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Abstract-This paper presents the results of an experimental evaluation of the performance of three main 
algorithms for transitive closure: Seminaive, Smart and Blocked Warren. The algorithms have been 
implemented using a variety of join methods (block nested-loops and hash-join), disk-based and 
memory-based data structures and buffer replacement strategies. The algorithms were tested on several 
graphs, ranging from regular trees to random acyclic graphs to random general graphs. Contrary to what 
several previous studies have found, our experiments indicate that Seminaive is almost always superior 
to Smart. In most cases, Seminaive exhibited inferior performance to Warren, but surprisingly, there are 
some types of graphs where Hocked *Warren generates more dupiicates than Seminaive and is therefore 
slower. Finally, for the common case where a transitive closure query involves a selection, Seminaive can 
take advantage of the constants in the selection, whereas Blocked Warren and Smart cannot. Our 
experiments indicate that the percentage of the graph nodes that need to be selected for Blocked Warren 
to be superior to Seminaive is rather large (for all graphs tested, it must be greater than l/3). This implies 
that for the majority of transitive closure queries with selection, Seminaive is the preferred strategy. 
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1. INTRODUCTION 

Graphs offer a very useful data abstraction that captures binary relationships defined on a set of 
elements. They are very widely used to represent hierarchies (e.g. part hierarchies, genealogical trees 
or management hierarchies) and networks (e.g. computer networks, production lines or semantic 
networks). Many important questions that one may want to ask of data organized in a graph 
essentially require the computation of the transitive closure of the graph. For example, consider 
an airline reservation system that uses a graph to capture the network of cities where all airlines 
fly, together with the prices of each flight. Questions of interest include “the cities reachable from 
Madison on United”, “the cheapest fair on flights between San Francisco and Munich” or “the 
pairs of cities that are connected with flights of the same airline”. Answering any of the above 
queries requires computing (part of) the transitive closure of the graph (network) of flights. 
Conventional relational query processing technology cannot perform such computations without 
resorting to the general processing capabilities of a programming language, since transitive closure 
is not expressiiiie in reiationai aigebra ii]. To overcome this, severai eariier systems have extended 
their query language with special transitive closure constructs [2], while many systems currently 
under development support linear recursion, which captures transitive closure as a special case. This 
paper describes the implementation and performance evaluation of several transitive closure 
algorithms for disk-resident graphs. 

The problem of computing the transitive closure of a directed graph in a disk-based environment 
has received considerable attention in the past few years. Several papers have appeared that propose 
new algorithms [3-51, discuss disk-based implementation techniques for old algorithms and study 
their performance [6-91, investigate parallel evaluation techniques [lo, 111, and study theoretical 
optima and bounds [12]. Despite these many references, several questions regarding transitive 
closure evaluation remain unanswered. This paper belongs to the second category mentioned 
above, i.e. it is an investigation of alternative implementations of known algorithms and an 
evaluation of their performance. The results that it presents complement those of previous studies 
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and offer new insights on how the available algorithms should be implemented for improved 
performance. The contributions of the paper are in the following directions: (a) join method, data 
structure and buffer management alternatives for the implementation of Seminaive and Smart, (b) 
effect of data characteristics on the behavior of algorithms and (c) algorithm performance in the 
presence of selections. We motivate each one of these directions below. 

(a) Implementation alternatiues: The importance of studying fixpoint evaluation algorithms, 
i.e. Seminaive and Smart, when used for the specialized problem of transitive closure 
computation lies in their generality. Although specialized algorithms like Blocked Warren have 
been shown to perform better than Seminaive [6], they are not applicable to more general forms 
of recursion. Studying the implementation and performance characteristics of the above two 
algorithms on the specific problem of transitive closure should offer useful knowledge about 
their behavior in the general setting. This paper investigates several implementation alternatives 
for them, studies their performance trade-offs, and concludes with suggestions regarding which 
one should be adopted and how it should be implemented. Several of the previous studies have 
adopted a single implementation of each algorithm, which was not necessarily the most 
advantageous one, while others have focused on introducing novel techniques and studying 
their effect without trying to gain a more global perspective. 

(b) Data characteristics: The complexity of the transitive closure operation makes it difficult 
to identify the data characteristics that affect the performance of alternative algorithms or the 
precise nature of their effects. To the best of our knowledge, no previous study has studied 
this issue in any detail. Although some studies have supported their conclusions by extensive 
experiments that involved diverse sets of graphs, efforts to make the relationship between data 
characteristics and algorithm performance explicit have been incomplete. This paper moves in 
the direction of filling this gap and provides evidence that no algorithm is universally superior, 
i.e. for any particular algorithm there are graphs on which the algorithm is the most efficient. 

(c) Selections: It is expected that most often the transitive closure operation will be 
performed in combination with a selection. This introduces a new dimension in comparing 
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expected, in the presence of very selective operations, the latter perform better than the former. 
On the other hand, the former usually perform better than the latter when no selection is 
present. There has been no effort to compare the algorithms over the whole range from highly 
selective to non-selective queries. This paper presents the results of such an investigation and 
identifies cross-over points for the performance of the two types of algorithms. 

The rest of this paper is organized as follows. Section 2 provides some terminology and describes 
three algorithms that were used in the experiments. Section 3 contains a description of the 
implementation of the algorithms, together with our decisions regarding the available alternatives 
for various aspects of each one. Section 4 describes the testbed used for our experiments, defining 
the parameters of the algorithms and the graph characteristics on which we focused. In Sections 
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transitive closure of trees, the full transitive closure of non-tree graphs, and a selected part of the 
transitive closure of graphs, respectively. In each case, we present the general trends and also 
analyze the effects of the interesting parameters on performance. Section 8 contains a comparison 
of our results to those of related studies. Finally, Section 9 provides some conclusions and 
directions for future work. 

2. TERMINOLOGY AND ALGORITHMS 

2.1. Terminology 

We denote the initial binary relation by R, and its transitive closure by T. The first attribute of 
a binary relation is called the source and the second one is called the destination. If an arc (A, B) 
appears in R, then B is a successor of A. If an arc (A, B) appears in T, then B is a descendent of A. 

The symbol 0 indicates the composition of two binary relations, i.e. an equality join involving 
the second attribute of the first relation and the first attribute of the second relation followed by 
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a projection on the non-join columns. For example, given the binary relations X and Y with 
columns (a, b) and (b, c), respectively, then 

x o y = %,C~Xbyy. 

Since it often helps to think of a binary relation as a directed graph rather than as a collection 
of tuples, we frequently refer to relations in terms of a directed graph rather than as tables of values. 
The source and destination values comprise the set of nodes in the graph, and the tuples (A, B) 
correspond to the arcs. Let S be a set of paths in the graph such that, for every pair of nodes in 
the graph, S contains the shortest path between them. That is, S = (p]A and B are nodes in the 
graph and p is the shortest path between A and B }. The length of the longest path in S is the depth 
of the graph. 

We use R2 to denote RoR, i.e. the result of composing R with itself. That is, R* contains arcs 
that correspond to paths of length two in the original graph. The above can be generalized to 
arbitrary powers of R. The transitive closure T of the binary relation R is equal to 

T= OR’. 
I=1 

That is, T contains precisely the arcs (A, B) such that a path exists from node A to node B in the 
original relation R. If during the computation of T an arc (tuple) is generated more than once, the 
second time this happens, it is called a duplicate arc (tuple). 

2.2. Algorithms 

In this study, we have focused our attention on three algorithms: Seminaive, Smart and Blocked 
Warren. We briefly describe them in the next subsections. 

2.2.1. Seminaive. The Seminaive algorithm has been formally introduced by Bancilhon [13] as 
an algorithm to compute the fixpoint of any recursive Horn clause, not just transitive closure. The 
algorithm had been used even before its formal specification [14, 151, and since then it has been 
studied by several other researchers as well [3,5,7,8]. Pseudocode for Seminaive appears in Fig. 1. 
The algorithm proceeds in iterations. It uses a relation AT to contain the new tuples that are 
produced in each iteration (new in the sense that they have not been produced in any previous 
iteration). In graph terms, for all i, at the beginning of the ith iteration, AT contains an arc (A, B) 
if the shortest path between A and B in R has length i. The algorithm stops when AT becomes 
empty. Clearly, if d is the depth of the graph that corresponds to R, Seminaive requires d iterations 
to terminate. 

Note that, when the graph is acyclic, duplicate elimination is important only for efficiency, not 
for termination. Termination is guaranteed even without applying the difference operator in line 
4 of Fig. 1. Even efficiency alone is enough to render duplicate elimination mandatory in most cases, 
however. This has been discussed in the past [6] and will be confirmed in Section 6 as well. In 
contrast, when the graph has cycles, duplicate elimination is important for both efficiency and 
termination. 

Seminaive is easily adapted to a selection query when the selection is on the source, i.e. when 
the descendents of some specific nodes are requested. One only needs to apply the source selection 
on the tuples that initially populate AT and T. Otherwise, Seminaive remains unchanged and 
correctly computes the selected transitive closure. If the selection is on the destination, i.e. when 
the ancestors of some specific nodes are requested, one can still use the above algorithm, but the 
composition in line 4 of Fig. 1 must be modified to RoAT. 

1 AT=R 

2. T=R 

3. while (AT*01 ( 
4. AT= tAToR)-T 
5. T=TuAT) 

Fig. 1. The Seminaive algorithm. 

IS 17/1-F 
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1. 

2. 
3. 
4. 

5. 

AT=R 
T= R 
whrle (AT* 811 

AT = (AT. AT) -T 
T= TvATu(AToT)l 

Fig. 2. The Smart algorithm. 

2.2.2. Smart. The Smart algorithm has been independently proposed by Ioannidis [3] and by 
Valduriez and Boral [5]. Like Seminaive, it is an algorithm for the computation of the fixpoint of 
any recursive Horn clause, and it has been studied by several researchers [3,5-93. Pseudocode for 
Smart appears in Fig. 2. The algorithm proceeds again in iterations. Unlike Seminaive, however, 
AT participates in two compositions in each iteration, one with itself and one with T, the 
accumulated result at that point. Moreover, for all i, at the beginning of the ith iteration, AT 
contains an arc (A, B) if the shortest path between A and B in R has length 2i-‘, and T contains 
an arc (A, B) if the shortest path between A and B in R has length less than 2’. If d is the depth 
of R, then Smart requires rlog,(d + l)] interations to terminate. Although Smart requires fewer 
iterations than Seminaive, this is done at the price of having more expensive join operations and 
producing more duplicates at each iteration. Details about this trade-off are studied in Sections 
5 and 6. 

Unlike Seminaive, Smart cannot take full advantage of selections. The best that can be done is 
to fully compute R2’ for all necessary powers, i.e. to compute AT for all iterations until termination, 
and then make use of the selection as in Seminaive. Although this approach is more efficient than 
computing the complete transitive closure, it is still likely to be less efficient than Seminaive. 

2.2.3. Blocked Warren. The Warren algorithm has been proposed by Warren [16] as a 
modification to Warshall’s algorithm [ 171 for the computation of the transitive closure of a directed 
graph represented as an adjacency matrix. Warren’s algorithm requires two passes through the 
adjacency matrix, instead of the single pass of Warshall’s algorithm, but has been proved to be 
more efficient in general. 

Agrawal and Jagadish [6] have proposed the Blocked Warren algorithm, which is a further 
modification of Warren’s algorithm that uses lists of descendent nodes instead of bit vectors and 

/*First Pass */ 

for each row partition 

for j=l tOib-1 

for i=ibtOi, 

if (i,j) exists 

/*Process off-diagonal block in column-order*/ 

Add descendent list ofj to that of i 
for j= ib to i, /*Process lower triangle of diagonal block in column-order */ 

for i=j+ I to;, 
if (i,jlexists 

Add descendent list of j to that of i 

/*Second Poss */ 

for each row partition 

for j = i, to i, 
fori=i,toj-1 

if C(j) exists 

/*Process upper triangle of diagonal block in column-order*/ 

Add descendent list of j to that of i 
for j = i,+ 1 to n 1 *Process off-diagonal block in column-order*/ 

for i=i,toi, 

if (i, j) exists 

Add descendent list of j to that of i 

Fig. 3. The Blocked Warren algorithm. 
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reduces disk accesses for disk-resident binary relations. It achieves this by processing a collection 
of nodes together, as a block, rather than one node at a time. These groups of nodes are called 
diagonal blocks and each node is part of exactly one diagonal block during each pass of the 
processing. Specifically, several consecutive nodes in the matrix form a row partition, which includes 
a diagonal block and two off-diagonal blocks on its two sides. Each one of these blocks of a row 
partition is processed separately. Pseudocode for Blocked Warren [6] is shown in Fig. 3. The 
algorithm processes the nodes in a specific order based on their location in the adjacency matrix 
of the graph. The specific order restrictions are given elsewhere [6]. To a first approximation, the 
elements to the left of the diagonal are processed in the first pass and the elements to the right 
of the diagonal are processed in the second pass. 

The exact bounds of a diagonal block are established based upon the amount of memory 
available and the number of descendents of the nodes. In Fig. 3, they are denoted by the subscripts 
b and e, which represent the first and last node of the diagonal block, respectively. Each pass in 
Fig. 3 contains two separate loops through the diagonal block. One loop processes the diagonal 
block nodes with nodes not belonging to the current diagonal block and the other processes them 
with nodes that do belong to the current diagonal block. There is no restriction that the diagonal 
blocks must remain the same from one pass to the next-partitioning is done dynamically. Usually, 
the second pass needs more partitions because the descendent lists of the nodes that need to 
simultaneously be in main memory are longer than in the first pass. A detailed discussion of the 
algorithm can be found elsewhere [6]. 

Unfortunately, Blocked Warren is not efficient with selection queries. It requires the computation 
of the complete transitive closure of a graph before a selection can be done. This is a disadvantage 
relative to Seminaive, and even relative to Smart to some extent. 

3. IMPLEMENTATION OF ALGORITHMS 

As part of this study, these three algorithms have all been implemented, some in multiple 
versions. This section describes the various implementation alternatives that were considered and 
the specific choices that were adopted. Due to their similarities, we describe the implementations 
of Seminaive and Smart together and describe Blocked Warren separately. 

3.1. Seminaive and Smart 

For all versions of Seminaive and Smart, we assume that each relation is already partitioned into 
several smaller disjoint ones. This partitioning can be done by any of several methods. In our study, 
we use a simple arithmetic hash function on one of the attributes of the relation (depending on 
the implementation) to form the partitions, i.e. each hash bucket is one partition. We use Ri, T,, 
and ATi to denote the ith partition of R, T, and AT respectively. We assume that each file page 
contains tuples belonging to a single partition. With a large number of partitions this can result 
in many partially-filled pages; however, this constraint also minimizes the number of pages that 
must be accessed to read only one partition. In general, in each iteration of Seminaive and Smart, 
each partition of AT must be composed with all partitions of R (Seminaive) or T and AT (Smart). 
Depending on the join method and the exact partitioning, however, it may be possible to avoid 
composing several such partition pairs, by knowing that they produce no results, thus improving 
performance. A further enhancement in performance stems from the fact that at any instant only 
a single partition needs to be examined for duplicates rather than the entire relation. 

The following is a list of issues on which a decision had to be made for every algorithm: join 
method, timing of processing, number of files, duplicate elimination, page structure and main 
memory management. Each of these issues is discussed in one of the subsections that follow. 

3.1.1. Join method. We have experimented with two join methods: hash-join and (essentially) 
block nested-loopst. For hash-join, we used an algorithm similar to the second pass of the 
“GRACE” algorithm [18], loading a full partition of R or T in memory and then scanning the 
corresponding partition of AT one page at a time. For nested-loops, AT was the outer relation and 

tin ordinary block nested-loops, tuples are visited in the order of their placement in the relations to be joined. In our 
implementation, they are visited in partition order, i.e. tuples in partition i are visited before those in partition i + 1. 
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R or T was the inner one. The decision to use AT as the outer relation was based on the combination 
of the following advantages. First, when immediate processing is done (Section 3.1.2) on trees, the 
newly produced tuples belong to the partition of AT from which they were generated, which is 
already in main memory. Thus, they are immediately available for further processing without any 
I/O. Second, for Seminaive, new tuples can go through the process of duplicate elimination against 
AT without any I/O since the appropriate partition is in main memory. Thus, although duplicate 
elimination against the rest of T still involves I/O, some fraction of the cost is avoided. There would 
be no corresponding gain if R were the outer relation in Seminaive, as duplicate elimination is done 
against T (of which part is AT) and not against R. Third, in our implementation, when no 
destination value of the tuples in a given outer partition hashes to a particular inner partition, that 
inner partition is not brought into memory. As AT decreases in size during the course of execution, 
the probability of such savings increases. This would not be the case if R or T were the outer 
relations in Seminaive and Smart, respectively, since R remains unchanged and T grows as 
execution progresses. 

3.1.2. Timing of processing. A tuple newly inserted in AT at some iteration can be processed at 
either of two times: in the next iteration, which we call Normal processing, or else immediately [7,8], 
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1, the composition of AT with R is completed before the new AT is formed for the next iteration. 
In Immediate Seminaive, however, when a new tuple is produced, it is inserted at the end of AT 
immediately so that it can be processed in the current iteration. This usually reduces the number 
of iterations and therefore the number of times that relations need to be accessed and read into 
memory from disk. In our implementation, only tuples that are generated when no page of the 
partition to which their destination values hash has been fully processed and flushed out to disk 
are immediately processed, because then immediate processing has no overhead and can only 
benefit performance. Also, we did not use immediate processing when duplicates are produced 
because they must be eliminated before they are inserted at the end of AT. With our duplicate 
elimination approach (at the conclusion of each iteration instead of on-the-fly) Immediate 
processing reduces to Normal processing. Finally, we did not consider Immediate processing for 
Smart because its performance is expected to be poor. The reason is that, due to the nature of 
Smart, a high overhead must be paid to maintain and process information about the iteration to 
which each tuple belongs and with what tuples it has already been joined. 

3.1.3. Number ofjiles for T and AT. In both Seminaive and Smart, the contents of AT are always 
inserted into T. Thus, there are two options: keeping the two in separate files and always copying 
from one to the other, or having both reside in a single file and distinguishing the tuples of AT 
by appropriately marking them in the file. When the two relations require different structures, two 
files are used; otherwise, only one is used. Specifically, in all nested-loops algorithms a single file 
is used for T and AT, which is hashed on the source attribute. A single file is also used in both 
hash-join implementations of Seminaive (Normal and Immediate), which is now hashed on the 
destination attribute. In the hash-join implementation of Smart, however, the file containing AT 
/L,-L,.A ^_ ~,“+:-,.4:,,\ :” 1:,+:-_4 CL.,,.- 41, C1- ---+,.:-:-,.~ 1L_“L^1 ̂ _ ,.-....-,.\ C,... -11 ,.I--L&L-- [Mlaucu “‘1 ucallllaLl”ll, 1s UIsLIIIcL II”‘ll L‘lC lllC c”ULalur1lg I (‘C_asucu “11 aulUc;c,. T”‘ au alg”llUL‘Ua, 
R is an altogether separate file hashed on the source attribute. 

3.1.4. Duplicate elimination. In the generic form of Seminaive and Smart (Figs 1 and 2) duplicate 
elimination is represented by the difference operator in the statements that update AT, where tuples 
already in T are removed from the composition results, and also when a union of the tuples in 
T with some new ones is taken (for Smart in step 5). Except for cyclic graphs, this is optional and 
can be ignored, possibly at the expense of efficiency. When duplicates are in fact eliminated, it is 
done in each iteration as part of the statement that updates AT. The following algorithm is used. 
The newly produced tuples from each composition (one for Seminaive, two for Smart) are written 
to temporary files, one for each partition used. At the end of each iteration, for each partition Ti, 
a hash table on the combination of its two attributes is built in main memory. Then, the appropriate 
temporary files are scanned and for each new tuple in them the hash table is probed. If the tuple 
does not already exist, then it is inserted in Ti, otherwise it is not. (Note that duplicates within 
each temporary file are also removed in this way.) If there is insufficient memory to build a hash 
table containing all of Ti, the above process is done in a piece-meal fashion by moving the newly 
produced tuples in and out of temporary files (as in the Simple Hash-Join algorithm [18]). 
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1 4 3 **. Source_Hashtoble 

* 4 2 - * * Destinati~_Hashtable 

slot x Source Destination Next_Src_Slot Next_Dest_Slot 

0 1 22 * * 
_-__--_---__________-_-__-_-___ 

1 0 21 + l 

_----__.C-________-_________--___ 
2 2 132 * 0 -_-- -____ ~_----_---~-_____--__-~ 
3 2 7: 2 i 

_-----_.---____ __---- -- .____ --__-. 
4 41 61 0 1 _____----_________-_________-_ 
5 1 * * f 

_------_--- ___._ _-----_ ___---_- 

. . . 

. . . 

. . 

Free-Slot Page-Number Next_Puge 
5 0 * 

Fig. 4. Page structure for Nested-Loops Seminaive. 

It is worth noting that the production of duplicates that are formed due to cycles must follow 
the production of a loop arc, i.e. an arc of the form (A, A ). We take advantage of this in Seminaive, 
and whenever a loop arc is produced, it is inserted in T but not in AT. Thus, duplicates due to 
cycles are never produced, and the computation may terminate one iteration sooner. This also 
implies that, even for cyclic graphs, as long as cycles are detected in the above fashion, duplicate 
elimination can be ignored in Seminaive without affecting te~ination. Unfortunately, the same 
trick does not have as dramatic an effect on Smart due to the production of tuples that correspond 
to paths of multiple lengths from the same composition operation. 

Our method for dealing with duplicates is similar to those of Valduriez and Boral [5] and Lu 
[8]. It differs, however, from that of Agrawal and Jagadish [6] and also Han et al. [7], which use 
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tuples are produced. This renders the use of temporary files unnecessary, and allows the use of 
Immediate processing (Section 3.1.2), but it also consumes more main memory, thus leaving a 
smaller fraction of it available for the actual join. The trade-off between the two approaches is 
unclear and no definite answer exists on which one is preferable. Our decision was based on two 
facts. First, duplicate elimination at the end of each iteration leaves more main memory free to 
be used for join processing, thus resulting in join I/O savings. Second, on-the-fly duplicate 
elimination requires that descendents of nodes be found once for every tuple or page that is 
produced. This would be quite inefficient with our data structures, i.e. hash partitioning, since each 
search would require accessing a whole hash partition. 

3.1.5. Page st~cture~ Relations are stored in flat files. The structure of pages on disk and in the 
buffer pool is the same. All of our algorithm implementations deal with constant width tuplest and 
constant width auxiliary information per tuple. Thus, in each case, there is a specific number of 
slots for tuples on a page. Since there are no deletions, a page starts being filled at slot 0 and 
continues until it is full. The structure of an example disk page is shown in Fig. 4, where slots 0 
through 4 are filled and slot 5 is the first one available. In more detail, there are 2 page structures 
used in the implementation of the algorithms: the single table structure, used by the hash-join 
algorithms, and the double table structure, used by the nested-loops algorithms. In addition to the 
tuples themselves, the single (res~tively double) table structure contains one (res~tively two) 
small on-page hash table for the tuples, on the source or destination attributes. These hash tables 
improve CPU performance by avoiding the scan of an entire page to find the tuples with a 

TIndependent of the width of the tuples in the original source relation, we assume that the two attributes capturing the 
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represented with integers. This preprocessing step should almost always be taken since the subsequent space and the 
time savings that it provides are very significant. 
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particular source or destination value. Figure 4 is an example of the double table structure, with 
the example hashing function for both on-page hash tables being (value mod 10). For each hash 
table, tuples (slots) that hash to the same value are linked together in a list (“Next_Src_Slot” and 
“NextDestSlot”). In Fig. 4, the first tuple with a source hash value of 1 occupies slot 4 and the 
next one occupies slot 0. Moreover, for the destination hash table, not all tuples are part of it; only 
a subset of interesting ones (in our case, only those that belong to AT) are included in this table. 
The reason is that, at any point, the tuples in T-AT will participate in no further joins and thus 
do not need an access path based on their destination values. 

3.1.6. Memory management. In order to determine the effect of main memory size on the relative 
performance of the various algorithms and to experiment with specialized buffer replacement 
strategies, we decided to implement our own buffer management. This is because UNIX does not 
provide the capabilities of forcing page writes to disk or of limiting the amount of available main 
memory. If we had relied on UNIX statistics, the measurements of I/O would have been affected 
by hits in the UNIX buffer pool, which would have distorted the actual relative performance of 
the algorithms in a database context. Moreover, UNIX uses its own general purpose page 
replacement strategy (LRU), which is not necessarily appropriate for transitive closure compu- 
tation C...IV._. 

We were somewhat influenced by the work of Agrawal and Jagadish [6] in dividing the buffer 
pool into four areas for all algorithms, as shown in Fig. 5. For every composition operation, the 
Delta-Load area holds pages from AT and the Load area holds pages from the other operand of 
the composition (R or T). The Expansion area holds pages where newly produced tuples for T are 
placed. These pages are for the growth of T, when there is no duplicate elimination, and for the 
growth of the temporary files (Section 3.1.4) when there is. Finally, the Free area (which may be 
empty) holds resident pages that are available for reuse. The number of buffer pages assigned to 
each area and the replacement strategy are dynamic and are a function of the number of partitions, 
the size of each partition, and the algorithm under study. Three alternatives exist and are explained 
below. 

Local Expansion. This scheme is used by the nested-loops algorithms. The distribution of pages 
in the four areas of Fig. 5 is as follows: Load contains 1 page of R or T; Delta-Load contains pages 
of several partitions of AT (with one possibly being incomplete); Expansion contains 1 page for 
each partition of AT that is fully or partially resident in Delta-Load; Free contains the rest. For 
immediate processing, Free is assigned some specific percentage of the full set of buffer pages to 
avoid writing new pages to disk, if at all possible, since they will be accessed in the current iteration. 
For future reference, this percentage is denoted by p-Free. For example, given a total of 10 buffer 
pages, the distribution in Seminaive when the first three partitions are being processed together 
might be as follows: 1 page in the Load area holding the current page of R; 6 pages in the 
Delta-Load area holding all of AT, and AT, and part of AT,; 3 pages in the Expansion area-one 
for each partition 0, 1 and 2; and 0 pages in, the Free area. 

No page currently in the Delta-Load area is replaced until all of them have been joined with 
all nf R Whm thic hnnnenc the nsaoe~ in hnth the lkltn-l.nd nnd Exnancinn areas are F_QV~~ . . . . . _.. . . . . . . . . . . . . -A..rr---‘) .-__ r”D-’ ___ .,_.__ ____ - ____ -_1_ I___ -“rl* _I____ 

to the Free area (if possible), and the next partition of AT is then loaded in. When a page in the 
Expansion area becomes full in the middle of an iteration, it is exchanged with the least recently 
used page in the Free area, if any; otherwise, it is written out to disk and then reused. 

Global Expansion. This scheme is used in the hash-join Seminaive algorithms. The distribution 
of pages in the four areas of Fig. 5 is as follows: Load contains all pages of one partition of R; 
Delta-Load contains 1 page of the partition of AT that corresponds to the partition of R that is 
currently resident in the Load area; Expansion contains 1 page for each partition of the result; Free 
contains the rest and is associated with the p-Free parameter as above. Note the differences between 
this and the previous alternative. First, a buffer page must be reserved in the Expansion area for 
output to each of the partitions in the relation, since in hash-join a newly produced tuple can hash 

Load Delta-Load Expansion Free 

Fig. 5. The four areas of the buffer pool 
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Table I. The range of algorithms studied 

Smart Seminaive 

Normal 

Immediate 

Hash-Join HJSm 
Nested-Loops NLSm 
Hash-Join I 

Nested-Loons l 

HJSe 
NLSe 
HJSe-I 
NLSe-I 

to any partition of T. (Recall that T is hashed on source, whereas the result tuples are produced 
in the order of a destination-based partitioning.) Second, due to hash-join, only one partition of 
each relation needs to be present in main memory at any one time. For example, given a total of 
10 buffer pages and 3 partitions per relation, the distribution when the second partition is processed 
might be as follows: 4 pages in the Load area holding all of R,; 1 page in the Delta-Load area 
holding a page of AT,; 3 pages in the Expansion area-one for each partition of T; and 3 pages 
in the Free area. 

No page in the Load area is replaced until processing for that partition for the current iteration 
is completed. When this happens, all such pages become part of the Free area and the next partition 
of R is loaded in. The pages in the Expansion area remain allocated for the processing of the entire 
iteration. Full pages in the Expansion area are replaced as in the Local Expansion alternative. 

Global Expansion + 1. This scheme is used by the hash-join Smart Algorithm. It is identical to 
Global Expansion except that, in addition to the pages for each partition of T, a separate page 
is allocated to the Expansion area for the tuples of AT. All such tuples are written to a single output 
buffer, regardless of the number of partitions, and are distributed to the appropriate partition of 
AT at the beginning of each iteration. AT is treated differently from T because there are far fewer 
tuples inserted into each partition of AT than are inserted into T. Treating AT similarly to T would 
result in inefficient use of main memory. 

3.1.7. Space ofalgorithms. Our implementations of Seminaive and Smart can be divided into two 
classes in each of two ways. One way is according to whether the join method is hash-join or block 
nested-loops. The second way is according to whether Immediate or Normal processing is used. 
The various combinations of the above features and the names that we use to refer to each different 
implementation are shown in Table 1. (As mentioned in Section 3.1.2, no Immediate forms of Smart 
were implemented due to the expected poor performance.) The details of each algorithm’s 
implementation are summarized in Table 2. 

There are only two points that we want to clarify in Table 2. First, NLSe-I performs no duplicate 
elimination (Section 3.1.2), so it is essentially applicable to trees only. Second, repartitioning is a 
feature of the hash-join implementations that needs to be discussed. In these implementations, in 
order to avoid tying up too large a portion of memory for the output buffers, it is imperative to 
keep the number of partitions small. On the other hand, duplicate elimination is more efficient when 
the number of partitions is large, because then each partition is smaller and is more likely to fit 
in main memory. We dealt with the above conflicting constraints by making repartitioning of the 
initial relation an option. When no duplicate elimination is performed, there is the option of 
physically repartitioning R to produce the minimum number of partitions possible that still allow 
an entire partition of R to fit in main memory. The cost of this preprocessing step is expected to 
be far less than its benefit during the subsequent transitive closure processing. When duplicate 

Table 2. Characteristics of implementations of Seminaive and Smart 

NLSe NLSe-I NLSm HJSe HJSe-I HJSm 

Number of files for T and AT One 0 0 0 0 0 
Two u 

Duplicate elimination Yes 0 0 No 0 0 0 0 :: 
Page structure 

Memory management 

Single table 0 cl C3 
Double table 0 0 
Local expansion 0 0 
Global expansion 0 q 
Global exoansion + I Cl 

Repartitioning 

Hash partition attribute 
(per relation) 

Yes ‘ 
No 
Source 
Destination 

0 
c3 0 0 u 

R,T R,T R,T R R R,T 
T,AT T,AT AT 
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elimination is performed, there is no repartitioning because the trade-offs are unclear. Hence, 
repartitioning is always used in HJSe and HJSe-I for trees (these are the only graphs where HJSe-I 
is applicable). Because of duplicate elimination and the fact that T is being modified in every 
iteration, the optimal number of partitions is not obvious for HJSm, so no repartitioning is done 
in this algorithm. 

3.2. Blocked Warren 

This algorithm is very different from Seminaive and Smart and is thus described independently. 
Again, the basic issues on which decisions had to be made for the implementation of the algorithm 
are discussed in the subsections that follow. 

3.2.1. File structure. Unlike the relations in the other algorithms, which are always stored in flat 
files (Section 3.1.5), T is stored in a B+-tree ordered on source in Blocked Warren. We assume 
that the relation is originally in flat form, so it is first sorted and then the B+-tree is built in a 
bottom up fashion. Our B+-tree implementation is a simple one. In the leaf pages of the tree, there 
is no secondary ordering on destination-ordering is determined solely by the source value of the 
tuple. Also, when there are more tuples with the same source value than can fit in a page, an 
overflow page is allocated. Each such page holds destination values for a single source value, thus 
making extremely efficient use of space within the page since the source value does not have to 
be repeated with each destination value. 

3.2.2. Main memory data structures. Unlike Seminaive and Smart, there are several different data 
structures occupying main memory that are significant enough in size to be counted as memory 
requirements of the algorithm. First, there are the buffered pages of the B+-tree, whose structure 
remains identical to its form on disk. Second, when brought into memory from disk, the 
information in the B+-tree leaf pages is copied into descendent lists, one for each source value. 
These descendent lists are structured as blocks of destination values linked together in a 
doubly-linked list. These lists are needed when a source node is part of the diagonal or an 
off-diagonal block that is being processed. Third, descendent lists of nodes in the diagonal block 
are indexed with descendent hash tables. These are used to avoid adding duplicate descendents and 
to efficiently search for descendents of a given node in the diagonal block. A separate hash table 
is kept for each node in the diagonal block. These are transitory structures: when a node becomes 
part of the diagonal block, a hash table is constructed; when the contents of the diagonal block 
change, the hash table is destroyed. Each hash table is not a single large structure, but is instead 
composed of a main table and several overflow blocks; therefore, its size depends upon the number 
of descendents of the corresponding source node. 

3.2.3. Memory management. For Blocked Warren, main memory is divided into three areas. 
First, a specific number of buffers are reserved solely for B+-tree pages, including both internal 
pages and leaves. For future reference, this number is denoted by p_Btree. Second, at any time, 
the descendent list of a single off-diagonal element must be kept in main memory, so we reserve 
enough space for the largest such list. Specifically, we reserve enough space to store up to the total 
number of nodes that appear as destinations but not as sources of tuples in R. This is obviously 
an upper bound on the actual size of the largest descendent list and is determined at the time when 
R is being loaded in order for the B+-tree to be built. Third, the remaining buffer pages are used 
by the descendent lists of the diagonal block elements and their hash tables. 

One question regarding the use of the third area is the fraction of it that is occupied by the 
descendent lists (and hash tables) at the beginning of the first or second pass of the algorithm, since 
some of it must be left free for growth. Confirming the results of Agrawal and Jagadish [6], we 
have observed that a large part of the growth of the (diagonal element) descendent lists usually 
occurs during the first pass of the algorithm. As a consequence, we loaded only a small percentage 
p-first of the third area at the beginning of the first pass, whereas we increased that limit to a larger 
percentage psecond at the beginning of the second pass. 

Except for the root of the tree, which is pinned in memory, the rest of the B+-tree buffer pages 
are managed by an LRU strategy. Descendent lists are placed on a free list when not being directly 
used, so they can be replaced by other descendent lists using an LRU strategy as well. However, 
if they are reaccessed while they are still in memory, they are reclaimed from the free list instead 
of being rebuilt from B+-tree pages. In the event that the third area becomes full and the 
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descendent lists in it need to grow more, the last node of the diagonal block is removed, thus freeing 
up the space occupied by its descendent list and hash table. In this sense, dynamic partitioning is 
realized (Section 2.2.3). 

3.2.4. Size of diagonal blocks. As mentioned above, following Agrawal and Jagadish [6], we 
allowed for dynamic changes in the size of the diagonal block. When there is insufficient memory 
to accommodate the reading of a descendent list for an off-diagonal element or to accommodate 
the addition of elements to the descendent list of a diagonal element, the size of the diagonal block 
is reduced. This is done by removing the last node from the diagonal block and freeing the space 
occupied by the corresponding descendent lists. The first node of the next diagonal block is always 
the node following the last node of the previous block that has been fully processed. 

4. TESTBED 

We experimented with all seven versions of the algorithms described in the previous section, i.e. 
the 6 versions of Seminaive and Smart shown in Table 1 and Blocked Warren. They were 
implemented in C on a VAXstation 3200 running UNIX. The VAXstation had 8 Megabytes of 
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size was 2 kbytes, so the file page size and the buffer page size in our implemen~tion were also 
chosen to be 2 kbytes. All reported experiments were run while no other users were on the machine. 
However, because we did our own buffer management, with UNIX doing its own file system 
buffering underneath, the UNIX-provided elapsed times are not directly meaningful. In our 
experiments, we thus relied on UNIX-provided CPU times and our own counting of disk reads 
and writes based on the implemented page replacement strategy and the amount of available 
memory in each case. We combined the two to produce a performance metric that we refer to as 
the aggregate time, which is the sum of the measured CPU time plus 40 msec for each disk read 
or write performed. We arrived at the 40msec value after ex~rimentation with the disk of the 
machine that we used for our experiments. 

There are several interesting parameters that affect the performance of the algorithms. They can 
be divided into parameters of the algorithm implementations and parameters of the data. These 
two parameter classes are discussed in the following subsections. The third subsection discusses the 
process of graph generation that was used to produce the test data for the experiments. 

4.1. Parameters of the algorithm implementations 

There are two interesting parameters of the algorithm implementations that are meaningful in 
most cases: the number of partitions, i.e. the number of hash buckets in the data file, and the number 
of buffer pages. We varied the number of buckets from 1 up to a point beyond which performance 
was seen to be deteriorating. We also varied the number of buffer pages from 20 to 250. In addition 
to the above, we varied two more parameters that are of interest in specialized cases to investigate 
their effect on performance: for data forming acyclic graphs, there is the option to eliminate 
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there are four additional parameters, mentioned in Section 3, that were assigned specific values 
based on a series of initial experimental results. Specifically, we set p_Free = lOoh, p_Btree = 5, 
p-jirst = 15% and p-second = 80%. The last two numbers are the same ones used by Agrawal and 
Jagadish [6], as our preliminary experiments with these parameters essentially confirmed their 
results regarding good settings for them. 

4.2. Parameters of the data 

Without loss of generality, all relations used in our experiments contained integer node identifiers 
randomly generated in a specific range. (Even if a given relation is not in this form, it can be 
transformed accordingly in a single pass [5].) For any specific setting of the values of the parameters 
described below, all algorithms under comparison were run on the same input graph. 

Using graph terminology, we experimented with all three interesting types of data: trees, acyclic 
graphs and general graphs. Graphs are usually characterized by generating parameters, i.e. 
parameters used to generate them, such as the number of nodes and outdegree (or branching factor 1. 
Unfortunately, depending on the specifics, graphs with similar values for these parameters can have 
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dramatically different transitive closures, and therefore the various algorithms can exhibit very 
different behavior on them. Several such examples have been given by Lipton and Naughton [19]. 
In this study, we used the following parameters: the size ]RJ of R in tuples, the size JTI of T in tuples, 
the number P of tuples produced by Seminaive when duplicate elimination is performed (not 
including the original tuples of R), and the depth d of the graph. (Similar parameters are used by 
Valduriez and Boral [5].) As the forthcoming results show (Sections 5.3 and 6.3), using these 

parameters yields a clearer understanding of the trade-offs because of their direct effect on 
performance. For convenience, we occasionaiiy describe graphs using their generating parameters. 

4.3. Graph generation process 

For most experiments, graphs were generated randomly based on desirable values of their 
generating parameters. As mentioned above, the specific data values representing the graph nodes 
were chosen randomly as well. All trees with which we experimented were regular, so their 
generation was straightforward. Acyclic graphs were generated by randomly chasing the successors 
of each node among all other nodes that were greater than the said node in some arbitrary order 
(essentially the order of node creation). Cyclic graphs were generated by randomly chasing the 
successors of each node among all other nodes. 

For the experiments that study the effect of graph characteristics on the performance of the 
algorithms, we used different techniques for generating graphs. This was done because we were 
interested in controlling the values of parameters that could not be influenced directly. Depending 
on the specific experiment, one of two approaches was taken. In the first approach, several random 
graphs were generated; out of these a carefully selected subset was chosen so that all graphs had 
approximately equal values (less than a 5% difference) for all but one parameter and were 
significantly different in their values of the remaining parameter. For example, to study the effect 
of ]R] on performance when ITI and d are kept constant, many graphs were generated; a subset 
with similar values for IT] and d and significantly different values for ]R] was chosen for the 
experiments. 

In the second approach, a family of graphs was generated where each graph consisted of multiple 
components. The largest component was generated randomly, whereas the rest were regular trees 
used to control the values of the desired parameters. The first graph of the family was generated 
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generated in two steps: (a) random modifications were made to the original graph based on the 
desired characteristics of the generated graph; (b) because this modification usually altered more 
than one of the graph’s characteristics, an appropriate number of disconnected tree components 
were then added to compensate for the alterations of all but one of the affected parameters. 
Determining the appropriate number and type of trees was straightforward, as we used regular trees 
whose characteristics are easily computable. For example, to study the effect of (T( on performance 
when P and dare kept constant, a single graph R was generated originally and its transitive closure 
T was computed. Several graphs were then generated by removing different percentages of the arcs 
in T-R from T. To keep P constant, the resulting graphs were each complemented with trees whose 
transitive closure had the same number of arcs as the ones deleted from T. Thus, P remained 
constant while IT] increased. Also, the depth d remained constant due to another tree that was part 
of all graphs which was deeper than all other components. Using similar techniques, we were able 
to generate graphs that were different only in one of the directly relevant parameters and similar 
in all others. 

5. COMPUTING THE FULL TRANSITIVE CLOSURE OF TREES 

When processing trees, no algorithm produces duplicates. Hence, except where otherwise noted, 
we have run all experiments reported in this section without performing any duplicate elimination. 
In addition, HJSe was run without any repartitioning. In all results presented in this and the 
following two sections, the aggregate time is measured in seconds. 

5.1. General trends 
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I/O operations and aggregate time (in seconds) of the various flavors of Seminaive and Smart when 
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Table 3. Performance results for all algorithms on a regular binary tree 
(b = 2) of depth d = 1 I 

Algorithm 

NLSe 
NLSe-I 
NLSm 
HJSe 
HJSe-I 
HJSm 
Blocked Warren 
(topological order node numbering) 
Blocked Warren 
(random node numberine~ 

Aggregate time 
I/O rquests (=) 

a79 63.1 
633 57.8 

1068 19.9 
689 41.2 
583 42.4 
434 21.3 
199 291.0 

5857 704.0 

50 buffers are used. For each algorithm, these results were obtained by dividing relations into the 
optimum number of partitions?. The specific example is for a regular binary tree (b = 2) of depth 
d = 11. The initial relation for this tree contains IRI = 4094 tuples, and the transitive closure 
contains ITI = 40,962 tuples. The exact sizes of R and T in pages vary with the algorithm, since 
disk pages in the different algorithms have slightly different structures and therefore hold slightly 
different numbers of tuples. With a single partition, the size of R is between 23 and 25 pages and 
the size of T is between 220 and 250 pages. 

This example is typical of the relative performance of the algorithms on trees and indicates the 
following trends. Regarding the join method, nested-loops is generally the poorer performer. There 
are three basic reasons for this. First, in the nested-loops implementations, each ATi must be joined 
with eoery Ri or Ti, whereas in the hash-join implementations, each AT, must only be joined with 
its corresponding Ri or Ti. When memory is in short supply, the above implies that nested-loops 
requires R or T to be read from disk many times per outer iteration. On the other hand, as long 
as there is enough memory to hold one partition of Ri or Ti plus one page from ATi, hash-join 
is very efficient since R or T are read from disk only once per iteration. Second, because of the 
different CPU requirements of the algorithms, different page structures have been adopted for 
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whereas the double table structure is used for file pages in the nested-loops algorithms. Hence, more 
tuples can be stored in each page for the hash-join algorithms than for the nested-loops algorithms. 
This implies that more pages are produced in nested-loops which, in turn, implies fewer hits in the 
buffer pool. Note, however, that the single table page structure would negatively affect the 
performance of nested-loops (because there would be no fast way to access tuples based on their 
destination value), increasing its total aggregate time even more. Third, specifically for Smart, a 
single file is used in NLSm to hold T and AT, whereas different files are used in HJSm. In NLSm, 
this has the effect that the tuples of AT are not necessarily stored in adjacent slots within T, thus 
requiring more processing time and/or consuming more buffer pages in each iteration than in 
HJSm. 

Regarding the timing of processing, the Immediate paradigm shows advantages for both the 
nested-loops and hash-join algorithms, which confirms the results of Lu [8] and Han et al. [7]. That 
is, as expected, a savings in I/O results when newly produced tuples are immediately reused. 

Regarding the basic transitive closure algorithm, Smart and Seminaive rank differently depend- 
ing on the employed join method. For nested-loops, Seminaive outperforms Smart. This is because 
Smart deals with much larger relations and therefore traverses longer hash chains than Seminaive. 
Since chain traversal is a very common operation in nested-loops (quadratic in the number of 
partitions), it dominates performance with respect to both CPU time and I/O and Smart is 
penalized. For hash-join, Smart outperforms Seminaive. This is because, although Smart still deals 
with larger relations, chain traversal is less common than in nested-loops. Thus, the advantage of 
Seminaive in searching shorter hash chains becomes less marked and the fewer iterations of Smart 
becomes the dominant feature. In this example, the overall best performance is exhibited by HJSm. 

tThese numbers do not include the cost of partitioning the initial relations if they are not already partitioned. An initial 
set of experiments showed that this is negligible compared to the overall cost, so we ignored it by assuming that relations 
are always appropriately partitioned. 



428 ROBERT KABLER er al. 

5.1.2. Performance of Blocked Warren. The performance results for Blocked Warren on a regular 
tree with b = 2 and d = 11 are given in Table 3. In this case, Blocked Warren is by far the poorest 
performer. The primary reason for this is that, in trees, the root and other nodes close to it tend 
to have a large number of descendents. The size of these descendent lists significantly limits the 
number of elements that can be part of the diagonal block. This forces the algorithm to iterate 
over the for each loops of Fig. 3 many times, thus exhibiting poor performance especially with 
respect to the aggregate time. 

An interesting point to note is that the performance of Blocked Warren is very sensitive to the 
numbering of the nodes in the graph. In Table 3, two results are shown for the same tree, one when 
the nodes of the tree are numbered in topolo~cally sorted order, and another when they are 
randomly numbered. The performance of Blocked Warren on the latter tree is more than a factor 
of 2 worse than on the former in aggregate time. Even at its best, Blocked Warren is still worse 
than any of the implementations of the other algorithms, and the others are insensitive to the 
numbering of the nodes. 

5.2. Effect of parameters of algorithm implementations 

In the subsections below, we discuss how the performance of the various algorithms is affected 
by the number of partitions, duplicate elimination, and repa~itioning. The effect of the number 
of buffers is similar for both trees and non-tree graphs and is discussed in Section 62.2. 

5.2.1. Number of partitions. Figures 6 and 7 show a typical example of how the number of I/O 
operations and aggregate time (in seconds) for the various flavors of Seminaive and Smart vary 
as a function of the number of partitions into which the relations are divided. These figures are 
for a regular binary tree (b = 2) of depth d = 11, i.e. for the same data discussed in Section 5.1. 
Thus, the minima exhibited by each algorithm in Fig. 7 correspond to the results presented in 
Table 3. 

In general, for all algorithms, the IjO portion of the transitive closure cost increases with the 
number of partitions. This is because one partition corresponds to the lowest fragmentation 
possible, i.e. to the smallest number of pages. In addition, AT is often small enough so that it fits 
in main memory, and so does R. Thus, I/O performance reaches its optimum at a single partition. 
This general pattern is broken by a few irregularities, which are due to statistical peculiarities of 
the hash functions used that occasionally result in excessive fragmentation. 
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Fig. 6. I/O operations vs number of partitions for Seminaive and Smart applied on trees. 
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Fig. 7. Aggregate time vs number of partitions for Seminaive and Smart applied on trees. 

On the other hand, for almost all algorithms, the best aggregate time is obtained with a small 
number of partitions, usually between 2 and 10, in Fig. 7. This behavior is easily explained by the 
I/O behavior in the area to the right of the optimum (as all algorithms are I/O bound in that area). 
This is not the case, however, in the area to the left of the optimum, where the nested-loops 
algorithms are heavily CPU bound. The smaller the number of partitions in a relation, the larger 
the size of each partition, i.e. the longer the chains that need to be searched are when probing the 
relation, and therefore, the larger the amount of CPU time spent. This determines performance 
up to a certain point, beyond which fragmentation becomes a problem and I/O cost becomes 
dominant. As verified by Fig. 7, this trend is more pronounced for Smart than for Seminaive. This 
is because Smart probes T whereas Seminaive probes R, and R is a much smaller relation. 

5.2.2. Duplicate elimination. There are situations where no or very few duplicates exist (as is the 
case with trees), but that fact is unknown when the transitive closure is computed, so duplicate 
elimination must be performed albeit unnecessarily. Table 4 shows the aggregate time of HJSe and 
HJSm with and without duplicate elimination, for a regular binary tree (b = 2) of depth d = 11. 
Again, the results are obtained by dividing relations into the optimum number of partitions. 
(Nested-loops implementations are now shown because they are very slow with duplicate 
elimination.) Observe the significant increase in cost for Seminaive and Smart with duplicate 
elimination over the case where no duplicate elimination is attempted. While both algorithms still 
perform better than Blocked Warren, the difference is considerably smaller. Comparing the two, 
Smart is again faster than Seminaive for the same reason (the difference in the number of iterations 
required for termination). Also, note that Blocked Warren remains almost unaffected by 
incorporating duplicate elimination. This is because the cost of the algorithm is dominated by the 
significant amount of processing that is necessary due to the large size of the descendent lists; the 
extra overhead of checking for nonexistent duplicates is relatively small in comparison. 

Table 4. Optimal aggregate time (set) for Seminaive and Smart with and 
without duolicate elimination aoolied on trees 

Algorithm 

HJSe 
HJSm 
Blocked Warren 

With 
duplicate elimination 

159.0 
130.0 
312.0 

Without 
duplicate elimination 

41.2 
21.3 

297.0 
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5.2.3. Repartitioning in hash-join Seminaive. Figure 8 shows a typical example of the effect of 
repartitioning on the performance of HJSe as a function of the original number of partitions. The 
specific curves (with and without repartitioning) are again for a regular binary tree (6 = 2) of depth 
11 with 50 buffers. It is clear that repartitioning has a significant pay-off for HJSe, essentially 
allowing it to always achieve its optimal performance independent of the original number of 
partitions. Thus, when no duplicate elimination is required, repartitioning should always be part 
of HJSe. (Recall that in all other implementations of our algorithms, no repartitioning is performed 
because the optimal number of partitions is unclear.) 

5.3. Eflect of parameters of data 

Recall that the important graph parameters for comparing the various transitive closure 
algorithms are IRI, )TI, P and d. For trees, no duplicates are produced, i.e. ITI = P + IRI, so the 
interesting parameters are reduced to a set of three (ignoring P ). In each of the following 
subsections, we keep two of those parameters relatively constant and vary the third one so that 
its effect on performance when all other things are equal becomes clear. 

We should note that randomly generating different graphs with exactly equal IR[ or ITI values 
is difficult. Thus, as mentioned in Section 4.3, we experimented with graphs whose values for these 
parameters were less than 5% different. This difference between the actual values was small enough 
so that it did not affect the quality of the results. We should also mention that it is extremely hard 
to generate trees with equal values of (RI and lT( that differ significantly in d. Moreover, d affects 
the performance of algorithms similarly for both trees and non-trees. Thus, we do not present any 
experiments that vary d while holding [RI and (Tl constant; the conclusions of Section 6.3.3 dealing 
with non-trees are applicable in this case as well. 

In Section 5.1.1, we concluded that hash-join is in general superior to nested-loops as a join 
method. In addition, we demonstrated that Blocked Warren is not competitive with the other 
algorithms on trees where duplicate production and elimination is not an issue. Thus, in this 
section, we only present results for HJSe and HJSm. 

We should also point out that, for these experiments, the values for the parameters that remain 
constant impose limits on the values that the varied parameter can take on. Thus, most figures in 
this section (and Section 6.3) do not present data for very small values of the varied parameter 
because there are no graphs with such values. 

5.3.1. Size of R. The effect of [RI on the behavior of the algorithms when ITI and d remain 
constant is shown in Fig. 9. The specific example shown is for trees with d = 10 and (TI x 18,300. 
As expected, the cost of HJSe almost monotonically increases with (RI. R is one of the two operands 
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Fig. 8. Effect of repartitioning on the performance of HJSe. 
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Fig. 9. Effect of [RI when ITJ and d are constant. 

for all joins, so its increase in size significantly affects performance. The cost of HJSm, however, 
displays a somewhat different behavior. It increases faster than HJSe in the beginning, until it 
reaches a maximum, and then it remains relatively flat. This is explained as follows. First, increasing 
IRI introduces more tuples in T from the beginning as well, which makes the algorithm more costly. 
In addition, since (TI remains constant, parts of the tree tend to become shallower as [RI increases. 
That is, although the depth of the tree remains the same, the average distance of a node from the 
root decreases. This implies that tuples tend to be produced for the first time in earlier iterations, 
making early iterations more expensive and late ones cheaper. To the left of the maximum, the 
cost increase in the early iterations dominates the cost decrease in the later ones. Beyond a certain 
point, pretty much all of the tuples are generated in the first iterations, so the cost flattens out. 

5.3.2. Size of T. The effect of ITI on the behavior of the algorithms when JR1 and d remain 
constant is shown in Fig. 10. The specific example is for trees with d = 10 and approximately 
[RI = 4400. As expected, the cost of both algorithms is monotonically increasing with ITI, with 
HJSm being affected more severely. This is due to the fact that both operands of the joins of HJSm 
increase in size, whereas only one of them does for HJSe. In addition, this difference is enhanced 
by the fact that HJSm performs fewer iterations than HJSe. That is, the impact of the increase in 
the number of tuples that need to be processed on each iteration of HJSm is more dramatic than 
on those of HJSe. 

6. COMPUTING THE FULL TRANSITIVE CLOSURE OF NON-TREE GRAPHS 

We treat both acyclic and cyclic graphs together because, for the most part, no major difference 
was observed between the two in any aspect of our experiments. Duplicate elimination is the key 
to the performance of all algorithms in non-tree graphs. As we have already mentioned, although 
termination of both Seminaive and Smart is guaranteed for acyclic graphs even without duplicate 
elimination, the performance implications of not eliminating duplicates can be devastating because 
of the enormous number of tuples generated and the extra work that needs to be done to process 
them. 

Table 5 contains data detailing the importance of duplicate elimination. Specifically, for 
Seminaive and Smart, we show the number of tuples that are inserted in T, the total number of 
tuples produced (excluding those initially in R), and the necessary number of iterations, both with 
and without duplicate elimination, for several acyclic graphs. We use P’ to denote the total number 
of tuples produced to distinguish it from P, which was explicitly defined to be the number of tuples 



432 ROBERT KABLER et al. 

Trees(IRI- 4400,d=lO) 

(50 buffers, 2 partitions) 

/+ 

“E 70 

u 

; 60 

4 
b 50 

8 

40 

30 

20 

10 

0 10 20 30 40 50 

Size of T(thousonds) 

Fig. 10. Effect of ITI when [RI and d are constant. 

produced by Seminaive when duplicate elimination is performed (Section 4.2). We observe that a 
very large number of duplicates can be produced even from a graph that has a very small transitive 
closure. The graph with 20 nodes and a branching factor of 10 is an excellent example of this; the 
transitive closure has only 184 tuples, but when duplicates are not eliminated, about 200,000 tuples 
are produced. (As a result, the execution time for HJSe increases by more than a factor of 
200-from 1 set to almost 4 min-when 150 buffers are used!) Also, note that Smart and Seminaive 
produce the same number of tuples when no duplicate elimination is done. This is because, in that 
case, both algorithms produce one tuple for every path in the graph, so their differences in execution 
have no effect on tuple production. When duplicate elimination is done, however, Seminaive 
produces fewer tuples than Smart. This is because one iteration of Smart is equivalent to several 
iterations of Seminaive, which implies that Seminaive eliminates duplicates more often and avoids 
possible multiplicative effects [20]. 

Because of these observations, duplicates were always eliminated in our experiments with 
non-tree graphs. This implies that no immediate algorithms are applied on such graphs (Section 
3.1.2). The results of our non-tree experiments are described in the following subsections. 

6.1. General trends 

0. I. I. PerJrormance 0fSeminaive and Smart. Table 6 shows an exampie of the cost of the various 
algorithms applied on non-tree graphs. The particular results are for all algorithms operating on 
a cyclic graph with 100 nodes and a branching factor of b = 10 whose depth is d = 4. Fifty buffers 
are used and relations are divided into the optimum number of partitions for each algorithm. R 
contains 1000 tuples, while T contains 10,000 tuples and occupies approximately 5540 pages. We 

Table 5. Effect of duplicate elimination 

Graph 
description No duplicate elimination Duplicate elimination 

Algorithm 
N b class IWI P’ Iterations ITI P’ Iterations 

20 3 Seminaive 1227 1173 9 130 280 4 
20 10 191,324 191,179 16 184 960 3 

!cw, 2 5693 2496 !! ! 263 2230 7 
100 3 156,710 156,416 20 2283 6259 8 
20 3 Smart 1227 1173 4 130 280 3 
20 10 191,324 191,179 5 184 965 2 

100 2 5693 5496 4 1263 2482 3 
loo 3 156,710 156,416 5 2283 8599 4 
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Table 6. Performance results for all algorithms on a cyclic 
graph of N = 100 nodes and degree b = 10 

Aggregate time 
Algorithm (se@ 

NLSe 132.0 
NLSrn 478.6 
HJSe 130.2 
HJSm 438.8 
Blocked Warren 53.3 
(topological order node numbing) 
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present an extreme case as an example to clearly distinguish these results from those on trees. The 
example is extreme in that T is a complete graph. Qualitatively, for a large range of graphs with 
which we experimented, the relative performance of the algorithms was similar to that in Table 
6. Only on graphs that were very tree-like did the results become closer to those of Table 4. In 
Table 6, it is clear that there is a definite superiority of Seminaive over Smart in this case. In 
addition, hash-join is slightly better than nested-loops for Smart, whereas the two join methods 
perform very similarly for Seminaive. 

The reason for the verv ntronp similaritv of Ni 9e and HT9e in nerfnrmarwe in &is case & . __ ~ ___ _ ‘*D _______-_ __i _ -‘- _ -__- ___L_ --- ~____“‘__‘___ 
duplicate detection and elimination. This consumes a large percentage of their execution time. Since 
the join method does not affect the number of duplicates produced or the cost per tuple in duplicate 
elimination, their similarity in performance is natural. Moreover, duplicate elimination requires the 
loading of T into main memory. Except for very small graphs, this causes most other pages to be 
flushed from memory. For both HJSe and NLSe, it is thus likely that much or all of R has to be 
read from disk at each iteration, making the cost of the remaining part of their operation very 
similar as well. 

The reasoning in the previous paragraph explains the similarity of NLSm and HJSm in 
performance as well. These two algorithms, however, exhibit a larger difference between their 
Seminaive ~ounte~a~s. This is because, for NLSm, the ATi tuples are not adjacent within T, 
whereas they are placed in a small separate file for HJSm. Thus, probing in T to look for matches 
is less efficient in NLSm than in HJSm. 

Duplicate elimination is also the reason for the difference in performance between Seminaive and 
Smart. Table 7 shows the number of duplicate tuples produced by the two algorithms when 
duplicate elimination is done for several different graphs. (We use P and P, to denote the number 
of tuples produced by Seminaive and Smart respectively. Since this number does not include the 
tuples initially in R, the number of duplicates produced by Seminaive is equal to P - (IT] - IRI) 
and similarly for Smart.) Because of the condensation of several iterations into one and the fact 
that duplicate elimination happens just once per iteration, Smart generates many more tuples than 
Seminaive. In addition, the duplicate elimination cost per tuple is the same for both algo~thms. 
Hence, since the overall cost is dominated by that of duplicate elimination, Table 7 makes it no 
surprise that Seminaive outperforms Smart in this case, 

6.1.2. Pswfnrm/rnm nf Rlnrkd Wnrvon Tnhb h chnwc thi= nwfnt-mstnre nf Rlnrlrd Warn-n a~ z _‘J”“‘“‘._’ YJ Y.YI,“.... rr U,,l,.. a..“.” Y V..“,,Y .I.1 yw”““““.*-v VA Yl”“l.“Y ,, u11w1. YY 
well. As indicated in the table, Blocked Warren is by far the most efficient algorithm in this case. 
Its cost is also dominated by duplicate detection and elimination, but it produces fewer duplicates 
in general, thus excelling in performance. We should mention, however, that there do exist non-tree 
graphs on which Blocked Warren is inferior to the other algorithms. In particular, these are graphs 
that have a very large transitive closure that is computed almost in its entirety in the first pass of 
the algorithm (Fig. 3), Such an example is a cyclic graph with 400 nodes and branching factor of 
b = 10 whose transitive closure is complete. Aggregate time, IjO operations, and the number of 

Table 7. Effect of duplicate production on Smart and Seminaive 

Graph 
description Seminaive Smart 

- 

N b iTi P-iii+iRi iterations P., - iTi + iRi iterations 

100 3 9500 18,715 9 204,649 4 
100 10 4235 33,780 6 57,894 3 
200 5 10,574 39,331 8 84,247 4 
200 15 17,305 218,950 6 563,344 3 

IS 17/5-G 
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Table 8. Performance characteristics for mauh with comulete transitive closure 

Algorithm 

HJSe 
Blocked Warren 

Aggregate time 
w4 

2154.2 
303 I .9 

Number of 
I/O requests produced tuples (P) 

25,002 I ,596,OOO 
12,225 5 I ,453,ooo 

tuples produced for this particular graph using 150 buffers are given in Table 8 for Blocked Warren 
and HJSe. Blocked Warren has inferior performance on such graphs primarily because of the CPU 
time spent on duplicate elimination. After the first pass of Blocked Warren, the majority of tuples 
are already in T. Thus, the number of duplicates produced in the second pass is large, incurring 
a significant CPU cost (I/O cost is kept relatively low since duplicate elimination is performed 
on-the-fly). Seminaive produces many duplicates also, but this number is relatively limited. In 
particular, as shown in Table 8, Seminaive generates approximately 1.5 million tuples, whereas 
Blocked Warren generates approximately 50 million. This difference explains the poor performance 
of Blocked Warren. 

In general, as will be discussed further in Section 6.3.3, the performance of Blocked Warren is 
affected by the depth of the graph. In particular, when all other things are equal, Blocked Warren 
is relatively slow on shallow graphs. This is roughly explained as follows. For a given tuple of T, 
the sequence of tuples of R that need to be composed to generate it is shorter in shallow graphs 
than in deep ones. Hence, the probability that the node numbering will be in the appropriate order 
for the tuple to be produced in the first pass of Blocked Warren is higher in shallow graphs than 
in deep ones, as fewer nodes in shallow graphs need to have numbers in the correct order. Thus, 
shallow graphs tend to produce more tuples in the first pass, which has the compound effect of 
producing even more tuples in the second pass and requiring them to be compared against larger 
descendent lists. 

As a complement to the above experimental evidence, we present another example below and 
show analytically the number of tuples produced by each algorithm. Consider the graph shown 
in Fig. 1 l(a), whose adjacency matrix is shown in Fig. 1 l(b). For this graph, ITI = n* and d = 2, 
:- :c :, ^ ^L,.,,^._. __^_ 1. . ...41. ,. 1”.._,. ,,+..-11.. _ ,,-,1,+, .-.,,: +:.,- ,.1,” . . ..^ T, ,-,L ,,:-,+I--,,:..+ 1.c. II 1s a sllall”w g;Iirpu w1l.u a Mlrgjc, aGLuauy a L”‘llplcLe, LlilllDlLlVC cI”suIe. I” cllly‘,iralLc L‘lC p”“‘L, 
we have numbered the graph nodes in the worst possible way for Blocked Warren. Following the 
algorithm step by step yields that the number of tuples produced in the first pass of Blocked Warren 
is equal to (n* - 2)(n - 1)/2, and the corresponding number for the second pass is equal to 
n’(n - 1)/2, for a total of (n* - l)(n - 1) tuples produced. On the other hand, Seminaive generates 
a total of 2(n - l)* tuples, which is 0 (n) fewer than Blocked Warren. 

We should also emphasize the sensitivity of Blocked Warren to the numbering of the nodes. If 
in the above graph we exchange the numbers for nodes 1 and n, we obtain the best case for blocked 
Warren. The number of tuples produced in the first pass then drops to n - 1, with the number 
produced in the second pass dropping to n(n - l), for a total of (n’ - 1). This is a dramatic drop 
in the number of tuples produced by Blocked Warren, to the point where asymptotically it is half 
the corresponding number for Seminaive. 

In conclusion, although in the majority of cases Blocked Warren is the algorithm of choice, the 
point needs to be made that there are shallow graphs with large transitive closures where Blocked 
Warren generates many more duplicates than Seminaive, thus leading to inferior performance for 

Fig. 11. Graph where Blocked Warren performs poorly. 
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Blocked Warren in such cases. Moreover, whether or not Blocked Warren indeed behaves poorly 
is a question whose answer is node numbering dependent. 

6.2. Eflect of parameters of ai~orithm implementations 

6.2.1. Number of partitions. Figure 12 displays data for the typical cost of the various algorithms 
applied on non-tree graphs as a function of the number of partitions. The specific example is for 
the same graph in Section 6.1, i.e. a cyclic graph with 100 nodes and a branching factor of b = 10 
(with depth a‘ = 4j, and for 50 buffers. Thus, the minimum point of each curve in Fig. i?! 
corresponds to the associated entry in Table 6. Moreover, since the performance of Blocked Warren 
is not affected by the number of partitions, it is shown as a straight line for the sake of comparison. 
As we can see in Fig. 12, the number of partitions does not affect the performance of any algo- 
rithm on non-tree graphs as significantly as it did for trees. This is due to duplicate elimination, 
which dominates the cost and flattens out the curves over a very wide range of the number of 
partitions. 

6.2.2. Number o~~~ii~ie bu@-s. Figure 13 is a typical figure of the aggregate time for HJSe 
and Blocked Warren for non-tree graphs as a function of the number of available buffers. (The 
results for nested-loops implementations are not shown because they are similar to those of the 
hash-join implementations.) The specific example is for an acyclic graph with 600 nodes and a 
branching factor of h = 2 whose transitive closure contains ITI = 17.457 tunles. I’ nccunies 100 --..--------5) __._.__ __ ___c___ _ _.-L-__ _-___-___- ,_, -.,._. _-&___L. - ----I---- 
pages for HJSe and 117 pages for Blocked Warren. The difference is primarily due to B +-tree page 
splits throughout the course of the algorithm, which leave many pages of the result just slightly 
over 50% utilized. 

The performance of HJSe and HJSm degrades as memory is reduced, but the degradation 
becomes significant only at quite small buffer sizes. On the other hand, Blocked Warren is much 
more sensitive to the amount of main memory available. With large memory, Blocked Warren is 
clearly superior to Seminaive and Smart. As memory becomes smaller, however, performance 
degrades more severely for Blocked Warren; it becomes worse than the other algorithms when 
memory size drops to about 30% of the size of T. The memory size sensitivity of Blocked Warren 
is primarily due to duplicate elimination, as checking for duplicates requires that descendent lists 
be in main memory. A small number of buffers in combination with this requirement forces the 
size of the diagonai biocks to decrease, which has negative effects on i/O and CPU time that have 
already been discussed (Section 5.1.2). 
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6.3. Eflect of parameters of data 

As in Section 5.2, the important graph parameters are IR/, ITI, P and d. For non-tree graphs, 
all four of these parameters are in principle independent and affect the performance of the 
algorithms differently. Except for extreme cases of very small or very large graphs, however, the 
role of IRl is minor. Moreover, it is almost impossible to construct multiple graphs that have equal 
values for the remaining three parameters and differ significantly in the value of [RI. Thus, we have 
concentrated on ITI, P and d, examining the effect of each one while keeping the other two constant. 
For the reasons explained above, the value of IR( was ignored in these experiments. The results 
are organized as in Section 5.2. Again, we only discuss the hash-join algorithms, since it is clear 
from Fig. 12 that they are either superior or equivalent to their nested-loops counterparts. Finally, 
as in Section 5.3, most figures in this section do not present data for very small values of the varied 
parameters because there are no graphs with such values. 

63.1. Size of T. The effect of ITI on the behavior of the algorithms when P and d remain constant 
is shown in Fig. 14. The specific example is for acyclic graphs with d = 40 and P z 77,000. We 
should first note that HJSm is superior to HJSe due to the large value of d. On shallower graphs, 
although the following discussion on the effect of (TI remains valid, HJSe is superior to HJSm as 
indicated in Table 6. The cost of HJSe increases with ITI in an approximately linear fashion. This 
is because, for all joins, the size of the one operand, AT, increases due to the increase in ITI. 
Duplicate elimination also becomes more costly since the same number of produced tuples must 
be checked against a larger T. HJSm displays the same behavior up to a certain point, beyond which 
its cost becomes stable. The reason for the difference is the following. The fact that P remains 
constant while IT( increases implies that the number of duplicates, i.e. useless tuples, produced by 
HJSe decreases. This is true for HJSm as well, but in a more dramatic way, since HJSm generates 
more duplicates than HJSe. Hence, as ITI increases, HJSm becomes more competitive. This also 
explains the relative flatness of the curve for HJSm on the high end of ITI values. Recall that, for 
the graphs used in this experiment, HJSe produces the same number of tuples (P). This is not the 
case for HJSm, however; in fact, as ITI increases, HJSm produces fewer tuples overall (i.e. a higher 
number of duplicates disappear). This results in the relative flatness of the curve. Finally, the cost 
of Blocked Warren is also a monotonically increasing function of ITI. In this case, the number of 
tuples produced by Blocked Warren is not controlled by keeping P constant, and it in fact increases 
with the increase in ITI, thus significantly affecting the total cost. In addition, main memory 
becomes inadequate to hold the needed descendent lists and hash tables beyond a certain point, 
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and this has two effects. First, I/O cost increases. Second, the size of the diagonal blocks decreases 
in order for the descendent lists of their nodes to fit in main memory. This implies an increase in 
the number of internal iterations for Blocked Warren, causing an associated increase in the overall 
cost of the algorithm, as discussed in Section 5.1.2. The compound effect of all of the above factors 
can be observed at the far right end of the Blocked Warren curve in Fig. 14. 

6.3.2. Number of produced tuples. The effect of P on the behavior of the algorithms when IT1 
and d remain constant is shown in Fig. 15. The specific example shown is for acyclic graphs with 
d = 40 and ITI z 34,000. The behavior of HJSe and HJSm is similar to the case for trees when ITI 
and d were kept constant while JR1 was varied. The cost of HJSe monotonically increases with P. 
The more duplicates that are produced, the more expensive the duplicate elimination process 
becomes. The cost of HJSm increases much faster than HJSe in the beginning, until it reaches a 
maximum, beyond which it remains relatively flat. The explanation for this behavior is similar to 
that of the corresponding case for trees. HJSm inherently produces more duplicates than HJSe and 
is therefore affected more severely by the increase in P. In addition, this increase needs to be dealt 
with in many fewer iterations in HJSm. Thus, the increased cost of duplicate elimination is the 
dominant factor in the initially steep increase in the cost of HJSm. On the other hand, since ITI 
remains constant, tuples tend to be produced for the first time in earlier iterations of HJSm (or 
HJSe) as P increases, making the earlier iterations even more expensive while the later ones become 
cheaper. To the left of the maximum, the cost increase in the early iterations dominates the cost 
decrease in the later ones. Beyond a certain point, the vast majority of the tuples are generated 
in the first few iterations, so the cost flattens out. The small variations in the flat area are affected 
by the specific way that the cost of each iteration changes based on the specific graph and other 
parameter choices. Finally, as expected, the cost of Blocked Warren is affected little by the increase 
in P. This is because of the completely different nature of the algorithm, which generally produces 
fewer duplicates than HJSe and does so in a completely different fashion. Initial increases in P have 
some impact on the behavior of the algorithm, since there are more tuples that need to be processed, 
but beyond a certain point increasing P does not imply an increase in the number of tuples 
produced by Blocked Warren and its cost is therefore stabilized. 

6.3.3. Depth of graph. The effect of d on the behavior of the algorithms when ITI and P remain 
constant is shown in Fig. 16. The specific example is for cyclic graphs with P x 190,000 and 
ITI x 34,000. HJSe has a steep increase in its cost as d increases due to the extra overhead of the 
additional joins and duplicate elimination steps that must be performed. The fact that the total 
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number of tuples that need to be looked at remains the same implies that most individual iterations 
become cheaper, but this gain is dominated by the increase in the number of iterations. Specifically, 
the last few iterations end up joining R with relations that have approximately the same number 
of tuples as T and are therefore quite expensive. HJSm is also increasing in cost for the same reasons 
as above, but the increase is much slower due to its logarithmic number of iterations. Unlike these 
two algorithms, the cost of Blocked Warren is monotonically decreasing in d. This is related to 
the comments in Section 6.1.2, where graphs on which Blocked Warren performed poorly were 
presented. Given that ITI and P are constant, as the graph becomes deeper, i.e. as d increases, the 
probability that a tuple will be generated during the first phase of Blocked Warren decreases. This 
has the double effect of leading Blocked Warren to process fewer tuples in the second pass and 
needing to compare them against fewer tuples to check for duplicates. Hence, although the number 
of tuples produced by HJSe (P) remains constant, the number of tuples produced by Blocked 
Warren decreases, which results in its overall cost decrease. 

7. COMPUTING A SELECTED PART OF THE TRANSITIVE CLOSURE 
OF GRAPHS 

On transitive closure queries that involve a selection, Smart is not applicable because it cannot 
make full use of the selection (Section 2.2.2), and NLSe is always inferior to HJSe due to the overall 
superiority of hash-join over nested-loops. Thus, for such queries, we experimented only with HJSe 
and Blocked Warren. HJSe can take advantage of the selection by accessing only the part of the 
graph that is relevant to the query. In contrast, Blocked Warren must first compute the complete 
transitive closure and then apply the selection. 

Figure 17 shows typical aggregate times for Blocked Warren and HJSe as a function of the 
number of nodes selected by the query. The specific examples are for an acyclic graph with 500 
nodes, 1990 arcs, and a branching factor of b = 4. The full transitive closure of this graph contains 
43,733 arcs. Both algorithms were run with 50 buffers, and HJSe was run with five partitions for 
the relations. 

As expected, when few nodes are selected, HJSe is superior to Blocked Warren. The surprising 
observation, however, is that the percentage of nodes that need to be selected for Blocked Warren 
to be superior is very high. In the example of Fig. 17 this threshold is nearly 50% of the nodes 
in the graph. In general, the thresholds that we observed over a wide range of experiments were 
always greater than 35%. Some might argue that most queries will be more selective than that, 
which implies that Seminaive may almost always be the algorithm of choice in practice. 

It is worth noting that Seminaive is relatively flat up to a certain number of selected nodes, i.e. 
30% of all nodes in the graph associated with Fig. 17. Beyond that point its cost increases rapidly 
and becomes worse than that of Blocked Warren. The reason for the initial flatness is that the 
relevant relations are small and all operations can be performed in main memory. The knee in the 
curve occurs at the point where enough nodes are selected so that I/O becomes a necessity. 

8. COMPARISON TO RELATED WORK 

A significant body of work exists on computing the transitive closure of a binary relation in a 
disk-based environment. In the previous sections, we have referred to several articles that deal with 
transitive closure algorithms that are relevant to our study. In addition to those, work has been 
done on using graph-braversal for transitive closure computation [4,21], combining Blocked 
Warren with depth-first search [21,22], maintaining the transitive closure in compressed form 
without significant losses in performance [23,24], and computing the transitive closure in parallel 
[lo, 11,251. In the following subsections, we compare the results of our study with those of related 
previous studies and discuss the reasons for cases where our results differ from those of related 
studies. 

8.1. Eflect of duplicate elimination and immediate processing 

The positive effect of immediate processing was noted first by Lu [8], who incorporated it into 
an implementation of Seminaive. Han et al. [7j analyzed the expected performance of several 
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different algorithms for recursive query evaluation, especially algorithms that are very similar to 
Seminaive for transitive closure computations. The Han ef al. study concluded that duplicate 
elimination and immediate processing both improve performance and that hash-bash implemen- 
tations outperform B+-tree based ones. The significant role of duplicates in the performance of 
all algorithms was also noted by Agrawal and Jagadish [6]. 

The results of our study confirm those of previous studies with respect to duplicate elimination 
and immediate processing. Given the different approaches that underly these distinct studies, we 
can infer that these conclusions are rather universal. 

8.2. Seminaive vs Smart 

In contrast to the findings of this study, previous studies have shown that, in most “interesting 
cases”, Smart outperforms Seminaive. This was the conclusion of Ioannidis [3], Valduriez and Boral 
[S] and Lu 163. Ioannidis studied the performance of the two algorithms on trees (where no 
duplicates are product), and Smart was observed to be superior to Seminaive on all types of trees 
of all sizes except very large ones. Valduriez and Boral found that Smart was superior to Seminaive 
when the depth of the graph was above a certain small threhold. Below that threshold they found 
C~minrrive tn he c~mwinr hnt the W~‘PW~PP UJ~(C rmall F;inallv T 11 pcwmtiallv cnnfirmd thP wallltr .a11 . . . . I-1 v.. L” “1 “Yy-““‘) “UC .I._ ULIIIIYIA”” ..U” “IIIUA.. 1 “‘U”J) Y.. ~“Y”“C’U”J “VllllllllYU LllV Iv”uI*” 

of Ioannidis. 
In Section 6.1.1, we have shown that Seminaive generally dominates Smart for non-tree graphs, 

usually by a large margin, except when the depth of the graph is large. The difference in conclusions 
between this study and its predecessors can primarily be attributed to the different implementations 
of the algorithms that were used or assumed in each study. Immediate processing, specialized buffer 
replacement strategies, duplicate elimination, and hash-based join methods are all present in our 
study, whereas most of them were missing from previous studies. Hashing was the basic data 
structure used in our implementations, whereas different structures were used in other studies, e.g. 
join indices [5]. Moreover, our study involved a real implementation of the algorithms, whereas 
the earlier studies have relied on simplified simulations [3,8] or theoretical analysis [5]. Some of 
these studies used a model for the data that is not realistic for many graphs, e.g. a model where 
the selectivity factors of the joins performed in any two consecutive iterations of Seminaive have 
a constant ratio [5], while others showed results on trees alone without performing any duplicate 
elimination [3]. The much richer set of techniques used in our implementations and the higher 
degree of completeness of our experiments make us confident that the conclusions of this study 
should override those of the previous ones with respect to the relative performance of Seminaive 
and Smart. 

8.3. ~eminaive and Smart vs Warren 

We have already mentioned that Blocked Warren was first introduced by Agrawal and Jagadish 
[6]. The results of that study showed Blocked Warren to be superior to Smart in all cases. Despite 
improved implementations of Smart (and Seminaive), our study essentially confirmed that 
res~ult in uen~=ral Nmo=rth&=cc wp hnw nlcn irlmtifid da~cm of ggphg yq$_ert~ t,he qp&e D”A’-‘-” A ._ .__._...._““, ..I,_ .._YV 1-v ..I... vu “...+““I” 

holds. These are shallow graphs with large transitive closures. Although such graphs are not 
expected to be common, recognizing them is useful in understanding the relative merits of the 
algorithms. 

Lu et al. [9] compared the performance of Blocked Warren and two versions of Smart. Their 
study was different from ours and from that of Agrawal and Jagadish in two respects. First, a 
different adaptation of Warren to a database environment was assumed. The approach taken there 
involved partitioning the rows of the adjacency matrix based on hash values without any provision 
for dynamic repartitioning. Second, the algorithms were not actually implemented; Lu et al. 
proposed an implementation and then analyzed it to estimate performance. Their results indicated 
that Smart is affected by small memory less than Blocked Warren, and that Smart is actually 
superior to Blocked Warren when the size of the transitive closure is much greater than the size ___. __ 
of memory. This has been confirmed by our experiments (Section 6.2.2). They aiso examined the 
effect of graph characteristics on the performance of the two algorithms. Most of their results vary 
more than one parameter at a time, so it is hard to compare them directly with ours. Nevertheless, 
to the extent possible, the conclusions of the two studies seem to be mutually agreeable. 
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A unique contribution of our study is the examination of the relative performance of the 
algorithms in the presence of various degrees of selection. Previous studies have experimented only 
with one end of the spectrum (queries with no selection), although some of them have also 
informally discussed the other end of the spectrum (very selective queries). No previous study, 
however, has attempted to quantify the effect of query selectivity over a wide range of values on 
the relative performance of these algorithms. We have investigated this issue and have demon- 
strated that Seminaive is superior to Blocked Warren for selections of surprisingly large subsets 
of the nodes in the graph. The specific value of the fraction of nodes that are selected beyond which 
Blocked Warren becomes superior to Seminaive depends on the graph, but it was always observed 
to be above 35% in our experiments. 

9. SUMMARY 

In this paper, we have investigated alternative implementations of known algorithms for 
transitive closure and we have evaluated their relative performance. The results obtained 
complement those of previous studies and offer new insights on how these algorithms should be 
implemented for improved performance. In particular, the primary contributions of this paper are 
the following. First, several alternatives for the implementation of Seminaive and Smart have been 
investigated. Specialized data structures and buffer management strategies have been proposed to 
improve the performance of each different algorithm. Also, our experiments have demonstrated 
that (i) hash-join is the preferred join algorithm for transitive closure for both Seminaive and Smart, 
(ii) processing tuples as soon as they are generated and are still in memory is beneficial whenever 
it is applicable, (iii) repartitioning is always beneficial for hash-join Seminaive and (iv) Seminaive 
and Smart become more competitive compared to Blocked Warren as the buffer pool size decreases. 
Second, the effects of several data characteristics on the behavior of these transitive closure 
algorithms has been analyzed. Graph parameters that directly affect algorithm performance have 
been identified, and a relatively novel approach has been employed to independently control each 
_.._L ____-^~^_ :- ___l_.. C^ ______r_,.. _&..A.. :r_ :____c sucn parameter III 01ue1 Lu sepaIkiL';ly aLuuy 1Ls Impact Oii &OiiihiIi ~dOiiEnlaiKC o-w---' 3t;vc,a, 

experiments have shown that no algorithm is universally superior, i.e. for each algorithm examined 
there are graphs for which the algorithm is the most efficient. In particular the major conclusions 
can be qualitatively summarized as follows: 

(i) As expected, increasing the size of R, the size of T, or P makes all algorithms perform 
worse. Interestingly, when increasing the values of P or IRI while keeping the other 
parameters constant, the graphs tend to be shallower, so the costs of Seminaive and Smart 
remain stable beyond a certain value of the varied parameter. This is because most of the 
transitive closure is computed within a few iterations. 

(ii) The more tree-like the graph is (i.e. the smaller the difference between P and ITI is), the 
more competitive Seminaive and Smart are compared to Blocked Warren, especially when 
its descendent lists are large (since they limit the size of the diagonal blocks of Blocked 
Warren). As more and more duplicates are produced, however, Blocked Warren becomes 
the algorithm of choice. Also, Smart becomes more competitive compared to Seminaive 
when the graph is tree-like, as the duplicate reduction is more significant for Smart than 
for Seminaive. 

(iii) The deeper the graph is, the more competitive Smart is compared to Seminaive. Also, 
Blocked Warren becomes even more competitive on deep graphs for the reasons explained 
in Section 6.1.2. On the other hand, for shallow graphs, when ITI is large, Seminaive 
appears to be the algorithm of choice. 

Finally, the performance of Seminaive and Blocked Warren in the presence of selections has been 
studied. As expected, since Blocked Warren cannot take advantage of a selection, Seminaive is 
superior for very selective queries. Surprisingly, our experiments have shown that the percentage 
of the graph nodes that need to be selected for Blocked Warren to be superior to Seminaive is rather 
large (for all graphs tested, it was greater than l/3). This implies that in the majority of realistic 
transitive closure queries with selection, Seminaive is likely to be the preferred strategy. 
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