
Personalized Queries under a Generalized Preference Model (*)

Georgia Koutrika Yannis Ioannidis
University of Athens, Hellas

{koutrika, yannis}@di.uoa.gr

Abstract

Query Personalization is the process of dynamically
enhancing a query with related user preferences stored in
a user profile with the aim of providing personalized an-
swers. The underlying idea is that different users may find
different things relevant to a search due to different pref-
erences. Essential ingredients of query personalization
are: (a) a model for representing and storing preferences
in user profiles, and (b) algorithms for the generation of
personalized answers using stored preferences. Modeling
the plethora of preference types is a challenge. In this
paper, we present a preference model that combines ex-
pressivity and concision. In addition, we provide efficient
algorithms for the selection of preferences related to a
query, and an algorithm for the progressive generation of
personalized results, which are ranked based on user
interest. Several classes of ranking functions are provided
for this purpose. We present results of experiments both
synthetic and with real users (a) demonstrating the effi-
ciency of our algorithms, (b) showing the benefits of
query personalization, and (c) providing insight as to the
appropriateness of the proposed ranking functions.

1. Introduction

A user accessing an information system with the inten-
tion of satisfying an information need, may have to re-
formulate the query issued several times and sift through
many results until a satisfactory, if any, answer is ob-
tained. This is a very common experience especially for
Web searchers, due to information abundance and users’
heterogeneity in the Web. A critical observation is that
“different users may find different things relevant when
searching” because of different preferences, goals etc.
[20]. Thus, they may expect different answers to the same
query. Consider a simple case: two users, Al and Julie,
access a web-based movies database both searching for
comedies. Al is a fan of director W. Allen, while Julie is
not. Most systems would consider only the request issued
and return to both users the same, exhaustive list of

comedies. However, storing user preferences in user pro-
files gives a system the opportunity to return more fo-
cused, personalized (and hopefully smaller) answers.

Query Personalization is the process of dynamically
enhancing a query with related user preferences stored in
a user profile with the purpose of providing personalized
answers. Focusing on the user enables a shift from what is
called ‘consensus relevancy’ where the computed rele-
vancy for the entire population is presumed relevant for
each user, toward ‘personal relevancy’ where relevancy is
computed based on each individual’s characteristics [20].
Personalized results for Al would include W. Allen’s
comedies, while personalized results for Julie would not.
Which preferences are related to a request and how these
affect the final answer are dynamically determined based
on the query, the profile and the personalization logic
applied.

Query personalization approaches have recently at-
tracted interest in both IR and Databases research com-
munities [16, 20, 18]. This paper is concerned with query
personalization in the context of databases. We adopt the
query personalization framework presented in our earlier
work [16]. Based on that, given a query and a profile, a
personalized answer is built by specifying: (a) the number
K of top preferences from the user profile that should
affect it, and (b) the number L (L≤K) of those preferences
that should at least be satisfied. Parameters K and L can
be specified directly by the user or derived based on vari-
ous criteria on the query context, such as user location,
time, device, etc. Essential ingredients of query personal-
ization are: (a) a model for storing preferences in user
profiles, and (b) algorithms for the generation of person-
alized answers. Query personalization has three phases:
(Preference Selection) Top K preferences are derived
from the user profile. (Preference Integration) These are
combined with the query. (Personalized Answer) A per-
sonalized answer is returned satisfying L of the K prefer-
ences.

Contributions. The main contributions are:
� Modeling the plethora of preference types is a chal-
lenge. In this paper, we present a preference model that
combines expressivity and concision. We model a set of
dimensions along which several preference types may be
uniformly formulated. The model presented in our previ-
ous work [16] captures only preferences of the kind ‘I like

(*) Partially supported by the Information Society Technologies
(IST) Program of the European Commission as part of the
DELOS Network of Excellence on Digital Libraries
(Contract G038-507618)

actor W. Allen’. Preferences such as ‘I like films with du-
ration around 2h’, ‘I do not like thrillers’, ‘I like movies
without violence’ captured by the model described here,
are not expressed in the model of [16]. We have adopted
from [16] the notion of implicit preferences, and the for-
mulation of preferences as degrees of interest in query
elements.
� This generalized model calls for more sophisticated
preference selection algorithms than the one described in
[16]. We provide efficient algorithms for the selection of
preferences related to a query according to various crite-
ria. The notion of degree of criticality is introduced for
ordering preferences and selecting the top K.
� A simple approach for generating personalized an-
swers is to integrate the top K preferences into the query
issued and construct a new one. This query is, then, exe-
cuted by the underlying database system [16]. We see
how this simple method may be adopted to the preference
model described here and discuss its shortcomings. Then,
we describe an algorithm for the progressive generation
of personalized results, which are ranked based on the
user profile.
� Results may be ranked based on which preferences are
satisfied or not. Several classes of ranking functions are
described, the function provided in [16] being an instance
of one of them. New functions belonging to other classes
are presented.
� We present experimental results showing (a) the effi-
ciency of our algorithms, (b) the benefits of personalized
search, and (c) the appropriateness of the proposed rank-
ing functions.

2. Related Work

Preference is a fundamental notion in applied mathe-
matics [8], philosophy [9], AI [22]. In Databases, prefer-
ences have been used for cooperative query answering,
i.e., for providing answers with extra or alternative infor-
mation that may be meaningful to the user [17, 7]. Re-
cently, database research has focused on studying prefer-
ences as user criteria at the query level that may be satis-
fied as closely as possible. Two approaches have been
pursued. In the qualitative approach, preferences between
tuples in the answer to a query are specified using prefer-
ence relations. Two frameworks have been proposed, in
which preference relations are defined using logical for-
mulas [5] or special preference constructors [14, 15].
Preference relations are embedded into relational query
languages through a relational operator that selects from
its input the set of the most preferred tuples (e.g., winnow
[5], BMO [14, 15]). Skylines [3, 19] are special cases of
these preference queries. In the quantitative approach,
preferences in queries are specified using scoring func-
tions that associate a numeric score with every tuple of
the answer [1]. Several algorithms have been proposed

for efficiently answering top-K queries, i.e. queries that
retrieve the best K objects that minimize a specific func-
tion [4, 23, 11].

The model of [16] associates degrees of interests (like
scores) with preferences. Yet, there are substantial differ-
ences from the quantitative framework [1]. The latter
does not capture preferences expressed on relationships
between entities, e.g., ‘I am very interested in the actors
of a film’, and implicit preferences. In addition, it uses
distance functions for tuple ranking; thus top tuples are
those with the smallest distance from the target values.
On the other hand, ranking functions [16] estimate the
overall interest in a tuple with respect to a combination of
preferences. Top tuples are those with the highest interest
based on this function.

The model presented here has the aforementioned fea-
tures of the earlier model, but is of greater expressive
power. The earlier model represents only preferences of
the kind ‘I like actor W. Allen’ (exact positive presence
preference), as opposed to the generalized that captures
several types, such as ‘I like films with duration around
2h’ (elastic preference), ‘I do not like thrillers’ (negative
preference), ‘I like movies without violence’ (regarding
absence of values).

Compared to our extended model, the quantitative
framework [1] does not capture negative preferences and
preferences for the absence of values. The qualitative
frameworks [5, 15] do not capture preferences expressed
on relationships between entities and implicit preferences.
Besides, [15] defines specific preference constructors,
thus not considering the possibility of having arbitrary
constraints in preferences as we and [5] do. [5] does not
express negative preferences and preferences for the ab-
sence of values. Furthermore, preference relations pro-
vide an abstract, generic way to talk about priority, and
importance. Thus, [5, 15] cannot capture different degrees
of interest, such as ‘I like comedies very much’, ‘I like
dramas a little’, and preference queries return most pre-
ferred tuples without distinguishing how better is one
tuple compared to another. We capture such variations in
priority and importance by associating preferences with
degrees of interest. Query results are also ranked based on
their degree of interest. Then, an application may use
qualitative descriptors for preferences and desired results
defined in terms of intervals of degrees of interest. E.g., a
‘best’ descriptor could map to degrees between 0.9 and 1;
then a user could ask for ‘best’ answers. We do not, yet,
support skylines, and relative preferences [5].

All the above database approaches deal with the ex-
pression of preferences in queries. We focus on the repre-
sentation of preferences in user profiles and query per-
sonalization algorithms. Although personalization is a
very broad research area, and there are different ap-
proaches from information filtering and recommender
systems [21, 13] to intelligent agents [2], query personal-

ization approaches in IR [20, 18] and databases [16] are
just emerging. Cooperative query answering approaches
put the user into perspective as well [17, 7]. These, how-
ever, have focused on providing answers that are mean-
ingful to a human being thus containing extra or alterna-
tive information. Query personalization focuses on pro-
viding focused, smaller answers.

Capturing different types of user preferences in pro-
files is a challenge. Existing work has primarily focused
on the population of simple, keyword profiles for IR sys-
tems. Constructing profiles of richer preference types as
the ones described here has recently attracted interest in
the database community [10].

3. Preference Model

Consider a movies database described by the schema
below; primary keys are underlined.

THEATRE(tid, name, phone, region, ticket)

PLAY(tid, mid, date), GENRE(mid, genre)

MOVIE(mid, title, year, duration)

CAST(mid, aid, award, role)

ACTOR(aid, name)

DIRECTED(mid, did), DIRECTOR(did, name)

Preferences may be expressed for values of attributes,
and for relationships between entities. Preferences for
values are quite involved, as the following example
shows. Preferences for relationships indicate to what de-
gree, if any, entities related are influenced by each other
(in particular by preferences on each other).

Example 1. Al’s preferences include the following.
(P1) He likes director W. Allen a lot.
(P2) He prefers ticket prices around 6 Euros.
(P3) He does not like movies released before 1980.
(P4) He likes only movies of duration around 2h.
(P5) He is happy if the movie is not musical.
(P6) He would rather not go to non-downtown theatres.
(P7) He is extremely interested in the director of a movie.
(P8) He is very interested in the movie genre.
(P9) He cares less about what theatres show a movie.
(P10) He is very concerned with the movies of a theatre.

Our approach to personalization is based on maintain-
ing, for every user, a user profile whose structure is re-
lated to the features of the data and query models. With-
out loss of generality, we focus on SPJ (Select-Project-
Join) queries over relational databases. Nevertheless, our
approach is applicable to any graph model representing
information at the level of entities and relationships. User
preferences may be articulated over a higher level graph
model representing the data other than the database
schema. This is a useful abstraction for using a profile
over multiple databases with similar information but pos-
sibly different schemas, and for hiding schema restructur-
ing. In ongoing work, we see how preferences expressed
over a higher level model may be transparently mapped to
the database schema.

3.1. Stored Atomic Preferences

For an attribute R.A of a relational table R, let DA be its

domain of values. Given our focus on query personaliza-
tion, we store preferences at the level of atomic query
elements, which are therefore called atomic preferences.
Preferences for values of attributes are stored as atomic
selections (atomic selection preferences), and preferences
for relationships are stored as atomic joins (atomic join
preferences).

Atomic Selection Preferences. For any atomic selec-
tion condition q on attribute R.A, a user’s preference for
values satisfying (or not) q is expressed by the degree of
interest in q, denoted by doi(q), defined as follows:

doi(q) = (dT(u), dF(u))
where ∀ u∈ DA satisfying q,
dT(u), dF(u) ∈ [-1, 1] and dT(u)*dF(u) ≤ 0.
(For simplicity, we may often omit parameter u from

the doi’s). The last condition should hold for normal us-
ers, based on psychological evidence [6]. This model is
quite general and can express several preference types.
These are described below, as each part of the above defi-
nition is analyzed, by distinguishing three relevant dimen-
sions of preferences: valence, concern, elasticity.

Valence. Preferences may be positive (expressing lik-
ing), negative (expressing dislike) or indifferent (express-
ing don’t care). Valence is captured by the different val-
ues of the degrees of interest dT(u), and dF(u): a positive
degree indicates increasingly higher interest; a negative
degree indicates increasing dislike; a degree equal to 0
indicates indifference. Preferences with dT(u) = dF(u) = 0,
are not stored in the profile.

Concern. Preferences may be presence (concerning the
presence of values) or absence (concerning the absence of
values). A user’s concern is captured by the pair (dT(u),
dF(u)). As defined, dT(u) captures a user's concern for the
presence of values u of R.A (or any other path of the
schema leading to R.A) that make q evaluate to true. dF(u)
captures a user's concern for the absence of the same val-
ues, i.e. for q evaluating to false. dT(u) is not derivable
from dF(u), and vice versa. Strong interest in a value
could be combined with indifference or with strong nega-
tive interest in its absence.

Elasticity. Preferences may be exact or elastic depend-
ing on whether the domain DA is categorical or numeric.
Given the mutual independence of categorical values,
preferences for these are considered exact and are either
satisfied exactly or not at all. On the other hand, prefer-
ences for numeric values may be smoothly continuous
over their domain and may be satisfied approximately,
and thus are considered elastic. Elasticity is captured by
the form of the functions dT(u), and dF(u). Constant doi
functions are used for exact preferences. There are many
possible functions for the representation of elastic prefer-
ences. Figure 1 shows possible forms of those. Various

parameters are required for the detailed description of an
elastic doi function, such as the interval of values for
which the function is non-zero. For simplicity, we will
use e(d) to denote an elastic function avoiding a detailed
representation of it. The subscript denotes the maximum
(minimum) degree this function returns, depending on its
form, (see Figure 1). We have experimented with func-
tions of the form of Figure 1(a). Using a set of elastic doi
functions, a system may support fuzzy operators, such as
‘around’, for expressing elastic preferences by users.
e(d)

DA0

1
d

DA

d
-1

0

e(d)

0

1
d

DA

e(d)

d
-1

0 DA

e(d)

(a) (b)

Figure 1. Forms of elastic doi functions

Using these dimensions, all (3*2*2) combinations of
the above preference types are valid for formulating pref-
erences. The model in our earlier work captured only one
type: exact positive presence preferences.

Example 1 (cont’d). We draw examples from Al’s
preferences. Regarding valence, P1 is an instance of a
positive preference, and P3 is an instance of a negative
one. Regarding concern, one may be concerned for the
presence (absence) of a value, while being indifferent for
the opposite case. These are simple preferences. E.g., Al
has a positive interest in the presence of W. Allen but he
does not care if W. Allen has not directed a film. Conse-
quently, P1 is a simple positive presence preference. On
the other hand, he prefers downtown theatres and he is
against the idea of a theatre not being there. P6 combines
positive presence and negative absence preference as one;
it is a complex preference. Regarding elasticity, P1, and
P3 are instances of exact preferences. However, Al’s
preference for movies with duration around 2 hours (P4)
is elastic, as movies of 122 or 115 minutes are close
matches probably of similar interest to him.

Atomic Join Preferences. Join preferences are sim-
pler as they do not lend themselves to any of the varia-
tions mentioned above. A user’s preference for a join
condition q is expressed by the degree of interest in q,
doi(q), defined as follows:

doi(q) = (d), where d ∈ [0, 1].
Degree 0 indicates lack of any interest in the join con-

dition, while degree 1 indicates extreme (‘must-have’)
interest. In addition, join preferences are directed. E.g.
movies and theatres are related but Al thinks that theatres
depend on movies (P10) much more than the other way
around (P9). Therefore, a join preference expresses the
dependence of the left part of the join on the right part. In
other words, the left part indicates the relation already
included in a query and the right corresponds to the rela-
tion that may be included influencing the final result, if

the join is considered.
A user’s preferences over the contents of a database

can be expressed on top of a personalization graph [16].
This is a directed graph G(V, E) (V: the set of nodes; E:
the set of edges) and it is an extension of the database
schema graph. Nodes in V are (a) relation nodes, one for
each relation in the schema, (b) attribute nodes, one for
each attribute of each relation in the schema, and (c)
value nodes, one for each value that is of any interest to
this user. Edges in E are (a) selection edges, from an at-
tribute node to a value node representing a potential se-
lection condition, and (b) join edges, from an attribute
node to another attribute node representing a potential
join condition between these attributes. As explained ear-
lier, two attribute nodes may be connected through two
different join edges, in the two possible directions. Given
the 1-1 mapping between edges in the graph and atomic
preferences, degrees of interest are placed as labels on the
edges. Figure 2 shows how Al’s profile may look like.
Part of the personalization graph corresponding to Al’s
profile is illustrated in Figure 3.

(P1) doi(DIRECTOR.name=‘W. Allen’) = (0.8, 0)

(P2) doi(THEATRE.ticket=‘6Euros’) = (e(0.5), 0)

(P3) doi(MOVIE.year<1980) = (-0.7, 0)

(P4) doi(MOVIE.duration=‘2h’) = (e(0.7),e(-0.5))

(P5) doi(GENRE.genre=‘musical’) = (-0.9, 0.7)

(P6) doi(THEATRE.region=‘downtown’)=(0.7, -0.5)

(P7) doi(MOVIE.mid=DIRECTED.mid) = (1)

doi(DIRECTED.did=DIRECTOR.did) = (0.9)

(P8) doi(MOVIE.mid=GENRE.mid) = (0.8)

(P9) doi(MOVIE.mid=PLAY.mid) = (0.7)

doi(PLAY.tid=THEATRE.tid) = (1)

(P10) doi(THEATRE.tid=PLAY.tid) = (1)

doi(PLAY.mid=MOVIE.mid) = (1)

Figure 2. Al’s profile

TICKET

TID TID

1
0.7

MOVIE

PLAY

NAME

PHONE

REGION

DATE

MID
(0.7, -0.5)

MID

YEAR

TITLE

MID

(-0.9, 0.7)

(-0.7, 0)

1980

MUSICAL

DOWNTOWN

THEATRE

GENRE GENRE

1

1

0.8

DURATION

6 euros
(e(0.5), 0)

2h
(e(0.7), e(-0.5))

Figure 3. Part of person. graph for Al’s profile

3.2. Implicit Preferences

By composing atomic user preferences that are adja-

cent in the personalization graph (composable), one is
able to build implicit preferences, i.e., preferences ex-
pressed through relationships. Given the 1-1 mapping
between edges in the personalization graph and atomic
preferences, an implicit user preference is mapped to a
directed path. An implicit join preference is mapped to a

path between two attribute nodes comprising composable
join edges, and represents the “implicit” join condition
between these attributes. An implicit selection preference
is mapped to a path from an attribute node to a value node
comprising join edges and a selection edge that are com-
posable, and represents the “implicit” selection condition
connecting the corresponding attribute and value. An im-
plicit query element is the conjunction of the constituent
atomic ones, and the degree of interest in it is a function
of the degrees of interest in the participating atomic pref-
erences. In principle, one may imagine several functions.
All of them should satisfy the condition that the absolute
doi in an implicit preference decreases as the length of the
corresponding directed path increases, capturing human
intuition and cognitive evidence [6]. We have chosen
multiplication as this function.

Example 2. Preferences P1 and P7 from Al’s profile
are composed into the following implicit preference for
movies directed by W. Allen.

doi(MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’) = (0.72, 0)

Any directed path in the personalization graph could
map to an implicit preference. However, based on human
intuition and cognitive evidence [6], we deal with acyclic
paths only. As a matter of notation, we use < q, doi(q) >
to denote an atomic or implicit preference P.

3.3. Combinations of Preferences

Satisfaction of a selection preference < q, doi(q) > is

equivalent to satisfaction of q if dT ≥ 0 or failure of q if
dF ≥ 0. Failure of a preference is the exact opposite. Thus,
the doi in the satisfaction of a preference is
d+(u)=max(dT(u), dF(u)). The doi in the failure is
d−(u)=min(dT(u), dF(u)).

Example 3. Consider Al’s preferences P1 and P5. P1 is
satisfied by tuples that satisfy the corresponding condi-
tion, e.g. movies directed by W. Allen. P5 is satisfied by
tuples that do not satisfy the corresponding condition, e.g.
theatres not playing musicals.

The overall doi in a combination of preferences is cal-
culated using a ranking function. We distinguish the fol-
lowing cases: (a) all preferences are satisfied (positive
combination), (b) none of the preferences is satisfied
(negative combination), and (c) some preferences are sat-
isfied and others not (mixed combination).

Positive Combinations. Consider a set P+ of N+ pref-
erences and the set D+ of the corresponding satisfaction
(non-negative) doi's:

D+ ={di
+ | di

+: doi in Pi ∈ P+, i = 1… N+}
The doi in a positive combination should be a function

of the degrees di
+. In principle, one may imagine several

functions. A parameter that appears pivotal in this issue is

max(D+). Around it, one may see three different philoso-
phies: inflationary, dominant, and reserved.

Inflationary. The degree of interest in multiple prefer-
ences satisfied together increases with the number of
these preferences, i.e., r+(D+) ≥ max(D+), expressing a
philosophy of ‘the more preferences satisfied the better’.
The following function proposed in [16] belongs here:

∏
=

++
−−=

N

i
ir

1
1)d1(1

(1)

Dominant. The degree of interest in multiple prefer-
ences satisfied together is equal to the doi of the most
interesting of these preferences, i.e. r +

 (D+) = max(D+)
This function captures a ‘winner-takes-all’ philosophy,

thus it does not depend on the number of preferences. In
other words, an answer is as good as its best feature.

Reserved. The degree of interest in multiple prefer-
ences satisfied together is between the highest and the
lowest degrees of interest among the original preferences,
i.e., min(D+) ≤ r +

 (D+) ≤ max(D+). The underlying princi-
ple is that the doi in satisfying multiple preferences
should primarily depend on the importance of them. The
following function belongs to this category:

∏
=

++
−−=

N

i

N
ir

1

/1
2)d1(1

(2)

The appropriateness of a ranking function is judged
only by the philosophy of the approach taken towards
personalization and, more importantly, by how closely it
reflects human behavior. We have experimented with the
above functions, and we will discuss results that provide
insight as to the appropriateness and intuitiveness of each
one of them.

Negative Combinations. A similar issue arises with
respect to the doi in multiple preferences not satisfied,
i.e., dealing with multiple non-positive doi's in a set D

−
.

This case is symmetric with the previous one and may be
treated in a similar fashion. The pivotal parameter is
min(D

−
) and one may define inflationary, dominant, and

reserved ranking functions. The counterparts of r1
+ and

r2
+ above, are exactly the same, only with an exchange of

the ‘+’ and ‘−’ sign everywhere.
Mixed Combinations. The doi in a combination of

positive (D+) and negative (D
−
) degrees is a function of

the degrees of interest in the two sets satisfying the fol-
lowings conditions:

r − (D
−
) ≤ r (D+, D

−) ≤ r +(D+) (3)
r (d, _ d) = 0 (4)

Examples of such functions are the following:
−+

+= rrr1 (5)

−+

−

−

+

+

+

+
=

NN
rNrNr **

2

(6)

We have experimented with these formulas as well.
Formula (6) seems more appropriate, as it captures the

intuition that the overall degree of interest should be af-
fected not only by the doi’s in its positive and negative
parts, but also by the number of preferences contributing
to each one of them.

Personalized answers may be ranked with the use of a
ranking function.

3.4. Preference Order

Ordering preferences based on their importance is es-

sential for selecting which ones should be satisfied. Such
ordering should take into account both doi’s d+ and d−.
Intuitively, the most important or critical preference is the
one with the highest d

+, and the lowest d
−. Accordingly,

the degree of criticality c of an atomic or implicit prefer-
ence is defined as follows

c = d0
+ + d0

− (7)
c ∈ [0, 2] and d0

+ = max(d
+(u)), d0

− = |min(d
− (u))|.

Example 4. Al’s preferences P1, P4 and P5 are ordered
in decreasing criticality as follows:

P5 (c5=1.6), P4 (c4=1.2), P1 (c1=0.8).
Criticality can be extended to join preferences by as-

suming the degree of interest in their failure as being
equal to 0. As a result, the property of decreasing degree
of interest of a join as the length of the corresponding
path increases transfers over to the degree of criticality as
well. Unfortunately, the same does not hold for implicit
selections: the degree of criticality of implicit selection
preference cS may be greater than the degree of criticality
of any constituent join preference cJ, since cS is the sum
of two positive doi’s. The following bound is derived by
applying simple mathematics (not described here due to
space constraints).

cS ≤ 2cJ (8)

4. Preference Selection

The first step of the query personalization process
deals with for the extraction of the top (most critical) K
preferences related to a query. A preference may be re-
lated at a syntactic or semantic level. Our system cur-
rently supports the former level. A preference is syntacti-
cally related to a query, if it maps to a path attached to a
relation included in the query. For example, an implicit
preference related to a query about movies is:

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’

Parameter K is specified with the use of some crite-
rion. We distinguish two possibilities: (a) the criterion is
based on the degree of criticality of preferences, e.g. it
may specify that the top 5 preferences, or preferences
with a degree of criticality above a threshold c0, should be
selected, or (b) the criterion is based on the desired doi in
results, e.g. it may designate results of doi > 0.8.

4.1. Selection Based on Preference Criticality

Problem Formulation. Given a query Q and the per-
sonalization graph GP corresponding to a user profile, we
consider the set PN of all paths Pi in GP that are related to
Q in decreasing order of criticality ci, i.e.,

PN = {Pi | i∈ [1, N], ci-1 ≥ ci }
The set of preferences that may affect the query, based

on some criterion C(.) on the degrees of criticality, is the
ordered subset PK = {Pi| i∈ [1, K], ci-1 ≥ ci } of PN such
that: K=max ({ t| t∈ [1, N]: C(Pt) holds }).

Algorithms. A preference selection algorithm should
gradually construct directed paths attached to query rela-
tions on the personalization graph GP in decreasing order
of criticality. Consider the personalization graph depicted
in Figure 4. For simplicity, attributes and values involved
in joins and selections are omitted. Each edge is labeled
with the degree of criticality of the corresponding atomic
preference. The property of decreasing degree of interest
of a join as the length of the corresponding path increases
gives the possibility of a best-first traversal of the person-
alization graph: AB being more critical than AE guaran-
tees that ABD is more critical than AEF as well. Unfortu-
nately, monotonicity is lost for the degree of criticality of
implicit selection preferences. Indeed, ABDs1 is not more
critical than AEFs2. Hence, a best-first traversal of the
graph does not guarantee that implicit selections are gen-
erated in the proper order. For this reason, when an im-
plicit selection preference is encountered, it is output pro-
vided that it is more important than the most critical se-
lection preference unseen (mcsu). Based on Formula (8),
the latter comprises the most critical join currently known
followed by an atomic selection with the greatest degree
of criticality, which equals to 2. Thus, an implicit selec-
tion preference may be safely output only if it has a de-
gree of criticality at least equal to the degree of criticality
of the most critical known join multiplied by two. Other-
wise, the algorithm expands that join in order to examine
longer paths. This algorithm is called SPS (Simple Prefer-
ence Selection).

 B D

F

0.8

0.7

s1

s2
E

A

0.9

0.6

0.5

1.8
Figure 4. Example on the degree of criticality
Assuming that the most critical known join is followed

by an atomic selection with a degree of criticality equal to
2 gives a worst-case estimate for mcsu. What the algo-
rithm needs would be the real degree of criticality of the
most critical selection preference following that join. For
this purpose, a pre-processing step would be necessary:
for each join edge, all subsequent paths should be visited
in order to find the maximum degree of criticality among
them. Then, this degree could be tagged on that join edge.
However, neither this pre-processing step nor, mainte-

nance of that extra information is cheap. If the degree of
criticality of some edge changes, or a new edge is added,
then all join edges that expand to paths including this
edge must be updated. A compromise between using a
worst-case estimate and storing the real degree is the idea
of keeping a fake criticality fc, as follows:

For every selection edge, fc is set to 1. For every join
edge, fc is set to the maximum degree of criticality of all
edges following this one. If one of those is a join, its de-
gree of criticality is multiplied by 2.

Both creation and maintenance of fake criticalities are
cheap. Then, a preference selection algorithm may treat
each path with a degree of criticality c and a fake critical-
ity fc, as if it were an implicit selection preference with
criticality equal to c∗fc (instead of c). As a result, a best-
first traversal of the personalization graph GP based on
the product c∗fc is now possible. Whenever a selection
preference is constructed, it is immediately output. The
algorithm, called FakeCrit, is presented in Figure 5. Ex-
periments not presented in this paper for space con-
straints, have shown that it is more efficient than the sim-
ple SPS algorithm.

Preference Selection Algorithm-FakeCrit
Input: User profile U, user query Q, criterion C
Output: Set of preferences PK

PK ={}, QP={}, K_Selected=false
1. Foreach atomic preference ACi∈U related to Q

1.1 If (ACi does not conflict with Q) Then QP � ACi End if
End for

2. While (QP not empty) and (K_Selected=false)
2.1 Get head P from QP
2.2 If (P is selection) Then

K_Selected=C(PK ∪ {P})
If (K_Selected= false) then PK �P End if

End if
2.3 If (P is join) Then

K_Selected=C(PK ∪ {P})
If (K_Selected= false) then
Foreach atomic element ACi∈U composable with P

If ((c0>0) and (fcPA*cPA ≤ c0) Then exit For End if
If (ACi does not join to relation R∈P or R∈Q) then
QP�P ∧ ACi End if

End for
End if
End if

End while

Figure 5. FakeCrit Preference Selection
A queue QP of preferences is kept in order of decreas-

ing c∗fc. Initially, it contains atomic preferences related to
the query. In each round, the algorithm picks from QP the
head P. If P is a selection satisfying the criterion C(PK ∪
{P}), then it is output. If P is a join satisfying the crite-
rion C(PK ∪ {P}), then, it is expanded into longer paths
which are added into QP. A new path P ∧ ACi is gener-
ated for each atomic preference ACi that is composable
with P. These atomic preferences are considered in order
of decreasing c*fc. A new path is not inserted in QP: (a)
if it expands to a relation included into P or Q, because a

cycle is generated; (b) if the product of its degree of criti-
cality and its fake degree of criticality (cPA*fcPA) is < c0,
provided that criterion C specifies that top K preferences
must have a degree of criticality greater than c0 > 0.

4.2. Selection Based on the Interest of Results

Selection of the top K preferences may be guided by a

criterion on the desired doi in results. This criterion could
be formulated with the use of a ranking formula, such as
(1) or (2), calculating the doi in positive combinations.
Compared to the previous case, this one presents certain
particularities that need to be considered by a preference
selection algorithm.

Example 5. Consider the following preferences.
(P1) doi(MOVIE.mid=GENRE.mid) = (1, 0)

(P2) doi(GENRE.genre=‘musical’ = (-0.7, 0)

(P3) doi(GENRE.genre=‘adventure’) = (0.9, 0)

Assume we are interested in movies with a doi higher
than 0.8. The preference selection algorithm could select
only P3, since movies satisfying only this preference are
interesting based on the criterion above. In practice, the
personalized query executed will return movies that pos-
sibly satisfy some of the preferences ignored and do no
satisfy some others. Using a ranking function for mixed
combinations, we see that results not satisfying prefer-
ences with negative doi have a decreased doi than ex-
pected. For example, we see that movies satisfying P3 but
not P2 are not desired, due to the negative doi of P2; these
should not appear in the answer. Consequently, whenever
interested in personalized results with a minimum doi,
negative preferences must be taken into consideration.

Problem Formulation. Given a query Q and the per-
sonalization graph GP corresponding to a user profile, we
consider again the set PN of all paths Pi in GP that are re-
lated to Q in decreasing order of their degree of criticality
ci, i.e., PN = {Pi | i∈ [1, N], ci-1 ≥ ci }

The set of preferences that must be satisfied so that tu-
ples returned will have a minimum degree of interest
equal to dR, despite the fact that they may not satisfy pref-
erences not selected, is the ordered subset
 PK = {Pi| i∈ [1, K], ci-1 ≥ ci } of PN such that:

K=min({t| t∈ [1, N]: r (d1
+, … dt

+, dt+1
−, … dN

−) ≥ dR})
(r is a ranking function for mixed combinations).
Algorithm. An exhaustive algorithm would enumerate

all paths in the ordered PN and repeat this calculation
r(d1

+, d2
+, … dt

+, dt+1
−, … dN

−) ∀t = 1…N (9)
until it returns a doi greater than or equal to dR.
A more efficient algorithm is built by appropriately ex-

tending FakeCrit. As before, a queue QP of candidate
preferences is kept in order of decreasing c∗fc. Initially, it
contains all atomic preferences related to the query. In
each round, the algorithm picks from QP the head P. In
round t, t preferences have been selected. The problem is

how to compute Formula (9), without visiting the remain-
ing N-t paths. Recall that the absolute doi in an implicit
preference decreases as the length of the corresponding
directed path increases. Then, the absolute doi di

− of any
negative preference unseen can be at most equal to dworst:

di
− ≤ dworst ∀Pi, i = t+1, … N

where dworst can be computed by considering the doi’s
of all preferences known, i.e., currently in QP, as follows:

dworst = max({di
− | Pi ∈QP and Pi is selection} ∪

{dj | dj=the doi in Pj ∈QP and Pj is join })
where, di

− = |min(di
− (u))| of a preference Pi.

By considering the worst case scenario, i.e.
di

− = dworst ∀Pi, i = t+1, … N,
Formula (9) is written

r(d1
+, d2

+, … dt
+, − dworst, … − dworst) (10)

where − dworst is repeated N− t times.
At each iteration, the algorithm caches the doi in re-

sults satisfying t preferences given by r(d1
+, d2

+, … dt
+) in

order to re-use it in the next round. The problem is that
without exhaustive enumeration of PN, N is unknown. We
may assume that N is equal to the number of preferences
stored in the profile. Whether this estimate is close to the
real value of N depends on the structure of the personal-
ization graph. If its real value is much smaller, then For-
mula (10) assumes that there are more preferences to be
examined than in reality. This may possibly result in enu-
merating all paths in PN, which may be acceptable. Alter-
natively, for each join edge the number of paths that this
edge expands to could be kept. This number may not be
updated every time an edge is inserted or deleted from the
graph. We have found that the selection algorithm can be
effective relying only on periodic updates of this number.

5. Generation of Personalized Answers

Top K preferences are integrated into the user query

and a personalized answer is generated. This should be:
(a) Interesting to the user. For this purpose, it should

satisfy (at least) L from the top K preferences.
(b) Ranked based on the doi in the tuples returned.
(c) Self-explanatory. For each tuple returned, the pref-

erences satisfied and/or not should be provided in order to
justify its selection and ranking.

We describe two approaches for the generation of per-
sonalized answers. Elastic preferences are translated into
appropriate range conditions using a set of rules before
they can be inserted into a query. This is not discussed
here any further, due to space limitations.

Simply Personalized Answers (SPA). One approach
is to integrate the top K preferences into the initial query
and build a new one, which is executed. We formulate the
personalized query as the union of a set of sub-queries,
each one mapping to one or more of the K preferences
selected. Each sub-query is built by extending the initial

query by an appropriate qualification involving the par-
ticipating preferences. It also returns the positive degree
of interest of the corresponding preference. If it contains
an elastic preference, then the corresponding elastic func-
tion provides the doi in each tuple. This approach is
adapted from [16], so that it can handle elastic and ab-
sence preferences, not captured in our previous work. We
will give a representative example, without going into
technical details.

Example 6. Suppose Al submitted this simple query
select title from movies

Assume that the following preferences have been se-
lected, from which L=2 should be satisfied.

(P1) MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’ (presence)

(P2) MOVIE.year<1980 (absence 1-1)

(P3) MOVIE.mid=GENRE.mid and
GENRE.genre=‘musical’

(absence 1-n)

The kind of sub-query depends on the preference type.
A preference to be satisfied may be presence or ab-

sence preference. Moreover, we distinguish between 1−1
and 1−n absence preferences. The following sub-queries
are built for each preference type.

(Presence preferences)
Q1: select title, 0.72 degree

from MOVIE M, DIRECTED D, DIRECTOR DI
 where M.mid=D.mid and D.did=DI.did and

DI.name=‘W. Allen’

(1−1 absence preferences) They are mapped to sub-
queries in the same way as presence ones. The only dif-
ference is the change of the condition’s operator.

Q2: select title, 0 degree
from MOVIE M

 where M.year>=1980

(1−n absence preferences)
Q3: select title, 0.7 degree

from MOVIE M
 where M.mid not in (select M.mid

from MOVIES M, GENRE G
where M.mid=G.mid and
G.genre=‘musical’)

The expected results are obtained by taking the union
of the partial results of the sub-queries, grouping by the
projected attributes of the initial query, and excluding all
groups with less than L rows. Results are ranked based on
the combination of preferences satisfied.
select title,r(degree)
from Q1 Union All Q2 Union All Q3 Union All
group by title
having count(*) >= 2
order by r(degree)

where r is a ranking function (implemented as a user-
defined aggregate function), and each sub-query is re-
placed by Qi for presentation purposes.

Although this approach is simple, it has certain disad-
vantages. It does not generate self-explanatory results. It
cannot rank results based both on preferences from the K
selected are satisfied and which are not. It may become

very inefficient when there are 1−n absence preferences.
It does not allow for a progressive retrieval of tuples. Tu-
ples are returned only after they have all been retrieved,
merged, grouped and ordered.

Progressive Personalized Answers (PPA). This algo-
rithm generates self-explanatory, ranked, personalized
answers. It outputs results in a progressive fashion, and it
handles 1−n absence preferences more efficiently.

Queries corresponding to presence and 1−1 absence
preferences are constructed in the same way as the previ-
ous example showed. For convenience, let’s call them
presence queries. Let PS be the set of presence and 1−1
absence preferences, and S the set of the corresponding
queries in order of increasing selectivity. We use simple
histograms to obtain this information. Queries corre-
sponding to 1−n absence preferences, called absence que-
ries, are now formulated as if they corresponded to pres-
ence preferences. Let PA be the set of 1−n absence prefer-
ences, and A the set of the absence queries in order of
increasing selectivity. The difference between presence
and absence queries is that a tuple returned by the former
satisfies the corresponding preference, whereas a tuple
returned by the latter does not satisfy the corresponding
preference. Each of these queries returns a tuple id, the
table attribute and the value of the participating prefer-
ence, and a doi. Presence queries return a positive doi,
while absence preferences return a negative doi.

For each Si ∈ S, we build a parameterized query Qi
S(t)

that is the union of all Sk following Si in S. Likewise, for
each Ai ∈ A, we build a parameterized query Qi

A(t) that is
the union of all Ak following Ai in A. In both cases, pa-
rameter t is a tuple id. The algorithm PPA is presented in
Figure 6. It starts by executing presence queries. For each
distinct tuple t returned by a query Si, the algorithm exe-
cutes the corresponding parameterized query Qi

S(t). This
query returns zero or more occurrences of t, depending on
the number of preferences that are contained in this
query, and are satisfied by t. The algorithm records how
many (curL) and which of these preferences are satisfied
(presSatisfied). Then, it records which preferences were
not satisfied (presFailed) by considering the difference of
the set of satisfied preferences from the set PS. It also
executes the parameterized query Q1

A(t), in order to make
the same with the absence preferences. However, this
query returns zero or more occurrences of t, depending on
the number of preferences contained in this query that are
not satisfied by t. Then, the algorithm finds how many
and which of the absence preferences are satisfied
(absSatisfied) by taking the difference of the set of not
satisfied absence preferences (absFailed) from the set of
all absence preferences PA. If the tuple t satisfies (at least)
L preferences (curL ≥ L), then its overall doi (TupleDoi)
is calculated using some ranking function (r), and it is
inserted in a list of results R in order of decreasing doi.

Since, for every tuple t, the algorithm knows exactly
which preferences are satisfied (presSatisfied ∪ absSatis-
fied) and which not (presFailed ∪ absFailed), ranking
may be performed using any function r for positive, nega-
tive or mixed combinations. Then, the algorithm proceeds
in the same way with the execution of absence queries.
For each distinct tuple t returned by a query Ai, the algo-
rithm executes the corresponding parameterized query
Qi

A(t). It records how many and which of the absence
preferences are satisfied, as described above, and inserts
the tuple in R, provided that it satisfies L preferences. In
addition, it keeps a list Nids of all tuple ids returned by
absence queries, so that it may return any tuple of the
initial query Q with id not in this list.
Progressive Algorithm- PPA

Input: number of preferences to satisfy L,
 presence queries S, presence preferences PS,
 parameterized queries {Qi

S(t)| Qi
S(t) corresponds to Si},

 absence queries A, absence preferences PA,
 parameterized queries {Qi

A(t) | Qi
A(t) corresponds to Ai

R={}, MEDI=f({di
+ | i=1…K})

1. Foreach Si ∈ S
1.1 If rest of queries don’t satisfy L prefs Then Exit For End if
1.2 Execute Si
1.3 Foreach t returned by Si not contained in R

Set presSatisfied; Set curl;
Execute Qi

S(t); Update presSatisfied; Update curL
presFailed= PS− presSatisfied
Execute Q1

E(t); Update absFailed;
absSatisfied = PA− absFailed; Update curL
prefsSatisfied = (presSatisfied ∪ absSatisfied)
prefsFailed = (presFailed ∪ absFailed)
If curL >=L then
 TupleDoi = r (prefsSatisfied, prefsFailed)
R�(t, prefsSatisfied, prefsFailed, TupleDoi) End if
While ∃ tuple ∈ R not output, s.t. TupleDoi ≥ MEDI
 Output tuple End While

End For
1.4 Update MEDI

End For
2. Foreach Ai ∈ A
2.1 If rest of queries don’t satisfy L prefs Then Exit For End if
2.2 Execute Ai
2.3 Foreach t returned by Ai

Set absFailed; Execute Qi
A(t); Update absFailed

absSatisfied = PA− absFailed; Update curL
prefsSatisfied = absSatisfied; prefsFailed = absFailed
If curL >=L and t not contained in R then
 TupleDoi = r (prefsSatisfied, prefsFailed)
R�(t, prefsSatisfied, prefsFailed, TupleDoi)
Nids�t
End if
While ∃ tuple ∈ R not output, s.t. TupleDoi ≥ MEDI
 Output tuple End While

End For
2.4 Update MEDI

End For
3. R=R∪{Allids-Nids}
4. Output remaining tuples of R

Figure 6. Progressive personalized answers
The algorithm terminates when the remaining, presence
or absence, queries do not suffice for satisfying L prefer-
ences. At any point, if a tuple t already seen is encoun-
tered, it is ignored. In effect, output of results is possible,
before retrieving the whole set of them. For this purpose,
we maintain a Maximum Estimated Degree of Interest

(MEDI) that any unseen result can achieve. This is ini-
tially equal to the doi in satisfying the entire set of prefer-
ences. In each round, it is reduced to the degree of satisfy-
ing preferences corresponding to presence or absence
queries not yet executed. Any of the ranking formulas
presented may be used for calculating MEDI. The algo-
rithm outputs tuples in R, with degree of interest greater
than or equal to MEDI.

6. Experimental Results

Experiments were conducted using a system imple-

mented on top of Oracle 9i. Our data comes from the
Internet Movies Database [12] with information about
over 340000 films. We conducted several experiments
with various sets of profiles and queries. Due to space
constraints, we discuss results of representative experi-
ments concerning: (a) the efficiency of our algorithms, (b)
the benefits of query personalization, and (c) the appro-
priateness of proposed ranking functions.

6.1. Efficiency of Personalization Algorithms

The parameters affecting execution time of our algo-

rithms are: the number K of top preferences, and the num-
ber L of those that should be satisfied. Figure 7 shows
execution times for: (a) FakeCrit (Preference Selection
Time), (b) SPA, (c) PPA, plus (d) PPA’s first response
time, for varying K positive presence preferences and L =
1. The purpose of considering only positive presence
preferences was to see how efficient SPA and PPA are,
when there are no time-consuming absence queries. We
can see that the preference selection algorithm is very
efficient, thus query personalization time may be consid-
ered equal to the time spent by SPA or PPA. PPA has a
very good initial response time, and its overall execution
time is better than SPA’s.

0

1

2

3

4

5

6

7

8

9

2 10 20 40
Selected Preferences (K)

Ti
m

e
(s

)

Preference Selection Time SPA Execution Time
PPA Execution Time PPA First Response Time

Figure 7. Execution times with K

Figure 8 shows execution times in L, for K=30 positive
presence preferences. Preference selection time is not
shown (it does not depend on L). PPA’s (overall and first
response) times decrease in L increasing. This is due to
the fact that PPA executes queries gradually; so, at any
point, if the remaining queries do not suffice for satisfy-
ing L preferences, it stops. SPA’s time does not depend on
L. In addition, SPA execution time is very high when

there are absence queries. On the contrary, PPA is not
affected by them as long as their number is below L. If
not, its overall execution time gets worse but remains
more efficient than SPA.

0

1

2

3

4

5

6

7

8

9

1 10 20 30

Satisfied Preferences (L)

Ti
m

e
(s

)

SPA Execution Time PPA Execution Time
PPA First Response Time

Figure 8. Execution times with L

We only mention here, since we have presented corre-
sponding experimental results in our earlier work [16],
that the overall overhead involved in supporting personal-
ization is not significant.

6.2. Effectiveness of Personalized Queries

We conducted an empirical evaluation of our approach

with 14 human subjects. 8 of them have a diploma in
computer science (experts). The rest of them are simple
users of computers. First, each user provided her prefer-
ences. Two trials were conducted using a web-based cli-
ent developed for this purpose.

In the first trial, all subjects were given a set of 3 que-
ries plus two additional ones that they would like to ask.
Each user submitted the set of 5 queries twice in arbitrary
order. Queries were executed once without personaliza-
tion and once with personalization. This was also per-
formed arbitrarily. Our intention was to let individuals
judge the results unbiased by what happens to their query.
Each user was asked to electronically evaluate each tuple
returned by providing a score in the range [-10, 10] (tuple
interest), as well as the overall answer to each query. For
the latter a user provided three different scores: (a) an
estimation of the difficulty to find something interesting
(degree of difficulty), anything was found at all, (b) an
estimation of how well the answer covered their need
(coverage), and (c) an overall score of the results in the
range [-10, 10] (answer score). As parameters for person-
alization, we chose K to be the number of preferences in a
user profile, and L=2. We present some of the results, due
to space considerations.

0

1

2

3

4

5

6

7

8

9

Q1 Q2 Q3 Q4 Q5
Queries

A
ve

ra
ge

 A
ns

w
er

 S
co

re

Unchanged Query Personalized Query

Figure 9. Average answer score (experts)

-2

-1

0

1

2

3

4

5

6

7

8

Q1 Q2 Q3 Q4 Q5
Queries

Av
er

ag
e

An
sw

er
 S

co
re

Unchanged Query Personalized Query

Figure 10. Average answer score (novice)

0

1

2

3

4

5

6

7

8

unchanged query personalized query

A
ve

ra
ge

 A
ns

w
er

 S
co

re

experts users

Figure 11. Average answer score per group
Figure 9 and Figure 10 present the average answer

score reported when the query was executed unchanged
and the average score reported when the query was per-
sonalized, for experts and novice, respectively. We see
that personalized answers have higher scores. Figure 11
presents the average answer score per group over queries
unchanged and queries personalized.

0

0.5

1

1.5

2

2.5

Av
er

ag
e

de
gr

ee
 o

f d
iff

ic
ul

ty

non-personalized searches personalized searches

Figure 12. Average degree of difficulty

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
ge

 C
ov

er
ag

e

non-personalized searches personalized searches

Figure 13. Average coverage

0

1

2

3

4

5

6

7

8

9

A
ve

ra
ge

 a
ns

w
er

 s
co

re

non-personalized searches personalized searches

Figure 14. Average answer score

In the second trial, all users were asked to think of a
specific need, e.g., finding a theatre to go or a DVD to
rent. Queries submitted by half of them were not changed,
while queries of the rest were personalized.

Figure 12 shows the average degree of difficulty re-
ported by each group. Figure 13 shows the average cov-
erage reported by each group and Figure 14 shows aver-
age scores. Overall, these experiments have shown that
the benefits of personalized search can be significant in
terms of the effort required by people -novices and ex-
perts alike- to find information.

6.3. Evaluation of Ranking Functions

In the experiments with human subjects (described in

the previous subsection), users were asked to electroni-
cally state their interest in each tuple returned by person-
alized queries. We compared user interest (appropriately
normalized) to the degree of interest returned by the three
positive ranking functions described earlier.

0
0.1

0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1

1 2 3 4 5
Tuples

In
te

re
st

User Dominant Inflationary Reserved

Figure 15. Tuple Interest close to Inflationary

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Tuples

In
te

re
st

User Dominant Inflationary Reserved

Figure 16. Tuple Interest close to Dominant

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Tuples

In
te

re
st

User Dominant Inflationary Reserved

Figure 17. Tuple Interest close to Reserved

Figures 15, 16 and 17 show a user’s interest over the
tuples of a single query. In Figure 15, we observe that
user interest is close to the doi of the inflationary func-
tion. In Figure 16, another user has ranked results of a
different query following a rather dominant approach.
Finally, in Figure 17, user behavior is best reflected by
the reserved approach. Overall, experimental results have

indicated that the three ranking functions discussed here
capture real users ranking philosophy. Therefore, it seems
possible to learn the most appropriate ranking function
per user. This information could be stored as part of the
user’s profile. Further experiments are needed towards
the direction of producing psychological evidence regard-
ing the conditions under different ranking approaches are
followed by users.

7. Conclusions and Future Work

We presented an expressive preference model, effi-

cient query personalization algorithms, ranking functions,
and experimental results showing the efficiency of our
algorithms, and the benefits of query personalization, and
providing insight as to the appropriateness of the ranking
functions. In ongoing work, we are concerned with how
preferences expressed over a higher level model may be
transparently mapped to an underlying database’s
schema, and we investigate how various profiling meth-
ods proposed in the literature may be adapted for (semi-)
automatic construction of user profiles. We are also inter-
ested in combining personal preferences with other as-
pects of a query’s context that call for query customiza-
tion, such as user location, time, device, etc.

8. References

[1] Agrawal, R., Wimmers, E. A Framework for Expressing and
Combining Preferences. In Proc. of ACM SIGMOD, 2000.
[2] André E., Rist, T. From adaptive hypertext to personalized
web companions. Comm. of the ACM, 45(5), 43-46, 2002.
[3] Borzsonyi, S., Kossmann, D., Stocker, K. The Skyline Op-
erator. In Proc. of ICDE, 421–430, 2001.
[4] Bruno, N., Chaudhuri, S., Gravano, L. Top- k Selection Que-
ries over Relational Databases: Mapping Strategies and Per-
formance Evaluation. ACM TODS, 27(2), 153-187, 2002.
[5] Chomicki, J. Preference Formulas in Relational Queries.
ACM TODS, 28(4), 427–466, 2003.
[6] Collins, A., Quillian, M. Retrieval Time from Semantic
Memory. J. of Verbal Learning and Verbal Behaviour, Vol 8,

240-247, 1969
[7] Cuppens, F. Demolombe, R. How to Recognize Interesting
Topics to Provide Cooperative Answers. Information Systems,
14(2), 163-173, 1989.
[8] Fishburn, P. Preference Structures and Their Numerical Rep-
resentations. Theor. Comput. Sci. 217, 359–383, 1999.
[9] Hansson, S. O. Preference Logic. In Handbook of Philoso-
phical Logic, D. Gabbay, Ed. Vol. 8, 2001.
[10] Holland, S., Ester, M., Kießling, W. Preference Mining: A
Novel Approach on Mining User Preferences for Personalized
Applications. PKDD, LNAI 2838, 204–216, 2003.
[11] Ilyas, I., Shah, R. Aref, W., Vitter, J., Elmagarmid, A.
Rank-aware Query Optimization. In Proc. of ACM SIGMOD,
2004.
[12] Internet Movies Database. Available at www.imdb.com
[13] Karypis, G. Evaluation of Item-Based Top-N Recommen-
dation Algorithms. In Proc. of CIKM, 247-254, 2001.
[14] Kießling, W., Köstler, G. Preference SQL-Design, Imple-
mentation, Experiences. In Proc. of VLDB, 2002.
[15] Kießling, W. Foundations of preferences in database sys-
tems. In Proc. of. VLDB, 2002.
[16] Koutrika, G., Ioannidis, Y. Personalization of Queries in
Database Systems. In Proc. of ICDE, 2004.
[17] Gaasterland, T., Godfrey, P. Minker, J. An overview of
Cooperative Query Answering. Journal of Intelligent Informa-
tion systems 1(2), 123-157, 1992.
[18] Liu F., Yu C., Meng W. Personalized Web Search by Map-
ping User Queries to Categories. In Proc. of ACM CIKM, 558-
565, 2002.
[19] Papadias, D., Tao, Y., Fu, G., Seeger:, B. An Optimal and
Progressive Algorithm for Skyline Queries. In Proc. of ACM
SIGMOD, 467–478, 2003.
[20] Pitkow, J., Schutze, H., et al. Personalized Search. Comm.
of the ACM, 45(9), 2002.
[21] Shahabi, C., Banaei-Kashani, F., Chen, Y., McLeod D.
Yoda: An Accurate and Scalable Web-based Recommendation
System. In Proc. of COOPIS., 2001.
[22] Wellman, M.P., Doyle, J. Preferential semantics for goals.
Proc. of the National Conf. on AI, 698–703, 1991.
[23] Zhu, L., Meng W. Learning-Based Top-N Selection Query
Evaluation over Relational Databases. In Proc. of WAIM, 2004.

