algorithm BST

Input: node v, graph g(Vg, Eg), list open, list close,

and clauses pStr, fStr, and wStr
Output: clauses pStr, fStr, and wStr

Begin
0. sel edges = 0; children = �;
1. close ← v;
2. If (v /∈ RS ) fStr += l(v);
3. Foreach edge e (v, t) ∈ Eg , t ∈ Vg {
3.1 Foreach edge eo (t, to) ∈ Eg , to ∈ Vg {
3.1.1 If (to is a value) {

str=l(v)+V AL SEL+l(t)+‘ ’+l(eo)+‘ ’+l(to)+‘ ’;
wStr += make lbl(wStr, str, CONJ SEL);

}
3.1.2 If ((t /∈ close) && (to is not a value)) {

If (e ∈ Eσ
g ) sel edges++;

children ← t;
fStr = fStr + l(e)+“ ”;

3.2. } } }
4. While (children �= �) {
4.1 tv ← children.pop();
4.2 If (--sel edges > 0) l(tv) += COORD CONJ ;
4.3 Else If (sel edges = 0) l(tv) += CONJ NOUN ;
4.4 open ← tv;
4.5 }
5. Foreach edge ei (si, v) ∈ Eg, si ∈ Vg

5.1 If (ei ∈ Eμ
g ) children ← (l(si), l(ei));

6. str = ‘’;
7. While (children �= �) {
7.1 (x, y) ← children.pop();
7.2 str += ‘ the ’ + x + ‘ ’ + y + ‘ ’ + l(v) ;
7.3 If (sizeof(children) �= 1) str += ‘, ’;
7.4 }
8. If (str �=‘’) make lbl(pStr, str,CONJ PROJ);
9. If (open �= �) {
9.1 v ← open.pop();
9.2 BST(v,g,open,close,fStr,pStr,wStr);
9.3 }
End

make lbl(clause, label, def) {
If (clause =‘’) return clause = label;
Else return clause += def + label;

}

Fig. 7. BST: dfs-like query translation in three steps.

v=Departments, fStr += ‘and are offered by departments’

and finally: ‘courses that are taught by instructors and are

offered by departments’.

Before leaving v, we examine its incoming edges ei =
(ti, v) (ln:7) (see Fig. 6(right)). If ei is a membership edge, i.e.,

e ∈ Eμ
g , then it contributes to pStr. All incoming edges ei are

stored in children, in order to find their actual number. Then,

pStr is created using conjunctive expressions (e.g., ‘and’) in

appropriate places (ln:7-8). Regarding Fig. 5, if v=Students,

then ti can be both NAME and GPA. Then, pStr can be

‘the gpa of students, the name of students’. For smoothing

results, we use a simple find-and-replace mechanism, termed

resolve common expressions (RCE) [8], that removes re-

peating information (not shown in Fig. 7 due to space limits).

The final result will be: ‘the gpa and name of students’.

This process is repeated until we have visited all nodes of

the query graph. Regarding the example of Fig. 5, the final

result (having used RCE too) will be:

“Find the title of courses, the name of instructors, the gpa
and name of students, and the description of comments for
courses that are taught by instructors, are taken by stu-
dents that gave comments, and are offered by departments.
Return results only for courses whose term is spring,
students whose class is 2011, comments whose rating is
greater than 3, and departments whose name is CS.”
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Algorithm MRP
Input: nodes v, rp, u, graph Gq(Eq, Vq), lists open,

close, path, and clause cStr
Output: clause cStr

Begin
0. close ← v;
1. If ((u, v) ∈ Eq) path.push back() ← (u, v);
2. If (v is RP) {
3. pr = rp; rp = v;
4. If (∃(a, v)∈Eμ

q , a∈Vq) {
4.1. cStr += lMV (rp);
4.2. While (path �= �) {
4.2.1 (x, y) ← path.pop back();
4.2.2 If (x �= pr) cStr += l(y, x) + lV (x);
4.2.3 If (x = pr) cStr += l(y, x) + l(x);
4.2.4 }}
5. If (�(a, v)∈Eμ

q , a∈Vq) {
5.1. cStr += l(pr);
5.2. While (path �= �) {
5.2.1 (x, y) ← path.pop front();
5.2.2 cStr += l(x, y) + lV (y);
5.2.3 }}
6. path = �;
7. }
8. Foreach (v, t) ∈ Eq

8.1 If (t /∈ visited) open.push back() ← {v, rp, u};
9. If (open �= �) {
9.1 {v, rp, u} ← open.pop back();
9.2 MRP(v,rp,u,Gq ,open,close,path,cStr);
9.3 }
End

Fig. 8. MRP: dfs-like query translation using reference points.

2) MRP Algorithm: Our second strategy blends all three

types of information that BST considers individually. The

challenge is to avoid creating extremely complex and lengthy

phrases. For instance, observe the part of Fig. 5 that relates

to the primary relations Students, Courses, and Instructors and

assume Students as a starting point. Then, an attempt to

translate this part at once produces the following long phrase:

“Find the names of students and the titles of the courses
taken by these students and the names of the instructors
that taught courses taken by these students”

In order to avoid long, possibly unnatural, sentences, we

semantically split the translation at multiple points, called

reference points, RP, as in the example below:

“Find the names of students and the titles of the courses
taken by these students and the names of the instructors
that taught these courses”

Starting the traversal of query graph from the query subject,

we identify a subset of relations as reference points, as follows.

Definition 4: Reference point, RP . It is a relation on the

query graph that satisfies at least one of the following proper-

ties: (a) RP is a primary relation with μ edges, or (b) RP is a

branching point, i.e., a relation that connects to more than one

relation through paths directed from this relation to the other

relations, or (c) RP is a leaf relation, i.e., a relation with no

outgoing paths to other relations on the query graph, or (d)

the minimum distance of RP from the closest reference point

is greater than a pre-defined threshold ψ.

The last property allows us to tune the semantic length of

the resulting phrases by regulating the distance among the

reference points, or equivalently, by regulating the number of

reference points used in the translation.

The Multi Reference Points algorithm (MRP) translates

a query graph Gq(Vq, Eq) based on the notion of reference

points (RP). MRP’s inputs are the query subject Rq and the

query graph Gq. However, due to its recursive nature, it uses

the following parameters as well: v is the node being processed

in each turn; rp the reference point for v; u the parent node of

v; the lists open and close for storing the nodes to be visited

and the already visited ones, respectively; the list path for

storing the edges between rp and v; and finally, the clause

cStr that stores the translation of Gq. cStr is MRP’s output.

MRP “collects” and combines projections, selection and

join predicates as it traverses Gq. The following text shows

MRP’s effect on the query of Fig. 5.

“Find the title of courses for courses that are offered by
departments whose name is CS, and also, the gpa and
name of students for students whose class is 2011 and
that have taken these courses, and also, the description
of comments for comments whose rating is greater than 3
and that are given by these students, and also, the name
of instructors that teach courses whose term is spring.”

MRP traverses the query graph in a dfs-like manner.

Interestingly, although it traverses the graph following a cer-

tain direction, the actual translation is happening by flipping

directions depending on where it stands. MRP just traverses

the graph until it reaches a reference point. Then, it creates a

phrase containing the translation of the subgraph connecting

the previously met RP, pr, and the current one, rp. This

subgraph may contain joining relations and paths that end

at value nodes. We distinguish two cases: (a) If rp does not

have μ edges, then it can be either a branching point, a leaf

relation or its distance from pr is greater than the allowed

threshold ψ. Then, the translation always follows a direction

from pr to rp. (b) If rp has μ edges, the translation follows the

direction from rp to pr. The algorithm’s behavior is explained

by the need to connect reference points correctly. In case (a),

the new reference point rp is a “weak” point in the sense

that it provides no information of interest to the query and

hence it cannot “stand” by itself. Hence, we make the previous

reference point pr to textually connect to rp. In case (b), rp
has information of interest (i.e., projected attributes) and we

can ask for this information and then link back to pr.

Going back to Fig. 5, for the sake of the example assume

that Students is the starting point. Then, Students, Courses, and

Instructors are RPs. If only Students and Instructors contained

μ edges, then the translation directions would be: Students →
Courses and Courses ← Instructors.

At the end, cStr contains the MRP translation, which

produces results as the one of the previous example. Observe

that this example is enriched with extra words –placed in

italics– that serve as coordinating conjunctions (e.g., “and”),

conjunctions to noun clauses (e.g., “that”), and so on. For

presentation simplicity, we have not overloaded Fig. 8 with

such information as we did with BST. For example, one could

add the expression “ there ” before l(pr) in (ln:5.1) and before

l(x) in (ln:4.2.3).

C. Template Selection

The previous query translation algorithms compose generic

templates on the edges of the query graph as they traverse the

graph. In this section, we present a flexible algorithm that can
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C D <val> + l(C)b name <val>

S H C T l(S) + “ have been in classes of ” +l(I)Ia

C T I l(I) + “ ‘s lectures on ” + l(C) + “ in ” + <val>
c

term <val>

S: Students

H:StudentHistory

T: CourseSched

C:Courses

D:Department

I: Instructors

Fig. 9. Example graphs and their templates

build on-the-fly the best combination of generic and specific

templates for a query graph based on how templates can be

“glued” together. To illustrate the basic idea of the algorithm,

imagine the query graph as a puzzle that we have to fill (cover)

and we have various pieces (i.e., templates) of various sizes.

The objective is to use as few pieces that can be glued together

as possible (few big pieces will make a clearer picture, while

many small pieces would pixelize the result).

A generic template is automatically defined on an edge

whereas a specific one, provided by a designer, may be defined

over a path or subgraph. Therefore, we consider that a template

is assigned to a template graph g, which is a DAG, and has

a set R(g) of reference points, which are nodes on g. The

template provides a translation of the relationship involving

the reference points on g.

Definition 5: Composeable templates. Two templates g,

with reference points R(g), and g′, with reference points

R(g′), are composeable if R(g)
⋂
R(g′) �= ∅.

In words, the reference points are the points where two tem-

plates can be glued together. Two templates are composeable

if they share at least one reference point.

Assume that the templates shown in Fig. 9 are defined

for the example of Fig. 5 (colored nodes represent reference

points). Observe that the graphs ga, gb are not composeable,

since they refer to different things: students and instructors

in the case of ga and courses and departments for gb. gc is

composeable with both ga and gb. Thus, the challenge is: given

the fact that templates cannot be freely combined but they

may still be combined if taken in the right order, then which

templates to pick and in what order to “solve the puzzle”.

Consequently, given a query graph Gq(Vq ,Eq) and a set of

(both generic and specific) templates, we need to: (a) find the

minimum set of composeable template graphs that cover the

query graph and (b) compose them based on the query graph

and the template “composeability”. A set {g1, g2, ...gN} of

template graphs are composeable, if for each gi, i = 1...N ,

there is a gj , j = 1...N, i �= j, s.t. gi and gj are composeable.

We first describe the algorithm TS for template selection.

1) TS algorithm: Formally, the template selection problem

is defined as follows: Given a query q and its query graph

Gq(Vq ,Eq), we consider the set g of template graphs that are

contained in Gq(Vq ,Eq), i.e.,:

g = {gi(Vi, Ei)|Gq is a supergraph of gi, i = 1..N}.

A set gk ⊆ g covers Gq(Vq ,Eq) iff
⋃

gx∈gk
Ex = Eq

(query graphs are connected, hence this condition also implies⋃
gx∈gk

Vx = Vq .) All sets that cover the query graph can be

ordered by their size, i.e., gk > gm ⇔ |gk| > |gm|. We are

interested in the set gt ⊆ g of composeable template graphs

s.t. �gm ⊆ g of composeable graphs with gm > gt.

Algorithm TS

Input: query graph Gq(Vq , Eq), index I

Output: a minimum set of composeable graphs gt

Begin
0. initialize M [][]
1. Foreach e in Eq {
2. use I to retrieve ge;
3. Foreach g ∈ ge {
3.1 M [e][g] ← 1;
3.2 } }
4. Foreach column g in M {
5. If sum(M [][g]) = |Eq | {
5.1 gcon.push() ← g;
5.2 QP.push() ← ({g}, Eg, R(g));
5.3 }
6. While (QP �= �) {
7. (gcom, Esat, Rg) ← QP.pop front();
8. Foreach (g(Vg, Eg) ∈ gcon, g /∈ gcom, R(g) ∩ Rg �= �) {
8.1 g′

com = gcom ∪ {g};
8.2 E′

sat = Esat ∪ Eg ;
8.3 R′

g = Rg ∪ R(g);

8.4 If (E′
sat = Eq) return g′

com;
8.5 Else QP.push() ← (g′

com, E′
sat, R′

g);

8.6 } }
9. return �;
End

Fig. 10. TS: algorithm for template selection.

Fig. 10 provides the algorithm for template selection. First,

we find the template graphs that are contained in the query

graph. We keep an inverted index I over template graphs.

Given a query graph Gq(Vq ,Eq), we probe the index with

the edges of Eq . For each edge e ∈ Eq , the index returns the

list ge of graphs that contain e. A graph g is contained in

Gq , if g is found in n lists returned for the edges in Eq and

n = |Eq |. To identify the qualifying graphs, we keep a matrix

M [][] with rows mapping to edges and columns mapping to the

template graphs returned by I for the query. We set M [e][g ] to

1 if the index returns g for e (ln:3). We keep only graphs that

correspond to columns in the matrix with sum of 1’s equal

to |Eq | (ln:5). These graphs are inserted into a list gcon in

decreasing order of the graph size (number of edges).

The next step is to find the minimum set of composeable

graphs from gcon that cover Gq . This is a set covering problem

but not all combinations of template graphs are valid, since

we are interested in composeable sets. For this reason, the

algorithm’s strategy is to build solutions by combining the

largest composeable template graphs. Solutions that cannot

extend to the whole query graph are pruned.

A candidate solution is represented as a tuple

(gcom, Esat, Rg), where gcom is a set of composeable

graphs, Esat is the set of edges covered by these graphs,

and Rg is the union of their reference point sets. The size

of a solution is the size of gcom, i.e., the number of graphs

in gcom. TS keeps a list QP of candidate solutions in

increasing order of size. Same size solutions are ordered in

decreasing |Esat|. At each round, it picks the head of QP
(ln:7) and generates solutions (if any) that extend this one

with a graph from gcon (ln:8). All solutions are inserted into

QP unless one covers all edges of the query graph. Then it

is a minimum solution, and the algorithm terminates.

2) TMT algorithm: The algorithm TMT (Fig. 11) uses the

set gt of composeable templates returned by TS to generates

a query translation (cStr) for a query graph Gq . The challenge
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Algorithm TMT
Input: query graph Gq(Vq , Eq), index I

Output: a clause cStr

Begin
0. gt ← TS(Gq , I);
1. Egt = ∪iEgi

, gi ∈ gt;
2. Foreach relation r s.t. � edge (x, r) ∈ {Egt − Eμ

q }, x ∈ Vq ;

3. QP.push() ← r;
4. While (QP �= � ) {
5. ri ← QP.pop front();
6. Vri

= {}; Eri
= {}; leaves.push() ← ri;

7. Foreach g ∈ gt with root(g) ∈ leaves {
7.1 Vri

.push() ← R(g);
7.2 Eri

.push() ← g;
7.3 leaves.push() ← R(g) − {root(g)};
7.4 }
8. L ← biased topological(Gri

);
9. While (L �= � ) {
9.1 g ← L.pop front()
9.2 cStri += l(g);

} }
10. cStr += cStri ;
11. return cStr;
End

Fig. 11. TMT: algorithm for specific template composition.

is to find how to compose the templates on the query graph.

To illustrate, for the query of Fig. 5 and the specific templates

shown in Fig. 9, TS would have found that these templates

combined with generic templates for the parts of the query

not covered can be used for translating the query. The result

(using appropriate auxiliary phrases) would be:

“Find the gpa and name of students whose class is 2011
and have been in classes of instructors and find the name
of these instructors, whose lectures on courses are in
spring and find the title of these CS courses and the
description of comments whose rating is greater than 3
given by these students.”

We observe that using specific templates may generate

smaller and more natural text. On the other hand, since

specific templates can be arbitrary, none of the previous query

translation algorithms that read and translate edges on the

query graph can be used. TMT uses a dynamic strategy to

find in what order the templates should be read and how they

must be combined. For the example of Fig. 9, the right order

to read the specific templates is ga, gc, gb.

TMT proceeds as follows. It finds a root ri on the query

graph that is a relation node and has no incoming edges

(except for possible membership edges) (ln:2). For example,

Students is the only root for the templates above. With ri as

root, it builds a DAG Gri(Vri , Eri) by connecting template

graphs found in gt that can be composed with ri (ln:5-7).

Recall that each graph g is a DAG and can be seen as a

“super edge” connecting the nodes in its set R(g) of reference

points (following the direction of the edges in g). Hence Gri
is

composed of such “super edges” (which in the case of generic

templates are edges on the query graph but in the case of

specific templates may map to subgraphs). In order to create

this DAG, the algorithm gradually expands the graph (which

initially contains only ri) with graphs whose root is one of

the current leaves of Gri
.

When Gri is built, TMT performs a topological sort and

stores Gri
’s graphs (in the order produced) in a list L. The

topological sort is biased to give from a relation priority to

membership edges, then selection edges to values, and finally

all other cases (ln:8). Then, TMT pops gis out of Q and

builds a phrase cStri; if a gi has more than one child, it uses

appropriate coordinating conjunctions (e.g., ‘and’) (not shown

in the figure for simplicity) (ln:9).

Since more than one root ri might exist (ln:2), possibly

covering different parts of the graph, TMT constructs and

translates a DAG Gri
for each root and at the end concatenates

the partial translation results, cStri’s, to cStr (ln:10).

D. Discussion

The algorithms presented so far, cover SPJ queries (paths,

nested, etc.) as discussed in Section II. For simplicity, we

left out of the discussion the grouping and ordering query

parts. These two are handled separately, since they apply

to the whole translation result. For both parts we work as

in BST and create the phrases gStr and oStr by simply

following the paths of γ or o edges, respectively. (A slightly

different case involves nested queries, where these phrases

may blend into the rest of the translated text; however, due

to space considerations we have omitted this part from the

descriptions of our algorithms.) Similarly, we work for r edges

and functions f (also omitted from our discussion).

In most examples we used queries having conjunctive predi-

cates. Nothing changes for disjunctive predicates. Extra care

should be taken for the choice of the words responsible for

coordinating phrases conjunction (e.g., apart from “and” we

need “or” too). Operators’ priority should be considered too.

An interesting issue concerns the “corporate” queries, which

contain large chains of joins, and most importantly many pro-

jected attributes. Although, there is no inherent problem with

the function of the proposed algorithms, there is a question

regarding the usefulness of such translations. Clearly, the pro-

duced text is not pretty, but neither the queries themselves are.

Since such queries usually are used by people with advanced

technical skills, a translation might not be that useful. How-

ever, we can leverage the power of templates for producing

“query summaries”, which can be used as starting points;

e.g., for facilitating query documentation. Using TMT and

appropriate templates (with macros) we can put limits on the

number of projected attributes in the result. [8] defines the

notion of the heading attribute, which represents the most

characteristic attribute of a relation (e.g., the attribute name
for Students). Such attributes may be defined in the database

graph. When a query involving many projected attributes

comes, we could provide a first translation using the predefined

attributes, so that the user would get insight into the query

mechanism. Then, we can expand it according to user needs.

As a final remark, TMT has been proven especially useful in

the case of queries that are difficult to translate [5]. For exam-

ple, queries containing predicates like “having count(distinct

year) = 1” and “where year < all (<subquery>)”, require

extra knowledge for capturing their semantics. The first case

implies “all” (e.g., as in “find students whose classes are all
in the same year”) and the second implies “earliest” (e.g., as

in “find students who have taken courses in the earliest years

that have been taught”).
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V. EXPERIMENTS

We use General SQL Parser, an off-the-shelf tool that reads

SQL queries and generates an XML-representation of the parse

tree (sqlparser.com). This is the input to our query translation

module that converts it to a query graph. The query translator

is implemented in C++ and makes use of the Boost library

for graphs (boost.org). Our experimental study aims at shedding

light on the performance as well as the effectiveness of the

proposed methods changing various features of the queries:

• the depth: the � of relations on the longest path in the query graph,

• the out-degree: the � of edges emanating from a relation node
pointing to other relations if query graph is converted to a DAG,

• the μ-degree: the total � of membership edges,

• the σ-degree: the total � of value nodes,

• the compactness: (� of relations)/(� of relations on the longest
path in the query graph).

In addition, we studied the effect of: the query subject

(on BST), the � of reference points (on MRP) and the �
of templates (on TMT). We used the schema of the course

database used in CourseRank (courserank.stanford.edu) comprising

20 relations with average number of fields around 5 [10].

A. Effectiveness

For these experiments, we recruited a few experts in SQL.

We intentionally chose experts because they can judge whether

an SQL query is translated well. We used different sets of

queries, with the same features, for which we automatically

generated query explanations with all algorithms. For MRP,

we also set the default minimum distance between reference

points to be 3 in order to ensure the use of reference points

even when the query structure does not provide such points.

For TMT, we have provided sufficient templates to make sure

that query translation can exploit them in order to leverage

its expressivity. In addition, we asked two experts to write an

explanation for each query (USER). Then, we involved the

other experts in the following experiments. The queries used in

each one of them were different in order to allow users judge

the results without any recollection of queries seen before.

1) SQL → NL: The first set of experiments (Fig. 12)

investigates the direction from SQL to text and it has two parts.

The first part measures the effectiveness of some particular

choices of the algorithms, namely the selection of a query

subject, the use of reference points, and the use of templates.

The benefits of reference points and specific templates are

also discussed in other experiments, so we will focus on the

query subject and summarize our findings for the other two due

to space considerations. The second part of the experiments

compares the various translation strategies.

Fig. 12(a) shows the effect of query subject (QS). We

considered a set of 10 path queries of depth equal to 10

with 6 of them being primary with one attribute projected.

We translated them using BST with QS calculated by the

algorithm and with manually set, alternative, query subjects

that were 1, 2, ..., hops away (denoted QS−1, QS−2,...). For

each query, the experts were presented with the results of all

translations using the different QS’s and rated them from 1 to

10. The figure confirms the intuition behind the selection of

QS: a central QS collects much more information around it

and generates more balanced clauses referring to it.

Fig. 12(b)-12(d) show results from the second part of the

SQL → NL experiments. Each point in the figures represents

the average of the user ratings for a set of 7 queries with

the same characteristics. Each user was presented with a

random subset of the queries used in each experiment and

rated all possible query explanations (BST, MRP, TMT, and

USER) from 1 to 10 depending on their comprehensibility

and naturality (10 is the best).

Fig. 12(b) shows ratings for queries as a function of the � of

relations (depth: 2 to 7). First, let us observe that the ratings

given to all query translations (even those user-generated)

decrease as the depth increases. We observe similar trends

when other aspects of the query (e.g., the μ-degree in Fig.

12(c)) change resulting in bigger, and more complex queries.

Thus, the quality of translation is inevitably affected by the

query size and complexity, which essentially means that even

for humans it becomes very difficult to explain a query in a

concise and elegant way. On the other hand, for simple queries,

all translation methods provide very satisfactory results.

Focusing now on the effect of the depth in Fig. 12(b), we

observe that BST is the most sensitive, because the longer

the paths on the query graph it translates, the more unnatural

the translation result is. On the other hand, the quality of

TMT’s translation is smoother because it can make use of

specific templates that “explain” bigger parts of a graph and

as a result while the query graph may grow, the algorithm

can still find a translation combining fewer templates than the

other algorithms. MRP’s results provide a good compromise

between TMT (which relies on human input) and BST (which

is fully automated): it combats the “long-path” effect of

BST by inserting intermediate reference points and breaking

long paths to shorter segments. In a way, it tries to “mimic” the

behavior of TMT by constructing templates (using of course

generic ones) for bigger but digestible parts of the graph. As

a final note, it is worth noting that the USER translation

results for small queries most of the times tended to follow

a BST-like approach, while for bigger queries they approach

MRP and finally, they adopt a TMT-like approach trying to

simplify parts of the query in order to make its description

shorter. We observed similar trends for other query parameters.

We think that this provides an indication that such a hybrid

translation approach may be useful, and we intend to explore

it as a continuation of this work.

Fig. 12(c) shows user ratings for queries as a function

of the � of projections (μ-degree:2 to 10). We consider two

projections per relation (which explains why in the figure

μ-degree increases by increments of 2). We observe that

TMT (although it starts with better translations), it is affected

by μ-degree because, although we have specific templates

for the main body of queries, i.e., for covering joins, for

projections, we cannot do much improvement. On the other

hand, BST seems more immune to μ-degree and we observe
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(a) d:10, o-deg.:1,μ-deg.:6, σ-deg.:0 (b) out-deg.:1, μ-deg.:1, σ-deg.:1 (c) d:5, out-deg.:1, σ-deg.:1 (d) d:5 out-deg.:1, μ-deg.:1,

Fig. 12. From SQL to NL

that for high values it has better results than the others which

also coincide with USER. We observed in the user-generated

texts that as queries had more projections they tend to adopt

a BST strategy (i.e., first the describe the projections and at

last the value selections).

Fig. 12(d) shows user ratings as a function of the σ-degree.

We would like to highlight few points here. Overall, BST is

the least affected simply because all value selections form a

separate clause appended at the end of the query translation.

For a certain number of value selections, MRP is not affected

and actually it seems to blend them nicely in the query

text. However, for many selections, the clean-cut solution of

BST seems more preferable. We observe that USER ratings

lie somewhere between BST and MRP ratings. We looked at

the user-generated text and we saw that as σ-degree increases,

the users were either trying to group selections at the end or

they were trying a mixed strategy like MRP.

Observe that TMT translations often got higher ratings than

USER translations. This is because we chose to evaluate

the users’ first translation attempts, which were based mostly

on a SQL-driven translation. (In general, USER results get

improved at users’ second or third attempt.) On the other hand,

by using appropriate templates in TMT, one may get more

declarative, smoother translations. The effort to come up with

appropriate, fine-tuned templates is a one-time effort worth to

place as it is compensated by the effectiveness of TMT.
2) NL → SQL: This set of experiments looked at the

inverse direction. Each person (except for those who provided

query explanations) was presented in random order different

explanations for the same set of SQL queries and was asked to

write the SQL query. We measured the � of hits (i.e., how many

times they got the right SQL query). We also asked users to

rate a text from 1 to 10 based on how easily they could build

the corresponding SQL query (10 is the best rating). Fig. 13

and 14 show user ratings as a function of depth and μ-degree,

respectively. (For space considerations, we do not show results

for the σ-degree since we observed very similar trends.) These

figures reveal that the text generated by BST suits better the

purpose of finding which SQL query is described. BST groups

projections, joins, and selections in a query in separate clauses

and dictates how to write the SQL query. MRP also allows to

easily write the query but in the presence of several projections

it becomes harder to reconstruct the SQL query. TMT provides

a higher level description of the query and makes it easier to

catch the meaning but then one needs to work harder to map

the semantic associations to real joins based on the underlying

schema. It is also worth noting that (although not shown in the

figures), we run experiments where we observed that reverse-

engineering TMT text to SQL queries, may lead to equivalent

but not exactly the same queries (e.g., in the case of nesting).

Fig. 15 shows the effect of compactness on the quality

of query translations as expressed through user ratings. If

it is equal to 1, then it shows a path query. The higher

the compactness is the more branches the graph has. We

considered queries of 12 relations of different compactness.

Each subset of queries used for each compactness has 4

projections and four selections that are always distributed to

the leave relations of the query graph. The purpose of this

setting is to make it hard to pick a query subject on the query

graph that is a central relation. (We have seen the effect of

the query subject above.) We observe that the more compact

the query graph becomes, BST translations improve thanks

to the ability to select a more central query subject, and

MRP translations are better due to the use of reference points

and improve as they can also pick a better query subject.

Finally, both generate equally good translations since for a

very compact graph, MRP does not need to consider reference

points. Interestingly, as the graph becomes compact, for our

configuration, there were not too many specific templates to

combine or they had large overlap.

Concluding: If one is willing to invest some effort on

designing some specific templates, TMT can generate better

translations. It can capture the important semantic associations

between entities in the database providing an abstraction

level that can hide the particularities of the schema, (such

as normalization, re-structuring, and so on). If an automated

method is preferred, we could apply a different technique

(BST or MRP), depending on the purpose the text will serve

(explaining a query or helping a user write the query himself)

and depending on the query characteristics.

B. Performance

Independent of the type of the nodes and edges in the

query graph, our experiments have shown that execution times

depend mainly on the graph size, which is � of relation nodes +

� of attribute nodes + � of value nodes. (Other parameters that

affect performance include the number of templates TMT has

to process, but for the template database used we did not

witness a significant overhead.) Fig. 16 shows times for the

three algorithms in seconds. BST is the most efficient since

it only makes one pass of the graph. MRP traverses parts of

the graph that correspond to joins to both directions as it goes

forth to find a reference point and back to connect it to the

previous reference point. TMT reads the query graph edges

more than once in order to find candidate templates and to

find how to compose them.
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Fig. 13. NL to SQL (out-deg.:1,
μ-deg.:1, σ-deg.:1)

Fig. 14. NL to SQL (depth:5,
out-deg.:1, σ-deg.:1)
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Fig. 15. NL to SQL (depth:12,
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Fig. 16. Performance

VI. RELATED WORK

NL and DB. Earlier interaction of DB and NL processing

has focused mainly on the opposite direction of the one

studied here, such as NL Querying [4], NL and Schema

Design [11], NL and Database interfaces [12], and Question

Answering [13]. In the past, we have worked on translating

small databases with content or query answers under certain

constraints [8]. We have also discussed the usefulness of

translating SQL queries into narratives and examined the space

of the problem [5]. The problem of query translation that we

study in this paper is more difficult than content translation

because the size and complexity of a query are essentially

arbitrary with no upper bounds (whereas database contents

necessarily follow the schema structure, which is bounded).

Query graph representations. Query graphs have been pro-

posed for query optimization purposes [6], [14], [7]. For

instance, the query graph model (QGM) defines a conceptually

more manageable representation of an SQL query [7]. These

models form the key structure for representing information

relevant to query optimization and processing, such as opera-

tions and data flows. We are not interested in the operational

aspects of a query (i.e., “how” an answer will be generated) but

more in its semantics (i.e., “what” the query describes). Our

query graph model captures query semantics by identifying the

elements of a query and capturing their semantic associations.

Graph and set problems. Our template selection problem

is divided into a graph containment and a graph cover sub-

problem. Graph containment problems have recently gained

attention and indexes and pruning methods have been proposed

for very large graph databases [15]. We follow an exact-match

approach that works well for the size of (template) graph

databases we consider. Our graph cover problem is: Given

a (query) graph g and a set of subgraphs {g1, g2, ...}, find the

minimum subset of composeable subgraphs that cover g. Two

subgraphs are composeable if they share specific nodes. This

problem differs from graph decomposition [16], [17], where

a graph g is decomposed into a set of subgraphs, that have

disjoint sets of edges and keep the structural properties of g.

Viewing graphs as sets (of edges), our problem can be seen

as a set cover problem [18], [19]. However, in our case, sets

cannot be freely combined, and a set cover for g may not be

an acceptable solution. Our algorithm is designed to take these

constraints into account and finds a graph cover.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored a new problem, translating SQL

queries to text. We have described a model for representing

various forms of structured queries as directed graphs and

we have captured query semantics by annotating the graph

edges with template labels using an extensible mechanism.

We have mapped the query translation problem to a graph

problem and presented different graph traversal strategies

for efficiently exploring these graphs and composing textual

query descriptions. Among them is an algorithm that can

capture important semantic associations between entities in

the database providing an abstraction level over the db schema

with very promising results as our experiments have indicated.

This is the first effort towards structured query translation

and it is an open field for research. We are interested in an

adaptive method that can follow different translation strategies

depending on the query characteristics. A related problem

is to apply techniques for finding interesting or frequent

associations in queries (for example, by mining query logs)

in order to recommend to a designer for template assignment.
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