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Abstract

The traditional interaction mechanism with a database system is through the use of a query language, the most widely
used one being SQL. However, when one is facing a situation where he or she has to make a minor modification to a
previously issued SQL query, either the whole query has to be written from scratch, or one has to invoke an editor to
edit the query. This, however, is not the way we converse with each other as humans. During the course of a
conversation, the preceding interaction is used as a context within which many incomplete and/or incremental phrases
are uniquely and unambiguously interpreted, sparing the need to repeat the same things again and again. In this paper,
we present an effective mechanism that allows a user to interact with a database system in a way similar to the way
humans converse. More specifically, incomplete SQL queries are accepted as input which are then matched to identified
parts of previously issued queries. Disambiguation is achieved by using various types of semantic information. The
overall method works independently of the domain under which it is used (i.e., independently of the database schema).
Several algorithms that are variations of the same basic mechanism are proposed. They are mutually compared with
respect to efficiency and accuracy through a limited set of experiments on human subjects. The results have been
encouraging, especially when semantic knowledge from the schema is exploited, laying a potential foundation for
conversational querying in databases.
© 2004 Elsevier B.V.. All rights reserved.
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1. Introduction and after our answer a second question is
) immediately posed:
Suppose someone asks us the following ques- CS507?
tion: We find no difficulty in interpreting the incom-

What time does CS207 start? plete second question as:

What time does CS507 start?
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have no trouble answering. Humans have the
ability to use several factors towards completing
such partial questions. Common-sense knowledge
is one of them. The context of the conversation is
another.

When interacting with a database management
system (DBMS), we essentially start a dialogue
shell with the DBMS’s front end, where user
and system ‘speak’ the same language (typically
SQL). In traditional ad hoc DBMS interac-
tion, consecutive queries are unrelated to each
other, usually. Cases where the next query is an
alteration of the previous one are relatively few.
Therefore, it is acceptable for the user to either
rewrite the whole query from scratch (if it is small),
or invoke an editor and make the desired
modifications.

When one considers, however, some of the
applications of database technology, i.e., data
mining and decision support, the situation changes
dramatically. The user essentially explores the data
and obtains different views or subspaces of it so
that important patterns or other characteristics
may be identified. This is achieved by issuing
sequences of interrelated queries, which tend to be
large and complicated. Rewriting every query from
scratch is then out of the question, while editing
the previous query becomes quite tedious and
counterproductive. Whereas the user should be
operating in a continuous [QUERY-ANALYZE]*
cycle focusing on data exploration (Fig. 1(a)), he/
she is operating in a [QUERY-ANALYZE-
EDIT]* cycle (Fig. 1(b)). Instead of posing to the
system the query that comes to his/her mind, the
user has to enter the editor, find the appropriate
places in the query text, make the necessary
changes, and only then submit the new query.

Query Query

EdUalyze

Analyze

@ (b)

Fig. 1. The two exploration modes. (a) Uninterrupted explora-
tion mode. (b) Exploration mode interrupted by editing.

This forces a continuous context switch in the
mental operation model of the user, reducing his/
her effectiveness.

It would be better if the human—-DBMS inter-
actions were similar to those between humans
conversing, as illustrated above. The user would
only have to give so much as a ‘hint’ to the system,
just the new/different part of the query. The
system would then have to understand what this
hint implies and make all the necessary alterations
to the original query, producing the next one.
Effectively operating in the two-step cycle (Fig.
1(a)), the user’s attention would thus be devoted
exclusively to data exploration. We call this form
of interaction with a DBMS Conversational
Querying.

Conversational Querying is not only meaningful
and desirable for textual-language interactions but
for visual ones as well. First, although more
pleasant than its SQL counterpart, editing of
visual queries remains an interruption in the user’s
flow of thought, an artificial extra step in every
cycle of exploration (Fig. 1(b)) that is better
eliminated. Second, at the visual level, there are
many human—-DBMS interaction styles potentially
available whose nature is such that offering them
to users requires support of Conversational
Querying as well. For example, consider a relation
EXPERIMENT(w, x, z, y), containing the results
of some experiments, i.e., containing the value of
the output parameter y for various values of the
input parameters w, x, and z (the composite
primary key of the relation). Assume that the
result of a query

select x,v,2
from EXPERIMENT
where (xmod 10 = 0) and (w=3.14159)

is visualized as in Fig. 2(a). Whether the original
query was posed in textual form as above or
through some visual query tool is not relevant to
this discussion. Seeing the resulting graphs, a user
is quite likely to request more points in the area of
x between 30 and 50, since the value of y changes
dramatically there. A rather natural way to do this
is for the user to indicate the area of interest
directly on the result visualization as in Fig. 2(b).
The system then takes into account the overall
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Fig. 2. Visual querying. (a) Visualization of original query
results. (b) Visual conversational query using visualization of
previous results.

context of the user’s action and generates the
query

select *

from EXPERIMENT

where (xmod 2 = 0) and (x between 30 and
50) and (w=3.14159)

to obtain the requested data.! Clearly, this query is
simply an alteration of the previous one. Essen-
tially, the user is engaged in (visual) Conversa-
tional Querying simply having to specify the
difference of the two queries.

'We are actually in the process of developing a system with
such functionality in the context of the ZOO project on desktop
experiment management [1].

This paper formulates Conversational Querying
and introduces a mechanism to support it. The
focus is on a core subset of SQL queries that is
critical in any attempt to deal with the problem.
Having devised an overall approach that works on
this subset, it is rather straightforward to general-
ize it to work on other textual queries as well.
Furthermore, as demonstrated above, this me-
chanism should form the basis for supporting
Conversational Querying in the context of visual
query tools. The approach is generic and domain
independent. It is based on specific manipulations
of the parse trees of SQL queries and identifying
interchangeable parts of subtrees. Whenever ne-
cessary, disambiguation is achieved through the
exploitation of semantic knowledge. Although the
use of parse trees is quite generic and one can
argue that the methodology can be applied to any
unambiguous grammar, the incorporation of
semantic knowledge into the disambiguation
scheme is what tailors the application specifically
to query languages and in particular SQL.
Preliminary experiments have been carried out,
giving an encouraging head start for the develop-
ment of a Conversational Querying mechanism in
contemporary DBMSs.

2. Related work

Natural language processing: Conversation is a
common characteristic of human interaction. As
such, problems relevant to the ones we address
have been given considerable attention in natural
language processing. In particular, the two most
common notions are ellipsis and anaphora resolu-
tion [2-6]. The case for ellipsis arises when, in the
context of a conversation, words or phrases are
missing in a given and/or subsequent sentences.
The antecedent is what is mentioned in earlier
sentences and is missing (i.e., implied) in later
ones. Anaphora resolution (also known as ellipsis
resolution) is the process of identifying the missing
terms in order to give the sentence complete
semantics. Key concepts in resolution are text
cohesion (relations between words or expressions)
and text coherence (relations between clauses or
sentences) [7].
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Given the inherent complexity of natural
language, there is no uniform way of addressing
the issue of resolution, but different strategies are
used for different types of phrases. Nevertheless,
we can identify some common underlying princi-
ples by using the seminal work of Lakoff and
Johnson [8] as a foundation. There the authors
present the concept of a metaphor as central to
expression. Using metaphors, one can ‘cross’ from
what is termed the conceptual expression, i.e., what
someone thinks, to what is termed the linguistic
expression, i.e., what someone says using natural
language. Unfortunately, no meaning can be
characterized as ‘objective’ or ‘absolute’, so in
general, there exist multiple metaphors for the
same conceptual or linguistic expression. What
makes natural language understanding possible is
(a) the fact that there are common conceptual
metaphors shared by the participants in a con-
versation, which allow them to move from related
concepts to seemingly unrelated and different
linguistic expressions without sacrificing their
common understanding, and (b) the fact that
metaphors mean consistently within a text (though
variously in many texts), i.e., what is usually called
metaphorical coherence.

The whole process can be visualized by the top
part of Fig. 3. Conceptual expression can be
mapped to linguistic expression using different
metaphors. Metaphors can be thought of as
functions that allow this crossing between the
conceptual and the linguistic realms. Once a

Natural Language

Metaphor 1
ﬂetapho\
Conceptual /Mntaphori \ Linguistic
Expression Expression
Metaphor m
Language Language
Semantics Syntax
SQL

Fig. 3. The difference between natural language and SQL.

metaphor is chosen in the context of a conversa-
tion (highlighted by a shaded oval in Fig. 3,
metaphorical coherence ‘guarantees’ that it will
remain constant throughout the conversation.

According to the above discussion, it is central
to any language processing system built on
conversational principles to identify the context
of a conversation. The reason is that, by identify-
ing the context, one is able to identify the
metaphor used. Context identification has been
traditionally treated in the natural language
processing literature as an issue of semantics, due
to the complexity of the language. For example,
one possible way of addressing the problem at the
semantic level is through the use of centering [9],
where local linguistic changes are interpreted
at the greater discourse coherence level. Other
approaches include studies like [10,11]. The latter
is based on the computing and functional pro-
gramming foundations of A-calculus, as are
Montague grammars [12], which attempt to assign
formal semantics to a language. In all these
studies, the goal is to identify the semantics of a
discourse. This leads to identification of the
relevant metaphor used, which permits ‘all’ lin-
guistic expressions to be interpreted unambigu-
ously.

When dealing with human—computer commu-
nication using a restricted language, like SQL, one
may draw an analogy to natural language com-
munication, with semantics playing the role of
conceptual expression and syntax playing the role
of linguistic expression. The transition, however,
from semantics to syntax in SQL, ie., the
‘metaphor’ is straightforward and does not suffer
from the complexities of natural language. In this
paper, in particular, we deal with SQL queries of
the following generic syntax form:

select attribute list
from table list
where condition list.

Consider the case where a database schema is
fixed. Tables can only appear in the from-clause,
attributes can only appear in the select-clause
while conjuncts or disjuncts of predicates appear in
the where-clause. Each type can be easily identified
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at the syntax level, without having to do any
semantic inference.’

Conversational querying in an artificial lan-
guage like SQL requires context identification just
as in natural languages. The main difference is
that, in this case, there is only one metaphor
between the language semantics and its syntax,
and therefore, we do not have to deal with any
complex or ambiguous mappings between con-
ceptual and linguistic constructs. This is illustrated
at the bottom part of Fig. 3, Our thesis is that, by
focussing on the syntactic representation of
queries, we are able to achieve our goal. Our
claim is re-enforced by the results of the experi-
ments we conducted with human subjects. In none
of the experiments was there any obvious need for
more complicated coherence mechanisms to be
introduced. Furthermore, the system achieved
high performance for our metrics (see also Section
5.4), providing further evidence of the applicability
of our approach in our restricted environment.

Databases: In the database field, there have been
efforts of providing natural language interfaces as
querying front-ends, with IBM’s USL [13] and the
studies of [14,15] being prominent examples. The
focus of USL was on using well-formed, unambig-
uous natural language-like constructs in order to
directly query and manipulate the database. As
such, it can be thought of as a more user-friendly
data definition and manipulation language for
relational databases. Indeed, USL was aimed at
the non-technical user. Being less complicated than
standard SQL, there were opportunities of addres-
sing ellipsis resolution, albeit at a smaller and
rather different scale than in this paper. Our
approach is quite different: first, we do not deal
with natural language at all; we deal with the

’The situation is slightly more complex when it comes to
values (e.g., in selections in the where-clause), where treatment
of each value requires going beyond just the syntactic level.
With careful refinement, however, this problem can be reduced
to a rather straightforward range matching problem. For
example, consider the case of a database with birth-year and
age as two attributes. In such a scenario, it is rather easy to
differentiate between the two, as values of each type will have
quite different ranges. Such a simple semantic matching
strategy is what we have implemented in our system (see also
Section 4.3.1).

standard querying language used for relational
databases, SQL. Second, in USL the effort was to
provide a core of grammar rules that were
independent of any natural language (e.g., Spanish
or German in [13]) so that the front-end would be
portable across users speaking different native
languages. The expressive power of the underlying
grammar was therefore restricted and would not
be easily expanded to handle complicated querying
constructs. We focus on the query language itself
and its inherent constructs; this renders our
approach capable of handling a number of
complicated querying interactions with the data-
base.

In [14] the authors try to address the problem of
natural language database front-ends by coupling
the interface with the database schema. Given this
observation, the user can be presented with a
richer language interface, but the approach suffers
in terms of applicability to different schemata: the
natural language interface has to change in order
to adhere to another schema. In contrast, our
approach is generic and independent of the
database schema.

The authors of [15] address mainly the issue of
semantics by taking a significantly different direc-
tion. Instead of focussing on the language level,
they focus on the database level and enrich the
meta-data stored in the database to account for
semantic information of the stored data. As
such, the mapping from natural language to
SQL is easier since all the disambiguation infor-
mation is essentially stored in the database itself.
Our approach differs in that we do not aim at
making any modifications to the storage require-
ments of a system. Rather, by operating strictly on
the user interface level and performing minimal
semantic checks outside of the database engine, we
are able to address queries of a good subset of
SQL.

In the context of disambiguation for databases,
the closest issue to Conversational Querying is that
of disambiguating queries with incomplete path
expressions or missing foreign-key joins [16,17].
Beyond a superficial similarity, however, in that
they both deal with queries that are not syntacti-
cally complete and valid, the two issues are rather
different.
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Conversational querying has some characteris-
tics common with the areas of cooperative query
answering [18,19] and associative query answering
[20,21]. CoBase [18] is an important representative
of such systems. It enlarges the scope of un-
successful queries by broadening the search range
to areas near those of the original query in the
hope of making them successful. This query
rewriting is achieved mainly through the use of
semantic knowledge (the database schema) and the
use of a learning mechanism. Both these aspects
are related to our work in the sense that we use
similar mechanisms for conversational querying.
The specific goals of the two efforts, however, as
well as the details are quite different. First, our
emphasis is on how a user can pose queries more
efficiently, while in CoBase and other cooperative
systems, the focus is on the query answer. Second,
the use of semantic knowledge by CoBase is
critical to the validity of the system; that is, the
approach used is domain dependent and without
any schema information it cannot produce results.
On the other hand, our use of semantic knowledge
simply enhances the effectiveness of our approach,
which is in principle, domain independent. Third,
learning in CoBase attempts to discover associa-
tions of semantic (schema) concepts the user
makes in queries, which can then be used for
query enhancements. On the other hand, the goal
of learning in our work is to discover the particular
way of thinking by a user with respect to some
particular aspects of conversational querying.
Hence the techniques used by the two systems
are quite different. Fourth, we should also men-
tion that, to the best of our knowledge, no
experiments have been conducted on human
subjects within CoBase, something that has been
very important in our work to provide usability
and performance metrics.

Other: Another marginally related area is
collaborative discourse systems [22,23]. In these
systems, a dialogue exists between the user and the
system. The system tries to accomplish a goal, and
whenever a subgoal is undecidable, the system asks
for the user’s help to provide more facts so it can
reach a decision. Experiments on human subjects
have been conducted, but the concepts they
wanted to prove and the metrics they used were

entirely different from ours so no direct compar-
ison seems plausible.

3. Problem formulation
3.1. Data requests

In a typical exploratory interaction with a
DBMS, the requests that a user poses to the
system are of two different kinds:

Initialization request: This is the first request in
the exploration of a new vein of thought.
Typically, this is a conventional, complete data-
base query, containing several selections, joins,
and other operators on the database.

Follow-up request: This is a new request that is
very similar to the one immediately before it, and
has the answers of the latter as a reference point.
In most cases, the conceptual formulation of such
a query by the user is through the previous query
and consists only of the necessary modifications to
it, i.e., the query is incomplete. Hence, a follow-up
request is context semsitive, where the previous
queries form its context. The need for such
requests is due to the nature of data exploration:
users essentially navigate, step by step, through a
multi-dimensional space of parameters that define
the data space under study. Consequently, this
type of request represents the most common
during exploratory data interactions.’

A system supporting Conversational Querying
should accept as its input both complete and
incomplete queries. Both types of queries should
be translated into a uniform way of representation.
In the case of a complete query (initialization
request), the system should pass it through for
processing as is. In the case of an incomplete query
(follow-up request), the system should use the
common representation of this and all relevant
previous queries to identify the necessary corre-
spondences between parts of them, modify some
earlier query based on the new one so that the
latter becomes complete. If it is successful and

3In what follows, any combination of the terms follow-up or
incomplete with request or query are considered synonyms and
are used interchangeably.
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Fig. 4. Architecture and data flow of a system supporting
conversational querying.

identifies one such completion, it should pass it for
processing. If it identifies multiple such comple-
tions (a case of ambiguity), it should go back to
the user for more information. Finally, if it
identifies no such completion, it should return an
error. The architecture and data flow of a system
supporting Conversational Querying is depicted in
Fig. 4.

3.2. Internal representation

To support Conversational Querying, a system
should employ an internal representation for
queries that has the following properties:

e Each query, complete or incomplete, should
have a unique translation to the representation.
The representation should be consistent, i.e.,
whether the query is complete or incomplete
should not affect the nature of its translation to
the representation.

® The representation should be easily manageable.
It should facilitate the system in recognizing the
correspondence of query parts and identifying
key elements of the query (such as keywords),
and provide a basis for an efficient matching
algorithm.

e The query-to-representation translation should
be reversible: given an instance of the internal
representation, the corresponding query should
be easily reconstructed.

Given the aforementioned requirements, we
have chosen the parse tree that corresponds to

the SQL query as the representation. It fulfills the
above as follows:

® The grammar of SQL leads to unambiguous
parse trees. By extending the grammar, it is
possible to handle both initialization and
follow-up requests in a uniform way. Every
symbol in the grammar is denoted as a start
symbol. In this way, a parser will consider as
correct input any meaningful part of an SQL
query.

e Traversing a parse tree is well-defined (e.g.,
depth-first, breadth-first, pre-ordered, post-or-
dered). In fact, the ways in which a parse tree
can be traversed are a point of study in the
context of this paper. Furthermore, annotations
can be used to differentiate the nodes of the
parse tree for faster recognition.

e If the parse tree is well-annotated, a pre-order
traversal will lead to the construction of the
SQL query that generates it.

® Moreover, the parse-tree choice seems to have a
natural relationship with the way users think. In
particular, users tend to modify elements of
queries that are of a semantic nature. These
elements usually correspond to terminal sym-
bols in the grammar, and the parse tree
incorporates this notion in its structure (i.e.,
terminal symbols become leaf nodes).

Although simple, this representation proves
sufficiently powerful, yielding quantitatively satis-
factory results, as shown in Section 5.

3.3. Query focus

The approach that is proposed in this paper is
based upon the identification of a focus for each
query, which can be thought of as the context of a
conversation in natural language processing terms
(see also Section 2). This is a specific part of a
query that is used to identify the context of the
subsequent incomplete queries. The system tries to
interpret such queries within the current focus. For
instance, given an initial complete query of the
form

select library_name
from libraries
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where city = ‘Detroit’ and state =
‘Michigan’

and a follow-up request of the form
city = ‘East Lansing’

the clause city = ‘East Lansing’ becomes the
system’s current focus. If a subsequent query of
the form

‘Holland’

is issued, then this query is handled within the
current focus and interpreted as looking for
libraries in the city of Holland, MI, as opposed
to the city East Lansing in Holland (the Nether-
lands)!

More formally, the basic concepts that surround
the focus of a query are defined as follows:

Focus: Any section of an SQL query that acts as
the context within which we interpret subsequent
follow-up queries. At the representation level, a
focus is a subtree of a valid SQL parse tree.

Focal point: This is the point of origin of a focus.
At the representation level, it is the root node of
the parse tree that corresponds to the focus.

Incomplete query: This is any part of a valid
SQL query that can act as a focus, i.e., that
corresponds to a symbol of the SQL grammar
treated as a start symbol.

Completed query: This is a query that results
after the modifications, which the system decides
should take place in an earlier query, are carried
out.

The following are the main operations defined
on the focus. They are visually depicted in Fig. 5.

® [dentification: Given an earlier complete query
Q. and a submitted incomplete query Q;, all
possible positions within Q, that may corre-
spond to Q; are identified. One of them will be
chosen as the focus and will be replaced by O, to
form the new complete query. Given the use of
the parse tree as our internal representation for
both complete and incomplete queries, these
positions are some non-terminal nodes of the
tree. The kind of information needed to decide
which position is most appropriate is based on
the query structure, type of information, as well

E Last completed query

C] Incomplete query

|:| Current focus

- Potential new focus
©

Fig. 5. Focus handling: (a) identification, (b) interpretation,
and (c) expansion and relocation of the focus.

as the data semantics of the values appearing in
the query.

o Interpretation: This is identical to identification
only when a focus already exists, i.e., when the
current focus is something less than a complete
query. The focus can either remain the same or
be narrowed (i.e., move to a sub-focus).

® Expansion and relocation of the focus: If an
incomplete query cannot be interpreted within
the system’s current focus, there are two
possibilities. First, the focus may be directly
expanded (move to a super-focus). That is, the
focus remains within the same query but is
enlarged to include more information. Equiva-
lently, the focal point moves up the parse tree,
on the path connecting the current focus to the
root. Second, the focus may be relocated. This
occurs when neither a sub-focus nor a super-
focus can be identified as the new focus. The
new focus can either exist within the same
complete query’s parse tree, i.e., on a previously
unexplored branch, or on a completely different
parse tree. The latter requires that the system
maintains a repository of previously issued as
well as previously completed parse trees.

3.4. Behavior examples

In this section, we present a few examples that
provide more insight into the system’s desired
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behavior. These examples are merely fragments of
larger queries, which are not given here to avoid
unnecessary clutter. They are all taken on the
following simple self-explanatory schema on li-
braries (primary keys in italics):

Stock(isbn, Iname,
quantity)
Bindex(isbn, subject)

Library(lname, city)

Author(name, citizenship,
byear, bplace)

Book(isbn, title, author,
publisher, pyear, pplace)
Customer(name, byear,

city)

Publisher(pname,
city, country, eyear)

3.4.1. Focus identification
Consider the complete query

select author.name, bindex.isbn,
author.citizenship
from bindex, author, publisher, book
where author.byear >= 1967 and
bindex.subject = ‘Query Processing’
and
author.bplace = ‘Athens’
book.pplace = publisher.city

which tries to retrieve names of authors born after
1967 who have written books on query processing,
who were born in Athens and whose books were
published in the same city where the publisher
resides in. If it is followed by the incomplete one

‘The Theory of Semi-Joins’

The system should be in a position to understand
that, at the representation level, two focuses can be
identified (‘Athens’ and ‘Query Proces-
sing’). Although for the human the implied
focus is obvious, the system may not necessarily
tell them apart if it regards them both simply as
strings. This is an instance of population ambiguity,
which is discussed in subsequent sections.

3.4.2. Focus interpretation
Consider the query

select book.pplace, library.city,
customer.name

from book, library, stock, customer
where book.subject = ‘Query
Processing’ and
stock.quantity = 3 and
book.author = *‘Dewitt’ and
book.pyear >= customer.byear

which tries to retrieve books about query proces-
sing written by DeWitt, the stock quantity of
which is equal to 3 and which have been borrowed
by customers who were born after the book was
published. If it is followed by the request

stock.quantity > 4 and
book.author != *‘DeWitt’

and then followed by
= ‘Codd’

the system should understand that (after both
follow-up requests) the user implies the query:

select book.pplace, library.city,
customer .name
from book, library, stock, customer
where book.subject = ‘Query
Processing’ and
stock.quantity > 4 and
book.author = *Codd’ and
book.pyear >= customer.byear

This is not the only query, however, that could be
considered valid. From the initial complete query,
another completion can be deduced:

select book.pplace, library.city,
customer .name
from book, library, stock, customer
where book.subject = ‘Query
Processing’ and
stock.gquantity = 3 and
book.author = *Codd’ and
book.pyear >= customer.byear

This is an instance of chronological ambiguity. It
stems from whether we interpret a follow-up
request within the context of the last completed
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query (which is the immediately previous one) or
the last issued query (which is the most recent
query whose focus was given by the user and is
enclosing the current one). This is also a matter of
discussion in subsequent sections.

3.4.3. Focus expansion or relocation

Sometimes, it is impossible to identify a focus
within a given one. In this case, the focus should be
expanded or relocated. For example, consider the

query

select library.city, bindex.subject,
library.lname
from book, bindex, library, author,
publisher
where library.lname = ‘Gustav Library’
and
author.bplace = library.city and
book.pplace = publisher.city and
bindex.isbn = 857

which tries to find a book that is available in
Gustav Library, which is published in the same
city as the publisher’s, and whose author was born
in the same city that the library is in. If it is
followed by the requests (in this order)

1. bindex.isbn = 758
2. book.pplace <> publisher.city and
bindex.isbn = 123

then the system would not be able to identify a
sub-focus, since after the first follow-up request,
the focus would have been set to bindex.isbn =
758. The system would need to expand that focus.
Likewise, if the user then issued the incomplete

query
library.lname = ‘Harvard Library’

the system would have to relocate the focus to
reflect this new follow-up request, since neither
narrowing it nor expanding it works.

3.4.4. Additional features

The examples given in the previous sections
concentrated on alterations of the where-clause of
the query. In the following examples, we outline
some additional desirable features.

Condition adding. Often the user wants to refine
the output of a query by adding a new condition.
For example, consider the query

select author.bplace, library.city,
author.citizenship
from library, author
where author.bplace != library.city
and

library.lname = ‘Moffit Library’

which requests authors of books of Moffit Library
who were not born in the library’s city. If it is
followed by the request

and author.bplace = *‘Athens’

the system should identify that the implied
query is:

select author.bplace, library.city,
author.citizenship
from library, author
where author.bplace != library.city
and
library.lname = ‘Moffit Library’ and
author.bplace = ‘Athens’

and set the focus accordingly. An alternative to
this approach would be to state the follow-up
query as

author.bplace = ‘Athens’

i.e., without the keyword and. The system should
then fail to identify a match, realize that this is
another refinement predicate and alter the issued
query in the same way as before.

Projection list expansion. There could be a case
where the user wants to simply expand the
projection list of a query. This can be accom-
plished by issuing a follow-up request consisting
of the attribute to be added. For instance, given
the previous completed query, if the follow-up
request is

author.byear
the system should generate the new query

select author.bplace, library.city,
author.citizenship, author.byear
from library, author
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where author.bplace != library.city
and
library.lname = ‘Moffit Library’ and
author.bplace = ‘Athens’

Keyword-clause alteration. Given the last com-
pleted query above and facing a follow-up request
such as

select author.name, library.lname

the system should modify the target list of the
query and generate

select author.name, library.lname

from library, author

where author.bplace != library.city

and
library.lname
author.bplace

‘Moffit Library’ and
‘Athens’

Condition dropping. There is no implicit way of
achieving condition dropping given our focus
approach. The solution we have come up with is
to add the keyword drop to the framework to
allow the user to drop conditions. For instance, if
the follow-up request to the previous query is

drop author.bplace = ‘Athens’

the system should identify the condition dropping
request and generate the query

select author.name, library.lname
from library, author
where author.bplace != library.city
and

library.lname = ‘Moffit Library’

4. Focus management algorithm

Based on the above concepts, we have developed
and implemented an algorithm to manage the
focus of the system and the operations on it
throughout a user’s exploratory session. Given an
incomplete query, the parse tree under the current
focus is searched exhaustively in a depth-first
manner, until all potential sub-focuses are identi-
fied (identification or interpretation). These are all

subtrees that could be replaced by the tree of the
incomplete query to generate a valid complete
query. If more than one possible sub-focus exists,
the system exploits some heuristics in order to
reach a decision regarding the most promising of
them. This new sub-focus becomes the system’s
current focus. In case no sub-focus can be found,
the system searches the rest of the parse tree that
the current focus resides in, in order to identify a
different focus. This new search of the parse tree
comprises ascending the path that contains the
current focus (expansion), as well as searching the
siblings of the various nodes encountered (reloca-
tion). The ordering in which nodes are checked
provides space for several variations of the
basic algorithm. These variations will be pre-
sented in Section 4.2. If this fails as well, then
the system searches for a focus in ecarlier parse
trees (relocation).

The basic algorithm for focus management is
presented more formally in Algorithm 1 in the
form of a routine, named handleFocus, which
accepts as its unique argument the incomplete
query’s parse tree (Q). Details are analyzed in
subsequent subsections. Some symbols used in the
description are the following:

F : The system’s current
focus.

U(x) : The set of nodes in the
subtree rooted at x.

Io'e : The analogy predicate,

which denotes that two
parse subtrees can replace
each other (Section 4.1).

: Given a set of possible
focuses (.5), this routine
identifies the most
suitable to be matched to
the incomplete query QO
(Section 4.3).

: A routine that ascends
the parse tree from the
position of the current
focus upwards, trying to
find a new focus in other
branches of the parse tree
as suited (Section 4.2).

best(S,Q)

ascend(F)
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: When no focus can be
identified in the current
parse tree, this routine
tries to find a focus in the
parse trees of previously
issued queries (Section
4.4).

extractNewFocus(Q)

Algorithm 1 handleFocus(Q): The focus
management routine
if # o« Q then
return;
else
Ur={u:uec UF),uxQ};
if Ur#( then
F = best(Uy, Q);
else
Z = ascend(Q);
if # = null then
Z = extractNewFocus(Q);
end if
end if
end if

4.1. Syntactic analogy

In this section, we present the definition of
parse-subtree analogy (predicate «), i.e., on the
interchangeability of parse subtrees within larger
parse trees. Based on the examples of Section 3.4,
two parse subtrees are considered syntactically
analogous if one of the following holds:

® The root nodes are of the same type and
correspond to keyword clauses.

® The root nodes are of the same type and are
terminal nodes.

® One of the root nodes corresponds to an empty
syntactic tree and can be expanded to one that is
syntactically analogous to the other root node.

® The root nodes are non-terminal nodes and
cannot be expanded to other nodes, they have
the same number of children, and their children
are syntactically analogous.

Examples of pairs of analogous trees are given
in Fig. 6.

4.2. Variations of expansion/relocation

Ascending the parse tree for focus expansion/
relocation comprises the following steps:

Parent-check: Moving on the path from the
current focus to the root of the parse tree, testing
analogy with the subtrees rooted at the nodes on
that path.

Sibling-check: Testing analogy with the subtrees
rooted at the siblings of the nodes in the focus-to-
root path.

Algorithm 2 ascend(Q): Ascend the parse tree in a
((parent-check) (sibling-check)*)™ fashion
while parent(#)+# null do
x=%
F =par(F),
if # o Q then
return % ;
else
Ur={u:ue UF),ux Q,u#x};
if Uy #( then
F =best(Uy, Q);
return 7 ;
end if
end if
end while
return null;

Different orders in which the execution of these
two steps is interleaved lead to four basic
variations of the ascending algorithm. Their names
and their corresponding regular expressions are as
follows:

Ancestors ((parent-check)(sibling-
check)*)*

Ancestors (parent-check)™* (sibling-check)*

(queue) (queue)

Ancestors (stack) (parent-check)™ (sibling-check)*
(stack)

Trees ((sibling-check)* (parent-
check))*™

Both the second and third variation test all of the
siblings after all the nodes on the focus-to-root
path have been tested, but differ in the data
structure in which the siblings of the nodes tested
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Fig. 6. Different cases of syntactically analogous parse trees. (a) Analogous keyword clauses. (b) Same-type terminal nodes. (c) Branch

expansion. (d) Non-expandable non-terminal nodes.

while ascending are placed: they may be stored in a
queue, thus giving precedence to the nodes
appearing at the lower levels of the parse tree, or
they may be stored in a stack, thus giving
precedence to the nodes appearing at the higher
levels. All four versions of the ascending algorithm
are presented textually in Algorithms 2-5 and
schematically in Fig. 7.%

As a basis case, we also consider a fifth
algorithm where each new incomplete query
initiates a search right at the root of the previous
complete query’s parse tree. This version disre-
gards the notion of focus altogether. It is studied
only for comparison purposes and completeness.

4.3. Disambiguation

Ambiguity is clearly a major problem that such
an automatic query completion algorithm faces. A
system that supports conversational querying must
try to disambiguate a query. Otherwise, the system
would not be helpful to the user; for example, if
the user had to go through several possible

“The only new function that appears in the algorithms is
parent, which is nothing more than a routine that returns the
parent of any given node of the parse tree. It returns null if the
node is the root.

completed queries to identify the correct one, then
he or she would fall back to an interrupted
exploration model, which is what we are trying
to avoid.

There are two basic forms of ambiguity that
may appear:

Algorithm 3 ascend(Q): Ascend the parse tree in a
((sibling-check)™ (parent-check))™ fashion
while parent(7)# null do
xX=7,
T :=parent(%);
Ur={u:ue UF),ucx Q,u#xy;
if Uy#0 then
F =best(Uy, Q);
return 7 ;
else
if # o Q then
return 7 ;
end if
end if
end while
return null;

Algorithm 4 ascend(Q): Ascend the parse tree in a
(parent-check)t (sibling-check)* (queue) fashion
g:=new Queue;
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Fig. 7. The four basic variations of trying other nodes in the parse tree as possible focuses. The numbers indicate the time points at
which the various nodes are tested. (a) ((parent-check) (sibling-check)*)*, (b) ((sibling-check)*(parent-check))t, (c) (parent-
check)* (sibling-check)* (queue), (d) (parent-check)t (sibling-check)* (stack).

while parent(7)# null do
xX=%,
F =par(F);
if # « Q then
return 7 ;
else
Ur={u:ue UF),u#x};
store Uy in g;
end if
end while
while ¢ not empty do
x:= remove from g;
Ul={u:ue Ux),u x 0};
if U?#( then
F =best(U4, Q);
return 7 ;
end if
end while
return null;

Population ambiguity: This stems from the fact
that more than one possible completion for a

query may exist. For example, if the incomplete
query is just an arithmetic value there could be
several such values appearing in a previously
issued complete query. Which one is meant by
the user?

Algorithm S ascend(Q): Ascend the parse tree in a
(parent-check)™ (sibling-check)* (stack) fashion
s:=new Stack;
while par(# )+ null do
Xx=%;
F =par(F);
if 7 o Q then
return .7 ;
else
Ur={u:ue UF),u#x};
push Uy in s;
end if
end while
while s not empty do
x:=pop from s;
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Ul={u:ue UXx),uxQ};
if U #0 then
F =best(U3, Q);
return 7 ;
end if
end while

Chronological ambiguity: This appears after at
least one incomplete query has been completed
and sent to the database. If a subsequent
incomplete query is issued, which query should
be modified: the last completed query or the last
query issued in complete form?

We treat the two types of ambiguity in separate
subsections.

4.3.1. Population ambiguity

To handle population ambiguity, we have
developed a mechanism that uses various criteria
to identify the most promising choice among many
alternative completions. This mechanism is im-
plemented in routine best and its performance can
dramatically affect the quality of the system’s
solutions. In particular, we have identified several
quality factors against which each possible solution
is scored. The solution that has the greatest score is
returned as the winner. The quality factors
identified thus far are the following:

1. Distance from previous values. The closer a
value is to a previously appearing value, the higher
the probability that it references that value. For
instance, if two possible values appear in the
previous completed query, 0.4 and 1000, and the
incomplete query is the value 0.8, then it is highly
likely that the incomplete query is referring to 0.4.

2. Chronological information. The older a
possible solution is (i.e., the earlier the construct
has been introduced to a query), the less likely that
it is the one referred to by the user. In other words,
if a value has remained unchanged for many
queries it is likely that it is a constant for the
current exploration by the user and is not to be
changed.

Algorithm 6 best(S, Q): Possible solution selection
based on quality factors
for all p € S do

score[p]:=0;
for all quality factor do
score[p] = score[p] + score(p, O, quality-
factor),
end for
end for
return p : max,{score[p]};

3. Histogram information. The system can
create a usage histogram for referenced values.
The semantic category of values that appears to
have the most references is most likely to be
referenced in the future as well.

Clearly, additional quality factors that may be
appropriate can be used as well. In the current
implementation of the algorithms, the distance
from previous values is the only one used.

Algorithm 6 gives an algorithmic description of
the overall approach. Routine best accepts as
arguments the collection of possible solutions (.S)
as well as the incomplete query’s parse tree (Q). It
then assigns a score for each quality factor,
accumulating the scores for each possible solution
in a linear array (score/]). The index of the array
with the maximal score corresponds to the most
promising solution.

A key issue that arises in the definition of several
quality factors is what the exact candidate set of
solutions is. For value difference, for example,
should one consider all numbers the same? For
histogram information, how should the semantic
categories be defined? Although the algorithms are
domain independent (i.e., they do not depend on
the database schema to work properly), their
effectiveness increases if knowledge about the
values appearing in the database is used. We have
therefore enhanced the algorithms with the ability
to take into account semantic enhancements of the
typing system of the database. In particular, the
algorithms assume the existence of trees of
refinements (called semantic trees) of the primitive
data types used. An example of such refinements is
depicted in Fig. 8. Each value is characterized by a
general data type (e.g., integer) as well as a more
refined semantic type (e.g., publication year).
These trees are now templates for further context
that the matching algorithms can take advantage
of and limit the choices of value matching. This is
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Fig. 8. Semantic enhancements of the basic data types.

better understood through an example. Consider
the following complete query

select book.author,

in _stock.lib name, customer.cname

from customer, book, in_stock

where customer.byear < = 1946 and
book.pyear !'=1993 and
in_stock.quantity = 2 and
book.title = ‘Multikey Retrieval’

and the two follow-up requests 4 and 1947. With
the semantic trees, both can be interpreted
unambiguously. The first one refers to a quantity
value, while the second refers to a birth year.
Furthermore, consider a subsequent follow-up
request 1955. Although this value belongs to
two semantic categories, the request can still be
interpreted unambiguously, because a context has
already been established under ‘birth year’ from
the previous query. Since the value is given
without further annotations, it should be clear
that the intended meaning is to replace the value
1947. Given above is an instance of the general
algorithm we have developed for handling context
in semantic trees much like the way it is done in
parse trees.

4.3.2. Chronological disambiguation

In Section 3.4.2 we introduced the concept of
chronological ambiguity. In preliminary experi-
mentation with the system, we found that this
issue was completely a matter of personal percep-
tion, with no clear answer on what humans
perceive as proper. People seem to be divided into
three categories: those who give precedence to

changing the last issued query, those who give
precedence to changing the last completed query,
and those who are aware of the ambiguity and
accept both as plausible.

Fortunately, our experiments showed that hu-
mans are at least consistent and do not switch
categories depending on the situation. Therefore,
we have developed an algorithm that takes
advantage of this consistency, learns the inclina-
tion of the user and interprets queries accordingly.
In particular, initially the algorithm assumes that
both interpretations are valid and always returns
to the user asking for what he/she means by the
incomplete query. After a few iterations, if the user
shows a consistent preference (as is typically the
case), the system ‘locks’ onto it.

The above is valid as long as the number of
follow-up requests and the time since the initi-
alization request was given remain short. If many
queries have been given or a long time has passed
(where ‘many’ and ‘long’ are defined through
certain thresholds we have experimented with),
then the user more or less ‘forgets’ what the
initialization request was and concentrates on the
last completed query. The overall chronological
disambiguation algorithm is presented in
Algorithm 7.

4.4. Searching in earlier parse trees

In the basic focus management routine (Algo-
rithm 1) there is the possibility that no focus can be
extracted from the parse tree containing the
current focus. In this case, a new routine is called
which searches through the system’s repository of
previously issued queries, trying to identify a focus
within each of them. The algorithm is quite simple.
It searches chronologically through the complete
queries’ parse trees, and on the first parse tree
where it can identify a focus, sets this portion of
the parse tree as the system’s current focus. The
algorithm is presented in Algorithm § as a routine,
named extractNewFocus, which takes as its single
argument the incomplete query’s parse tree. The
only point worth mentioning about the routine is
the existence of set #, which denotes the system’s
repository of previously issued and completed
queries.
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Algorithm 7 disambiguate(): The basic
chronological disambiguation algorithm
if the user is characterized then
no change
else if the time that has passed from the last issued
query or the number of follow-up request
are beyond the limits then
set the user’s preference on the last completed
query
else if we are beyond the time limits in which the
user should be characterized then
set the user’s preference on his current
inclination
else
present both alternatives and ask the user to
evaluate them
end if

Algorithm 8 extractNewFocus(Q): New focus
extraction
for all s € Z do
Us={u:ue U(s),u x Q};
if Uy# 0 then
F =best(Us, Q);
return 7 ;
end if
end for
return null;

5. Implementation and experimentation

We have implemented all versions of the
algorithm and have experimented with them using
human subjects. In the following sections, we
describe the details of the experimental setup and
the results.

5.1. Restrictions

Although our overall approach is valid for any
textual language, at this point the implementation
of the algorithms is restricted as follows:

® The query language is a core subset of SQL, in
particular conjunctive queries. Expanding the

system to the full SQL language should present
no major problems.

o The implemented parser generates only unam-
biguous parse trees. This is in accordance with
the representation specifications presented in the
beginning of Section 3.

® The system accepts only one change at a time,
i.e., every follow-up request consists of only one
alteration to the original query.

5.2. Measures of effectiveness

To measure the effectiveness of our algorithms,
we built upon methodologies that have been used
in query language comparisons [24] and general
information retrieval [25].

Let U be the set of all possible completions a
user implies by issuing a follow-up request to an
initializing query. Let S be the possible comple-
tions the system identifies. From these two sets
stem two important metrics for the effectiveness of
information retrieval systems, namely precision
and recall [25]. Recall is defined as the proportion
of relevant answers that are retrieved, i.e., |[UN
S|/|U|. Precision is defined as the proportion of
retrieved answers that are relevant, ie., |UN
S|/IS| (see also Fig. 9(a)). An ideal system has
recall and precision values of 100%.

For a system of Conversational Querying,
precision and recall over all possible interpreta-
tions of queries a user may pose may not be all
that interesting. In such a system there are two
critical concerns:

® absolute soundness: if the system determines that
an incomplete query is uniquely interpretable,

Ug

uos U,0S,

S S,
@ (b)

Fig. 9. Performance metrics. (a) Precision (|JUNS|/|U|) and
recall (JUNS|/|S]). (b) System-singular (|S; N U;|/|S:]) and
user-singular (|S; N U;|/|U,|) queries.
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then this is indeed the case for the user as well
and the interpretation is what the user has in
mind, i.e., precision and recall are 100% in all
such cases;

® close to absolute completeness: if the user poses
an incomplete query that he/she thinks is
uniquely interpretable, the system does the same
in the great majority of cases as well.

Based on the above, we have introduced two
versions of the notion of singularity. Let U; be the
set of queries the user thinks should be uniquely
interpreted (user-singular queries) and S the set of
queries the system interprets uniquely (system-
singular queries). The system’s singularity is defined
as |S1 N U,yl/|S1], i.e., it measures the fraction of
times the user agrees with the system’s interpreta-
tion that a query is uniquely interpretable. Like-
wise, the wser’s singularity is defined as
|S1 N ULl/|U,l, ie., it measures the fraction of
times the system matches the user’s ability to
uniquely interpret a query. For a system to be
successful, the following should hold:

® absolute soundness: system’s singularity should
be exactly equal to 1, and so should be precision
and recall for queries in Sy;

® close to absolute completeness: user’s singularity
should be as close to 1 as possible, and so should
be precision and recall for queries in Uj.

The assumption here is that the system inter-
preting an ambiguous query uniquely and sending
it off for execution is harmful, whereas the system
occasionally asking for help when things are clear
for the user is acceptable (see system architecture
in Fig. 4) .

5.3. Experimental methodology

The participants in our experimentation frame-
work consisted of eleven persons of the Depart-
ment of Informatics and Telecommunications at
the University of Athens. Of these participants,
one had a Ph.D. in Computer Science, two were
Ph.D. candidates and the remaining eight were
undergraduate Computer Science majors with
various degrees of experience in SQL.

Q /_' Conversational Querying Test Shell

W Ad-hoc History

Last Issued Query

select book.pyear, book.subject, book.author

from book, customer

where book.author != 'Kim' and
author.bplace = customer.bplace

User input
‘ book.author !="Smith’

Proposed replacement (alternative 1 of 1)
} book.author !="Smith’

M Correct

i

Fig. 10. The Graphical User Interface used for our experi-
mentation.

%DDDA

The participants were presented with a graphical
user interface as shown in Fig. 10.° In the topmost
part of the window, one could see the last complete
given SQL query. In this particular example, that
query selects customers, book subjects and author
names of books written by authors other than
‘Kim’ who share the same birthplace as the
customers that borrowed them. In the middle part
of the window, one could see the user’s input, i.e.,
the modification to the original query the user
wants to perform. In the bottom part of the
window, one could see the system’s response, that
is, its perception of what the user means. More
specifically, the system can identify only one
possible modification to the original query (the
‘Alternative 1 of 17 part of the system’s response)
and waits for the user to acknowledge whether the
proposed modification is the intended one or not
(the ‘Correct’ check-box next to the system’s
response). This way, the success or failure of the
system could be measured. We should also note
that, since our interest was only at the query

*Note that this is an interface for experimentation and not
necessarily for use in actual conversations with a DBMS.
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perception level, there was no real DBMS under
this interface during experimentation.

We investigated sequences of incomplete queries
that corresponded to the following alterations in
the focus: continuous narrowing, continuous expan-
sion, narrowing followed by expansion, expansion
followed by narrowing, relocation, and ad hoc.® For
the first five, the sequences were synthetic ones that
we had pre-defined as follows: complete queries
were generated randomly over a fixed database
schema, each followed by a series of random
incomplete queries. Of these, we elaborate briefly
on the last one only, as the rest are self-
explanatory. Relocation experiments were con-
ducted in three forms. In the first one, we
attempted to alter whole qualifications appearing
in the query. In the second one, we provided
follow-up requests consisting of changes in values
appearing in the initialization request. In the third
one, we experimented with the algorithms in bigger
examples consisting of more qualifications and
follow-up requests for each complete query. The
objective of these experiments was to test the
semantic and chronological disambiguation pro-
cedures.

For the above experiments, the participants
were to interact with the system and decide
whether the prespecified incomplete queries were
accurate or ambiguous, according to their opinion.
The sequence of operations they had to go through
for each query was the following:

e Submit the (complete or incomplete) query

e Call the matching algorithm

e Evaluate the returned interpretations with re-
gard to whether or not they were considered
correct (important for precision).

o Identify further interpretations if the participant
could think of more (important for recall).

In ad hoc experimentation, we asked the
participants to use the system in any way they
desired, i.e., issue any sequence of queries they
wanted. Although not having any actual interac-
tion with data could have degraded the quality of
the queries, the results seemed not to be affected.

SFor a summary of the queries used, visit http://
www.di.uoa.gr/stratis/queries.

A final issue to touch upon is the alternative of
performing ‘Wizzard of Oz’ experiments instead of
the experimental methodology we decided to
follow. Such tests, although they might be helpful
in providing a better understanding of what is
expected from the system by the user, are not
immediately applicable due to the real-time nature
of the application we want to test. Interaction,
when through a SQL shell, cannot be emulated by
a human given the millisecond response time
expected by a database system.

For all types of experiments, none of the
participants knew how the internal matching
algorithms worked. They were only asked to grade
the system’s behavior. During a user session,
statistics were collected based on which the
aforementioned metrics (precision, recall, singu-
larity) were calculated.

5.4. Results

5.4.1. Overall performance

In Fig. 11, we present the overall performance of
the algorithms in terms of precision and recall. The
figure depicts each algorithm’s average perfor-
mance for these measurements over all users and
all queries. All algorithms behave quite well.
However, we see that, on the average, the Trees
algorithm has distinctly the best performance with
regard to the measures of effectiveness. The
intuition behind this result is as follows: people
do not seem to take sudden leaps of the conversa-
tional focus, which would result in a relocation of

O Precision B Recall
099 F -

0,98 - - - - - - - oo

Precision

T T T T
Ancestors Ancestors Ancestors Trees New Search

Queue Stack
Algorithm

Fig. 11. Overall performance of the algorithms in terms of
precision and recall.
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the focus to a distant area of the syntactic tree. The
Trees algorithm first looks at siblings of the
current focus, that is, nodes at the same level in
the tree. These seem conceptually closer to the
current focus than its parent which is what all
other algorithms look at first.

It is interesting to spend some time on the
discrepancies between user expectations and the
completed queries the system proposed. For the
most part, there was no consistent discrepancy
other than what can be attributed to the inherent
behavior of the algorithms. For instance, in
relocation experiments, the users were consistent
in noting the Trees algorithm as the best one and
ranking the other algorithms as worse. The cases
where the Trees algorithm was wrong, in terms of
its precision and recall metrics, were the ones in
which multiple possible completions of the same
semantic category were available. Consider for
example a query containing two year dates
classified as publication years where the focus has
been put on one of those years; if a follow-up
request was made with an additional year date
(and the system was not being used in an ad hoc
fashion) some users thought it was equally possible
that the follow-up request referred to either of the
two years. Other than cases like the one just
described, there was no repeatable discrepancy
between the users’ expectations and the system’s
decisions.

5.4.2. Time and space costs

In this section, we present the time and space
cost of the algorithms. The time cost is the actual
time the algorithm needed to interpret a follow-up
request, while the space cost is the number of steps
(i.e., movements within the parse tree) the algo-
rithm needed for the interpretation. The number
of steps is an approximation of space since it
corresponds to the length of the traversal the
algorithm will make in order to reach a new focus,
during which analogous information is main-
tained. Both of these measurements should remain
low. As far as time measurements are concerned,
they appear to remain similar for all algorithms,
while space shows some difference. As expected,
the new search algorithm almost always needed
more steps to reach a new solution, something that

stems from the fact that each time it searches the
whole parse tree. For the remaining algorithms,
their behavior is comparable, with the Ancestors-
Stack and Ancestors-Queue algorithms almost
constantly taking fewer steps. This behavior is
depicted in Figs. 12(a) and (b).

Since the algorithms’ performance in terms of
time and space appears to be relatively invariant
and the Trees algorithm shows superior effective-
ness, we concentrate on that algorithm for the rest
of our result presentation.

5.4.3. Performance in singular queries

In Table 1, we present the performance of the
Trees algorithm in the cases of system-singular and
user-singular queries (see Section 5.2 for the
definition of singularity). As mentioned earlier,
the goal is for a system to have values equal to 1
for system singularity and very close to 1 for user
singularity, and similarly for precision and recall.
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Table 1
System’s performance in singular queries

Singularity Precision Recall
System 0.996 0.987 0.987
User 0.987 0.984 0.978

We see that in both cases the results are very close
to that goal, essentially proving the effectiveness of
our approach and, more generally, the ability to
develop sound systems that support Conversa-
tional Querying.

5.4.4. Effect of focus alteration

The Trees algorithm’s behavior for singular
queries in all types of query sequences is tested in
Figs. 13(a) and (b). In ‘oscillation’ experiments
(narrowing, expansion, narrowing-expansion, and
expansion-narrowing), the algorithm yielded con-
siderably high results.

An interesting result is that ad hoc queries
almost always yield better results than the other
types of queries. The reason is that the ad hoc
queries the users issued were a combination of
focus narrowing and relocation queries, with a
bigger concentration of relocation ones. Since the
performance is high in both of these categories, the
overall performance in their combination remains
high, and the overall statistics actually elevate it to
better scores.

5.4.5. Non-user-singular solutions

There were some cases where the issued query
was considered ambiguous by the participant.
These, however, were few, which is why we present
only one summarizing table. Note that in these
cases, system singularity had to remain as low as
possible. That would mean that the system would
not falsely regard an ambiguous input as one that
can be interpreted uniquely. Precision and recall,
on the other hand, had to remain high in the sense
that system and user perceive this ambiguity in the
same way. In most cases, our system succeeded in
identifying the ambiguity, yielding high measure-
ments in precision and recall as well. The results
are shown in Table 2.
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Fig. 13. Performance for system- and user-singular queries. (a)
System performance by focus alteration type, regarding system-
singular queries. (b) System performance by focus alteration
type, regarding user-singular queries.

Table 2
System’s performance in ambiguous queries

Singularity Precision Recall

System 0.009 0.997 0.995

5.4.6. User characterization

The focus of this section is on the increase in
effectiveness our algorithm achieves by trying to
characterize the user as one giving precedence to
the last issued or the last completed query. Figs.
14(a) and (b) depict the values of singularity,
precision, and recall before and after the user is
characterized based on his/her behavior on three
follow-up requests and interpretations. We see
that the system’s performance increases substan-
tially after user characterization. Note that we



54 Y.E. loannidis, S.D. Viglas | Information Systems 31 (2006) 33-56
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Fig. 14. Performance gains from user characterization. (a)
Performance gain earned by characterizing the user for system-
singular queries. (b) Performance gain earned by characterizing
the user for user-singular queries.

experimented with ‘locking’ a user’s preference
after several different numbers of queries and 3
was the best trade-off point between result quality
and time spent before characterization.

5.5. Discussion

There are several observations from the overall
experimentation.

1. Once agreement is reached between user and
algorithm, performance is always high. In most
cases, once the user and the algorithm agreed on
the singularity of an interpretation, the system
almost always provided the right one.

2. Some algorithms are better than others. In
relocation experiments, some algorithms

yielded constantly better results than the rest.
The Trees algorithm is the one that had the
overall better performance with efficiency mea-
sures remaining constantly over 96-97%. A
close competitor is the Ancestors-Stack algo-
rithm. The latter had better spatial perfor-
mance, although the former was in close
proximity in that sector. Time seems to play
no significant role.

3. Ad hoc queries tend to be relocation queries. In
ad hoc experimentation, the users initially posed
a query, and then started fine-tuning, it chan-
ging the different constants that appeared, thus
relocating the query focus.

4. Focus is the way to go. The new search algorithm
was used as a basis for comparison of our
strategy. In some cases, this algorithm has
better performance than some of the other
ones, but in most cases it is worse. Singularity is
constantly lower for this algorithm when
compared with the focus-based ones.

S. People seem to be divided in categories. Each
participant showed a preference that was
constant throughout the experiment. More
specifically, of the 11 participants, 4 showed a
constant preference towards the last completed
query, 6 towards the last issued query, while one
seemed to give equal preference to both alter-
natives.

An important issue related to what we have
presented stems from the potential generalization
of our approach from conjunctive queries, like the
ones we have experimented with, to full OLAP-
style queries, which are not going to be as small as
the ones we have presented (indeed, they could
span multiple pages). In such a scenario, the
concept of identifying a focus through the use of a
parse tree may not be so straightforward. We
expect, however, that the queries in such an
environment will be formulated through some
user interface that is more elaborate than the one
we used in our experimentation. Under these
circumstances, additional information becomes
available, such as even ‘cleaner’ focus identifica-
tion through the use of parts of the interface as
hints to the system. For instance, in the visual
examples presented in Figs. 2(a) and (b) there is a
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clear hint of which portion of the query is to be
changed (the portion corresponding to the area in
the rectangle.) Identifying focus mappings in
complex OLAP scenarios and more elaborate user
interfaces present challenging directions for future
work.

6. Conclusions and future work

We have presented an effective mechanism that
can be used as a starting point for the implementa-
tion of Conversational Querying in contemporary
databases. We have mapped the problem of
automatic completion of incomplete queries to
the problem of finding corresponding structures in
a parse tree. The key concept was that for any
given parse tree, a specific subtree has to be
identified that will act as the focus of any
interaction, i.e., the context of the conversation
between the user and the system. We have
proposed and evaluated several algorithms that
can be used for the basic focus operations, namely
interpretation, expansion and relocation. Given the
ever increasing number of database users that need
to interact with a DBMS’s front-end in an
exploratory way, we believe that the work we
presented provides a foundation for the develop-
ment of a more flexible user-interface that would be
helpful to both naive as well as knowledgeable users.

The future work we plan to undertake mostly
stems from various aspects of the mechanism we
have presented. The first step in a more concrete
evaluation of our strategy is the conducting of a
more comprehensive experiment involving a large
number of human subjects, ad hoc interaction
between the user and the system, realistic queries
and large schemes. A second step is the further
exploitation of domain-specific and semantic
knowledge. The way to handle the underlying
database schema in order to extract all the
appropriate semantic information that can be used
to exploit this domain-specific knowledge is
another issue. Chronological ambiguity is also an
issue. People’s opinions seem to be divided on the
subject, although the limits between the two
categories are vague. Further exploration on this
matter has to be carried out.

Finally, the most ambitious part focuses on
incorporating our strategy into a visual query
system. While some systems are already developed,
our strategy, if successful, will provide additional
functionality and processing speed of the visual
queries. It will not be necessary for each new visual
query to be created from scratch from the query
graph, since one can act on alterations of the
textual representation of the visual query, which,
as was shown in Section 5.4.2, is a really fast
process. Moreover, additional information (such
as spatial information) can be used in order to
improve the system’s performance.
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