
Schema Equivalence in Heterogeneous Systems:Bridging Theory and Practice �R. J. Millery Y. E. Ioannidisz R. RamakrishnanxDepartment of Computer SciencesUniversity of Wisconsin-Madisonfrmiller, yannis, raghug@cs.wisc.eduDecember 1, 1993AbstractCurrent theoretical work o�ers measures of schema equivalence based on the information capacity ofschemas. This work is based on the existence of abstract functions satisfying various restrictions betweenthe sets of all instances of two schemas. In considering schemas that arise in practice, however, it is notclear how to reason about the existence of such abstract functions. Further, these notions of equivalencetend to be too liberal in that schemas are often considered equivalent when a practitioner would considerthem to be di�erent. As a result, practical integration methodologies have not utilized this theoreticalfoundation and most of them have relied on ad-hoc approaches. We present results that seek to bridgethis gap. First, we consider the problem of deciding information capacity equivalence and dominance ofschemas that occur in practice, i.e., those that can express inheritance and simple integrity constraints.We show that this problem is undecidable. This undecidability suggests that in addition to the overlyliberal nature of information capacity equivalence, we should look for alternative, more restrictive notionsof equivalence that can be e�ectively tested. To this end, we develop several tests that each serve assu�cient conditions for information capacity equivalence or dominance. Each test is characterized bya set of schema transformations in the following sense: a test declares that Schema S1 is dominatedby schema S2 if and only if there is a sequence of transformations that converts S1 to S2. Thus, eachtest can be understood essentially by understanding the individual transformations used to characterizeit. Each of the transformations we consider is a local, structural schema change with a clear underlyingintuition. We demonstrate the power of these tests by showing that one can reason about the equivalenceand dominance of quite complex schemas. Because our work is based on structural transformations, thesame characterizations that underly our tests can be used to guide designers in modifying a schema tomeet their equivalence or dominance goals.
�This paper appears in: Information Systems, 19(1):3-31, 1994. An extended abstract appears in: Extending DatabaseTechnology (EDBT), Cambridge, U.K., March 1994.yR. J. Miller has been partially supported by the National Science Foundation (NSF) under Grant IRI-9157368.zY. Ioannidis has been partially supported by the NSF under Grants IRI-9113736, IRI-9224741, and IRI-9157368 (PYIAward), and by grants from DEC, IBM, HP, AT&T, and Informix.xR. Ramakrishnan has been partially supported by a David and Lucile Packard Foundation Fellowship in Science andEngineering, by the NSF under a PYI Award and under grant IRI-9011563, and by grants from DEC, Tandem, and Xerox.0

Information Systems, 19(1):3-31, 1994 11 IntroductionThe problem of schema translation is to transform an existing schema in a given data model into an equiva-lent schema, possibly in a di�erent data model. A closely related problem is that of schema integration. Atthe heart of schema integration lies the problem of detecting if two schemas or parts of schemas are equiva-lent. Theoretical work on schema integration and translation has focused on the development of notions ofequivalence for schemas. Such work, while mathematically elegant, does not address many practical issuesand is not an adequate foundation for developing pragmatic solutions. On the other hand, without a goodfoundation, practical work has been largely ad hoc. Solutions are motivated by the needs of speci�c classesof examples and often do not generalize.In this paper, we present formal results that provide a basis for developing practical schema integrationand translation techniques. Our previous work has highlighted the need for a formal notion of equivalence[14]. Speci�cally, we examined the notion of relative information capacity [8] and identi�ed anomalies thatcan arise when using transformations that do not guarantee that information capacity is preserved. However,there are only limited theoretical results on information capacity equivalence and dominance. In addition, tobe directly usable in a practical context, a decidable characterization of both equivalence and dominance ofschemas is needed. In this paper, we examine the characterizations that exist for various classes of schemasand extend these results by showing that no characterization is possible even for a more general though stillsimple class.Furthermore, while being a required condition, information capacity is not su�cient to guarantee a naturalcorrespondence between schemas. In de�ning equivalence preserving transformations of schemas, practition-ers use their own intuition about what constitutes a valid structural correspondence between schemas. Ourundecidability result suggests that in addition to the overly liberal nature of information capacity equiv-alence, we should look for alternative, more restrictive notions of equivalence and dominance that can bee�ectively tested. To this end, we develop several tests that each serve as su�cient conditions for informa-tion capacity equivalence or dominance. Each test is characterized by a set of schema transformations in thefollowing sense: a test declares that Schema S1 is dominated by Schema S2 if and only if there is a sequenceof transformations that converts S1 to S2. Thus, each test can be understood essentially by understandingthe individual transformations used to characterize it.Each of the transformations we consider is a local, structural schema change with a clear underlyingintuition. Our earlier work showed that for many practical tasks, it is su�cient to ensure the informationcapacity dominance of schemas [14]. We therefore consider transformations that preserve the informationcapacity of a schema and transformations that augment it. Our transformations are presented formally interms of the Schema Intension Graph (SIG) data model, which is de�ned in Section 3. Informally, we considertransformations that permit common constraints on a schema to be removed. These constraints can expresskey dependencies, integrity constraints and other common dependencies between sets. Other transformationspermit attributes or entities to be moved or copied. As a simple example, we can transform Schema S1 ofFigure 1 into Schema S2. The Phone entity is copied from Address to Person and the Degree entity ismoved. We characterize exactly when such transformations preserve or augment information capacity (thatis, when the transformations are valid). Additionally, the transformations de�ne the constraints that musthold on the transformed schema based on the constraints on original schema. Our characterizations let us testexactly when an arbitrary schema can be obtained from another through some sequence of transformations.We demonstrate the power of these tests by showing that one can reason about the equivalence anddominance of complex schemas. Because our work is based on structural transformations, the same char-acterizations that underly our tests can be used to guide designers in modifying schemas to meet theirequivalence or dominance goals. We have de�ned and used a formal model that permits reasoning aboutschemas at a level that is easily translated into the terms of most commonly used models. It is not necessaryfor a designer to understand our SIG data model or the details of our results to be able to bene�t from thealgorithms we propose.

Information Systems, 19(1):3-31, 1994 2
Person

Student Address

isa

has−addr

Degree
major

Schema S1

has−phone

Phone

Person

Student Address

isa

has−addr

Phonehas−phone

Degreedegree

Schema S2

has−phone

PhoneFigure 1: Example transformation of an informal object-oriented schema.2 MotivationBefore conducting a study of schema equivalence, the question of why this is important must be addressed.Below, we present examples belonging to two broad classes of problems whose solutions depend on havinge�ective procedures to determine if two schemas are equivalent. In addition to showing the importanceof schema equivalence in practical problems, these motivating examples provide insight into the type ofresults on schema equivalence that may have direct practical import. The �rst class of problems is that ofautomating the integration of schemas. We focus on one problem in this class, that of detecting and resolvingwhat has been termed structural mismatches or conicts in schemas that are being integrated. The secondclass is that of providing automated support for ad hoc changes to a schema that is being used as a viewonto data stored under another schema.2.1 Schema IntegrationAlgorithms for determining the equivalence and dominance of schemas play a number of important rolesin the integration process. For clarity, we limit our discussion here to a speci�c application of schemaequivalence.Integration methodologies vary a great deal but at a very coarse level they often include the followingsteps.1 An initial comparison is performed in which correspondences among schemas are determined. Forexample, the attribute ProjectNo in some schema could be identi�ed as being identical to the attributePNo in another. After general correspondences are known, conicts in the schemas may be detected andresolved. Conicts include type conicts (also called \structural mismatches") in which similar informationhas been represented using di�erent schema constructs (for example, as a relationship in one schema andas an entity in another) or di�erent groupings of constructs (for example, sets of attributes are groupeddi�erently in relational tables, as in the example below). Type conicts are typically resolved by changingthe constructs used in one or more of the schemas so that all schemas use identical constructs. This step canbe viewed as a goal driven restructuring of the original schemas based on information about other schemas tobe integrated. After conict resolution, the schemas are merged. For example, a single attribute ProjNo inthe integrated view may represent information from the attribute ProjectNo of one schema and the attributePNo of another.The resolution strategy for type conicts may be a �xed choice of one construct over another or may beleft up to the schema designer [4, 20]. However, certain choices are simply wrong in certain situations andmay cause errors if the integrated view is used to retrieve or store data in the underlying schemas [14]. Ifthe integration methodology makes use of information about the equivalence of schemas, such wrong choicescan be avoided. We illustrate this point using a simple relational example.Consider the integration of two complex relational schemas, R1 and R2. These schemas contain (amongother tables) the Project and Workstation tables depicted in Figure 2. The integrated schema is to be1These steps are outlined in a 1986 survey of integration methodologies [4] and continue to be used in more recent work[19, 20]. We have only presented them in outline form for brevity.

Information Systems, 19(1):3-31, 1994 3used as a view for accessing information in both schemas, so we want to ensure that the integrated viewcan express all the data in the original schemas. Furthermore, we need to ensure that we have a set ofcorrespondences that de�nes how instances of the original schemas collectively correspond to an instance ofthe integrated view so that queries on the view may be translated to queries on the original schemas. We callthese correspondences instance mappings. If such mappings exist, we say that the integrated view dominatesthe original schemas. Formal de�nitions of dominance and equivalence of schemas are given in Section 4.
Schema R1 Schema R2

Project [ProjectNo, Leader, Grant]

NameWorkstation [SerialNo,]

Project [ProjectNo,]Leader

Workstation Grant[SerialNo,]Name,Figure 2: Parts of two relational schemas to be integrated. Keys are depicted in bold.Suppose that a designer has indicated that the information contained in the two Workstation tablescorresponds (that is, the tables model the same real world entities), as does the information in the twoProject tables (and similarly, for all attributes depicted in the �gure). In the conict resolution phase,the problem is to pick a common representation for all the information about Workstations and Projects.Reasoning at an intuitive level, if we can determine a unique Grant to associate with each Workstation (andif every Grant is associated with some Workstation), then we can represent any instance of R1 as an instanceof R2. The latter condition is needed to ensure that all Grant data may be accessed through the view.Suppose schema R1 also contains the table Owner[SerialNo, ProjectNo] and the proper inclusion de-pendencies to ensure that every Grant is associated with some Workstation (Owner. SerialNo � Work-station.SerialNo and Project.ProjectNo � Owner.ProjectNo). We can then correctly represent everyinstance of R1 as an instance of R2, so we could choose the tables of R2 as the common representation forWorkstation and Project information in the integrated view.This was just one example of how R2 might have more capacity to store information. It may also bethe case that for di�erent schemas the Workstation and Project tables of R1 dominate R2. The reasoningneeded to make such a determination can be quite complex. It depends on the constraints expressed onthe schemas (including whether null values are allowed). A designer cannot be expected to intuit a correctrepresentation. Furthermore, a �xed choice of one representation (perhaps always choosing the table withthe most attributes) will not be correct for all schemas. If a tool uses algorithms for detecting the equivalenceor dominance of schemas, then it can correctly resolve schema conicts or guide a designer in modifying theschemas using knowledge about the existence of instance mappings.2.2 Ad Hoc Schema ChangesAlgorithms for deciding schema equivalence also have important applications in areas outside of schemaintegration. We discuss one important class of problems, that of supporting ad hoc changes to a schema thatis being used as a view onto data stored under another schema. Consider a schema translation tool in whicha schema is translated into an equivalent schema (typically in a di�erent data model), which can be used asa view to pose queries on data stored under the original schema. Within such tools, the translation processproduces not only the translated schema, but an instance mapping between the schemas. For example, thePegasus import tool [2] translates relational schemas to Iris schemas (Iris is a functional object model). Foreach Iris type, the result of translation includes a rule over a collection of relations in the original schemathat de�nes the instances of the type.Such translation tools fully automate the production of instance mappings. A designer need only beconcerned with the resulting schema; all details of establishing schema correspondences are hidden. We nowwant to permit the designer to change the translated schema. Again, we want the tool to automatically inferand record any changes necessary to the instance mapping.For example, suppose Schema R1 of Figure 2 is produced by a translation tool from an underlying schema

Information Systems, 19(1):3-31, 1994 4in another data model.2 A designer may wish to change the default translation and represent Grant as anattribute of Workstation not Project as in Schema R2. If the tool can test for dominance and automaticallyproduce an instance mapping between schemas, then the designer does not need to manually update theinstance mapping as a result of this change. Currently, translation tools, such as Pegasus, do not give suchsupport for ad hoc view changes. Rather, they provide some form of data de�nition language in whichdefault mappings are expressed and which may be used by a designer to manually change a mapping.This problem is clearly not restricted to translation and applies to a number of applications in heteroge-neous databases in which one schema is maintained as a view over other schema(s) [18, 21, 22].2.3 DiscussionSeveral requirements on our study of schema equivalence can be identi�ed from these motivating examples.First, for the applications we are considering, the notion of equivalence must be based on the ability or ca-pacity of schemas to store information. Second, practical problems require not only procedures for producingequivalent schemas (this is the translation or transformation problem) but also for testing if two schemasare equivalent. Finally, for equivalence tests to be usable, they must not only produce a decision about theequivalence of schemas, but they must also produce the correspondence between the schemas (that is, aninstance mapping).In the next section, we present the Schema Intension Graph (SIG) data model that will be used topresent our results. In Section 4, we de�ne information capacity and examine existing results on informationcapacity equivalence and dominance. We extend these results by considering the information capacity ofSIGs and show that it is not always possible to test for the equivalence or dominance of schemas. In Section5, we provide decision procedures that will allow us to decide equivalence for a large class of schemas. Inthe examples of Sections 5 and 6, we briey demonstrate how our results may be used in a practical settingto meet the requirements of common integration and translation problems such as the ones we have justexamined.3 A Formal Data ModelIn this section, we de�ne the data model used to present our results. We have chosen to de�ne a new datamodel for this purpose for two main reasons. First, we need a model that allows us to compare schemaswith respect to their information capacity. As we saw in the previous section, given two schemas, a typicalquestion of interest is whether each instance of the �rst schema can be represented as an instance of thesecond schema (in such a way that it is possible to `go back' to the �rst instance). In order to addressquestions such as the one above, we need a way to reason about possible schema instances given a set ofconstraints over them. Other formal studies of information capacity have typically used the relational model[8] or models based on complex types [1, 9, 10, 15]. Instead of extending complex types with constraints,we chose to use a model in which constraints are expressed on collections of entities of an instance ratherthan on the internal structure of a single entity. We explore this point further after we have presented ourmodel. Second, to simplify our task, we wish to include in the model only a minimum set of constructs andconstraints necessary to model a large class of commonly occurring schemas. Furthermore, we require thatany reasoning about schema equivalence be done in a form that is easily conveyed back to a schema designer.To aid in this goal, we strive to meet requirements laid out by practitioners in this �eld [17]. Speci�cally, theconstraints we include in the model are local (that is, they are robust to schemas changes), comprehensible(easily understood and used by a database designer), and not based on unrealistic assumptions about theset of valid instances of a schema. They also appear in some form in most common data models, and aretherefore widely recognized as being useful.The basic building blocks of the model are sets of data values (represented by the nodes of a graph).These sets may be combined by nested applications of union and product constructors to form new sets. Themodel also permits the expression of binary relations between pairs of sets and simple integrity constraints2In reality, most tools translate into more expressive data models but, for brevity, we reuse the same relational example.

Information Systems, 19(1):3-31, 1994 5(dependencies) on these binary relations. The binary relations are represented by edges of a graph and theconstraints by annotations on the edges. The constraints include totality and surjectivity, which express thatevery element of the �rst or the second set must participate in an instance of the binary relation, respectively,and functionality and injectivity, which express that an element of the �rst or the second set may appear atmost once in an instance of the binary relation, respectively. 33.1 Schema Intension GraphsLet � be an in�nite set of symbols that will serve as labels for schema constructs. Let T be an in�nite set ofsimple abstract types. Let T � be the closure of T under �nite products and sums. Each simple type � 2 Tis an in�nite set of symbols. All simple types are pairwise disjoint and disjoint from the set of labels �. Theuniverse U is the union of symbols in all types of T .A schema intension graph (SIG) is a graph, G = (N;E), de�ned by two �nite sets N and E. The set Ncontains a set of symbols M � �. The nodes in M are called simple nodes. Additionally, N may containconstructed nodes that are the products and sums of other nodes, where� if A;B 2 N then the node A�B may be in N; and� if A;B 2 N then the node A+B may be in N.Each simple node A 2 N , is assigned a type, �(A) 2 T �. The type of a constructed node is the cross-product or union of the types of its constituent nodes. Multiple nodes may have the same type.Each element e 2 E is a labeled edge between two nodes of N . An edge e is denoted e : A�B, indicatingit is an edge from node A to node B. For each edge e 2 E, the inverse of e, denoted e�, is in E. The setE may contain arbitrary edges between nodes as well as multiple edges between the same pair of nodes. If�(A) = �(B), then an edge e : A � B may optionally be designated as a selection edge and is denoted bya label �BA . If �(A) = �(B) � �(C) for some node C, then e : A � B may optionally be designated as aprojection edge and is denoted by a label �BA . (When no confusion can arise subscripts and/or superscriptson projection and selection edges will be omitted.) An instance of a SIG is constrained to give all selectionand projection edges special interpretations.3.1.1 InstancesIn a SIG, the nodes represent typed domains and the edges represent abstract morphisms between domains.An instance of a graph is an assignment of a speci�c set of elements of the appropriate type to each nodeand speci�c binary relations to the edges of a graph. An instance corresponds to a speci�c database state.An instance of G is a function whose domain is the sets N of nodes and E of edges. The set of allinstances of G is denoted I(G). An instance = 2 I(G) is restricted as follows.� For each simple node A 2 N , =[A] is a �nite set of elements where =[A] � �(A).� For each product node (A � B) 2 N , =[A � B] is the cross product of elements from =[A] and =[B],=[A�B] = =[A] X =[B]. (Here X denotes ordinary cartesian product of sets.)� For each sum node (A+B) 2 N , =[A+B] is the union of elements from =[A] and =[B], =[A+B] ==[A] [=[B].� For each edge e : A � B 2 E, =[e] is a subset of the cross product of elements from =[A] and =[B],=[e] � =[A] X =[B]. For the edge e�, (b; a) 2 =[e�] i� (a; b) 2 =[e].� For each selection edge �BA : A�B, =[�BA] is a subset of the identity relation on =[A].� For each projection edge �BA : A�B, (where �(A) = �(B)� �(C) for some C), =[�BA] is the projectionof =[B] components from =[A]. Namely, =[�BA] = f((b; c); b) j (b; c) 2 =[A] and b 2 =[B]g.3For those familiar with category theory, SIG schemas form a simple class of categories where the nodes are �nite sets andthe arrows are binary relations on pairs of sets [3].

Information Systems, 19(1):3-31, 1994 63.1.2 AnnotationsEach edge of a SIG is annotated with a (possibly empty) set of properties. Each property is a constraintthat restricts the set of valid binary relations that may be assigned to an edge by an instance. An instanceof a SIG is a valid instance of a set of annotations if the binary relation assigned to each edge satis�es allannotations on the edge.The following four properties are used to annotate edges of SIGs: totality, surjectivity, functionality andinjectivity. Let A and B be two sets. A binary relation r : A�B is total (denoted e : A��j B) if it is de�nedfor all elements of A; surjective (e : A��j B) if it is de�ned for all elements of B; functional (e : A�!B) if anelement of A determines at most one element of B; and injective (e : A �B) if an element of B determines atmost one element of A. Also, a bijection is a total, surjective, injective function. Note that all four propertiesare independent in that no subset of the properties expressed on a relation between arbitrary sets A and Blogically implies any property not in that subset.An annotation of a SIG G = (N;E) is a function A whose domain is the set of edges E. For all e 2 E,A(e) � ff; i; s; tg. An instance = of G is a valid instance (also called a model) of A, denoted = j= A, if for alle 2 E, if f 2 A(e) (respectively i; s or t 2 A(e)) then =[e] is a functional (respectively injective, surjectiveor total) binary relation. A SIG schema S is a pair S = (G;A). In what follows, when discussing a SIGschema Si, it will be assumed that Si = (Gi;Ai) and Gi = (Ni;Ei).The set of instances of S is the set of all instances of G that model A. That is, I(S) = f= j = 2 I(G)and = j= Ag. The set of symbols of an instance, denoted Sym(=), is the set of elements of U that appearin the range of =. For a subset of the universe, Y � U , IY (S) denotes the set of instances of S that containonly symbols in Y , IY (S) = f= j = 2 I(S) and Sym(=) � Y g.The restriction of an edge to being a selection or projection edge can also be viewed as a constraint on theset of valid instances of an edge. We use the term constraint to refer to any annotation, selection constraintor projection constraint.Edges, like binary relations, can be composed. If r : A � B is a binary relation then for a 2 A, r(a)denotes the set of elements of B associated with the element a in r. Additionally, if s : B � C is a binaryrelation then s � r : A� C denotes the composition where s � r(a) = s(r(a)). Similarly, for compositions ofedges, e2 � e1 means e1 followed by e2. The composition of two functional (respectively injective, surjectiveor total) binary relations is also functional (respectively injective, surjective or total). This motivates thefollowing de�nition.De�nition 3.1 Let G = (N;E) be a SIG and A an annotation function on G. A path, p : N1 �Nk, in Gis a (possibly empty) sequence of edges e1 : N1 � N2, e2 : N2 � N3, ..., ek�1 : Nk�1 � Nk and is denotedek�1 � ek�2 � ::: � e1. A path is called functional (respectively injective, surjective or total) if every edge inthe path is functional (respectively injective, surjective or total). Similarly, a path is called a selection pathif every edge on the path is a selection. A path is called a projection path if every edge on the path is aprojection or selection and at least one edge is a projection. The trivial path is a path from a node to itselfcontaining no edges. The trivial path satis�es all constraints.4 �Paths are denoted by dashed lines in �gures.3.2 An Example SIGFigure 3 depicts an example SIG schema. Selection edges can be used to model both specialization andgeneralization. The nodes Student and Professor are subsets of Employee. There may be elements ofEmployee that are not in Student or Professor, so Student and Professor are both specializations ofEmployee. However, the node Student is the generalization (that is, the exact sum) of the nodes TAand RA. The bijective selection edge between Student and TA + RA enforces the constraint that everyStudent is either an RA or a TA. The edge teaches represents the fact that every course is taught by asingle professor. Furthermore, each course has a single title and text book as represented by the attr edge.4Alternatively, identity edges from each node to itself may have been included in the de�nition of SIGs. This latter choiceis more consistent with the view of SIGs as categories.

Information Systems, 19(1):3-31, 1994 7Additionally, selection edges from the TA + RA node indicate that the set of all TAs and the set of all RAsmay be selected out of the constructed node. Similarly, the projection edges from Text � Title contain theprojection of Text and Title values.
σ σ

TA + RA

TA

σ σ

RA

teaches

Course Text X Title
π π

Text Title

attr

Student

σ

Employee

Professor

Figure 3: An example SIG schema.3.3 Discussion of ModelThe SIG model is inherently \data-centric" as opposed to \type-centric". By attaching a set of type de�ni-tions to an entity set, one can express constraints on the structure of individual entities. As noted above,however, our goal is to reason about constraints on collections of entities in an instance of the entity set,rather than about the internal structure of a single entity. Thus, instead of focusing on types and type leveloperations, we want to focus on instances and instance level operations.To illustrate the di�erence between these approaches, consider a schema S1 containing sets of professorsand sets of students (denoted by Professors and Students) and a second schema S2 containing the productof professors and students (denoted Professors � Students). The product constructor may be viewed asa type constructor or a set constructor. Under a \type-centric" view, the product constructor de�nes anew type; any professor{student pair is an element of this type, but the actual collection of pairs in a giveninstance can range from the empty set to the full cross-product of all professors and students.Under our \data-centric" view, the product constructor operates on instances rather than types. Giveninstances of Professors and Students, an instance of Professors � Students is uniquely de�ned as theproduct of these sets. In the SIG model, cross product and union constructors are not viewed as de�ningnew types (that is, new sets), but as combining existing sets. The motivation, as noted earlier, is to reasondirectly about the values in an (arbitrary) instance of the schema. For example, Schema S1 and SchemaS2 are equivalent in the following sense: an instance of the �rst schema uniquely de�nes an instance ofthe second and vice versa. (This is clearly not true if � is viewed as a type constructor!) In Section 4, weformally de�ne schema equivalence using as a basis the existence of such one-to-one correspondences betweeninstances of schemas. Our model allows the expression of such equivalence preserving transformations asconstructing the product or union of sets.The SIG model also allows the de�nition of new sets that are only constrained to be subsets of existingsets, and so it can represent complex types built using union and cross-product (viewed as type constructors)[9]. While there is thus a connection between SIGs and complex types, there are important di�erences, asnoted above.4 Information CapacityFormal notions of correctness for schema transformations are typically based on the preservation of theinformation content of schemas. We use a formalization in which the information content of a schema Sis measured by the set of all valid instances of S, denoted I(S). Such a formalization is appropriate forapplications, like those described in Section 2, where one schema is used to store or access information in

Information Systems, 19(1):3-31, 1994 8another. Two schemas can be compared based on information capacity. Intuitively, a schema S2 has moreinformation capacity than a schema S1 if every instance of S1 can be mapped to an instance of S2 withoutloss of information. Speci�cally, it must be possible to recover the original instance from its image under themapping.5Below we consider two formalizations of information capacity dominance and equivalence, namely ab-solute equivalence and internal equivalence. In our presentation, we analyze whether these de�nitions areappropriate for establishing results directly usable in the context of practical integration problems. For eachnotion, we present: (1) brief de�nitions; (2) existing results on testing for equivalence of various classesof schemas; (3) our results on testing for equivalence of SIGs; and (4) the potential use of this form ofequivalence in practical systems.4.1 Absolute EquivalenceAbsolute equivalence gives a characterization of the minimum that is required to achieve information capacityequivalence and provides a foundation on which more specialized de�nitions of equivalence may be built.It is based on the existence of invertible (that is, injective) functions between the sets of instances of twoschemas.De�nition 4.1 An instance mapping from schema S1 to S2 is any total function f : IY (S1) ! IY (S2),where Y � U . �De�nition 4.2 An information (capacity) preserving mapping between the instances of S1 and S2 is a total,injective function f : IY (S1) ! IY (S2). An equivalence preserving mapping between the instances of twoschemas S1 and S2 is a bijection f : IY (S1)! IY (S2). �De�nition 4.3 The schema S2 dominates S1 absolutely, denoted S1�absS2, if there is a �nite Z � U suchthat for each Y � Z there exists an information preserving mapping f : IY (S1) ! IY (S2). Also, S1 andS2 are absolutely equivalent, denoted S1�absS2, if for each Y � Z there exists an equivalence preservingmapping f : IY (S1)! IY (S2). �Work on characterizing absolute equivalence has focused on simple relational schemas and what has beentermed \static schemas", that is types with no integrity constraints or dependencies. Characterizationsof absolute dominance are known for relational schemas with only (primary) key dependencies [8]. Formore complex static schemas, namely types formed by the recursive application of product, set or unionconstructors on in�nite base types, absolute equivalence can be characterized by a set of natural restructuringoperators [10]. The restructuring operators are used to de�ne a normal form for these schemas such that twoschemas are absolutely equivalent i� their normal forms are isomorphic. This result has been generalizedto schemas that include �nite as well as in�nite base types [1]. Again, a (decidable) characterization ofabsolute equivalence for the extended set of schemas is given that is based on a set of restructuring operators.Characterization of absolute dominance for complex types are not known.We now consider the problem of testing for absolute equivalence (or dominance) of SIGs. SIGs permitthe representation of sets formed from nested product and union constructors, as well as simple constraintsbetween these sets. The addition of these constraints makes testing for equivalence (and therefore dominance)of schemas undecidable. This result uses the fact that SIGs can express cardinality constraints on the relativesize of nodes.Lemma 4.1 Let S = (G;A) be a SIG schema where G = (N;E). Let e : X � Y 2 E. Let = be a validinstance of S. If A(e) � ff; sg then j=[X]j � j=[Y]j. �Our undecidability result is a reduction from the problem of Diophantine equations. Let �(~x) and �(~x)be two polynomials with natural number coe�cients over n variables (represented by ~x). The equation�(~x) = �(~x) is referred to as a Diophantine equation and the problem of determining whether there existsa solution in the natural numbers is undecidable [6]. The next lemma states that Diophantine equations5The form of relative information capacity we use in this work was �rst studied in [8] and [10]. Information capacity hasalso been applied to a number of translation and integration problems [1, 12, 15, 16, and others].

Information Systems, 19(1):3-31, 1994 9without constant terms may be \encoded" in annotated schema intension graphs. The details of the encodingand proof of the lemma are contained in Appendix A.Lemma 4.2 Let �(~x) and �(~x) be two polynomials in n variables with no constant terms and with co-e�cients in N , the natural numbers. Then, there exists a SIG schema S, called a Diophantine encod-ing of �(~x) = �(~x), containing nodes X1; X2; :::; Xn such that the equation �(~x) = �(~x) has a solution~m = (m1;m2; :::;mn), mi 2 N i� there exists a valid instance = for S where j=[Xi]j = mi, 1 � i � n. �Theorem 4.3 Testing for absolute equivalence of SIGs is undecidable. �Proof Let �(~x) and �(~x) be two polynomials (which may contain constant terms) and let w be a newvariable. Let S = (G;A) where G = (N;E) be the Diophantine encoding of the equation �(~x)w = �(~x)wand let the node W correspond to the variable w in the encoding.Let d : W �W be a new edge not in E. Let G0 = (N 0; E0) where N 0 = N and E0 = E [fdg. Let B1 bean annotation function on G0 where B1(e) = A(e) for all e 2 E and B1(d) = ;. Let B2 be the annotationfunction on G0 where B2(e) = A(e) for all e 2 E and B2(d) = ftg. Let S1 and S2 be the two SIG schemas(G0;B1) and (G0;B2) respectively.By the de�nition of instances, every instance of S2 is an instance of S1, so for any Y � U , IY (S2) � IY (S1).It is easily veri�ed that any valid instance = of S can be extended to a valid instance of =0 of S1 by populatingthe edge d with any relation on the set =[W] and that =0 is a valid instance of S2 i� =0[d] is a total relation.Similarly, any valid instance of = of S1 or S2 restricted to the nodes and edge of S is a valid instance of S.We now prove that S1 6�absS2 i� �(~x) = �(~x) has a solution. We use the fact that S1�absS2 i� there existssome �nite Z such that for all Y � Z jIY (S1)j = jIY (S2)j.(() Clearly, if �(~x) = �(~x) has a solution ~m, then �(~x)w = �(~x)w has solutions for which w 6= 0. ByLemma 4.2, there are therefore instances of S with j=[W]j > 0. Let = be such an instance of S. Let =0be an instance of S1 formed by extending = with =0[d] = ;. Hence, =0 is a valid instance of S1 but not avalid instance of S2 (since d is not total on =[W]). Suppose S1�absS2, so for some �nite Z, for all Y � Z,jIY (S1)j = jIY (S2)j. Let Y = Sym(=0) [Z so =0 2 IY (S1). Since IY (S2) � IY (S1), the existence of =0implies jIY (S2)j < jIY (S1)j. This contradicts the assumption that S1�absS2. Hence, S1 6�absS2.()) Now suppose S1 6�absS2. Then, for any �nite Z, there exists some Y � Z such that jIY (S1)j 6= jIY (S2)j.Since IY (S2) � IY (S1), this implies there exists some = 2 IY (S1) where = 62 IY (S2). The instance = mustpopulate d with a nontotal relation. If j=[W]j = 0 then there is no nontotal relation on =[W]. Therefore,j=[W]j > 0. The instance = restricted to the nodes and edges of S is a valid instance of S and so by Lemma4.2, �(~x)w = �(~x)w has a solution for which w 6= 0. Therefore, �(~x) = �(~x) has a solution.Since the problem of determining whether �(~x) = �(~x) has a solution is undecidable, testing for absoluteequivalence of SIG schemas is also undecidable. 2In principle, arbitrary mappings f may be used to satisfy the de�nitions of absolute dominance andequivalence. In fact, the de�nitions do not even require that the mappings can be �nitely speci�ed; theycan simply be an in�nite list of pairs of schema instances. Clearly, such mappings are of little use in apractical system. Furthermore, there exist very simple schemas with no \natural" correspondence betweenthem that satisfy the de�nition of absolute dominance through a very complex instance level mapping [8].This result, coupled with our undecidability result, show that absolute equivalence and dominance do notprovide a su�cient foundation for analyzing practical integration problems.4.2 Internal EquivalenceIn an e�ort to overcome some of the limitations of absolute equivalence, various abstract properties havebeen proposed that restrict the class of allowable instance mappings [8]. Such restrictions include mappingsthat only reorganize and do not invent arbitrary values (termed internal mappings) and mappings that arequeries in some query language. For internal equivalence and dominance, if two instances are associated viaan instance mapping then they must contain (almost) the same set of symbols.

Information Systems, 19(1):3-31, 1994 10De�nition 4.4 Let Z � U be a �nite set of data values. An information preserving mapping f : I(S1) !I(S2) is Z-internal if for all = 2 I(S1), Sym(f(=)) � Sym(=) [Z. The mapping f is said to be internal ifit is Z-internal for Z = ;. �De�nition 4.5 The schema S2 internally dominates S1, denoted S1�intS2, if there exists a Z-internalinformation preserving mapping f : I(S1) ! I(S2).6 The schemas S1 and S2 are internally equivalent,denoted S1�intS2, if S1�intS2 and S2�intS1. �Characterizations of internal dominance are known for relational schemas with only (primary) key de-pendencies [8]. For the classes of complex types considered in Section 4.1, internal equivalence is identical toabsolute equivalence [1, 10]. Hence, the characterizations of absolute equivalence can be applied to determineif two schemas are internally equivalent. Decidable characterization of internal dominance for complex typesare not known.The use of internal mappings ensures that instances are only associated with instances containing thesame symbols. However, this property is not su�cient to guarantee that internal mappings are well behaved.Schema instances with no intuitive relationship between them may still be associated under internal mappings[8]. Furthermore, internal equivalence su�ers from the same problem as absolute equivalence in that testingfor both internal equivalence and dominance of schemas is undecidable.7Theorem 4.4 Testing for internal equivalence of SIGs is undecidable. �Proof Consider S1 and S2 as de�ned in the proof of Theorem 4.3. Determining whether S1�absS2 isundecidable. We now show that S1�absS2 i� S1�intS2.Suppose that S1�intS2. Since S1�intS2, there exists some � : I(S1)! I(S2) which is Z-internal for someZ. For each Y � Z, let �Y be the restriction of � to IY (S1). For each = 2 IY (S1), �(=) 2 IY (S2), so�Y : IY (S1) ! IY (S2). Since � is a total injective function, so is each �Y . Hence, jIY (S1)j � jIY (S2)j foreach Y � Z. Since S2�intS1, it is also that case that jIY (S1)j � jIY (S2)j for each Y � Z. Hence, S1�absS2.(In fact, this argument does not depend on the form of the schemas S1 and S2 so S1�intS2) S1�absS2for arbitrary schemas [8].)Conversely, suppose that S1�absS2. By the de�nition of S1 and S2, every instance of S2 is an instanceof S1. So, for any Y � U , IY (S2) � IY (S1). Since S1�absS2, there exists some �nite Z such thatjIY (S1)j = jIY (S2)j for all Y � Z. Let Y = U , then jI(S1)j = jI(S2)j and so I(S1) = I(S2). Let� : I(S1) ! I(S2) be the identity relation. Then � is a bijection, so in particular, � and ��1 are injective.Also, � and ��1 are Z-internal (for any Z). Hence, S1�intS2. So S1�absS2 i� S1�intS2 and thereforetesting for internal equivalence of SIG schemas is undecidable. 25 Structural TransformationsGiven our results that no decidable characterization of dominance or equivalence is possible using the givende�nitions of equivalence, the question remains as to how practitioners can develop rigorous methodologies.Our response is motivated by what practitioners currently do. Speci�cally, the more rigorous of the integra-tion methodologies propose sets of equivalence preserving transformations that may be used in translatingschemas between or within data models [7, 11, 12, 16, and others]. These transformations have proven tobe successful in automating the translation of both schemas and instances. If it is not possible to test fordominance of two schemas through an arbitrary abstract instance mapping, perhaps it is possible to test fordominance through an instance mapping created by some prede�ned set of transformations.In this section, we take this approach by considering several schema transformations for SIGs. In un-derstanding the transformations presented, it is important to note that unlike transformations presentedelsewhere, we are interested in transformations that preserve equivalence or transformations that augment6This de�nition of internal dominance corresponds to internal embeddability. However, the proof that these two notions areequivalent for relational schemas can be extended to SIGs [8].7Our result shows that even testing for internal dominance through an internal mapping (where Z = ;) is undecidable. Thisis actually a stronger condition than general internal dominance.

Information Systems, 19(1):3-31, 1994 11information capacity (that is, transformations that only preserve dominance) [1, 10, and others].8 We de�nemeasures of dominance that are complete with respect to these transformations and form su�cient conditionsfor internal dominance. The importance of these characterizations comes from the fact that each leads to aprocedure for testing if one schema can be produced from another through any sequence of these transforma-tions. This procedure can also generate an instance mapping, which is crucial for a schema transformationto be useful in a practical environment. We conclude this section with a discussion of the complexity ofalgorithms for deciding dominance.In general, a transformation T de�nes a function on sets of schemas T : S1 ! S2. The transformationswe consider are de�ned on the class of all SIG schemas. For schemas S1 and S2, T (S1) = S2 is denoted byS1 T�!S2. An arbitrary (possibly empty) sequence of transformations T�! is denoted T�!�. If X is a set ofspeci�c transformations then ~X denotes a sequence containing all the transformations in X .9In any natural characterization of equivalence, it must be the case that isomorphic schemas are equivalent.We therefore begin by considering isomorphism as the basis for determining equivalence of schemas. SIGisomorphism is a special case of graph isomorphism constrained to preserve the types of nodes and allconstraints placed on edges (recall that SIG constraints include annotations as well as projection and selectionconstraints).105.1 Annotation TransformationsAn annotation transformation (or �-transformation) allows the removal of annotations or projection andselection constraints from an edge of a schema. An example is shown in Figure 4.
Schema S1 Schema S2

BA
e < BA

eFigure 4: An �-transformation.De�nition 5.1 Let S1 = (G1;A1) and S2 = (G2;A2) be two SIG schemas. Let G1 = G2 and A1 = A2except A1(e) � A2(e) for some edge e and if e is a selection (projection) edge in G2 then it is a selection(projection) in G1. Then, S1 �e�!S2 and �e is called an annotation transformation (�-transformation).11 �If S1 ��!S2 then every instance of S1 is also an instance of S2. Hence, the identity function on I(S1) isan information preserving mapping from S1 to S2 and we have the following immediate result.Theorem 5.1 If S1 ��!S2 then S1�intS2. �5.2 Composition TransformationsConsider again the relational example presented in Section 2. There we had a unique Grant associated withevery Project and wanted to determine if it was possible to move the Grant attribute to theWorkstationtable without losing information capacity. We argued informally that if every Workstation determined aunique Project this would indeed be the case. Figure 5 depicts such a scenario in SIG form. If we have afunctional edge (or path) fromWorkstation to Project, then we can move the Grant attribute across thepath. The edge g in Schema S2 from Workstation to Grant, can be populated with instances of the pathe � p from Schema S1.8Work on hierarchical data structures includes some consideration of transformations that increase information capacity, butonly characterizes equivalence (and not dominance), under these transformations [1].9We use this notation when the transformations in X commute so that there is a unique schema S2 such that S1 ~X�!S2.10SIG isomorphism is de�ned precisely in Appendix B.11When the edge e is understood from context (or not relevant to the discussion) it may be omitted and the �-transformationdenoted �.

Information Systems, 19(1):3-31, 1994 12
<

Schema S2Schema S1

Grant

Workstation

Project

GrantWorkstation

Project

p

e

p

gFigure 5: Moving an attribute.5.2.1 De�nitionsUsing the intuition provided by this example, we consider the general case of how an edge of a schema maybe \encoded" by an edge between di�erent nodes. We want to ensure that any such transformation inducesinformation preserving instance mappings between edges. Consider the schemas of Figure 6. Intuitively,instances of Schema S1 can be mapped to instances of Schema S2 by populating the edge g with the resultof composing p with e. For this to be an information preserving transformation, however, it must be the casethat every instance of the edge e determines a unique instance of g so that an instance of e is recoverablefrom its image under the transformation. Lemma 5.2 de�nes precisely when this is the case.
A B

C

p

e

<
A B

C

p

Schema S2Schema S1

g

Figure 6: A �-transformation.Lemma 5.2 Let =[A], =[B], and =[C] be �nite sets. Let =[p] : =[C]�=[A] be a relation.1. If =[p] is a surjective function, then for all relations =[e] : =[A]� =[B], there exists a unique relation=[g] : =[C]�=[B] such that =[g] = =[e] � =[p].2. If j=[B]j > 1, then for all =[e] : =[A] � =[B], there exists a unique relation =[g] : =[C] � =[B] suchthat =[g] = =[e] � =[p], only if =[p] is a surjective function. �Proof The proof uses simple algebraic reasoning. 2Using this result, we can encode an instance of an edge e : A � B in an edge g : C � B that sharesa common end node, so long as there is a surjective functional path from C to A. Furthermore, Lemma5.2 indicates that this encoding (using the composition) is only possible if the path is a surjective functionor some set of constraints serve to restrict the set of all valid instances of B to sets of size 1 or 0. Sincedetermining this latter property is undecidable [14], we restrict our transformations to use only the �rstproperty.We now examine if it is possible to encode the edge e in an edge g : C �D with two di�erent end points.In Figure 7, we show that Lemma 5.2 can be applied twice to encode e : A�B in the edge g : C �D. Thismotivates the following de�nition of composition transformations.De�nition 5.2 Let e : A � B be an edge of S1 and let p : C � A and r : D � B be (possibly trivial)surjective functional paths in S1 not containing e. Let G2 = G1 except e is replaced by g : C �D and theconstraints on g in S2 are exactly the constraints on the path r� � e � p in S1. Then S1 �eg�!S2 is called asimple composition transformation (a simple �-transformation).12 �12Again, the edges e or g may be omitted and the �-transformation may be denoted � (�e or �g).

Information Systems, 19(1):3-31, 1994 13
C

p <
C

p

C

p<
Schema S3Schema S2Schema S1

D
g

r r r

D

A e A B AB B

D

h

Figure 7: Two �-transformations.Theorem 5.3 Let �eg be a simple �-transformation that uses the surjective functional paths p and r. IfS1 �eg�!S2 then S1�intS2. If A1(p) = A1(r) = ff; i; s; tg and the constraints of g are equal to the constraintsof e then S1�intS2. �Proof We use an instance mapping f : I(S1) ! I(S2) that is the identity everywhere except f(=)[g] ==[r�] �=[e] �=[p]. The binary relation f(=)[g] satis�es all constraints satis�ed by each of e, p and r�, whichby De�nition 5.2 are the same as the constraints on g. Hence, f(=) de�nes a valid instance of S2. Also, fis clearly a total function and is internal.By Lemma 5.2, given an instance of p, for any instance of e there is a unique instance of e � p. Applying thelemma a second time, for any instance of e � p and r�, there is a unique instance of r� � e � p. Hence, theinstance mapping f is injective. Therefore, f is information preserving and S1�intS2.Assume that p and r are bijective paths and the constraints of g are equal to the constraints of e. Then, forany instance of g, r � g � p� is a valid instance of e so the mapping f is surjective. Hence, the mapping f isbijective and therefore equivalence preserving and so S1�intS2. 2While we would like to say that a �-transformation is equivalence preserving i� A1(p) = A1(r) =ff; i; s; tg, this may not be true. The problem of annotation implication is undecidable for SIGs [13]. Hence,it may be the case that A1(p) � ff; i; s; tg and yet the only valid instances of p are bijections. In this case,the �-transformation could still be equivalence preserving.We now consider sequences of simple �-transformations. The application of a �-transformation cannotcreate new surjective functional paths. More precisely, if S1 ��!�S2 and there is a surjective functional pathp : A�B in S2, then there is some surjective functional path p0 : A�B in S1. Clearly, a �-transformation maydestroy surjective functional paths. Hence, there may be sets of transformations that cannot be serialized.For example, there may be two transformations, each of which can be applied to a given schema. Once eithertransformation is applied though, the second transformation cannot be applied to the transformed schemabecause one or both of the surjective functional paths required by the transformation has been removed.However, by applying both transformations in \parallel", we can still construct a meaningful informationpreserving instance mapping. We therefore generalize the de�nition of �-transformations to allow simple�-transformations to be applied in parallel. This de�nition permits a broader class of transformations.De�nition 5.3 A �-transformation is a set of one or more simple �-transformations. A �-transformationis denoted S1f�e1g1;:::�engng�! S2 where the �eigi are simple �-transformations and all gi are distinct. For the casen = 1, the braces may be omitted, S1 �eg�!S2. �Theorem 5.4 Let S1f�e1g1;:::�engng�! S2. Then, S1�intS2. If each component simple �-transformation is equiv-alence preserving and all ei are distinct then S1�intS2. �Proof Let O = f�e1g1; :::�engng. Again, we use an instance mapping f : I(S1) ! I(S2) that is the identityeverywhere except for each �eigi 2 O, f(=)[gi] = =[r�i] � =[ei] � =[pi]. For each i, the binary relation f(=)[gi]satis�es all constraints satis�ed by each of ei, pi and r�i , which by De�nition 5.2 are the same as theannotations on gi. Hence, f(=) de�nes a valid instance of S2. Also, f is a total function. By Lemma 5.2,for any instance of ei, pi and r�i there is a unique instance of r�i � ei � pi. Hence, the instance mapping f isinjective. Therefore, f is information preserving. The mapping f is also internal so S1�intS2.

Information Systems, 19(1):3-31, 1994 14Assume that all pi and ri are bijective paths. Then, for any instance of gi, ri � gi � p�i is a valid instance ofei. Since each ei is distinct, every edge of S1 corresponds to exactly one edge of S2 so f is surjective. Hence,the mapping f is bijective and therefore equivalence preserving. So, S1�intS2. 2By permitting the application of simple �-transformations in parallel, we also allow a single edge e ofS1 to be mapped to multiple edges of S2. This permits the transformation of Schema S1 of Figure 8 intoSchema S2. The edge work-addr is mapped both to itself and to the edge home-addr. Intuitively, instances ofS1 are a subset of the instances of S2 where home-addr is populated with the work address of each employeeand people who are not employees have no home address. Clearly, S1 and S2 are not equivalent underthis mapping since there are instances of S2 that populate work-addr and home-addr with di�erent binaryrelations (and that assign unemployed people home addresses).
<

Schema S2Schema S1

Employee

Person

Address
work−addr

isa
home−addr

Employee

Person

Address
work−addr

isa

Figure 8: A �-transformation mapping work-addr to work-addr and home-addr.The composition of the information preserving mappings created by �-transformations and �-transforma-tions is also information preserving. The notation ���!� indicates an arbitrary sequence of �-transformationsor �-transformations.Corollary 5.5 If S1 ���!�S2 then S1�intS2. �Several researchers have made use of information or equivalence preserving transformations that moveor copy attributes between entities or classes within other data models [7, 17]. These transformationsare special cases of �-transformations. However, no complete characterization of dominance under thesetransformations has been given. Hence, it was not previously possible to determine if an arbitrary schemacould be transformed into another via these transformations.5.2.2 Characterization of DominanceWe now de�ne a notion of dominance for SIGs that is complete with respect to both �-transformations and�-transformations. Speci�cally, we de�ne ��-dominance (���) such that S1 ���!�S2 i� S1��� S20 for someS20 that is isomorphic to S2. The de�nition uses node and edge maps (de�ned in Appendix B), which arebinary relations de�ned to preserve node construction and edge inversion, respectively.De�nition 5.4 Let S1 and S2 be two SIG schemas. Then, S2 ��-dominates S1, denoted S1��� S2, if thereexist a bijective node map : N1 �N2 and a total, surjective, injective edge map � : E1 � E2 satisfyingthe following: 13� if e : A � B 2 E1 then for all g0 2 �(e) (where g0 2 E2 and g0 : C 0 � D0, �1(C 0) = C and �1(D0) = D), there exist surjective functional paths p : C � A and r : D � B (not containing e) inS1 and� the constraints on g0 in S2 are a subset of the constraints on the path r� � e � p in S1.De�nition 5.5 Let S1 and S2 be two SIG schemas. Then, S1 is ��-equivalent to S2, denoted S1��� S2,if S1��� S2 and S2��� S1. �13To add clarity to the proofs, when the schemas S1 and S2 are arbitrary SIGs, we use the convention that edges and nodesin S2 are denoted by primed symbols (for example, e0 and A0) while edges and nodes in S1 are denoted by nonprimed symbols.When S2 is created by a series of transformations from S1, we may also �nd it convenient to denote nodes and edges in S2that are not also in S1 by primed symbols.

Information Systems, 19(1):3-31, 1994 15Before proving that ��-dominance completely characterizes schemas that can be obtained through asequences of �-transformations and �-transformations, we state two lemmas that will be used in the proof.The proofs of these lemmas are in Appendix C. The �rst lemma states that if a sequence of �-transforma-tions creates an edge then there exists a single �-transformation on the original schema that creates an edgebetween the same nodes with the same constraints. The second lemma states that any �-transformation canbe \pushed to the right" past �-transformations.Lemma 5.6 Let S1 ��!�S2 where S2 contains the edge g0 : C�D. Then, there exist an edge e : A�B andsurjective functional paths p : C � A, r : D � B (not containing e) in S1 such that the constraints on g0 inS2 are exactly the constraints on the path r� � e � p in S1. �Lemma 5.7 If S1 ���!�S2 then there exists an S10 such that S1 ��!�S10 ��!�S2. �Theorem 5.8 Let S1 and S2 be two SIG schemas. Then, S1 ���!�S2 i� S1��� S20, where S20 �= S2. �Proof (() We �rst show that if S1��� S20 then S1 ���!�S2 for some S2 �= S20.Let and � be speci�c node and edge maps satisfying the de�nition of ��-dominance. Let g0 : (C)� (D)be an edge of S20 and let e : A � B be the edge of S1 such that g0 2 �(e) (e exists and is unique since � issurjective and injective). We de�ne �eg to be the transformation carrying e to g : C �D. By the de�nitionof ��� , there must be surjective functional paths p : C � A and r : D � B in S1 and so �eg is a validtransformation that creates an edge g with exactly the constraints on the path r� � e � p. We also de�ne �e;gto be the �-transformation that removes from g all annotations on the path r� � e � p that are not on theedge g0. By the de�nition of ��-dominance, the constraints on g0 are a subset of the constraints on this pathso this is a valid �-transformation.Let �E be the �-transformation containing all �-transformations created in this manner, �E = f�eg je 2 E1and g0 2 �(e)g and let A be the set of all �-transformations created. Let S2 be a SIG schema that resultsfrom the application of �E and A to S1, S1 �E�!T ~A�!S2. Let | : E2 � E20 be an edge map such that forall g 2 E2, |(g) = g0 2 E20. Since � is total, every edge g of S2 is created by some (possibly trivial)�-transformation �eg and so | is a bijective edge map. The nodes of S2 are the same as the nodes of S1 so is a bijective node map on the nodes of S2 and S20. The schema S2 is isomorphic to S20 via the edgebijection | and node bijection .()) Next, we show that if S1 ���!�S2 then S1��� S2 by constructing maps and �.The �-transformations and �-transformations do not create or delete nodes so N1 = N2. Let be theidentity on N1.Since S1 ���!�S2, by Lemma 5.7, there exists a sequence of transformations such that S1 ��!�S10 ��!�S2.Since �-transformations do not remove or add edges, E10 = E2. Let E = E2�E1 be the edges of S2 createdby the �-transformations. For each g 2 E, by Lemma 5.6, there exists an edge e : A � B and surjectivefunctional paths p : C � A, r : D � B in S1. Since the �-transformations only remove constraints, it mustbe the case that the constraints on g in S2 are a subset of the constraints on the path r� � e � p in S1. Wetherefore let g 2 �(e) (and g� 2 �(e�)). All other edges e 2 E1 are in E2 so let e 2 �(e). For these edges,the paths p and r are the trivial paths and clearly, the constraints on e in S2 are a subset of the constraintson e in S1. The map � is de�ned on all edges of E1 and is therefore total. Since every edge of S2 mustexist in S1 or be created by some �-transformation, � is also surjective. Additionally, by its de�nition � isan injective edge map. Hence, � satis�es the requirements of De�nition 5.4 and S1��� S2 via � and theidentity node map.The composition of any SIG isomorphism (that is, the node and edge maps of an isomorphism) with themaps and � also satis�es De�nition 5.4 and so if S2 �= S20 then S1��� S20, as required. 2By Theorem 5.8 and Corollary 5.5, we obtain the following result.Corollary 5.9 If S1��� S2 then S1�intS2. If S1��� S2 then S1�intS2. �

Information Systems, 19(1):3-31, 1994 165.2.3 Testing for DominanceThe importance of De�nition 5.4 is that it leads immediately to an algorithm for determining when twoarbitrary SIG schemas are in an ��-dominance relation. By Theorem 5.8, ��-dominance holds precisely whena schema may be obtained from another through some sequence of �-transformations and �-transformations.Hence, it is not necessary to consider all possible sequences of �-transformations and �-transformations. Themonotonic nature of �-transformations ensures that there are only a �nite number of possible sequences of(nontrivial) �-transformations that apply to a given schema. However, the de�nition of �-transformationspermits an in�nite number of sequences. We are only able to determine whether S1 ���!�S2 because thedecidable characterization of De�nition 5.4 is complete with respect to �-transformations and �-transforma-tions. Furthermore, we have both a su�cient condition for internal dominance and an algorithm testing thiscondition.The proof of Theorem 5.8 is constructive. That is, if S1��� S2 we can produce both a sequence of�-transformations and �-transformations such that S1 ���!�S2 and the instance mappings induced by thesetransformations.Corollary 5.10 If S1��� S2 then we can construct a sequence of �-transformations and �-transformationssuch that S1 ���!�S2 via this sequence and an information preserving mapping f : I(S1)! I(S2). �As demonstrated by the examples of Section 2, being able to generate the instance mappings betweenschemas as in the above corollary is important. Furthermore, the actual transformation sequence can beused to explain to a designer the reason two schemas are equivalent or in a dominance relation. We addressthe complexity of the construction in Section 5.5.5.3 Selection TransformationsThe introduction of �-transformations allowed us to consider mappings of edges to multiple edges in a trans-formed schema. However, ��-dominance still requires a bijection on nodes. We now consider transformationsthat permit mappings of nodes to multiple nodes.5.3.1 De�nitionsSelection transformations (&-transformations) are transformations of the form shown in Figure 9. Theypermit the creation of new nodes and edges.
A

σ

A A’
A’

A σA A A A’
σ

A A’
A’ <

a) Node creation b) Edge creation c) Edge DeletionFigure 9: Selection transformations.A node creation &-transformation creates a new node that is isomorphic to an existing node (Figure 9a).A bijective selection edge between the two nodes enforces the constraint that the nodes be assigned identicalsets in any valid instance.De�nition 5.6 Let A be a node of schema S1. Let A0 be a new node not in S1 and �A0 : A !j j A0 a newbijective selection edge. Let S2 be S1 with the addition of the node A0 and the edge �A0 . Then, S1 &A�!S2is called a node creation &-transformation, and S2 &A�!S1 is called a node deletion &-transformation. �Note that we only permit the removal of a node A0 (and the incident bijective selection edge) whenthe selection edge is the only edge incident to A0. However, any edges incident to A0 can be moved (using�-transformations) across the selection edge to the node A before removing A0.

Information Systems, 19(1):3-31, 1994 17In addition to transformations that add and remove nodes, we consider transformations that add andremove edges. An edge creation &-transformation creates a new edge (Figure 9b). To preserve informationcapacity, the new edge is a bijective selection edge on a node. Note that �-transformations and �-transfor-mations can subsequently be used to move the edge or remove the constraints on the new edge. An edgedeletion &-transformation removes an edge (Figure 9c). If information capacity is to be preserved, arbitraryedges cannot be removed from a SIG. However, instances of bijective selection edges are fully de�ned bythe instances of the incident nodes. Such edges may therefore be removed. If a bijective selection edge�A : A !j j A0 is removed, information capacity may be augmented since the constraint that A and A0 beassigned the same set in any valid instance may have been removed. However, if A = A0 then informationcapacity is preserved.De�nition 5.7 Let �A : A !j j A0 be a new bijective selection edge between nodes A and A0 of S1 and letS2 be S1 with the addition of �A. Then, S2&�A�!S1 is an edge deletion &-transformation and if A = A0 thenS1&�A�!S2 is an edge creation &-transformation. �Theorem 5.11 Let S1 &�!S2. If & is a node creation, node deletion or edge creation &-transformation,then S1�intS2. If & is an edge deletion &-transformation that removes an edge from a node to itself, thenS1�intS2. Otherwise, & is an edge deletion &-transformation that removes an edge between distinct nodesand S1�intS2. �Proof Let S1 &A�!S2 be a node creation &-transformation and S2 &A�!S1 be a node deletion &-transformation.Let f : I(S1) ! I(S2) be an instance mapping that is the identity on all nodes and edges common to S1and S2 and let f(=)[A0] = =[A] and f(=)[�A0] = 1A. The mapping f creates a valid instance of S2 and isbijective and internal. Hence, S1�intS2.Let S1&�A�!S2 be an edge creation &-transformation. Let f : I(S1) ! I(S2) be an instance mapping that isthe identity on all nodes and edges common to S1 and S2 and let f(=)[�A] = 1A. The mapping f creates avalid instance of S2 and is bijective and internal. Hence, S1�intS2.Let S1&�A�!S2 be an edge deletion &-transformation where �A : A�A0. Let f : I(S1)! I(S2) be an instancemapping that is the identity on nodes and edges common to S1 and S2. The mapping f creates a validinstance of S2 and is a total, injective, function and internal. Hence, S1�intS2. If A = A0 then the mappingf is surjective and so S1�intS2. (If A 6= A0, the mapping f is not necessarily surjective since there may bevalid instances of S2 in which A and A0 are not populated with the same set.) 2Corollary 5.12 If S1��&�!�S2 then S1�intS2. �Selection transformations are of limited use in isolation. However, when combined with �-transforma-tions and �-transformations, they permit complex additions and modi�cations to be made to a schema. Anexample is given in Section 5.4.5.3.2 Characterization of DominanceWe now develop a characterization of dominance that is complete with respect to all transformations con-sidered, �-transformations, �-transformations, and &-transformations.In the de�nition of ��&-dominance, there are three main changes from the de�nition of ��-dominance.First, the node map is no longer required to be a function. For a node A 2 N1, if A0; B0 2 (A) then B0 isthe image of a node created by a node &-transformation from A. Second, the node and edge maps are nolonger required to be total. If a map is not de�ned on a node or edge of S1, then (intuitively) this node oredge has been removed by an &-transformation. Finally, an edge of E2 may map via ��1 to an edge of E1(as before) or to a node of N1. This latter case indicates that in the sequence of transformations creatingS2 from S1, this edge of E2 is created by a &-transformation. In an instance mapping between S1 and S2,such an edge will be populated with the identity relation.De�nition 5.8 Let S1 and S2 be two SIG schemas. Then, S2 ��&-dominates S1, denoted S1���& S2, ifthere exist a surjective, injective node map : N1�N2 and a surjective, injective edge map � : (E1[N1)�E2

Information Systems, 19(1):3-31, 1994 18satisfying the following.1. If A 2 N1 and is not de�ned on A, then there exists a bijective selection path in S1 from A to anode B where is de�ned on B.2. If A 2 N1 then for all g0 2 �(A) (where g0 2 E2 and g0 : C 0 �D0, �1(C 0) = C and �1(D0) = D),there exist surjective functional paths p : C � A and r : D � A in S1 and the constraints on g0 in S2are a subset of the constraints on the path r� � p in S1.3. If e 2 E1 and � is not de�ned on e, then e is a bijective selection edge in S1.4. If e : A � B 2 E1 then for all g0 2 �(e) (where g0 2 E2 and g0 : C 0 � D0, �1(C 0) = C and �1(D0) = D), there exist surjective functional paths p : C � A and r : D � B (not containing e) inS1 and the constraints on g0 in S2 are a subset of the constraints on the path r� � e � p in S1. �De�nition 5.9 Let S1 and S2 be two SIG schemas. Then, S1 is ��&-equivalent to S2, denoted S1���& S2,if S1���& S2 and S2���& S1. �We now state the main result of this section that ��&-dominance is complete with respect to all trans-formations considered, �-transformations, �-transformations, and &-transformations. The proof is ratherinvolved and is included in Appendix D along with a number of lemmas used in the proof.Theorem 5.13 Let S1 and S2 be two SIG schemas. Then, S1��&�!�S2 i� S1���& S20, where S20 �= S2. �By Theorem 5.13 and Corollary 5.12, we obtain the following result.Corollary 5.14 If S1���& S2 then S1�intS2. If S1���& S2 then S1�intS2. �5.3.3 Testing for DominanceDe�nition 5.8 essentially gives an algorithm to test if two SIG schemas are in an ��&-dominance relation,which by Theorem 5.13, also determines if a schema may be obtained from another through any sequenceof transformations. As was the case for ��-dominance, if S1���& S2 we can produce both a sequence oftransformations such that S1��&�!�S2 and the instance mappings induced by these transformations.Corollary 5.15 If S1���& S2 then we can construct a sequence of �-transformations, �-transformationsand &-transformations such that S1��&�!�S2 via this sequence and an information preserving mapping f :I(S1)! I(S2). �5.4 An ExampleThe example of Figure 10 illustrates the generality of the transformations we have considered. A designerwishes to determine if an arbitrary instance of S1 can be transformed into an instance of S2 without losingany information. On the surface, the schemas appear to be quite dissimilar and no immediate instance levelmapping is evident.
Schema S1

Student

RA Boss Subject

σisa ()

works−for works−in

Schema S2

Student

RA Boss

σisa ()

works−for

Major

Advisoradvised−by

studies
peer−
advisorFigure 10: Does Schema S2 dominate Schema S1?We can use our characterization of ��&-dominance to determine that S1�intS2 and to produce theinstance level mapping. Suppose we are given the typing information that nodes with like names have

Information Systems, 19(1):3-31, 1994 19the same type and further that �(Subject) = �(Major) and �(Boss) = �(Advisor). We can produce thefollowing mappings and � satisfying De�nition 5.8. (RA) = fRAg (Student) = fStudentg (Boss) = fBoss;Advisorg (Subject) = fMajorg�(isa) = fisag �(worksfor) = fworksfor; advisedbyg�(worksin) = fstudiesg �(Student) = fpeeradvisorgThese mappings correspond to the following sequence of transformations. A node creation &-transforma-tion, &Advisor, creates the node Advisor and a bijective selection edge �Boss between Boss and Advisor. Theedge worksfor is copied to worksfor and to advisedby (across the paths p = isa and r = �Boss). The edgeworksin is moved to the edge studies across the path p = worksfor�isa. The result of these transformationsis the intermediate schema depicted in Figure 11. Next an edge creation &-transformation, &Student, createsthe bijective selection edge peeradvisor on Student. An �-transformation, �peeradvisor , removes the selection,surjectivity and injectivity constraints on the edge. Another �-transformation, �worksfor, removes thesurjectivity constraints on the worksfor edge. Finally, an edge deletion &-transformation, &�Boss , removesthe edge �Boss. The result of these transformations is the schema S2.
Student

RA Boss

σisa ()

works−for

Major

Advisoradvised−by

studies

Intermediate Schema T

σboss

Figure 11: Intermediate schema S1��&�!�T ��&�!�S2.To automatically translate queries on S2 into queries on S1, the instance mappingf : I(S1)! I(S2) may be produced from the maps and �. A portion of f is show below.14f(=)[Advisor] = =[Boss] f(=)[Boss] = =[Boss]f(=)[studies] = =[worksin] � =[workfor] � =[isa] f(=)[peeradvisor] = 1=[Student]]There may be more than one possible instance mapping (produced by di�erent sequences of transforma-tions). Our algorithms can automatically produce all valid instance mappings. However, the algorithms,necessarily, perform only syntactic analysis of the schemas. They may take advantage of semantic informa-tion (such as node types) provided by the designer but they can never fully automate a designer's semanticunderstanding of a schema.In the example presented, the peeradvisor edge of Schema S2 is populated with the identity relationon Student. Such a mapping is valid but may not make semantic sense. Can a student advise herself orhimself? If typing information on edges is provided, such mappings may be avoided. For this example, adesigner may declare the type of worksfor to be the same as advisedby but the type of peeradvisor di�erentfrom 1Student. In general, it may not be possible to specify a priori such typing information. Furthermore,not all semantic information may be conveyed by types on edges or nodes.What a tool provides is an automatic way of testing for information capacity preservation. It relieves adesigner of the burden of having to verify that for each instance of a schema, a unique instance of anothermay be created without loss of information. It cannot, however, fully understand the semantics of arbitraryschemas. Rather than trying to automate semantic understanding of schemas, our results permit the devel-opment of tools that identify when instances may be rearranged in a certain fashion. The �nal decision onwhether the rearrangement makes semantic sense must always come from a designer.14The function 1=[Student] is the identity relation on the set =[Student].

Information Systems, 19(1):3-31, 1994 205.5 Complexity of Dominance AlgorithmsIf every node of both schemas has the same type and every edge has the same set of constraints thenT-dominance15 holds precisely when there exists an isomorphism on the underlying graphs of the schemas.There are no known algorithms for graph isomorphism in polynomial time and it is an open problem whetherthis problem is NP-complete. Thus, the best (worst case) bound for T-dominance we have is NP (nonde-terministic polynomial time). This result uses a simple modi�cation to graph isomorphism.However, such worst case behavior is of theoretical rather than practical importance. The schemas thatarise in practice do not exhibit this worst case behavior. In particular, they are formed from nodes of di�erentabstract types with edges having diverse combinations of constraints. Both of these facts can be used toreduce the number of possible mappings between schemas that are considered by an algorithm. Additionally,information about the structure of common schemas can be used to produce algorithms that are e�cienton such schemas. Below, we briey examine the process of generating both the node maps and edge mapsrequired by the de�nitions of T-dominance. While space prohibits the presentation of a full algorithm, wemention some key points that enable the development of e�cient algorithms.5.5.1 Node MapsThere are typically only a few nodes of the same type in a schema and these nodes are often related in a treestructure (through an inheritance hierarchy represented in SIGs by selection edges). Even in the absenceof an inheritance hierarchy the annotations on edges permit us to de�ne a partial order on the nodes of agraph.De�nition 5.10 Let S be a SIG schema. For nodes A;B 2 N , A is node dominated by B, denoted A� B,if there exists a surjective functional path from B to A. �The relation � de�nes a partial order on equivalence classes of nodes.16 Furthermore, in any validinstance of S, the node B must be assigned at least as many elements as A. We can use this fact to provethe following theorem about any node map used to show that S1�TS2.Theorem 5.16 If A0 � B0 in S2 then for any node map satisfying the de�nition of T-dominance, �1(A0)� �1(B0) in S1. �Depending on the structure of the schema, the above theorem can severely reduce the number of possiblenode maps that must be considered. Furthermore, the partial order on nodes can be computed in a singletraversal of the schema graph.5.5.2 Edge MapsKnowledge about constraints on edges can be used to prune the search space of potential edge maps. Ingeneral, an edge e of S1 can be mapped to any edge g0 of S2 if surjective functional paths p and r exist inS1 between the end points of g0 and the end points of e. Furthermore, the existence of constraints on g0implies that certain additional constraints must be present on the paths p and r. If, for example, g0 : C 0�D0is functional, only injective paths r need to be considered. If g0 is a selection edge then only selection pathsneed be considered. Constraint information alone typically reduces the number of possible maps of an edgeto a small number.6 Applications of Dominance TestsIn the previous section, we presented examples that demonstrated how our characterizations can be usedto identify complex correspondences between schemas. A designer may not be able to detect (or keep15In this discussion, T-dominance will refer to any of the forms of dominance de�ned for di�erent sets of transformationsconsidered in this work.16The proof of this requires some inference rules on annotations that are presented elsewhere [13].

Information Systems, 19(1):3-31, 1994 21track of) a long trail of correspondences between components that might be used to de�ne informationpreserving mappings. Our characterizations allow this process to be automated. However, the applicationof our results will be limited if a designer is forced to understand the intricacies of the SIG data model andthe correspondence between SIGs and the designer's working model. In this section, we briey sketch howthe results of any computations (that is, transformations or dominance tests) can be easily translated intothe terminology of common data models. We present a speci�c example of how this may be done for therelational model.Our exposition highlights another important point. Because our methodology is based on local structuralmanipulations, a dominance detection algorithm may be easily extended to create an interactive tool thataids in the design of equivalent or dominating schemas. Such a tool could be used in de�ning a view thatmust express all information in a certain portion of the underlying schema (that is, a view that dominatesthe underlying schema). Speci�cally, when a dominance test fails, the algorithm can provide a designerinformation on how a schema can be changed to obtain the desired relationship. If strict dominance is notrequired and part of the information in underlying schemas may be hidden, a tool may also aid a designerin verifying that only the desired information is left out of the view.Consider the relational schemas of Figure 2. In Section 2, we described two scenarios requiring knowledgeof the relative information capacity of R1 and R2. In the second scenario, a designer had changed SchemaR1 to Schema R2. Below, we show how the results of Section 5 (speci�cally, ��&-dominance) can be used bya tool to establish an instance mapping between R1 and R2.The SIG equivalents of R1 and R2 are depicted in Figure 12 (Schemas S1 and S2, respectively). Thetest for ��&-dominance of these schemas fails. However, since dominance is based on structural properties,we can do more than tell the designer that dominance does not hold. In this example, since all nodes havedi�erent types, there is only one possible node mapping between S1 and S2. If we consider possible edgemappings, we see that l may map to l0 and n to n0, but there are no surjective functional paths across whichthe edge g can be mapped to g0. This is the information that needs to be conveyed to the designer. Inattempting to establish an instance mapping, a tool may inform the designer of the following: \For SchemaR2 to dominate R1 there must be a unique Project associated with every Workstation and every Projectmust be associated with at least one Workstation."
Schema S1 Schema S2

Pno

Grant

SNo

Name Grant

SNo

Name

Pno<

Leader Leader

l g n l’ g’ n’

Pno

Grant

SNo

Name Grant

SNo

Name

Pno<
p p

Schema S1’ Schema S2’

Leader Leader

l g n l’ g’ n’

Figure 12: SIG equivalents of the relational schemas of Figure 2.The above response translates the requirements into commonly understood terms about how entities maybe associated. A tool may also be built to translate this information into the terms of the native data model,in this case the relational model. Here, information about how surjective functional paths may be createdwithin the relational model must be used. Functional dependencies can be speci�ed between attributes in thesame table or transitively through a chain of attributes in di�erent tables that are also related with inclusion

Information Systems, 19(1):3-31, 1994 22dependencies. In other data models, there may be many ways to de�ne surjective functional relationships.However, a tool can be designed to use knowledge of how such relationships can arise to guide a designer insupplying additional design information.7 ConclusionsWe have shown that no decidable characterization is possible for internal equivalence or dominance onschemas of practical interest. We have given a set of general structural transformations that guarantee inter-nal dominance (or equivalence) and provided complete characterizations of these transformations. While thetransformations we have presented are far from exhaustive, they are foundational and represent a solid start-ing point for the development of dominance tests for more complete sets of transformations. Furthermore,this research methodology should enable practitioners to develop rigorous schema integration methodolo-gies. It permits practitioners to select the structural transformations they consider semantically meaningfuland also provides rigorous (su�ciency) tests for both information capacity dominance and equivalence ofschemas.Our methodology enables reasoning about instances of schemas. This reasoning can be applied to schemasdeveloped in any data model. Schema integration is often performed on schemas expressed in semantic datamodels, which are rich in constructs. When considering information capacity of schemas, the commonalityof constructs (in terms of their ability to express instances) must be understood. By reasoning within adata model containing an economy of constructs and constraints, we have been better able to understandthe redundancies in constructs of end-user data models. We have also proposed transformations that are, tosome extent, \data model independent" in that they use only reasoning about sets and relations.Many of the equivalence preserving transformations in the literature are due to redundancies in the datamodel considered and others are speci�c sequences of structural transformations that we have considered[7, 17, and others]. For example, the key copying transformation proposed in a methodology based on theER+ model is composed of a single �-transformation followed by an edge &-transformation to copy a set ofkey attributes across a functional relationship [17].We are currently examining other transformations proposed in the literature to understand the basicset theoretic properties they use and develop additional fundamental transformations. We have alreadydeveloped transformations involving constructed edges and nodes (where a single edge can encode the in-formation of multiple edges) and transformations involving nodes with �nite types. We are working ondeveloping characterizations of dominance and equivalence for these additional transformations.

Information Systems, 19(1):3-31, 1994 23AppendixA Proof of Lemma 4.2In this appendix, we prove Lemma 4.2 which we restated here for ease of reference.Lemma A.1 Let �(~x) and �(~x) be two polynomials in n variables with no constant terms and with co-e�cients in N , the natural numbers. Then, there exists a SIG schema S, called a Diophantine encod-ing of �(~x) = �(~x), containing nodes X1; X2; :::; Xn such that the equation �(~x) = �(~x) has a solution~m = (m1;m2; :::;mn), mi 2 N i� there exists a valid instance = for S where j=[Xi]j = mi, 1 � i � n. �Proof Let ~x = (x1; x2; :::; xn) and�(~x) = sXj=1 ajxcj11 xcj22 :::xcjnn �(~x) = tXj=1 bjxdj11 xdj22 :::xdjnnFor all j; 1 � j � s and for all k; 1 � k � n, aj 2 N and cjk 2 N .For all j; 1 � j � t and for all k; 1 � k � n, bj 2 N and djk 2 N .We de�ne a SIG schema S = (G;A), where G = (N;E), as follows.For each xi; 1 � i � n, let Xi 2 N . For each term, tj = ajxcj11 xcj22 :::xcjnn , of the polynomial �, (1 � j � s), letYj be the following constructed node in N :Yj = cj1 timesz }| {X1 �X1 � :::�X1� cj2 timesz }| {X2 �X2 � :::�X2�:::� cjn timesz }| {Xn �Xn � :::�XnSince � contains no constant terms, some cjk 6= 0, so Yj is always a valid node in N . For k = 1 to aj , letY kj 2 N , let ekj : Yj � Y kj 2 E and let A(ekj) = ff; i; s; tg. Let the type of each Y kj be distinct. Hence, in anyvalid instance for A there will be aj separate simple nodes that must contain sets of the same size. Let Y �jand Y be the constructed nodes in N de�ned below. The polynomial �(~x) is encoded by the node Y.Y �j = ajXk=1Y kj Y = sXj=1 Y �jSimilarly, the polynomial �(~x) is encoded by a node Z, constructed from the terms of � in the same manneras the node Y. Let the edges in this latter construction be label dkj , for 1 � k � bj .The one additional edge e : Y � Z 2 E with A(e) = ff; i; s; tg encodes the equality �(~x) = �(~x).Let ~m = (m1;m2; :::;mn) where each mi 2 N . We now prove the following: ~m is a solution to the equation�(~x) = �(~x) i� there exists a valid instance = for S such that j=[Xi]j = mi, 1 � i � n.()) Suppose �(~m) = �(~m). We construct a valid instance = of S as follows. Let =[Xi] be any set ofsize mi, for all i, 1 � i � n. Hence, by the de�nition of SIG instances, for all j, 1 � j � s, j=[Yj]j =(j=[X1]j)cj1 � (j=[X2]j)cj2 � ::: � (j=[Xn]j)cjn = mcj11 mcj22 :::mcjnn . Also, for all j, 1 � j � t, j=[Zj]j = (j=[X1]j)dj1 �(j=[X2]j)dj2 � ::: � (j=[Xn]j)djn = mdj11 mdj22 :::mdjnn .For all j, 1 � j � s, and k, 1 � k � aj , let =[Y kj] be a set of size j=[Yj]j. Let =[ekj] be any bijection betweensets =[Yj] and =[Y kj]. Clearly, this is a valid instance of the edge ekj .Similarly, for all j, 1 � j � t, and k, 1 � k � bj , let =[Zkj] be a set of size j=[Zj]j and let =[dkj] be anybijection between the sets =[Zj] and =[Zkj].Since the types of the nodes Y kj are distinct, the sets =[Y kj] are disjoint so j=[Y]j = �(~m). Similarly,j=[Z]j = �(~m). By supposition, �(~m) = �(~m) so there exists a bijection between the sets =[Y] and =[Z].We let =[e] be any such bijection.

Information Systems, 19(1):3-31, 1994 24From the de�nition of =, it can be seen that = j= A and so is a valid instance of S.(() Conversely, suppose = is a valid instance for S. Let mi = j=[Xi]j.Since for all j, 1 � j � s, and k, 1 � k � aj , each =[ekj] is a bijection, by Lemma 4.1, j=[Y kj]j =j=[Yj]j = mcj11 mcj22 :::mcjnn . Also, since the types of the nodes Y kj are distinct, the sets =[Y kj] are disjoint andso j=[Y]j = �(~m).Similarly, for all j, 1 � j � t, and k, 1 � k � bj , j=[Zkj]j = j=[Zj]j and j=[Z]j = �(~m).By Lemma 4.1, since e : Y � Z is a bijection, j=[Y]j = j=[Z]j. Therefore, �(~m) = �(~m) so ~m is a validsolution to �(~x) = �(~x). 2B SIG IsomorphismWe present the full de�nition of SIG isomorphism. We �rst give preliminary de�nitions of node and edgemaps. An edge map is any binary relation on the sets of edges of two schemas that respects inverses.De�nition B.1 A edge map between two schemas S1 and S2 is a binary relation, � : E1�E2, such that if(e; e0) 2 � then (e�; e0�) 2 �. �A node map is a binary relation on the sets of nodes of two schemas that respects the product and sumoperators on nodes. Constructed nodes may be associated via a node map i� their respective componentnodes are associated. Such maps are fully de�ned by the association between simple nodes of two schemas.De�nition B.2 A node map between two schemas S1 and S2 is a binary relation, : N1�N2, such that:� for all (A;A0) 2 , �(A) = �(A0);� for all nodes A1�A2:::�An 2 N1 and A01�A02:::�A0n 2 N2, ((A1�A2:::�An); (A01�A02:::�A0n)) 2 i� (Ai; A0i) 2 for 1 � i � n; and� for all nodes A1+A2:::+An 2 N1 and A01+A02:::+A0n 2 N2, ((A1+A2:::+An); (A01+A02:::+A0n)) 2 i� (Ai; A0i) 2 for 1 � i � n. �We assume that constructed nodes are represented in a normal form that is essentially disjunctive normalform (where � is \and" and + is \or"). For example, a node A � (B + C) is represented as the nodeA �B + A� C. Furthermore, we assume that di�erences due to the commutativity and associativity of �and + are ignored. For example, A� B +A� C is the same node as C � A+ A�B. By doing so, we areincorporating the natural equivalence preserving transformations for + and � constructors. For example,these transformations allow each instance of the node A�(B+C) to be transformed into a unique instance ofthe node C�A+A�B and vice versa. These transformations are essentially the transformations discussedelsewhere for hierarchical types (without the use of the set constructor) [10]. These equivalences can beproven directly by viewing SIG schemas as algebraic categories. Many of the properties of SIGs that we usein this paper are derived from the categorical structure of SIGs [5].De�nition B.3 Two SIGs are isomorphic, denoted S1 �= S2, if there exist a bijective node map : N1�N2and a bijective edge map � : E1� E2 satisfying the following:� if e : A�B then �(e) : (A) � (B) and� A2(�(e)) = A1(e) and �(e) is a selection (projection) i� e is a selection (projection). �Certainly, if S1 �= S2 then S1�intS2. In general, it may be possible for the annotations on a graph toimply additional annotations. Given a graph G and two SIG schemas S1 = (G;A1) and S2 = (G;A2),then A1 logically implies A2 (denoted A1 j= A2) if every valid instance of S1 is a valid instance of S2(that is, I(S1) � I(S2)). Logical implication is certainly a su�cient condition for internal equivalence. Wewould therefore like to make all possible inferences before computing whether two SIGs are isomorphic. Thiswould permit the detection of internal equivalence for a larger class of schemas. Unfortunately, implicationof annotations in SIGs is undecidable. We can however consider the implication of annotations for some setof sound inference rules. In this paper, we assume that the schemas considered are the closures under knowninference rules. A discussion of sound inference rules for SIGs and the proof of undecidability of annotationimplication are given elsewhere [13].

Information Systems, 19(1):3-31, 1994 25The SIG formalism may be extended to permit types to be assigned to edges as well as nodes. The de�nitionof SIG isomorphism may be modi�ed to reect this addition by simply restricting the acceptable edge maps� to only those maps that preserve edge types.C Proof of Lemmas 5.6 and 5.7Before proving Lemma 5.6, we prove that �-transformations cannot create new surjective functional paths.Lemma C.1 If S1 ��!�S2 and there is a surjective functional path s0 : E � F in S2, then there is somesurjective functional path s : E � F in S1 with the same constraints. �Proof The proof is by induction on the length of the sequence of �-transformations used to transform S1into S2.(Base Case) S1f�e1g1;:::�engng�! S2. Suppose s0 : E�F is a surjective functional path in S2. If none of the edges gi(or their inverses) are contained in s0, then s0 is a path of S1. Suppose some gi is an edge of s0 so gi : C�D isa surjective function. There must be surjective functional paths pi : C�A, ri : D�B and an edge ei : A�Bin S in order for the �-transformation to be valid. Furthermore, since gi is a surjective function, the edgeei must be a surjective function and ri must also be a total injection. The path si = r�i � ei � pi : C �D istherefore a surjective functional path in S1 and the constraints on si are the same as the constraints on gi.Similarly, if g�i : D�C is an edge of s0 then there is a surjective functional path s�i = p�i � e�i � ri : D �C inS1. For any i, we can therefore replace each occurrence of gi or g�i in s0 with the paths si or s�i , respectively,to obtain a path s : E � F in S1 where the constraints on s and s0 are the same.(Induction Step) Let S1 ��!�T f�e1g1;:::�engng�! S2. Applying the same reasoning as for the base case, if there is asurjective functional path in S2 then there is a surjective functional path between the same nodes with thesame constraints in T . By the induction hypothesis, if there is a surjective functional path in T then thereis also some surjective functional path between the same nodes with the same constraints in S1. Hence, forany surjective functional path in S2 there is some surjective functional path between the same nodes in S1that has the same constraints. 2We now use this result in proving Lemma 5.6 which we restate below.Lemma C.2 Let S1 ��!�S2 where S2 contains the edge g0 : C � D. Then, there exist an edge e : A � Band surjective functional paths p : C �A, r : D�B (not containing e) in S1 such that the constraints on g0in S2 are exactly the constraints on the path r� � e � p in S1. �Proof The proof is by induction on the length of the sequence of �-transformations used to transform S1into S2.(Base Case) S1 ��!S2. The lemma is true by the de�nition of �-transformations.(Induction Step) Let S1 ��!�T f�e01g01;:::�e0ng0ng�! S2. Each edge of S2 that is not one of the g0i is an edge of T . Bythe induction hypothesis, the lemma is true for these edges. For each g0i : C �D, there is an edge e0i : A�Band surjective functional paths p0i : C � A, r0i : D � B in T . By Lemma C.1, there are surjective functionalpaths pi : C �A and ri : D�B in S1 with the same constraints as p0i and r0i, respectively. If e0i is an edge ofS1 then the lemma is proven. Otherwise, by the induction hypothesis, e0i : A�B was created from an edgeei : E � F using surjective functional paths si : A�E and ti : B � F in S1. So, ei : E � F is an edge of S1and si � pi : C �E and ti � ri : D � F are surjective functional paths in S1 where the constraints on g0i areexactly the constraints on the path r�i � t�i � ei � si � pi. 2We now restate and prove Lemma 5.7.Lemma C.3 If S1 ���!�S2 then there exists an S10 such that S1 ��!�S10 ��!�S2. �Proof Suppose T1 �e�!T2 O�!T3 where �e is a speci�c �-transformation and O is a �-transformation. SinceT2 is identical to T1 except it has fewer edge constraints or annotations, any �-transformation that can beapplied to T2 can be applied to T1. So T1 O�!T20. For each simple �-transformation in �eigi 2 O, if e is

Information Systems, 19(1):3-31, 1994 26contained in the path r�i � ei � pi used by the �-transformation, let �gi be an �-transformation that removesall the constraints removed by �e. If e� is contained in the path r�i �ei�pi, then let �gi remove all project andselection constraints and the dual annotations of those removed by �e. (Totality is the dual of surjectivityand vice versa. Functionality is the dual of injectivity and vice versa.) Let A = f�eg [f�gij�eigi 2 Og andlet ~A be some sequence containing all the transformations in A (we note that �-transformations commutewith each other). Then, T1 ��!T20 ~A�!T3.So, �-transformations can be pushed to the right past �-transformations. For any sequence of transformationsS1 ���!�S2, this process can be repeated until all �-transformations are applied before any �-transformations.To show that this process eventually terminates, we note that no new �-transformations are created. Addi-tionally, there exist only a �nite number of nontrivial �-transformations. So while each step may introducenew �-transformations, by eliminating redundant or trivial �-transformations, the process terminates witha sequence of transformations such that S1 ��!�S10 ��!�S2. 2D Proof of Theorem 5.13Before proving Theorem 5.13, we state and prove a few lemmas that will be used in the proof. We �nd itconvenient to de�ne a canonical form for transformations where all isomorphic nodes (nodes connected bybijective selection paths) are removed and then additional transformations applied. Using &-transformations,we can reintroduce any nodes that remain in the transformed schema S2, but removing these nodes �rstallows us to assume all node &-transformations are applied to a single node out of a collection of isomorphicnodes.De�nition D.1 The reduction of S, denoted S#, is a schema formed by collapsing all isomorphic nodes intoa single node. We de�ne a set of equivalence classes of nodes where for any class Ci, and distinct nodes Aand B, A 2 Ci and B 2 Ci i� there exists a bijective selection path � : A !j j B. The schema S# is de�nedas follows. For each class Ci of S, select a single node Ni 2 Ci. Let Ni be a node of N#. For each edgee : A � B (that is not a bijective selection edge) where A 2 Ci and B 2 Cj , let e0 : Ni �Nj be an edge inE# and let the constraints of e0 be exactly the constraints of e. �The reduction of a schema S is internally equivalent to S and S1#��&�!�S2 i� S1��&�!�S2.Lemma D.1 If S1#��&�!�S2, then there exist intermediate schemas T1 and T2 such that S1# ~�1�!T1 ��!�T2~�2�! T3 ��!�S2 where �1 is a set of node and edge creation &-transformations and �2 is a set of edge deletion&-transformations. �Proof Clearly, all �-transformations can be pushed to the right. So if S1#��&�!�S2, thenS1# �&�!�T ��!�S2.Suppose the sequence of transformations from S1# to S2 contains a node deletion &-transformation, &A, thatremoves a node A0. Then, there must be a previous node creation &-transformation that creates either Aor A0 (since we begin with the reduction of S1 to which no node deletion &-transformation can be applied).Clearly, we can produce a modi�ed sequence of transformations producing S2 and containing no node deletion&-transformations. The modi�ed sequence contains only the node creation &-transformations correspondingto nodes that were not later removed by a node deletion &-transformation in the original sequence.Let T1 �ef�!T2 &�!T3 where & is a node creation or an edge creation &-transformation. These two transforma-tions commute so T1 &�!T20 �ef�!T3.Let T1 &�!T2 �ef�!T3 where & is an edge deletion &-transformation. Any �-transformation that follows theedge deletion &-transformation must not use the deleted edge. Hence, the �-transformation can be applied�rst. So T1 �ef�!T20 &�!T3.

Information Systems, 19(1):3-31, 1994 27Let T1 &1�!T2 &2�!T3 where &1 is an edge deletion &-transformation and &2 is a node creation or an edgecreation &-transformation. Then, T1 &2�!T20 &1�!T3.Hence, node deletion &-transformations can be removed from the sequence of transformations, node creationand edge creation &-transformations can be moved left in the sequence and edge deletion &-transformationscan be moved right. So we can create a sequence of transformations S1# ~�1�!T1 ��!�T2 ~�2�!T3 ��!�S2 where�1 is a set of node and edge creation &-transformations and �2 is a set of edge deletion &-transformations. 2The next result states that any sequence of transformations can be modi�ed to create a sequence producingthe same result schema in which all node creation transformations are applied to nodes in the original schemaS1 (rather than nodes in intermediate schemas).Lemma D.2 If S1#��&�!�S2 via any set of transformations then S1#��&�!�S2 via a set of transformations inwhich all node creation &-transformations are applied to nodes of S1#. �Proof By Lemma D.1, we can separate the transformations and produce a set of transformations whereall node and edge creation transformations are applied �rst. Clearly, we can also apply all node creationtransformations before edge creation transformations. So S1# ~��!T1 ~X�!S2 where � contains only nodecreation &-transformations and X does not contain any node creation &-transformations.Suppose there exists a node creation &-transformation, &A0 , that creates a node A00 from a node A0 62 N1#.Then, there must be a bijective selection path in T1 from some node A of S1# to A0. We can thereforereplace &A0 with two transformations: a node creation &-transformation, &A, that creates a copy of the nodeA and a selection edge �A and a �-transformation, ��A , that moves �A across the bijective path to the nodeA0. Repeating this process we can obtain a set, �0, of node creation &-transformations on nodes of S1 suchthat S1# ~�0�!T10 ��!�T1 ~X�!S2. 2We now prove 5.13 which is restated for convenience.Theorem D.3 Let S1 and S2 be SIG schemas. Then, S1��&�!�S2 i� S1���& S20, where S20 �= S2. �Proof (() We �rst show that if S1���& S20 then S1��&�!�S2 for some S2 �= S20.1. Let A 2 N1, where is not de�ned on A. By De�nition 5.8, there is a bijective selection path p inS1 from A to some node B where is de�ned on B. Let OA be a set of �-transformations movingall edges incident to A onto the node B. Let &A be a node deletion &-transformation that removesthe node A. Let O contain all �-transformations and �D contain all node deletion &-transformationscreated by this process.2. Let e 2 E1, where � is not de�ned on e. Let &e be an edge deletion &-transformation that removes e.Insert into �D all edge deletion &-transformations created by this process.3. Let A 2 N1, where is de�ned on A and (A) = fA00; A01; :::A0ng for some n � 0. Let �(A) =fg01; g02; :::; g0mg (m � 0, if m = 0 then �(A) = ;). We de�ne {(A00) = A and {(A0i) = A0i for i � 1. Eachnode A0i (i > 0) is created by a node creation &-transformation. If m < n then some of the selectionedges created by these &-transformations have been removed by edge deletion &-transformations. Ifm > n then some additional edge creation transformations have been applied.� For i = 1 to min(m;n), let & i be a node creation &-transformation that creates the node A0i andselection edge �i.� For i = min(m;n) + 1 to n, let & i be a node creation &-transformation that creates the node A0iand selection edge �i. Also, let &�i be an edge deletion &-transformation that removes the edge�i.� For i = min(m;n) + 1 to m, let &i be an edge creation &-transformation that creates �i.Insert into �D the set of all edge deletion &-transformations and into �C the set of all remaining&-transformations created in the above process. Let S1# ~�C�!T1.4. For each g0 : C 0 �D0 2 E20, let �1(C 0) = C and �1(D0) = D. Since � is surjective onto the edgesof E2, one of the following two cases must hold for g0.� If g0 2 �(A) then g0 comes from a selection edge �A0 : A0�A created by a (node or edge) &-transfor-mation. Constraints on the original selection edge may have been removed by an �-transformation

Information Systems, 19(1):3-31, 1994 28and the edge may have been moved (or copied) by a �-transformation. By De�nition 5.8, ��g isa valid �-transformation on the schema T1 creating an edge g : C � D that may have moreconstraints than g0 (but cannot have fewer constraints). Let ��g 2 O and let |(g) = g0.� If g0 2 �(e), for some e : A�B, then by De�nition 5.8, �eg is a valid �-transformation. Let �eg 2 Oand let |(g) = g0.If any edge g0 of E20 has fewer constraints than |�1(g0) then, we create an �-transformation to removeany additional constraints. Let A be the set of all �-transformations created.It is easily veri�ed that S1 ~�C�!T1 ~O�!T2 ~�D�!T3 ~A�!S2 where S2 �= S20 via the node bijection { and edgebijection |.()) Next, we show that if S1��&�!�S2 then S1���& S2 by constructing injections and �.Since S1��&�!�S2 and S1#��&�!�S1, S1#��&�!�S2. By Lemma D.1, there also exists a sequence of transformationsof the following form S1# ~�C�!T1 ��!�T2 ~�D�! T3 ��!�S2 where �C is a set of node and edge creation &-trans-formations and �D is a set of edge deletion &-transformations. Furthermore, by Lemma D.2, we can assume�C contains only node creation &-transformations that are applied to nodes in S1#.We de�ne the node map and a set of edges E� as follows. For each node A 2 N1#, let A 2 (A). Foreach node creation &-transformation in �C that creates a node A0 (from the node A) and a selection edge�A0 , let A0 2 (A) and let �A0 2 E� . For each edge creation &-transformation in �C that creates the edge�A, let �A 2 E� .For each edge g0 in T2 created from an edge e 2 E1#, we let g0 2 �(e). For each edge g0 in T2 createdfrom an edge �A0 2 E� , that is not later removed by an transformation in �D, we let g0 2 �(A). It is easilyveri�ed that � and satisfy De�nition 5.8. 2

Information Systems, 19(1):3-31, 1994 29References[1] S. Abiteboul and R. Hull. Restructuring Hierarchical Database Objects. Theoretical Computer Science,62:3{38, 1988.[2] J. Albert, R. Ahmed, M. A. Ketabchi, W. Kent, and M. C. Shan. Automatic Importation of RelationalSchemas in Pegasus. In Proc. of the 3rd Int'l Workshop on Research Issues in Data Eng.: Interoperabilityin Multidatabase Systems, pp. 105{113, Vienna, Austria, Apr. 1993.[3] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, New York, NY, 1990.[4] C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Methodologies for DatabaseSchema Integration. ACM Computing Surveys, 18(4):323{364, Dec. 1986.[5] J. L. Bell. Toposes and Local Set Theories - An Introduction. Oxford Science Publications, Oxford,U.K., 1988.[6] M. Davis. Hilbert's Tenth Problem is Unsolvable. American Mathematical Monthly, 8(3):233{269,Mar. 1973.[7] C. F. Eick. A Methodology for the Design and Transformation of Conceptual Schemas. In Proc. of theInt'l Conf. on Very Large Data Bases, pp. 25{34, Barcelona, Spain, Sep. 1991.[8] R. Hull. Relative Information Capacity of Simple Relational Database Schemata. SIAM Journal ofComputing, 15(3):856{886, Aug. 1986.[9] R. Hull. A Survey of Theoretical Research on Typed Complex Database Objects. In J. Paredaens,editor, Databases, chapter 5, pp. 193{256. Academic Press, London, U.K., 1987.[10] R. Hull and C. K. Yap. The Format Model: A Theory of Database Organization. Journal of the ACM,31(3):518{537, 1984.[11] L. A. Kalinichenko. Methods and Tools for Equivalent Data Model Mapping Construction. In Proc. ofthe Int'l Conf. on Extending Database Technology, pp. 92{119, Venice, Italy, Mar. 1990.[12] V. M. Markowitz and A. Shoshani. Representing Extended Entity-Relationship Structures in RelationalDatabases: A Modular Approach. ACM Transactions on Database Systems, 17(3):423{464, Sep. 1992.[13] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema Intension Graphs: A Formal Model for theStudy of Schema Equivalence. Technical Report 1185, Dept. of Computer Sciences, U. of Wisconsin,Madison, WI, 1993.[14] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The Use of Information Capacity in SchemaIntegration and Translation. In Proc. of the Int'l Conf. on Very Large Data Bases, pp. 120{133, Dublin,Ireland, Aug. 1993.[15] C. �O'D�unlaing and C. K. Yap. Generic Transformation of Data Structures. In Sym. on Foundations ofComputer Science, pp. 186{195, Chicago, IL, Nov. 1982.[16] A. Rosenthal and D. Reiner. Theoretically Sound Transformations for Practical Database Design. InProc. of the Int'l Conf. on Entity-Relationship Approach, pp. 115{131, New York, NY, Nov. 1987.[17] A. Rosenthal and D. Reiner. Tools and Transformations - Rigorous and Otherwise - For PracticalDatabase Design. Technical report, MITRE Corp., Feb. 1993.[18] A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed, Heterogeneous,and Autonomous Databases. ACM Computing Surveys, 22(3):183{236, 1990.[19] A. P. Sheth and H. Marcus. Schema Analysis and Integration: Methodology, Techniques, and PrototypeToolkit. Technical Report TM-STS-019981/1, Bellcore, Mar. 1992.[20] P. Shoval and S. Zohn. Binary-Relationship Integration Methodology. Data and Knowledge Engineering,6:225{250, 1991.[21] M. Templeton, H. Henley, E. Maros, and D. J. Van Buer. InterViso: Dealing with the Complexity ofFederated Database Access. Technical report, Data Integration Inc., Los Angeles, CA, Dec. 1992.[22] G. Thomas, G. R. Thompson, C.-W. Chung, E. Barkmeyer, F. Carter, M. Templeton, S. Fox, andB. Hartman. Heterogeneous Distributed Database Systems for Production Use. ACM ComputingSurveys, 22(3):237{266, Sep. 1990.

