
Int J Digit Libr (2004) 4: 60–63 / Digital Object Identifier (DOI) 10.1007/s00799-003-0068-2

Rule-based query personalization in digital libraries

Georgia Koutrika, Yannis Ioannidis

Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece
e-mail: {koutrika, yannis}@di.uoa.gr
Published online: 23 July 2004 – Springer-Verlag 2004

Abstract. Searching a digital library is typically a te-
dious task. A system can improve information access by
building on knowledge about a user acquired in a user
profile in order to customize information access both in
terms of the information returned in response to a query
(query personalization) as well as in terms of the pre-
sentation of the results (presentation personalization). In
this paper, we focus on query personalization in digital
libraries; in particular, we address structured queries in-
volving metadata stored in relational databases. We de-
scribe the specification of user preferences at the level of
a user profile and the process of query personalization
with the use of query-rewriting rules.

Keywords: Personalization – Preferences – Profile-
based query rewriting

1 Introduction

Digital libraries exist in many forms and are of various
types [4]. Speaking in terms of stored information, dig-
ital libraries are essentially collections of unstructured
and structured data. Unstructured data involve different
kinds of documents, where the term document is used
in the broadest possible sense to denote articles, movies,
books, etc. Structured data typically involve metadata
about documents, e.g., metadata about movies include
information about titles, actors, directors, etc. that may
be stored in a database. At the level of information ac-
cess, one of the basic functions a digital library serves is
the ability to perform searches on the underlying collec-
tion. Searches may involve information incorporated in
a document (e.g., keywords appearing in text documents)
as well as metadata (e.g., the author of a document);
moreover, searches may be unstructured (e.g., a set of
keywords such as “Databases” and “Ullman”) or struc-
tured (e.g., author=“Ullman” and year=1990).

In practice, users often get frustrated while searching
a digital library because of the substantial personal ef-
fort needed to locate information of interest to them. For
this reason, current information systems build on know-
ledge about user characteristics to provide customized
responses. Unfortunately, such behavior is absent from
database systems, which always provide the same re-
sponse to everyone.

Example: Consider the database schema below with in-
formation about movies stored in a collection (attributes
are self-explanatory).

Movies (mid, title, type, year, plot, did)

Cast (mid, aid, role)

Actors (aid, aname, birth, sex, nationality,

nominated)

Directors (did, dname, birth, nationality, nominated)

Moreover, consider two users, Julie and Peter, both in-
quiring about movies released in 2002. Typically, this is
done through some simple interface; thus their request is:

Q: Movies(_, _, _, 2002 , _, _).

However, these users have different tastes in movies.
Julie likes comedies and thrillers and Peter prefers sci-fi
movies, and he is a fan of Woody Allen. These preferences
could be stored in a user profile and the system could
automatically integrate them into the initial, predefined
query, saving human effort (on the part of a user as well
as a programmer). Julie would be more pleased with the
results of the following query:

Q′: Movies(_, _, “thriller”, 2002 , _, _) or
Movies(_, _, “comedy”, 2002 , _, _).

On the other hand, Peter would prefer the results of this
query:

Q”: Movies(_, _, “sci-fi”, 2002 , _, _) or
(Movies(X, _, _, 2002 , _, _), Cast(X, Y, _),

Actors(Y, “W . Allen”, _, _, _, _)).

G. Koutrika, Y. Ioannidis: Rule-based query personalization in digital libraries 61

Fig. 1. Architecture of a personalization system

The general architecture of a system providing such per-
sonalized access is depicted in Fig. 1 and includes sev-
eral modules surrounding the traditional Content Access
module. The system keeps a repository of user informa-
tion (User Profiles) that is either inserted explicitly by
the user or collected implicitly by monitoring user inter-
action with the system (Profile Creation). This profile
information, required by the system to implement its per-
sonalization logic, is integrated with an incoming request
both during content selection (Query Personalization)
as well as result presentation (Presentation Personaliza-
tion) in order to personalize the overall user experience.
In this paper, we focus on query personalization in

digital libraries; in particular, we address structured
queries involvingmetadata stored in relational databases.
First, we describe how user preferences are captured
in a user profile as query rewriting rules with assigned
weights that indicate user interest. We treat query per-
sonalization as a query-rewriting problem and provide
an algorithm that produces a personalized version of any
query by combining several possible rewritings of the ini-
tial query based on the rules specified in the user profile.

2 Related work

User preferences may be of various forms [2], e.g., manda-
tory (i.e., which must be definitely satisfied) or optional
(i.e., wishes), conditional or unconditional, single-value
or multivalue, etc. There is extensive research on prefer-
ences in logic (e.g., [3]), but only a few papers ([1, 2, 5, 6])
address this issue in the context of databases. These ef-
forts focus on the expression of short-term user prefer-
ences at the query level, whereas we deal with the spe-
cification of long-term preferences stored in user profiles.
At query time, stored preferences that are relevant to
an incoming request are dynamically identified and in-
tegrated into the latter, producing a personalized query
that is executed instead of the initial one. In our work,
query-rewriting rules are used to express in a uniform
way mandatory and optional user preferences of various

forms, e.g., conditional and unconditional preferences,
single-value and multivalue, etc. [2]. The dynamic con-
struction of personalized queries, i.e., query personaliza-
tion, is then treated as a query-rewriting problem.

3 User profile

We concentrate on the relational model for our presenta-
tion. Our approach to personalization is based on main-
taining for every user a profile that stores query-rewriting
rules. A weightw is assigned to each rule r, which is a real
number in the range [0,1] and indicates the significance
of the rule. Mandatory user preferences are expressed as
rules assigned a weight equal to 1; user preferences are
represented by rules assigned a weight in the range (0,1),
where a high weight-value indicates strong preference.
Using a logic-based language, a query-rewriting rule r

is represented as:

H←− B ,

where H and B denote the head and body of the rule, re-
spectively, and represent queries. The symbol← denotes
replacement of the query expressed in the head of the rule
with the query expressed in the body of the rule. Note
that even if the body of the rule contains the head, no
recursion is implied, but simply a one-time application.
A query is expressed as

L1, . . . ,Ln.

Each Li is a literal of the form pi(t1, . . . tki) such that pi
is a predicate symbol and tj are terms, either constants
or variables. Variables are denoted with their initial let-
ter capitalized. Underscores (_) denote “don’t care” vari-
ables. We use the term general rule if a rule does not
contain any constants and the term specific rule if it does.
As mentioned earlier, different types of preferences

can be expressed with the use of rewriting rules. For
example, consider the user profile depicted in Fig. 2 re-
garding the movie database. Rule r1 represents a general
mandatory preference that a request for movies should al-
ways consider starring actors. Rules r2 and r4 represent
strong preferences for comedies and thrillers, respectively.
Rule r3 represents a conditional preference, i.e., if the
movie is a thriller, then Al Pacino is favored. Finally, rule
r5 represents a weaker preference on Italian actors. This is
an example of a multivalue preference.

4 Query personalization

Query personalization proceeds in two steps. First, a set
of possible queries is generated by different rewritings of
the initial user query based on the user profile. Then,
these queries are combined into a single query; this is the

62 G. Koutrika, Y. Ioannidis: Rule-based query personalization in digital libraries

r1, w1 = 1 Movies(_, _, _, _, _, _)←Movies(X, _, _, _, _, _), Cast(X, Y, _), Actors(Y, _, _, _, _, _)

r2, w2 = 0.9 Movies(_, _, Type, _, _, _)←Movies(_, _, ‘comedy’, _, _, _)

r3, w3 = 0.87 Movies(_, _, ‘thriller’ , _, _, _)←Movies(X, _, ‘thriller ’, _, _, _), Cast(X, Y, _),
Actors(Y, ‘Al Pacino’, _, _, _, _)

r4, w4 = 0.8 Movies(_, _, Type, _, _, _)←Movies(_, _, ‘thriller ’, _, _, _)

r5, w5 = 0.5 Actors(_, _, _, Sex, Nationality, _)← Actors(_, _, _, ‘male’, ‘Italian’ , _)

Fig. 2. An example of a user profile

personalized query that will be evaluated on behalf of the
user. Below we describe each step in more detail.
A query Q′ is a rewriting of query Q if there is a sub-

set of rules R = {ri|i= 1 . . . n} defined in the user profile
that produceQ′ if applied successively toQ. At each step,
a rule ri is applied to the query Qi−1 produced at the
previous step and produces Qi provided that the query
contains the head of the rule (this is known as query sub-
sumption for the form of rules used here). At the final
round, Qn = Q

′ is produced whose weight is a function
of the weights of the rules that were used. Note that, for
Q′ to be meaningful, R must include at least one specific
rule.
For example, assume a query Q: Movies(_, _, _, _, _,

_). In this case, multiple rules can be used, namely, r1,
r2, r3, r4, resulting in more than one possible rewriting of
the query. Suppose we choose rule r1; then the query is
rewritten as

Q1: Movies(X, _, _, _, _, _), Cast(X, Y, _),
Actors(Y, _, _, _, _, _).

Subsequently, we can apply any of the five rules to rewrite
this new query; we choose rule r5, which constructs the
following query:

Q2: Movies(X, _, _, _, _, _), Cast(X, Y, _),
Actors(Y, _, _, “male”, “Italian”, _).

Thus Q2 is a possible rewriting of Q by applying succes-
sively rules r1 and r5.
The algorithm for the construction of possible query

rewritings for a query Q is sketched in Fig. 3. The algo-
rithm’s inputs are a query Q, a user profile U , and a cri-
terionCR. The latter determines (implicitly or explicitly)
the number of rewritings of Q that will be generated.
For example, such a criterion may provide the maximum
number of rules that may be used for query rewriting or
a minimum weight that a rule should have in order to be
considered for query rewriting. The algorithm’s output is
a set of queries QR produced by different rewritings of
query Q.
The algorithm maintains an ordered queue QP of

queries generated so far. First, it produces a queryQ′ that
is a rewriting ofQbased on these rules that expressmanda-
tory requirements and are applicable toQ. Then, the algo-
rithm proceeds to apply rules that represent preferences.
In each round, it selects fromQP a queryQ′ with themax-

Input: a query Q, a criterion CR, a user profile U
Output: a set of possible query rewritings QR
{
QP : an ordered queue of queries
/*rules are considered in decreasing order of weight */
Rewrite Q as Q′ based on applicable mandatory rules
For each rule ri in U applicable to Q

′ in U {
Apply ri to Q and produce Qi
add Qi into QP

}
While QP not empty do {
Get head Q′ from QP
If(CR is satisfied for Q

′) then {
For each rule ri in U applicable to Q

′ {
apply ri to Q

′ and produce Qi
If (CR is satisfied for Qi) then add Qi into QP
else add Q′ into QP and break

}}
else stop

}}
Fig. 3. Construction of Query Rewritings

imumweight. IfQ′ does not satisfy the input criterionCR,
then the algorithm stops; otherwise, it considers all rules
ri that are applicable to Q

′ in decreasing order of weight.
Each rule ri is applied to Q

′ producing a query Qi; if this
newquery satisfies the input criterion, then it is placed into
QP . If the algorithm constructs a query Qi that does not
satisfy the criterion, then it does not consider any more
rules for rewriting Q′ and the latter is placed in the set of
possible rewritings that form the output. In this way, the
algorithm constructs queries that aremaximal rewritings
ofQ, i.e., queries that satisfy the interest criterionCR, and
there is no applicable rule that can rewrite them into new
ones that still satisfy CR. We should also note that the al-
gorithm is complete, i.e., it generates all queries that are
maximal query rewritings of Q.
A rule is applicable to a query Q′ provided the follow-

ing conditions hold:

Relevance Condition:

(RC1) The query contains the head of the rule.

Consistency Conditions:

(CC1) The rule contains in its body no other part of the
query except for its head.

G. Koutrika, Y. Ioannidis: Rule-based query personalization in digital libraries 63

(CC2) The rule has a weight lower than (or equal to)
that of the rules already used for the construction
of the query.

(CC3) The rule does not contain an evaluation of a vari-
able already evaluated in Q′.

(Variable evaluation is defined as replacement by a con-
stant.) Consistency conditions are necessary for avoiding
repetitions, conflicts, and cycles. For example, assume
the trivial case where there are two rules r1 and r2 and
a query Q such that

r1 :Q←−Q,Q1
r2 :Q1←−Q,

i.e., (CC1) does not hold. In this case, applying r1 and then
r2 producesQ←Q, which is a meaningless rewriting.
Now, assume there are two rules, r3 and r4, in decreas-

ing order of weight and a queryQ such that

r3 :Q←−Q,Q1
r4 :Q←−Q,Q2,

and (CC2) does not hold. In this case, applying r3 and then
r4 produces a possible rewritingQ←Q,Q2, Q1. Applying
r4 and then r3 produces a possible rewriting Q←Q,Q1,
Q2, which is essentially the same as in the first case.
(CC3) is necessary for avoiding replacement of a higher

(specific) preference with a lower one.

Example:Returning to our example, consider Julie’s ini-
tial request, expressed as Q: Movies(_, _, _, 2002 , _, _)
and a criterion that requires that only rules with weight
greater than 0.85 may be applied. Then, the algorithm
proceeds as follows:

a. Rule r1 is mandatory and applicable. Thus, Q is
rewritten as Q′ as follows:

Q′: Movies(X, _, _, 2002 , _, _), Cast(X, Y, _),
Actors(Y, _, _, _, _, _).

Then, rules expressing preferences are considered.

b. Rules r2, r3 both have weights greater than 0.85 and
are applicable. Consequently, two possible rewritings
of Q′ are the following:

Q1: Movies(X, _, “comedy”, 2002 , _, _), Cast(X, Y, _),
Actors(Y, _, _, _, _, _).

Q2: Movies(X, _, “thriller”, 2002 , _, _), Cast(X, Y, _),
Actors(Y, “Al Pacino”, _, _, _, _).

c. ForQ1 we consider only rules below r2 (due to (CC2)),
which has already been applied. Only rule r3 satisfies
the criterion on weight, but it cannot be used due to
(CC3). Also, no rewriting is possible for Q2.

Consequently, as depicted in Fig. 4, the possible queries
produced by rewritingQ areQ1 and Q2.
The queries that are produced by the different rewrit-

ings of the initial query are combined to form the final
personalized query to be executed. The simplest case of

Fig. 4. Query rewriting for the example query Q

combination is the disjunction of all these queries. Con-
sidering the example query on movies, the disjunction of
the derived queries generates the following final, person-
alized query:

(Movies(X, _, “comedy”, 2002 , _, _)) or
(Movies(X, _, “thriller”, 2002 , _, _), Cast(X, Y, _),
Actors(Y, “Al Pacino”, _, _, _, _).

Other combinations are clearly possible (e.g., conjunction
of all rewritings) and are currently under investigation.

5 Conclusions and future work

We have described the specification of user requirements
and preferences at the level of a user profile and the process
of query personalization with the use of query-rewriting
rules. An algorithm for query personalization was briefly
outlined that produces a set of possible queries based on
maximal rewritings of a querywhile avoiding conflicts and
cycles. The queries produced are then combined with dis-
junction. Future work includes elaboration of the algo-
rithm in order to cope with other kinds of conflicts that
may arise when trying to combine user requirements. The
issue of conflicts is very important in query personaliza-
tion, and little work has been done in this area. Moreover,
other interesting issues exist, including investigation of
other forms of query combination for queries produced by
different rewritings of an initial query,ways to rankperson-
alized results based on the weight of the preferences they
satisfy, and delivery of top-n answers.

References

1. Agrawal R, Wimmers EL (2000) A framework for express-
ing and combining preferences. In: Proceedings of the ACM
SIGMOD international conference on management of data,
Dallas, 16–18 May 2000, pp 297–306

2. Chomicki J (2002) Querying with intrinsic preferences. In:
Proceedings of the 8th international conference on extending
database technology, Prague, Czech Republic, 25–27 March
2002, pp 34–51

3. Delgrande JP, Schaub T, Tompits H (2000) Logic programs
with compiled preferences. In: Proceedings of the European
conference on artificial intelligence, Berlin, 20–25 August
2000, pp 464–468

4. Digital Libraries (1995) Commun ACM 38(4)
5. Govindarajan K, Jayaraman B, Mantha S (2001) Prefer-
ence queries in deductive databases. New Generation Comput
19(1):57–86

6. Hristidis V, Koudas N, Papakonstantinou Y (2001) PREFER:
a system for the efficient execution of multiparametric ranked
queries. In: Proceedings of the ACM SIGMOD international
conference on management of data, Santa Barbara, CA, 21–24
May 2001, pp 259–270

