
Personalized Queries under a Generalized Preference Model (*) 
 
 

Georgia Koutrika  Yannis Ioannidis 
University of Athens, Hellas 

{koutrika, yannis}@di.uoa.gr 
 
 

Abstract 
 

Query Personalization is the process of dynamically 
enhancing a query with related user preferences stored in 
a user profile with the aim of providing personalized an-
swers. The underlying idea is that different users may find 
different things relevant to a search due to different pref-
erences. Essential ingredients of query personalization 
are: (a) a model for representing and storing preferences 
in user profiles, and (b) algorithms for the generation of 
personalized answers using stored preferences. Modeling 
the plethora of preference types is a challenge. In this 
paper, we present a preference model that combines ex-
pressivity and concision. In addition, we provide efficient 
algorithms for the selection of preferences related to a 
query, and an algorithm for the progressive generation of 
personalized results, which are ranked based on user 
interest. Several classes of ranking functions are provided 
for this purpose. We present results of experiments both 
synthetic and with real users (a) demonstrating the effi-
ciency of our algorithms, (b) showing  the benefits of 
query personalization, and (c) providing insight as to the 
appropriateness of the proposed ranking functions.  
 
1. Introduction 
 

A user accessing an information system with the inten-
tion of satisfying an information need, may have to re-
formulate the query issued several times and sift through 
many results until a satisfactory, if any, answer is ob-
tained. This is a very common experience especially for 
Web searchers, due to information abundance and users’ 
heterogeneity in the Web. A critical observation is that 
“different users may find different things relevant when 
searching” because of different preferences, goals etc. 
[20]. Thus, they may expect different answers to the same 
query. Consider a simple case: two users, Al and Julie, 
access a web-based movies database both searching for 
comedies. Al is a fan of director W. Allen, while Julie is 
not. Most systems would consider only the request issued 
and return to both users the same, exhaustive list of 

comedies. However, storing user preferences in user pro-
files gives a system the opportunity to return more fo-
cused, personalized (and hopefully smaller) answers.  

Query Personalization is the process of dynamically 
enhancing a query with related user preferences stored in 
a user profile with the purpose of providing personalized 
answers. Focusing on the user enables a shift from what is 
called ‘consensus relevancy’ where the computed rele-
vancy for the entire population is presumed relevant for 
each user, toward ‘personal relevancy’ where relevancy is 
computed based on each individual’s characteristics [20]. 
Personalized results for Al would include W. Allen’s 
comedies, while personalized results for Julie would not. 
Which preferences are related to a request and how these 
affect the final answer are dynamically determined based 
on the query, the profile and the personalization logic 
applied.  

Query personalization approaches have recently at-
tracted interest in both IR and Databases research com-
munities [16, 20, 18]. This paper is concerned with query 
personalization in the context of databases. We adopt the 
query personalization framework presented in our earlier 
work [16]. Based on that, given a query and a profile, a 
personalized answer is built by specifying: (a) the number 
K of top preferences from the user profile that should 
affect it, and (b) the number L (L≤K) of those preferences 
that should at least be satisfied. Parameters K and L can 
be specified directly by the user or derived based on vari-
ous criteria on the query context, such as user location, 
time, device, etc. Essential ingredients of query personal-
ization are: (a) a model for storing preferences in user 
profiles, and (b) algorithms for the generation of person-
alized answers. Query personalization has three phases: 
(Preference Selection) Top K preferences are derived 
from the user profile. (Preference Integration) These are 
combined with the query. (Personalized Answer) A per-
sonalized answer is returned satisfying L of the K prefer-
ences. 

Contributions. The main contributions are: 
� Modeling the plethora of preference types is a chal-
lenge. In this paper, we present a preference model that 
combines expressivity and concision. We model a set of 
dimensions along which several preference types may be 
uniformly formulated. The model presented in our previ-
ous work [16] captures only preferences of the kind ‘I like 
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actor W. Allen’. Preferences such as ‘I like films with du-
ration around 2h’, ‘I do not like thrillers’, ‘I like movies 
without violence’ captured by the model described here, 
are not expressed in the model of [16]. We have adopted 
from [16] the notion of implicit preferences, and the for-
mulation of preferences as degrees of interest in query 
elements. 
� This generalized model calls for more sophisticated 
preference selection algorithms than the one described in 
[16]. We provide efficient algorithms for the selection of 
preferences related to a query according to various crite-
ria. The notion of degree of criticality is introduced for 
ordering preferences and selecting the top K. 
� A simple approach for generating personalized an-
swers is to integrate the top K preferences into the query 
issued and construct a new one. This query is, then, exe-
cuted by the underlying database system [16]. We see 
how this simple method may be adopted to the preference 
model described here and discuss its shortcomings. Then, 
we describe an algorithm for the progressive generation 
of personalized results, which are ranked based on the 
user profile. 
� Results may be ranked based on which preferences are 
satisfied or not. Several classes of ranking functions are 
described, the function provided in [16] being an instance 
of one of them. New functions belonging to other classes 
are presented. 
� We present experimental results showing (a) the effi-
ciency of our algorithms, (b) the benefits of personalized 
search, and (c) the appropriateness of the proposed rank-
ing functions. 
 
2. Related Work 
 

Preference is a fundamental notion in applied mathe-
matics [8], philosophy [9], AI [22]. In Databases, prefer-
ences have been used for cooperative query answering, 
i.e., for providing answers with extra or alternative infor-
mation that may be meaningful to the user [17, 7]. Re-
cently, database research has focused on studying prefer-
ences as user criteria at the query level that may be satis-
fied as closely as possible. Two approaches have been 
pursued. In the qualitative approach, preferences between 
tuples in the answer to a query are specified using prefer-
ence relations. Two frameworks have been proposed, in 
which preference relations are defined using logical for-
mulas [5] or special preference constructors [14, 15]. 
Preference relations are embedded into relational query 
languages through a relational operator that selects from 
its input the set of the most preferred tuples (e.g., winnow 
[5], BMO [14, 15]). Skylines [3, 19] are special cases of 
these preference queries. In the quantitative approach, 
preferences in queries are specified using scoring func-
tions that associate a numeric score with every tuple of 
the answer [1]. Several algorithms have been proposed 

for efficiently answering top-K queries, i.e. queries that 
retrieve the best K objects that minimize a specific func-
tion [4, 23, 11].  

The model of [16] associates degrees of interests (like 
scores) with preferences. Yet, there are substantial differ-
ences from the quantitative framework [1]. The latter 
does not capture preferences expressed on relationships 
between entities, e.g., ‘I am very interested in the actors 
of a film’, and implicit preferences. In addition, it uses 
distance functions for tuple ranking; thus top tuples are 
those with the smallest distance from the target values. 
On the other hand, ranking functions [16] estimate the 
overall interest in a tuple with respect to a combination of 
preferences. Top tuples are those with the highest interest 
based on this function. 

The model presented here has the aforementioned fea-
tures of the earlier model, but is of greater expressive 
power. The earlier model represents only preferences of 
the kind ‘I like actor W. Allen’ (exact positive presence 
preference), as opposed to the generalized that captures 
several types, such as ‘I like films with duration around 
2h’ (elastic preference), ‘I do not like thrillers’ (negative 
preference), ‘I like movies without violence’ (regarding 
absence of values).  

Compared to our extended model, the quantitative 
framework [1] does not capture negative preferences and 
preferences for the absence of values. The qualitative 
frameworks [5, 15] do not capture preferences expressed 
on relationships between entities and implicit preferences. 
Besides, [15] defines specific preference constructors, 
thus not considering the possibility of having arbitrary 
constraints in preferences as we and [5] do. [5] does not 
express negative preferences and preferences for the ab-
sence of values. Furthermore, preference relations pro-
vide an abstract, generic way to talk about priority, and 
importance. Thus, [5, 15] cannot capture different degrees 
of interest, such as ‘I like comedies very much’, ‘I like 
dramas a little’, and preference queries return most pre-
ferred tuples without distinguishing how better is one 
tuple compared to another. We capture such variations in 
priority and importance by associating preferences with 
degrees of interest. Query results are also ranked based on 
their degree of interest. Then, an application may use 
qualitative descriptors for preferences and desired results 
defined in terms of intervals of degrees of interest. E.g., a 
‘best’ descriptor could map to degrees between 0.9 and 1; 
then a user could ask for ‘best’ answers. We do not, yet, 
support skylines, and relative preferences [5]. 

All the above database approaches deal with the ex-
pression of preferences in queries. We focus on the repre-
sentation of preferences in user profiles and query per-
sonalization algorithms. Although personalization is a 
very broad research area, and there are different ap-
proaches from information filtering and recommender 
systems [21, 13] to intelligent agents [2], query personal-



ization approaches in IR [20, 18] and databases [16] are 
just emerging. Cooperative query answering approaches 
put the user into perspective as well [17, 7]. These, how-
ever, have focused on providing answers that are mean-
ingful to a human being thus containing extra or alterna-
tive information. Query personalization focuses on pro-
viding focused, smaller answers. 

Capturing different types of user preferences in pro-
files is a challenge. Existing work has primarily focused 
on the population of simple, keyword profiles for IR sys-
tems. Constructing profiles of richer preference types as 
the ones described here has recently attracted interest in 
the database community [10]. 

 
3. Preference Model 
 

Consider a movies database described by the schema 
below; primary keys are underlined. 

THEATRE(tid, name, phone, region, ticket)

PLAY(tid, mid, date), GENRE(mid, genre)

MOVIE(mid, title, year, duration)

CAST(mid, aid, award, role)

ACTOR(aid, name)

DIRECTED(mid, did), DIRECTOR(did, name)

Preferences may be expressed for values of attributes, 
and for relationships between entities. Preferences for 
values are quite involved, as the following example 
shows. Preferences for relationships indicate to what de-
gree, if any, entities related are influenced by each other 
(in particular by preferences on each other).  

Example 1. Al’s preferences include the following. 
(P1) He likes director W. Allen a lot.  
(P2) He prefers ticket prices around 6 Euros.  
(P3) He does not like movies released before 1980.  
(P4) He likes only movies of duration around 2h.  
(P5) He is happy if the movie is not musical.  
(P6) He would rather not go to non-downtown theatres.  
(P7) He is extremely interested in the director of a movie.  
(P8) He is very interested in the movie genre.  
(P9) He cares less about what theatres show a movie.  
(P10) He is very concerned with the movies of a theatre.  

Our approach to personalization is based on maintain-
ing, for every user, a user profile whose structure is re-
lated to the features of the data and query models. With-
out loss of generality, we focus on SPJ (Select-Project-
Join) queries over relational databases. Nevertheless, our 
approach is applicable to any graph model representing 
information at the level of entities and relationships. User 
preferences may be articulated over a higher level graph 
model representing the data other than the database 
schema. This is a useful abstraction for using a profile 
over multiple databases with similar information but pos-
sibly different schemas, and for hiding schema restructur-
ing. In ongoing work, we see how preferences expressed 
over a higher level model may be transparently mapped to 
the database schema.  

3.1. Stored Atomic Preferences 
 
For an attribute R.A of a relational table R, let DA be its 

domain of values. Given our focus on query personaliza-
tion, we store preferences at the level of atomic query 
elements, which are therefore called atomic preferences. 
Preferences for values of attributes are stored as atomic 
selections (atomic selection preferences), and preferences 
for relationships are stored as atomic joins (atomic join 
preferences). 

Atomic Selection Preferences. For any atomic selec-
tion condition q on attribute R.A, a user’s preference for 
values satisfying (or not) q is expressed by the degree of 
interest in q, denoted by doi(q), defined as follows: 

doi(q) = ( dT(u), dF(u) ) 
where ∀ u∈ DA satisfying q,  
dT(u), dF(u) ∈ [-1, 1] and dT(u)*dF(u) ≤ 0.  
(For simplicity, we may often omit parameter u from 

the doi’s). The last condition should hold for normal us-
ers, based on psychological evidence [6]. This model is 
quite general and can express several preference types. 
These are described below, as each part of the above defi-
nition is analyzed, by distinguishing three relevant dimen-
sions of preferences: valence, concern, elasticity. 

Valence. Preferences may be positive (expressing lik-
ing), negative (expressing dislike) or indifferent (express-
ing don’t care). Valence is captured by the different val-
ues of the degrees of interest dT(u), and dF(u): a positive 
degree indicates increasingly higher interest; a negative 
degree indicates increasing dislike; a degree equal to 0 
indicates indifference. Preferences with dT(u) = dF(u) = 0, 
are not stored in the profile. 

Concern. Preferences may be presence (concerning the 
presence of values) or absence (concerning the absence of 
values). A user’s concern is captured by the pair ( dT(u), 
dF(u) ). As defined, dT(u) captures a user's concern for the 
presence of values u of R.A (or any other path of the 
schema leading to R.A) that make q evaluate to true. dF(u) 
captures a user's concern for the absence of the same val-
ues, i.e. for q evaluating to false. dT(u) is not derivable 
from dF(u), and vice versa. Strong interest in a value 
could be combined with indifference or with strong nega-
tive interest in its absence. 

Elasticity. Preferences may be exact or elastic depend-
ing on whether the domain DA is categorical or numeric. 
Given the mutual independence of categorical values, 
preferences for these are considered exact and are either 
satisfied exactly or not at all. On the other hand, prefer-
ences for numeric values may be smoothly continuous 
over their domain and may be satisfied approximately, 
and thus are considered elastic. Elasticity is captured by 
the form of the functions dT(u), and dF(u). Constant doi 
functions are used for exact preferences. There are many 
possible functions for the representation of elastic prefer-
ences. Figure 1 shows possible forms of those. Various 



parameters are required for the detailed description of an 
elastic doi function, such as the interval of values for 
which the function is non-zero. For simplicity, we will 
use e(d) to denote an elastic function avoiding a detailed 
representation of it. The subscript denotes the maximum 
(minimum) degree this function returns, depending on its 
form, (see Figure 1). We have experimented with func-
tions of the form of Figure 1(a). Using a set of elastic doi 
functions, a system may support fuzzy operators, such as 
‘around’, for expressing elastic preferences by users. 
e(d)
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d
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0

1
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Figure 1. Forms of elastic doi functions 

Using these dimensions, all (3*2*2) combinations of 
the above preference types are valid for formulating pref-
erences. The model in our earlier work captured only one 
type: exact positive presence preferences. 

Example 1 (cont’d). We draw examples from Al’s 
preferences. Regarding valence, P1 is an instance of a 
positive preference, and P3 is an instance of a negative 
one. Regarding concern, one may be concerned for the 
presence (absence) of a value, while being indifferent for 
the opposite case. These are simple preferences. E.g., Al 
has a positive interest in the presence of W. Allen but he 
does not care if W. Allen has not directed a film. Conse-
quently, P1 is a simple positive presence preference. On 
the other hand, he prefers downtown theatres and he is 
against the idea of a theatre not being there. P6 combines 
positive presence and negative absence preference as one; 
it is a complex preference. Regarding elasticity, P1, and 
P3 are instances of exact preferences. However, Al’s 
preference for movies with duration around 2 hours (P4) 
is elastic, as movies of 122 or 115 minutes are close 
matches probably of similar interest to him.  

Atomic Join Preferences. Join preferences are sim-
pler as they do not lend themselves to any of the varia-
tions mentioned above. A user’s preference for a join 
condition q is expressed by the degree of interest in q, 
doi(q), defined as follows: 

doi(q) = ( d ), where d ∈ [0, 1].  
Degree 0 indicates lack of any interest in the join con-

dition, while degree 1 indicates extreme (‘must-have’) 
interest. In addition, join preferences are directed. E.g. 
movies and theatres are related but Al thinks that theatres 
depend on movies (P10) much more than the other way 
around (P9). Therefore, a join preference expresses the 
dependence of the left part of the join on the right part. In 
other words, the left part indicates the relation already 
included in a query and the right corresponds to the rela-
tion that may be included influencing the final result, if 

the join is considered.  
A user’s preferences over the contents of a database 

can be expressed on top of a personalization graph [16]. 
This is a directed graph G(V, E) (V: the set of nodes; E: 
the set of edges) and it is an extension of the database 
schema graph. Nodes in V are (a) relation nodes, one for 
each relation in the schema, (b) attribute nodes, one for 
each attribute of each relation in the schema, and (c) 
value nodes, one for each value that is of any interest to 
this user. Edges in E are (a) selection edges, from an at-
tribute node to a value node representing a potential se-
lection condition, and (b) join edges, from an attribute 
node to another attribute node representing a potential 
join condition between these attributes. As explained ear-
lier, two attribute nodes may be connected through two 
different join edges, in the two possible directions. Given 
the 1-1 mapping between edges in the graph and atomic 
preferences, degrees of interest are placed as labels on the 
edges. Figure 2 shows how Al’s profile may look like. 
Part of the personalization graph corresponding to Al’s 
profile is illustrated in Figure 3. 

(P1) doi(DIRECTOR.name=‘W. Allen’) = (0.8, 0)

(P2) doi(THEATRE.ticket=‘6Euros’) = (e(0.5), 0)

(P3) doi(MOVIE.year<1980) = (-0.7, 0)

(P4) doi(MOVIE.duration=‘2h’) = (e(0.7),e(-0.5))

(P5) doi(GENRE.genre=‘musical’) = (-0.9, 0.7)

(P6) doi(THEATRE.region=‘downtown’)=(0.7, -0.5)

(P7) doi(MOVIE.mid=DIRECTED.mid) = (1)

doi(DIRECTED.did=DIRECTOR.did) = (0.9)

(P8) doi(MOVIE.mid=GENRE.mid) = (0.8)

(P9) doi(MOVIE.mid=PLAY.mid) = (0.7)

doi(PLAY.tid=THEATRE.tid) = (1)

(P10) doi(THEATRE.tid=PLAY.tid) = (1)

doi(PLAY.mid=MOVIE.mid) = (1)

Figure 2. Al’s profile  
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Figure 3. Part of person. graph for Al’s profile  
 

3.2. Implicit Preferences 
 
By composing atomic user preferences that are adja-

cent in the personalization graph (composable), one is 
able to build implicit preferences, i.e., preferences ex-
pressed through relationships. Given the 1-1 mapping 
between edges in the personalization graph and atomic 
preferences, an implicit user preference is mapped to a 
directed path. An implicit join preference is mapped to a 



path between two attribute nodes comprising composable 
join edges, and represents the “implicit” join condition 
between these attributes. An implicit selection preference 
is mapped to a path from an attribute node to a value node 
comprising join edges and a selection edge that are com-
posable, and represents the “implicit” selection condition 
connecting the corresponding attribute and value. An im-
plicit query element is the conjunction of the constituent 
atomic ones, and the degree of interest in it is a function 
of the degrees of interest in the participating atomic pref-
erences. In principle, one may imagine several functions. 
All of them should satisfy the condition that the absolute 
doi in an implicit preference decreases as the length of the 
corresponding directed path increases, capturing human 
intuition and cognitive evidence [6]. We have chosen 
multiplication as this function. 

Example 2. Preferences P1 and P7 from Al’s profile 
are composed into the following implicit preference for 
movies directed by W. Allen. 

doi( MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’) = ( 0.72, 0 ) 

Any directed path in the personalization graph could 
map to an implicit preference. However, based on human 
intuition and cognitive evidence [6], we deal with acyclic 
paths only. As a matter of notation, we use < q, doi(q) > 
to denote an atomic or implicit preference P.  

 
3.3. Combinations of Preferences 

 
Satisfaction of a selection preference < q, doi(q) > is 

equivalent to satisfaction of q if dT ≥ 0 or failure of q if   
dF ≥ 0. Failure of a preference is the exact opposite. Thus, 
the doi in the satisfaction of a preference is 
d+(u)=max(dT(u), dF(u)). The doi in the failure is 
d−(u)=min(dT(u), dF(u)). 

Example 3. Consider Al’s preferences P1 and P5. P1 is 
satisfied by tuples that satisfy the corresponding condi-
tion, e.g. movies directed by W. Allen. P5 is satisfied by 
tuples that do not satisfy the corresponding condition, e.g. 
theatres not playing musicals. 

The overall doi in a combination of preferences is cal-
culated using a ranking function. We distinguish the fol-
lowing cases: (a) all preferences are satisfied (positive 
combination), (b) none of the preferences is satisfied 
(negative combination), and (c) some preferences are sat-
isfied and others not (mixed combination). 

Positive Combinations. Consider a set P+ of N+ pref-
erences and the set D+ of the corresponding satisfaction 
(non-negative) doi's: 

D+ ={di
+ | di

+: doi in Pi ∈ P+, i = 1… N+} 
The doi in a positive combination should be a function 

of the degrees di
+. In principle, one may imagine several 

functions. A parameter that appears pivotal in this issue is 

max(D+). Around it, one may see three different philoso-
phies: inflationary, dominant, and reserved. 

Inflationary. The degree of interest in multiple prefer-
ences satisfied together increases with the number of 
these preferences, i.e., r+(D+) ≥ max(D+), expressing a 
philosophy of ‘the more preferences satisfied the better’. 
The following function proposed in [16] belongs here:  

∏
=

++
−−=

N

i
ir

1
1 )d1(1

 
(1) 

Dominant. The degree of interest in multiple prefer-
ences satisfied together is equal to the doi of the most 
interesting of these preferences, i.e. r +

 (D+) = max(D+) 
This function captures a ‘winner-takes-all’ philosophy, 

thus it does not depend on the number of preferences. In 
other words, an answer is as good as its best feature.  

Reserved. The degree of interest in multiple prefer-
ences satisfied together is between the highest and the 
lowest degrees of interest among the original preferences, 
i.e., min(D+) ≤ r +

 (D+) ≤ max(D+). The underlying princi-
ple is that the doi in satisfying multiple preferences 
should primarily depend on the importance of them. The 
following function belongs to this category: 
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(2) 

The appropriateness of a ranking function is judged 
only by the philosophy of the approach taken towards 
personalization and, more importantly, by how closely it 
reflects human behavior. We have experimented with the 
above functions, and we will discuss results that provide 
insight as to the appropriateness and intuitiveness of each 
one of them. 

Negative Combinations. A similar issue arises with 
respect to the doi in multiple preferences not satisfied, 
i.e., dealing with multiple non-positive doi's in a set D

−
. 

This case is symmetric with the previous one and may be 
treated in a similar fashion. The pivotal parameter is 
min(D

−
) and one may define inflationary, dominant, and 

reserved ranking functions. The counterparts of r1
+ and 

r2
+ above, are exactly the same, only with an exchange of 

the ‘+’ and ‘−’ sign everywhere. 
Mixed Combinations. The doi in a combination of 

positive (D+) and negative (D
−
) degrees is a function of 

the degrees of interest in the two sets satisfying the fol-
lowings conditions: 

r − (D
−
 ) ≤ r (D+, D

− ) ≤  r +(D+) (3) 
r (d, _ d) = 0 (4) 

Examples of such functions are the following: 
−+

+= rrr1  (5) 
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We have experimented with these formulas as well. 
Formula (6) seems more appropriate, as it captures the 



intuition that the overall degree of interest should be af-
fected not only by the doi’s in its positive and negative 
parts, but also by the number of preferences contributing 
to each one of them.  

Personalized answers may be ranked with the use of a 
ranking function. 

 
3.4. Preference Order 

 
Ordering preferences based on their importance is es-

sential for selecting which ones should be satisfied. Such 
ordering should take into account both doi’s d+ and d−. 
Intuitively, the most important or critical preference is the 
one with the highest d 

+, and the lowest d 
−. Accordingly, 

the degree of criticality c of an atomic or implicit prefer-
ence is defined as follows 

c = d0
+ + d0 

− (7) 
c ∈ [0, 2] and d0

+ = max(d 
+(u)), d0

− = |min(d 
− (u))|. 

Example 4. Al’s preferences P1, P4 and P5 are ordered 
in decreasing criticality as follows:  

P5 (c5=1.6), P4 (c4=1.2), P1 (c1=0.8). 
Criticality can be extended to join preferences by as-

suming the degree of interest in their failure as being 
equal to 0. As a result, the property of decreasing degree 
of interest of a join as the length of the corresponding 
path increases transfers over to the degree of criticality as 
well. Unfortunately, the same does not hold for implicit 
selections: the degree of criticality of implicit selection 
preference cS may be greater than the degree of criticality 
of any constituent join preference cJ, since cS is the sum 
of two positive doi’s. The following bound is derived by 
applying simple mathematics (not described here due to 
space constraints). 

cS ≤ 2cJ (8) 
 

4. Preference Selection 
 

The first step of the query personalization process 
deals with for the extraction of the top (most critical) K 
preferences related to a query. A preference may be re-
lated at a syntactic or semantic level. Our system cur-
rently supports the former level. A preference is syntacti-
cally related to a query, if it maps to a path attached to a 
relation included in the query. For example, an implicit 
preference related to a query about movies is:  

MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’

Parameter K is specified with the use of some crite-
rion. We distinguish two possibilities: (a) the criterion is 
based on the degree of criticality of preferences, e.g. it 
may specify that the top 5 preferences, or preferences 
with a degree of criticality above a threshold c0, should be 
selected, or (b) the criterion is based on the desired doi in 
results, e.g. it may designate results of doi > 0.8. 
 

4.1. Selection Based on Preference Criticality  
 

Problem Formulation. Given a query Q and the per-
sonalization graph GP corresponding to a user profile, we 
consider the set PN of all paths Pi in GP that are related to 
Q in decreasing order of criticality ci, i.e.,  

PN = {Pi | i∈ [1, N],   ci-1 ≥ ci  } 
The set of preferences that may affect the query, based 

on some criterion C(.) on the degrees of criticality, is the 
ordered subset PK = {Pi| i∈ [1, K],  ci-1 ≥ ci } of PN such 
that: K=max ({ t| t∈ [1, N]: C(Pt) holds }). 

Algorithms. A preference selection algorithm should 
gradually construct directed paths attached to query rela-
tions on the personalization graph GP in decreasing order 
of criticality. Consider the personalization graph depicted 
in Figure 4. For simplicity, attributes and values involved 
in joins and selections are omitted. Each edge is labeled 
with the degree of criticality of the corresponding atomic 
preference. The property of decreasing degree of interest 
of a join as the length of the corresponding path increases 
gives the possibility of a best-first traversal of the person-
alization graph: AB being more critical than AE guaran-
tees that ABD is more critical than AEF as well. Unfortu-
nately, monotonicity is lost for the degree of criticality of 
implicit selection preferences. Indeed, ABDs1 is not more 
critical than AEFs2. Hence, a best-first traversal of the 
graph does not guarantee that implicit selections are gen-
erated in the proper order. For this reason, when an im-
plicit selection preference is encountered, it is output pro-
vided that it is more important than the most critical se-
lection preference unseen (mcsu). Based on Formula (8), 
the latter comprises the most critical join currently known 
followed by an atomic selection with the greatest degree 
of criticality, which equals to 2. Thus, an implicit selec-
tion preference may be safely output only if it has a de-
gree of criticality at least equal to the degree of criticality 
of the most critical known join multiplied by two. Other-
wise, the algorithm expands that join in order to examine 
longer paths. This algorithm is called SPS (Simple Prefer-
ence Selection). 
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Figure 4. Example on the degree of criticality 
Assuming that the most critical known join is followed 

by an atomic selection with a degree of criticality equal to 
2 gives a worst-case estimate for mcsu. What the algo-
rithm needs would be the real degree of criticality of the 
most critical selection preference following that join. For 
this purpose, a pre-processing step would be necessary: 
for each join edge, all subsequent paths should be visited 
in order to find the maximum degree of criticality among 
them. Then, this degree could be tagged on that join edge. 
However, neither this pre-processing step nor, mainte-



nance of that extra information is cheap. If the degree of 
criticality of some edge changes, or a new edge is added, 
then all join edges that expand to paths including this 
edge must be updated. A compromise between using a 
worst-case estimate and storing the real degree is the idea 
of keeping a fake criticality fc, as follows: 

For every selection edge, fc is set to 1. For every join 
edge, fc is set to the maximum degree of criticality of all 
edges following this one. If one of those is a join, its de-
gree of criticality is multiplied by 2. 

Both creation and maintenance of fake criticalities are 
cheap. Then, a preference selection algorithm may treat 
each path with a degree of criticality c and a fake critical-
ity fc, as if it were an implicit selection preference with 
criticality equal to c∗fc (instead of c). As a result, a best-
first traversal of the personalization graph GP based on 
the product c∗fc is now possible. Whenever a selection 
preference is constructed, it is immediately output. The 
algorithm, called FakeCrit, is presented in Figure 5. Ex-
periments not presented in this paper for space con-
straints, have shown that it is more efficient than the sim-
ple SPS algorithm. 

Preference Selection Algorithm-FakeCrit 
Input: User profile U, user query Q, criterion C 
Output:  Set of preferences PK 

PK ={}, QP={}, K_Selected=false 
1. Foreach atomic preference ACi∈U related to Q 

1.1  If (ACi does not conflict with Q) Then QP � ACi    End if 
End for 

2. While (QP not empty) and (K_Selected=false)  
2.1 Get head P from QP 
2.2  If (P is selection) Then   

K_Selected=C(PK ∪ {P})
If (K_Selected= false) then PK �P  End if 

End if 
2.3  If (P is join) Then   

K_Selected=C(PK ∪ {P})  
If (K_Selected= false) then 
Foreach atomic element ACi∈U composable with P 

If ((c0>0) and (fcPA*cPA ≤ c0) Then   exit For   End if 
If (ACi does not join to relation R∈P or R∈Q) then 
QP�P ∧ ACi   End if 

End for 
End if 
End if 

End while 

Figure 5. FakeCrit Preference Selection  
A queue QP of preferences is kept in order of decreas-

ing c∗fc. Initially, it contains atomic preferences related to 
the query. In each round, the algorithm picks from QP the 
head P. If P is a selection satisfying the criterion C(PK ∪ 
{P}), then it is output. If P is a join satisfying the crite-
rion C(PK ∪ {P}), then, it is expanded into longer paths 
which are added into QP. A new path P ∧ ACi is gener-
ated for each atomic preference ACi that is composable 
with P. These atomic preferences are considered in order 
of decreasing c*fc. A new path is not inserted in QP: (a) 
if it expands to a relation included into P or Q, because a 

cycle is generated; (b) if the product of its degree of criti-
cality and its fake degree of criticality (cPA*fcPA) is < c0, 
provided that criterion C specifies that top K preferences 
must have a degree of criticality greater than c0 > 0. 

 
4.2. Selection Based on the Interest of Results  

 
Selection of the top K preferences may be guided by a 

criterion on the desired doi in results. This criterion could 
be formulated with the use of a ranking formula, such as 
(1) or (2), calculating the doi in positive combinations. 
Compared to the previous case, this one presents certain 
particularities that need to be considered by a preference 
selection algorithm.  

Example 5. Consider the following preferences.  
(P1) doi(MOVIE.mid=GENRE.mid) = (1, 0 )

(P2) doi(GENRE.genre=‘musical’ = (-0.7, 0 )

(P3) doi(GENRE.genre=‘adventure’) = (0.9, 0 )

Assume we are interested in movies with a doi higher 
than 0.8. The preference selection algorithm could select 
only P3, since movies satisfying only this preference are 
interesting based on the criterion above. In practice, the 
personalized query executed will return movies that pos-
sibly satisfy some of the preferences ignored and do no 
satisfy some others. Using a ranking function for mixed 
combinations, we see that results not satisfying prefer-
ences with negative doi have a decreased doi than ex-
pected. For example, we see that movies satisfying P3 but 
not P2 are not desired, due to the negative doi of P2; these 
should not appear in the answer. Consequently, whenever 
interested in personalized results with a minimum doi, 
negative preferences must be taken into consideration. 

Problem Formulation. Given a query Q and the per-
sonalization graph GP corresponding to a user profile, we 
consider again the set PN of all paths Pi in GP that are re-
lated to Q in decreasing order of their degree of criticality 
ci, i.e., PN = {Pi | i∈ [1, N],   ci-1 ≥ ci  } 

The set of preferences that must be satisfied so that tu-
ples returned will have a minimum degree of interest 
equal to dR, despite the fact that they may not satisfy pref-
erences not selected, is the ordered subset 
 PK = {Pi| i∈ [1, K], ci-1 ≥ ci } of PN such that: 

K=min({t| t∈ [1, N]: r (d1
+, … dt

+, dt+1
−, … dN

− ) ≥ dR}) 
(r is a ranking function for mixed combinations). 
Algorithm. An exhaustive algorithm would enumerate 

all paths in the ordered PN and repeat this calculation  
r(d1

+, d2
+, … dt

+, dt+1
−, … dN

−) ∀t = 1…N (9) 
until it returns a doi greater than or equal to dR.  
A more efficient algorithm is built by appropriately ex-

tending FakeCrit. As before, a queue QP of candidate 
preferences is kept in order of decreasing c∗fc. Initially, it 
contains all atomic preferences related to the query. In 
each round, the algorithm picks from QP the head P. In 
round t, t preferences have been selected. The problem is 



how to compute Formula (9), without visiting the remain-
ing N-t paths. Recall that the absolute doi in an implicit 
preference decreases as the length of the corresponding 
directed path increases. Then, the absolute doi di

− of any 
negative preference unseen can be at most equal to dworst: 

di
− ≤ dworst ∀Pi,  i = t+1, … N 

where dworst can be computed by considering the doi’s 
of all preferences known, i.e., currently in QP, as follows: 

dworst = max({di
−  | Pi ∈QP and Pi is selection} ∪ 

{dj | dj=the doi in Pj ∈QP and Pj is join }) 
where, di

− = |min(di
− (u))| of a preference Pi.  

By considering the worst case scenario, i.e. 
di

−  = dworst ∀Pi,  i = t+1, … N,  
Formula (9) is written  

r(d1
+, d2

+, … dt
+, − dworst, … − dworst) (10) 

where − dworst is repeated N− t times.  
At each iteration, the algorithm caches the doi in re-

sults satisfying t preferences given by r(d1
+, d2

+, … dt
+) in 

order to re-use it in the next round. The problem is that 
without exhaustive enumeration of PN, N is unknown. We 
may assume that N is equal to the number of preferences 
stored in the profile. Whether this estimate is close to the 
real value of N depends on the structure of the personal-
ization graph. If its real value is much smaller, then For-
mula (10) assumes that there are more preferences to be 
examined than in reality. This may possibly result in enu-
merating all paths in PN, which may be acceptable. Alter-
natively, for each join edge the number of paths that this 
edge expands to could be kept. This number may not be 
updated every time an edge is inserted or deleted from the 
graph. We have found that the selection algorithm can be 
effective relying only on periodic updates of this number. 

5. Generation of Personalized Answers 
 
Top K preferences are integrated into the user query 

and a personalized answer is generated. This should be:  
(a) Interesting to the user. For this purpose, it should 

satisfy (at least) L from the top K preferences. 
(b) Ranked based on the doi in the tuples returned.  
(c) Self-explanatory. For each tuple returned, the pref-

erences satisfied and/or not should be provided in order to 
justify its selection and ranking.  

We describe two approaches for the generation of per-
sonalized answers. Elastic preferences are translated into 
appropriate range conditions using a set of rules before 
they can be inserted into a query. This is not discussed 
here any further, due to space limitations. 

Simply Personalized Answers (SPA). One approach 
is to integrate the top K preferences into the initial query 
and build a new one, which is executed. We formulate the 
personalized query as the union of a set of sub-queries, 
each one mapping to one or more of the K preferences 
selected. Each sub-query is built by extending the initial 

query by an appropriate qualification involving the par-
ticipating preferences. It also returns the positive degree 
of interest of the corresponding preference. If it contains 
an elastic preference, then the corresponding elastic func-
tion provides the doi in each tuple. This approach is 
adapted from [16], so that it can handle elastic and ab-
sence preferences, not captured in our previous work. We 
will give a representative example, without going into 
technical details. 

Example 6. Suppose Al submitted this simple query 
select title from movies

Assume that the following preferences have been se-
lected, from which L=2 should be satisfied.  

(P1) MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’ (presence)

(P2) MOVIE.year<1980 (absence 1-1)

(P3) MOVIE.mid=GENRE.mid and
GENRE.genre=‘musical’

(absence 1-n)

The kind of sub-query depends on the preference type. 
A preference to be satisfied may be presence or ab-

sence preference. Moreover, we distinguish between 1−1 
and 1−n absence preferences. The following sub-queries 
are built for each preference type. 

(Presence preferences) 
Q1: select title, 0.72 degree

from MOVIE M, DIRECTED D, DIRECTOR DI
 where M.mid=D.mid and D.did=DI.did and

DI.name=‘W. Allen’

(1−1 absence preferences) They are mapped to sub-
queries in the same way as presence ones. The only dif-
ference is the change of the condition’s operator. 

Q2: select title, 0 degree
from MOVIE M

 where M.year>=1980

(1−n absence preferences) 
Q3: select title, 0.7 degree

from MOVIE M
 where M.mid not in (select M.mid

from MOVIES M, GENRE G
where M.mid=G.mid and
G.genre=‘musical’)

The expected results are obtained by taking the union 
of the partial results of the sub-queries, grouping by the 
projected attributes of the initial query, and excluding all 
groups with less than L rows. Results are ranked based on 
the combination of preferences satisfied.  
select title,r(degree)
from Q1 Union All Q2 Union All Q3 Union All
group by title
having count(*) >= 2
order by r(degree)

where r is a ranking function (implemented as a user-
defined aggregate function), and each sub-query is re-
placed by Qi for presentation purposes. 

Although this approach is simple, it has certain disad-
vantages. It does not generate self-explanatory results. It 
cannot rank results based both on preferences from the K 
selected are satisfied and which are not. It may become 



very inefficient when there are 1−n absence preferences. 
It does not allow for a progressive retrieval of tuples. Tu-
ples are returned only after they have all been retrieved, 
merged, grouped and ordered. 

Progressive Personalized Answers (PPA). This algo-
rithm generates self-explanatory, ranked, personalized 
answers. It outputs results in a progressive fashion, and it 
handles 1−n absence preferences more efficiently.  

Queries corresponding to presence and 1−1 absence 
preferences are constructed in the same way as the previ-
ous example showed. For convenience, let’s call them 
presence queries. Let PS be the set of presence and 1−1 
absence preferences, and S the set of the corresponding 
queries in order of increasing selectivity. We use simple 
histograms to obtain this information. Queries corre-
sponding to 1−n absence preferences, called absence que-
ries, are now formulated as if they corresponded to pres-
ence preferences. Let PA be the set of 1−n absence prefer-
ences, and A the set of the absence queries in order of 
increasing selectivity. The difference between presence 
and absence queries is that a tuple returned by the former 
satisfies the corresponding preference, whereas a tuple 
returned by the latter does not satisfy the corresponding 
preference. Each of these queries returns a tuple id, the 
table attribute and the value of the participating prefer-
ence, and a doi. Presence queries return a positive doi, 
while absence preferences return a negative doi. 

For each Si ∈ S, we build a parameterized query Qi
S(t) 

that is the union of all Sk following Si in S. Likewise, for 
each Ai ∈ A, we build a parameterized query Qi

A(t) that is 
the union of all Ak following Ai in A. In both cases, pa-
rameter t is a tuple id. The algorithm PPA is presented in 
Figure 6. It starts by executing presence queries. For each 
distinct tuple t returned by a query Si, the algorithm exe-
cutes the corresponding parameterized query Qi

S(t). This 
query returns zero or more occurrences of t, depending on 
the number of preferences that are contained in this 
query, and are satisfied by t. The algorithm records how 
many (curL) and which of these preferences are satisfied 
(presSatisfied). Then, it records which preferences were 
not satisfied (presFailed) by considering the difference of 
the set of satisfied preferences from the set PS. It also 
executes the parameterized query Q1

A(t), in order to make 
the same with the absence preferences. However, this 
query returns zero or more occurrences of t, depending on 
the number of preferences contained in this query that are 
not satisfied by t. Then, the algorithm finds how many 
and which of the absence preferences are satisfied 
(absSatisfied) by taking the difference of the set of not 
satisfied absence preferences (absFailed) from the set of 
all absence preferences PA. If the tuple t satisfies (at least) 
L preferences (curL ≥ L), then its overall doi (TupleDoi) 
is calculated using some ranking function (r), and it is 
inserted in a list of results R in order of decreasing doi. 

Since, for every tuple t, the algorithm knows exactly 
which preferences are satisfied (presSatisfied ∪ absSatis-
fied) and which not (presFailed ∪ absFailed), ranking 
may be performed using any function r for positive, nega-
tive or mixed combinations. Then, the algorithm proceeds 
in the same way with the execution of absence queries. 
For each distinct tuple t returned by a query Ai, the algo-
rithm executes the corresponding parameterized query 
Qi

A(t). It records how many and which of the absence 
preferences are satisfied, as described above, and inserts 
the tuple in R, provided that it satisfies L preferences. In 
addition, it keeps a list Nids of all tuple ids returned by 
absence queries, so that it may return any tuple of the 
initial query Q with id not in this list.  
Progressive Algorithm- PPA 

Input:  number of preferences to satisfy L,  
            presence queries S, presence preferences PS,  
            parameterized queries {Qi

S(t)| Qi
S(t) corresponds to Si},    

            absence queries A, absence preferences PA,  
            parameterized queries {Qi

A(t) | Qi
A(t) corresponds to Ai  

R={}, MEDI=f({di
+ | i=1…K}) 

1. Foreach Si ∈ S 
1.1 If rest of queries don’t satisfy L prefs  Then Exit For    End if 
1.2 Execute Si 
1.3 Foreach t returned by Si not contained in R 

Set  presSatisfied; Set  curl;  
Execute Qi

S(t); Update presSatisfied; Update  curL 
presFailed= PS− presSatisfied 
Execute Q1

E(t); Update absFailed;  
absSatisfied = PA− absFailed;  Update  curL 
prefsSatisfied = (presSatisfied ∪ absSatisfied) 
prefsFailed = (presFailed ∪ absFailed) 
If curL >=L then 
 TupleDoi = r (prefsSatisfied, prefsFailed) 
R�(t, prefsSatisfied, prefsFailed, TupleDoi) End if 
While ∃ tuple ∈ R not output, s.t. TupleDoi ≥ MEDI  
 Output tuple  End While 

End For 
1.4 Update  MEDI 

End For 
2. Foreach Ai ∈ A 
2.1 If rest of queries don’t satisfy L prefs  Then Exit For    End if 
2.2 Execute Ai 
2.3 Foreach t returned by Ai  

Set absFailed; Execute Qi
A(t);  Update absFailed 

absSatisfied = PA− absFailed;   Update curL 
prefsSatisfied = absSatisfied; prefsFailed = absFailed 
If curL >=L and t not contained in R then 
 TupleDoi = r (prefsSatisfied, prefsFailed) 
R�(t, prefsSatisfied, prefsFailed, TupleDoi)  
Nids�t  
End if 
While ∃ tuple ∈ R not output, s.t. TupleDoi ≥ MEDI  
 Output tuple  End While 

End For 
2.4 Update  MEDI 

End For 
3. R=R∪{Allids-Nids} 
4. Output remaining tuples of R 

Figure 6. Progressive personalized answers 
The algorithm terminates when the remaining, presence 
or absence, queries do not suffice for satisfying L prefer-
ences. At any point, if a tuple t already seen is encoun-
tered, it is ignored. In effect, output of results is possible, 
before retrieving the whole set of them. For this purpose, 
we maintain a Maximum Estimated Degree of Interest 



(MEDI) that any unseen result can achieve. This is ini-
tially equal to the doi in satisfying the entire set of prefer-
ences. In each round, it is reduced to the degree of satisfy-
ing preferences corresponding to presence or absence 
queries not yet executed. Any of the ranking formulas 
presented may be used for calculating MEDI. The algo-
rithm outputs tuples in R, with degree of interest greater 
than or equal to MEDI. 

 
6. Experimental Results 

 
Experiments were conducted using a system imple-

mented on top of Oracle 9i. Our data comes from the 
Internet Movies Database [12] with information about 
over 340000 films. We conducted several experiments 
with various sets of profiles and queries. Due to space 
constraints, we discuss results of representative experi-
ments concerning: (a) the efficiency of our algorithms, (b) 
the benefits of query personalization, and (c) the appro-
priateness of proposed ranking functions. 

 
6.1. Efficiency of Personalization Algorithms 

 
The parameters affecting execution time of our algo-

rithms are: the number K of top preferences, and the num-
ber L of those that should be satisfied. Figure 7 shows 
execution times for: (a) FakeCrit (Preference Selection 
Time), (b) SPA, (c) PPA, plus (d) PPA’s first response 
time, for varying K positive presence preferences and L = 
1. The purpose of considering only positive presence 
preferences was to see how efficient SPA and PPA are, 
when there are no time-consuming absence queries. We 
can see that the preference selection algorithm is very 
efficient, thus query personalization time may be consid-
ered equal to the time spent by SPA or PPA. PPA has a 
very good initial response time, and its overall execution 
time is better than SPA’s. 
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Figure 7. Execution times with K 

Figure 8 shows execution times in L, for K=30 positive 
presence preferences. Preference selection time is not 
shown (it does not depend on L). PPA’s (overall and first 
response) times decrease in L increasing. This is due to 
the fact that PPA executes queries gradually; so, at any 
point, if the remaining queries do not suffice for satisfy-
ing L preferences, it stops. SPA’s time does not depend on 
L. In addition, SPA execution time is very high when 

there are absence queries. On the contrary, PPA is not 
affected by them as long as their number is below L. If 
not, its overall execution time gets worse but remains 
more efficient than SPA. 
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Figure 8. Execution times with L 

We only mention here, since we have presented corre-
sponding experimental results in our earlier work [16], 
that the overall overhead involved in supporting personal-
ization is not significant. 

 
6.2. Effectiveness of Personalized Queries 

 
We conducted an empirical evaluation of our approach 

with 14 human subjects. 8 of them have a diploma in 
computer science (experts). The rest of them are simple 
users of computers. First, each user provided her prefer-
ences. Two trials were conducted using a web-based cli-
ent developed for this purpose. 

In the first trial, all subjects were given a set of 3 que-
ries plus two additional ones that they would like to ask. 
Each user submitted the set of 5 queries twice in arbitrary 
order. Queries were executed once without personaliza-
tion and once with personalization. This was also per-
formed arbitrarily. Our intention was to let individuals 
judge the results unbiased by what happens to their query. 
Each user was asked to electronically evaluate each tuple 
returned by providing a score in the range [-10, 10] (tuple 
interest), as well as the overall answer to each query. For 
the latter a user provided three different scores: (a) an 
estimation of the difficulty to find something interesting 
(degree of difficulty), anything was found at all, (b) an 
estimation of how well the answer covered their need 
(coverage), and (c) an overall score of the results in the 
range [-10, 10] (answer score). As parameters for person-
alization, we chose K to be the number of preferences in a 
user profile, and L=2. We present some of the results, due 
to space considerations.  
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Figure 9. Average answer score (experts) 
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Figure 10. Average answer score (novice) 
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Figure 11. Average answer score per group  
Figure 9 and Figure 10 present the average answer 

score reported when the query was executed unchanged 
and the average score reported when the query was per-
sonalized, for experts and novice, respectively. We see 
that personalized answers have higher scores. Figure 11 
presents the average answer score per group over queries 
unchanged and queries personalized.  
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Figure 12. Average degree of difficulty  
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Figure 13. Average coverage  
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Figure 14. Average answer score 

In the second trial, all users were asked to think of a 
specific need, e.g., finding a theatre to go or a DVD to 
rent. Queries submitted by half of them were not changed, 
while queries of the rest were personalized.  

Figure 12 shows the average degree of difficulty re-
ported by each group. Figure 13 shows the average cov-
erage reported by each group and Figure 14 shows aver-
age scores. Overall, these experiments have shown that 
the benefits of personalized search can be significant in 
terms of the effort required by people -novices and ex-
perts alike- to find information. 

 
6.3. Evaluation of Ranking Functions 

 
In the experiments with human subjects (described in 

the previous subsection), users were asked to electroni-
cally state their interest in each tuple returned by person-
alized queries. We compared user interest (appropriately 
normalized) to the degree of interest returned by the three 
positive ranking functions described earlier.  
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Figure 15. Tuple Interest close to Inflationary 
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Figure 16. Tuple Interest close to Dominant 
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Figure 17. Tuple Interest close to Reserved 

Figures 15, 16 and 17 show a user’s interest over the 
tuples of a single query. In Figure 15, we observe that 
user interest is close to the doi of the inflationary func-
tion. In Figure 16, another user has ranked results of a 
different query following a rather dominant approach. 
Finally, in Figure 17, user behavior is best reflected by 
the reserved approach. Overall, experimental results have 



indicated that the three ranking functions discussed here 
capture real users ranking philosophy. Therefore, it seems 
possible to learn the most appropriate ranking function 
per user. This information could be stored as part of the 
user’s profile. Further experiments are needed towards 
the direction of producing psychological evidence regard-
ing the conditions under different ranking approaches are 
followed by users. 
 
7. Conclusions and Future Work 

 
We presented an expressive preference model, effi-

cient query personalization algorithms, ranking functions, 
and experimental results showing the efficiency of our 
algorithms, and the benefits of query personalization, and 
providing insight as to the appropriateness of the ranking 
functions. In ongoing work, we are concerned with how 
preferences expressed over a higher level model may be 
transparently mapped to an underlying database’s 
schema, and we investigate how various profiling meth-
ods proposed in the literature may be adapted for (semi-) 
automatic construction of user profiles. We are also inter-
ested in combining personal preferences with other as-
pects of a query’s context that call for query customiza-
tion, such as user location, time, device, etc. 
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