
Int J Digit Libr (2004) 4: 52–55 / Digital Object Identifier (DOI) 10.1007/s00799-003-0076-2

Mapping objects

Fragkiskos Pentaris, Yannis E. Ioannidis

University of Athens, Dept. of Informatics and Telecommunications, Panepistemiopolis, 157 71, Athens, Greece;
E-mail: {frank,yannis}@di.uoa.gr
Published online: 27 July 2004 – Springer-Verlag 2004

Abstract. We present a technique that is based on
volatile mapping objects and enables wrappers-based
mediation architectures to describe bi-directional (read–
write) interschema mappings of multiple, disparate data
sources. We describe the structure of these mapping ob-
jects, explain how they work, and compare them to other
traditional techniques used for describing schema map-
pings in data-mediation systems.

1 Introduction

The natural replacement of aged information technolo-
gies with more recent ones, and the rather large num-
ber of different metadata ‘standards’ that emerged in the
last decade, forces digital libraries (DLs) to use many au-
tonomous, heterogeneous, and usually incompatible sys-
tems to store their metadata. The de facto adoption of
XML language has reduced the syntactic-related hetero-
geneity problems, yet it has been of no help in attacking
the structure- and semantics-related compatibility prob-
lems of digital object collections. At the time of writing,
almost every major DL stakeholder is somehow involved
in creating new (meta)metadata standards, such as the
Metadata Encoding and Transmission Standard of the
Digital Library Federation [9] or the drafts of the numer-
ous Dublin Core MetadataWorking Groups [8]. This con-
stant revision of standards intensifies existing interoper-
ability problems in DL federations and raises the need for
the design of systems that can quickly and easily adapt to
metadata standards modifications.
System designers have developed several different ap-

proaches for maintaining interoperability [7]. The use of

mediation/middleware techniques has gained consider-
able support, as it provides good results without com-
promising the autonomy of existing systems. Examples of
such DL systems and architectures include the MARIAN
system [2], the MIX project [1], and the Alexandria Digi-
tal Library architecture [3]. Some other relevant, yetmore
general, systems include Pegasus, Infomaster, TSIM-
MIS, GARLIC, HERMES, MOCHA, MOMIS, OPM,
SIMS/ARIADNE, Information Manifold, Clio, IRO-DB,
and MIRO-Web projects.
An important property of all these systems is the

mechanism used for describing the mapping between the
internal/mediation schema(s) and the external (medi-
ated) ones. In this short paper, we present a technique
that describes bi-directional (read–write) interschema
mappings between multiple, disparate data sources with
the help of volatile mapping objects. Our technique is not
only comparable to other declarative ways of describing
mappings, such as mapping languages and, more recently,
metamapping languages, but also allows for easy query-
ing, sharing, reusing, and updating of the local or remote
mapping information.
The rest of the paper is organized as follows: in Sect. 2

we briefly describe the architecture assumed in this pa-
per. In Sect. 3, we describe our schema mapping tech-
nique. In Sect. 4 we compare our approach with relevant
techniques and conclude the paper.

2 Mediation environment

In this paper, we assume that a wrapper-based media-
tion architecture, like the one in Fig. 1, is used to provide
a single point of access to data stored in multiple dis-
parate data sources. This is accomplished through the use
of wrappers that are capable of accessing in a native, bi-

F. Pentaris: Mapping objects 53

Fig. 1. Mediation architecture

Fig. 2. Mapping objects for XML data sources

directional way, different data sources, such as XML files,
relational databases, or even data that are the output of
a different software application. Each wrapper converts
multiple external sources of the same type into a single
common data model used by the mediation kernel. This
paper will use an object-based model, though our tech-
nique is model-neutral and can be used with any data
model such as the relational one or an XML-structure-like
one.
Wrappers must be flexible and expandable with re-

gard to the type and schema of the mediated data sources.
This depends on the way wrappers map external data to
the internal schema(s). Old systems hard-coded the map-
ping between those two schemas, which severely affected
the flexibility and expandability of these systems. Our ap-
proach, which we describe in detail in the next section,
overcomes these problems by using mapping objects.

3 Mapping objects

Consider an external data source wrapped by a media-
tion/middleware system. The schema of this source and
the internal schema of the middleware are completely in-
dependent of each other, since external sources are au-
tonomous and can (simultaneously) be mapped into sev-
eral different internal ones, simply by changing the map-
ping algorithm. Modifications of the external schema do
not necessarily propagate to the internal one. Thus, exter-

nal and internal schemas are two separate entities, simply
bound together through some mapping algorithm.
To ensure flexibility and expandability, our mapping

technique respects the autonomy of the two types of
schemas and keeps information concerning the internal
schema, the external schema, and their mapping sepa-
rately. More specifically, connecting the internal and ex-
ternal schemas involves three separate actions:

• Definition of the internal schema (i.e. the classes and
relationships of the common object-based schema),
which is used by the mediation. The correspond-
ing information is stored in the private mediation
metaschema and is validated and managed directly by
the mediation kernel.
• Identify the external schema, followed by the phys-
ical data sources. The corresponding information is
wrapper-specific and is, therefore, stored in a wrapper-
specific metaschema. For example, if the data is stored
in an XML file, then the DTD of the file will have to be
declaratively specified.
• Specification of the mapping between the two schemas.
The corresponding information is also stored in a wrap-
per-specific metaschema, since it cross references ob-
jects specified in the first two steps.

The first two actions may occur in either order, while
the third must naturally follow the other two. Particular
instances in the three inter-related metaschemas struc-
turally compose a single mapping object.
Figure 2 shows an example of an XML mapping ob-

ject. In this figure, three sub-schemas are displayed. The
first is the internal object-based metaschema, consist-
ing of classes CLASS and RELATIONSHIP, which store
information on the internal mediation schema. The sec-
ond sub-schema is the XML metaschema consisting of
classes XMLElement, XMLContentPart, and XMLAt-
tribute. These XML wrapper-specific classes are suffi-
cient to store information on the schema of an XML
file (i.e. the DTD file). Finally, the remaining six classes
of the XML mapping object store the information that
links the internal schema with the schema of the XML
file. For example, instances of the XMLContentRelation-
shipDefinition class map attributes of the classes of the
internal schema to the contents of the elements of the
XML files. Note that the XMLClassDefinition and XML-
RelationshipDefinition classes inherit from the ClassDef-
inition and RelationshipDefinition classes respectively,
which hold mapping information common to every exter-
nal source type.
As an example of how our technique works in practice,

Fig. 3 shows the statements (mostly in SQL form) exe-
cuted when a very simple mapping from an XML file with
books having titles and authors to an appropriate object-
based schema is declared. The schema and mapping dec-
laration statements are between the Begin schema and
End schema statements. The Register class Book state-
ment adds to the internal schema a new class Book with

54 F. Pentaris: Mapping objects

> Begin schema;

> Register class Book // Alter internal schema

{ String Title, // definition
String Author }

// Alter external XML schema definition

> Insert into XMLElement(ElementName,URL)

instance(’Book’,

’http://www.di.uoa.gr/books.xml’)

as BookObject;

> Insert into XMLAttribute

(AttributeName,xmlElement)

instance(’Title’,BookObject)

as TitleObject;

> Insert into XMLAttribute

(AttributeName,xmlElement)

instance(’Author’,BookObject)

as AuthorObject;

// Now create the mapping algorithm. Note that
// this is similar to creating a normal object.
> Insert into XMLClassDefinition

(className, xmlElement)

instance (’Book’, BookObject)

> Insert into XMLAttributeRelationshipDefinition

(classAttributeName, xmlAttribute)

instance (’Title’, TitleObject);

> Insert into XMLAttributeRelationshipDefinition

(classAttributeName, xmlAttribute)

instance (’Author’, AuthorObject);

> End schema;

Fig. 3. Schema definition using mapping objects

two attributes (Title and Author) (updating the CLASS
and RELATIONSHIP classes of Fig. 2). The first three
SQL Insert statements record the features of the exter-
nal XML file by constructing one instance of the XM-
LElement class and two instances of the XMLAttribute
classes. The last three Insert statements define the map-
ping between the internal and the external schemas.
Mapping objects have several advantages compared to

traditional ways of describing mappings between internal
and external schemas. That is:

• Mapping objects make the definition of internal and ex-
ternal schemas completely independent tasks. Thus, it
is possible to map the same external schema into two or
more internal ones and vice versa.
• In distributed systems, mapping objects can easily be
shared just like any common objects can be shared.
• Sincemapping objects are normal objects, they can eas-
ily be queried or updated using the traditional DML
statements, such as select, update, and delete. Obvi-
ously, updating a mapping object effectively alters the
mapping between the internal and the external schemas.

• It is easy to reuse mapping objects of even pieces
of them. Describing the mappings between two large
schemas contains many repetitions and mapping ob-
jects provide a simple way of reusing the mapping infor-
mation.
• Systems using mapping objects are easily expandable
to use new wrappers. This is because, apart from build-
ing the new wrapper, nothing else needs to be changed.
This is in contrast, for example, with systems using
mapping languages to specify the mapping informa-
tion. In these systems, the mapping languages may also
need to be altered.

Mapping objects represent a declarative way of defin-
ing the unidirectional or bi-directional correspondence
between the internal and external schemas. A bi-direc-
tional mapping is important whenever the user needs
something more than a read-only object view. Informa-
tion in digital libraries does not always remain fixed and it
is important for the mediation to be able to provide a cen-
tralized system that can view and update data stored in
multiple disparate systems in a uniform way.
Creating a mapping object is not always a trivial task.

Depending on the complexity of the mapped information,
a mapping object may consist of hundreds or even thou-
sands of sub-parts. To assist the user, it is possible to
create semi-automatic tools that create an initial version
of the mapping object using the semantic information
available in referential constraints of the original schema.

4 Comparison with existing systems

There is a large number of mediation systems such as
TSIMMIS, GARLIC, HERMES, OPM, IRO-DB, and
SIMS/ARIADNE. The recent mediation systems over-
come the problem of hard-wiring the mappings in the
wrappers by using some mapping language. Examples
of such systems and languages are the MARIAN sys-
tem, which uses a digital library description language
called 5S [2], the TSIMMIS Mediation Specification Lan-
guage (MSL) [5], and the BRIITY (bridging heterogene-
ity) mapping language [4]. The use of a mapping language
resembles our approach, though it can only work on stor-
age modules that were already planned during the design
of the mapping language. That is, the expressive power
of these languages is limited and, therefore, they cannot
describe any arbitrary mapping. Mapping objects do not
share this problem, since each wrapper uses a different
mapping metaschema. Integrating a new wrapper into
the mediation system automatically extends its internal
metaschema to handle the new type of mapping objects.
Finally, in a recent article [6], an attempt was made

to overcome the limitations of mapping languages by
defining a language for defining mapping languages, i.e.
a metalanguage. This approach shares many of the ad-
vantages of mapping objects. However, mapping objects
may present better opportunities of reuse and sharing.

F. Pentaris: Mapping objects 55

5 Conclusion

We have presented a technique that allows for declarative
specification of interschema mappings. This can be used
in wrapper-based digital library mediation systems to en-
able them to support bi-directional access to disparate
data sources.

References

1. Baru C, Chu V, Gupta A, Ludscher B, Marciano R, Pa-
pakonstantinou Y, Velikhov P (1999) Xml-based information
mediation for digital libraries. In: Proceedings of the ACM
conference on digital libraries, Berkeley

2. Concalves MA, France RK, Fox AA, Doszkocs TE (2000)
MARIAN searching and querying across heterogeneous fed-
erated digital libraries. In: 1st DELOS network of excellence

workshop on information seeking, searching and querying in
DL

3. Frew J, Freeston M, Freitas N, Hill L, Jane G, Lovette K,
Nideffer R, Smith T, Zheng Q (2000) The Alexandria digital
library architecture. Int J Digital Libr 2:259–268

4. Härder T, Sauter G, Thomas J (1999) The intrinsic problems
of structural heterogeneity and an approach to their solution.
VLDB J 8:25–43

5. Li C, Yerneni R, Vassalos V, Garcia-Molina H, Papakonstanti-
nou Y, Ullman J, Valiveti M (1998) Capability based media-
tion in TSIMMIS. In: Proceedings of the ACM international
conference on management of data (SIG-MOD)

6. Melnik S, Garcia-Molina H, Paepcke A (2000) A mediation in-
frastructure for digital library services. In: Proceedings of the
fifth ACM conference on digital libraries, June 2–7, 2000. San
Antonio, TX, USA. pp 123–132

7. Paepcke A, Chang C-CK, Garcia-Molina H, Winograd T
(1998) Interoperability for digital libraries world-wide. Com-
mun ACM 41(4):33–43

8. http://dublincore.org/
9. http://www.loc.gov/standards/mets/

