Schema Equivalence in Heterogeneous Systems:
Bridging Theory and Practice *

R. J. Miller! Y. E. Ioannidist R. Ramakrishnan®

Department of Computer Sciences
University of Wisconsin-Madison
{rmiller, yannis, raghu}@cs.wisc.edu

December 1, 1993

Abstract

Current theoretical work offers measures of schema equivalence based on the information capacity of
schemas. This work is based on the existence of abstract functions satisfying various restrictions between
the sets of all instances of two schemas. In considering schemas that arise in practice, however, it is not
clear how to reason about the existence of such abstract functions. Further, these notions of equivalence
tend to be too liberal in that schemas are often considered equivalent when a practitioner would consider
them to be different. As a result, practical integration methodologies have not utilized this theoretical
foundation and most of them have relied on ad-hoc approaches. We present results that seek to bridge
this gap. First, we consider the problem of deciding information capacity equivalence and dominance of
schemas that occur in practice, i.e., those that can express inheritance and simple integrity constraints.
We show that this problem is undecidable. This undecidability suggests that in addition to the overly
liberal nature of information capacity equivalence, we should look for alternative, more restrictive notions
of equivalence that can be effectively tested. To this end, we develop several tests that each serve as
sufficient conditions for information capacity equivalence or dominance. Each test is characterized by
a set of schema transformations in the following sense: a test declares that Schema S1 is dominated
by schema S2 if and only if there is a sequence of transformations that converts S1 to S2. Thus, each
test can be understood essentially by understanding the individual transformations used to characterize
it. Each of the transformations we consider is a local, structural schema change with a clear underlying
intuition. We demonstrate the power of these tests by showing that one can reason about the equivalence
and dominance of quite complex schemas. Because our work is based on structural transformations, the
same characterizations that underly our tests can be used to guide designers in modifying a schema to
meet their equivalence or dominance goals.

*This paper appears in: Information Systems, 19(1):3-31, 1994. An extended abstract appears in: FExtending Database
Technology (EDBT), Cambridge, U.K., March 1994.

TR. J. Miller has been partially supported by the National Science Foundation (NSF) under Grant IRI-9157368.

1Y. Ioannidis has been partially supported by the NSF under Grants IRI-9113736, IRI-9224741, and IRI-9157368 (PYI
Award), and by grants from DEC, IBM, HP, AT&T, and Informix.

§R. Ramakrishnan has been partially supported by a David and Lucile Packard Foundation Fellowship in Science and
Engineering, by the NSF under a PYI Award and under grant IRI-9011563, and by grants from DEC, Tandem, and Xerox.

Information Systems, 19(1):3-31, 1994 1

1 Introduction

The problem of schema translation is to transform an existing schema in a given data model into an equiva-
lent schema, possibly in a different data model. A closely related problem is that of schema integration. At
the heart of schema integration lies the problem of detecting if two schemas or parts of schemas are equiva-
lent. Theoretical work on schema integration and translation has focused on the development of notions of
equivalence for schemas. Such work, while mathematically elegant, does not address many practical issues
and is not an adequate foundation for developing pragmatic solutions. On the other hand, without a good
foundation, practical work has been largely ad hoc. Solutions are motivated by the needs of specific classes
of examples and often do not generalize.

In this paper, we present formal results that provide a basis for developing practical schema integration
and translation techniques. Our previous work has highlighted the need for a formal notion of equivalence
[14]. Specifically, we examined the notion of relative information capacity [8] and identified anomalies that
can arise when using transformations that do not guarantee that information capacity is preserved. However,
there are only limited theoretical results on information capacity equivalence and dominance. In addition, to
be directly usable in a practical context, a decidable characterization of both equivalence and dominance of
schemas is needed. In this paper, we examine the characterizations that exist for various classes of schemas
and extend these results by showing that no characterization is possible even for a more general though still
simple class.

Furthermore, while being a required condition, information capacity is not sufficient to guarantee a natural
correspondence between schemas. In defining equivalence preserving transformations of schemas, practition-
ers use their own intuition about what constitutes a valid structural correspondence between schemas. Our
undecidability result suggests that in addition to the overly liberal nature of information capacity equiv-
alence, we should look for alternative, more restrictive notions of equivalence and dominance that can be
effectively tested. To this end, we develop several tests that each serve as sufficient conditions for informa-
tion capacity equivalence or dominance. Each test is characterized by a set of schema transformations in the
following sense: a test declares that Schema S1 is dominated by Schema S2 if and only if there is a sequence
of transformations that converts S1 to S2. Thus, each test can be understood essentially by understanding
the individual transformations used to characterize it.

Each of the transformations we consider is a local, structural schema change with a clear underlying
intuition. Our earlier work showed that for many practical tasks, it is sufficient to ensure the information
capacity dominance of schemas [14]. We therefore consider transformations that preserve the information
capacity of a schema and transformations that augment it. Our transformations are presented formally in
terms of the Schema Intension Graph (SIG) data model, which is defined in Section 3. Informally, we consider
transformations that permit common constraints on a schema to be removed. These constraints can express
key dependencies, integrity constraints and other common dependencies between sets. Other transformations
permit attributes or entities to be moved or copied. As a simple example, we can transform Schema S1 of
Figure 1 into Schema S2. The Phone entity is copied from Address to Person and the Degree entity is
moved. We characterize exactly when such transformations preserve or augment information capacity (that
is, when the transformations are valid). Additionally, the transformations define the constraints that must
hold on the transformed schema based on the constraints on original schema. Our characterizations let us test
exactly when an arbitrary schema can be obtained from another through some sequence of transformations.

We demonstrate the power of these tests by showing that one can reason about the equivalence and
dominance of complex schemas. Because our work is based on structural transformations, the same char-
acterizations that underly our tests can be used to guide designers in modifying schemas to meet their
equivalence or dominance goals. We have defined and used a formal model that permits reasoning about
schemas at a level that is easily translated into the terms of most commonly used models. It is not necessary
for a designer to understand our SIG data model or the details of our results to be able to benefit from the
algorithms we propose.

Information Systems, 19(1):3-31, 1994 2

has phone
has add has add Address
major as— phone as phone
Degree
Schema S1 Schema S2

Figure 1: Example transformation of an informal object-oriented schema.

2 Motivation

Before conducting a study of schema equivalence, the question of why this is important must be addressed.
Below, we present examples belonging to two broad classes of problems whose solutions depend on having
effective procedures to determine if two schemas are equivalent. In addition to showing the importance
of schema equivalence in practical problems, these motivating examples provide insight into the type of
results on schema equivalence that may have direct practical import. The first class of problems is that of
automating the integration of schemas. We focus on one problem in this class, that of detecting and resolving
what has been termed structural mismatches or conflicts in schemas that are being integrated. The second
class is that of providing automated support for ad hoc changes to a schema that is being used as a view
onto data stored under another schema.

2.1 Schema Integration

Algorithms for determining the equivalence and dominance of schemas play a number of important roles
in the integration process. For clarity, we limit our discussion here to a specific application of schema
equivalence.

Integration methodologies vary a great deal but at a very coarse level they often include the following
steps.! An initial comparison is performed in which correspondences among schemas are determined. For
example, the attribute ProjectNo in some schema could be identified as being identical to the attribute
PNo in another. After general correspondences are known, conflicts in the schemas may be detected and
resolved. Conflicts include type conflicts (also called “structural mismatches”) in which similar information
has been represented using different schema constructs (for example, as a relationship in one schema and
as an entity in another) or different groupings of constructs (for example, sets of attributes are grouped
differently in relational tables, as in the example below). Type conflicts are typically resolved by changing
the constructs used in one or more of the schemas so that all schemas use identical constructs. This step can
be viewed as a goal driven restructuring of the original schemas based on information about other schemas to
be integrated. After conflict resolution, the schemas are merged. For example, a single attribute ProjNo in
the integrated view may represent information from the attribute ProjectNo of one schema and the attribute
PNo of another.

The resolution strategy for type conflicts may be a fixed choice of one construct over another or may be
left up to the schema designer [4, 20]. However, certain choices are simply wrong in certain situations and
may cause errors if the integrated view is used to retrieve or store data in the underlying schemas [14]. If
the integration methodology makes use of information about the equivalence of schemas, such wrong choices
can be avoided. We illustrate this point using a simple relational example.

Consider the integration of two complex relational schemas, R1 and R2. These schemas contain (among
other tables) the Project and Workstation tables depicted in Figure 2. The integrated schema is to be

!These steps are outlined in a 1986 survey of integration methodologies [4] and continue to be used in more recent work
[19, 20]. We have only presented them in outline form for brevity.

Information Systems, 19(1):3-31, 1994 3

used as a view for accessing information in both schemas, so we want to ensure that the integrated view
can express all the data in the original schemas. Furthermore, we need to ensure that we have a set of
correspondences that defines how instances of the original schemas collectively correspond to an instance of
the integrated view so that queries on the view may be translated to queries on the original schemas. We call
these correspondences instance mappings. If such mappings exist, we say that the integrated view dominates
the original schemas. Formal definitions of dominance and equivalence of schemas are given in Section 4.

Schema R1 Schema R2
Project [ProjectNo, Leader, Grant] Project [ProjectNo, Leader]
Workstation [SerialNo, Name] Workstation [SerialNo, Name, Grant]

Figure 2: Parts of two relational schemas to be integrated. Keys are depicted in bold.

Suppose that a designer has indicated that the information contained in the two Workstation tables
corresponds (that is, the tables model the same real world entities), as does the information in the two
Project tables (and similarly, for all attributes depicted in the figure). In the conflict resolution phase,
the problem is to pick a common representation for all the information about Workstations and Projects.
Reasoning at an intuitive level, if we can determine a unique Grant to associate with each Workstation (and
if every Grant is associated with some Workstation), then we can represent any instance of R1 as an instance
of R2. The latter condition is needed to ensure that all Grant data may be accessed through the view.

Suppose schema R1 also contains the table Quwner[SerialNo, ProjectNo] and the proper inclusion de-
pendencies to ensure that every Grant is associated with some Workstation (Owner. SerialNo C Work-
station.SerialNo and Project.ProjectNo C Owner.ProjectNo). We can then correctly represent every
instance of R1 as an instance of R2, so we could choose the tables of R2 as the common representation for
Workstation and Project information in the integrated view.

This was just one example of how R2 might have more capacity to store information. It may also be
the case that for different schemas the Workstation and Project tables of R1 dominate R2. The reasoning
needed to make such a determination can be quite complex. It depends on the constraints expressed on
the schemas (including whether null values are allowed). A designer cannot be expected to intuit a correct
representation. Furthermore, a fixed choice of one representation (perhaps always choosing the table with
the most attributes) will not be correct for all schemas. If a tool uses algorithms for detecting the equivalence
or dominance of schemas, then it can correctly resolve schema conflicts or guide a designer in modifying the
schemas using knowledge about the existence of instance mappings.

2.2 Ad Hoc Schema Changes

Algorithms for deciding schema equivalence also have important applications in areas outside of schema
integration. We discuss one important class of problems, that of supporting ad hoc changes to a schema that
is being used as a view onto data stored under another schema. Consider a schema translation tool in which
a schema is translated into an equivalent schema (typically in a different data model), which can be used as
a view to pose queries on data stored under the original schema. Within such tools, the translation process
produces not only the translated schema, but an instance mapping between the schemas. For example, the
Pegasus import tool [2] translates relational schemas to Iris schemas (Iris is a functional object model). For
each Iris type, the result of translation includes a rule over a collection of relations in the original schema
that defines the instances of the type.

Such translation tools fully automate the production of instance mappings. A designer need only be
concerned with the resulting schema; all details of establishing schema correspondences are hidden. We now
want to permit the designer to change the translated schema. Again, we want the tool to automatically infer
and record any changes necessary to the instance mapping.

For example, suppose Schema R1 of Figure 2 is produced by a translation tool from an underlying schema

Information Systems, 19(1):3-31, 1994 4

in another data model.2 A designer may wish to change the default translation and represent Grant as an
attribute of Workstation not Project as in Schema R2. If the tool can test for dominance and automatically
produce an instance mapping between schemas, then the designer does not need to manually update the
instance mapping as a result of this change. Currently, translation tools, such as Pegasus, do not give such
support for ad hoc view changes. Rather, they provide some form of data definition language in which
default mappings are expressed and which may be used by a designer to manually change a mapping.

This problem is clearly not restricted to translation and applies to a number of applications in heteroge-
neous databases in which one schema is maintained as a view over other schema(s) [18, 21, 22].

2.3 Discussion

Several requirements on our study of schema equivalence can be identified from these motivating examples.
First, for the applications we are considering, the notion of equivalence must be based on the ability or ca-
pacity of schemas to store information. Second, practical problems require not only procedures for producing
equivalent schemas (this is the translation or transformation problem) but also for testing if two schemas
are equivalent. Finally, for equivalence tests to be usable, they must not only produce a decision about the
equivalence of schemas, but they must also produce the correspondence between the schemas (that is, an
instance mapping).

In the next section, we present the Schema Intension Graph (SIG) data model that will be used to
present our results. In Section 4, we define information capacity and examine existing results on information
capacity equivalence and dominance. We extend these results by considering the information capacity of
SIGs and show that it is not always possible to test for the equivalence or dominance of schemas. In Section
5, we provide decision procedures that will allow us to decide equivalence for a large class of schemas. In
the examples of Sections 5 and 6, we briefly demonstrate how our results may be used in a practical setting
to meet the requirements of common integration and translation problems such as the ones we have just
examined.

3 A Formal Data Model

In this section, we define the data model used to present our results. We have chosen to define a new data
model for this purpose for two main reasons. First, we need a model that allows us to compare schemas
with respect to their information capacity. As we saw in the previous section, given two schemas, a typical
question of interest is whether each instance of the first schema can be represented as an instance of the
second schema (in such a way that it is possible to ‘go back’ to the first instance). In order to address
questions such as the one above, we need a way to reason about possible schema instances given a set of
constraints over them. Other formal studies of information capacity have typically used the relational model
[8] or models based on complex types [1, 9, 10, 15]. Instead of extending complex types with constraints,
we chose to use a model in which constraints are expressed on collections of entities of an instance rather
than on the internal structure of a single entity. We explore this point further after we have presented our
model. Second, to simplify our task, we wish to include in the model only a minimum set of constructs and
constraints necessary to model a large class of commonly occurring schemas. Furthermore, we require that
any reasoning about schema equivalence be done in a form that is easily conveyed back to a schema designer.
To aid in this goal, we strive to meet requirements laid out by practitioners in this field [17]. Specifically, the
constraints we include in the model are local (that is, they are robust to schemas changes), comprehensible
(easily understood and used by a database designer), and not based on unrealistic assumptions about the
set of valid instances of a schema. They also appear in some form in most common data models, and are
therefore widely recognized as being useful.

The basic building blocks of the model are sets of data values (represented by the nodes of a graph).
These sets may be combined by nested applications of union and product constructors to form new sets. The
model also permits the expression of binary relations between pairs of sets and simple integrity constraints

2In reality, most tools translate into more expressive data models but, for brevity, we reuse the same relational example.

Information Systems, 19(1):3-31, 1994 5

(dependencies) on these binary relations. The binary relations are represented by edges of a graph and the
constraints by annotations on the edges. The constraints include totality and surjectivity, which express that
every element of the first or the second set must participate in an instance of the binary relation, respectively,
and functionality and injectivity, which express that an element of the first or the second set may appear at
most once in an instance of the binary relation, respectively. *

3.1 Schema Intension Graphs

Let A be an infinite set of symbols that will serve as labels for schema constructs. Let 7 be an infinite set of
simple abstract types. Let 7* be the closure of 7 under finite products and sums. Each simple type 7 € T
is an infinite set of symbols. All simple types are pairwise disjoint and disjoint from the set of labels A. The
universe U is the union of symbols in all types of 7.

A schema intension graph (SIG) is a graph, G = (N, E), defined by two finite sets N and E. The set N
contains a set of symbols M C A. The nodes in M are called simple nodes. Additionally, N may contain
constructed nodes that are the products and sums of other nodes, where

e if A,B € N then the node A x B may be in N; and
e if A, B € N then the node A + B may be in N.

Each simple node A € N, is assigned a type, 7(A) € T*. The type of a constructed node is the cross-
product or union of the types of its constituent nodes. Multiple nodes may have the same type.

Each element e € F is a labeled edge between two nodes of N. An edge e is denoted e : A — B, indicating
it is an edge from node A to node B. For each edge e € E, the inverse of e, denoted €°, is in E. The set
E may contain arbitrary edges between nodes as well as multiple edges between the same pair of nodes. If
7(A) = 7(B), then an edge e : A — B may optionally be designated as a selection edge and is denoted by
a label o%. If 7(A) = 7(B) x 7(C) for some node C, then e : A — B may optionally be designated as a
projection edge and is denoted by a label IT§. (When no confusion can arise subscripts and/or superscripts
on projection and selection edges will be omitted.) An instance of a SIG is constrained to give all selection
and projection edges special interpretations.

3.1.1 Instances

In a SIG, the nodes represent typed domains and the edges represent abstract morphisms between domains.
An instance of a graph is an assignment of a specific set of elements of the appropriate type to each node
and specific binary relations to the edges of a graph. An instance corresponds to a specific database state.

An instance of G is a function whose domain is the sets N of nodes and E of edges. The set of all
instances of G is denoted I(G). An instance & € I(G) is restricted as follows.

e For each simple node A € N, S[A] is a finite set of elements where S[A] C 7(A4).

e For each product node (A x B) € N, S[A x B] is the cross product of elements from S[A] and S[B],
S[A x B] = S[4] X S[B]. (Here X denotes ordinary cartesian product of sets.)

e For each sum node (A + B) € N, S[A + B] is the union of elements from S[A] and 3[B], S[A+ B] =
S[4] U S[B].

e For each edge e : A — B € E, Se] is a subset of the cross product of elements from S[A] and S[B],
Sle] € S[A] X S[B]. For the edge e°, (b,a) € Sle°] iff (a,b) € Sle].

e For each selection edge 0% : A — B, S[0f] is a subset of the identity relation on J[A].

e For each projection edge 15 : A — B, (where 7(4) = 7(B) x 7(C) for some C), S[II] is the projection

Y

of S[B] components from S[A]. Namely, S[TT15] = {((b,¢),b) | (b,c) € I[A] and b € I[B]}.

3For those familiar with category theory, SIG schemas form a simple class of categories where the nodes are finite sets and
the arrows are binary relations on pairs of sets [3].

Information Systems, 19(1):3-31, 1994 6

3.1.2 Annotations

Each edge of a SIG is annotated with a (possibly empty) set of properties. Each property is a constraint
that restricts the set of valid binary relations that may be assigned to an edge by an instance. An instance
of a SIG is a wvalid instance of a set of annotations if the binary relation assigned to each edge satisfies all
annotations on the edge.

The following four properties are used to annotate edges of SIGs: totality, surjectivity, functionality and
injectivity. Let A and B be two sets. A binary relation r : A — B is total (denoted e : A+— B) if it is defined
for all elements of A; surjective (e : A— B) if it is defined for all elements of B; functional (e : A— B) if an
element of A determines at most one element of B; and injective (e : A«——B) if an element of B determines at
most one element of A. Also, a bijection is a total, surjective, injective function. Note that all four properties
are independent in that no subset of the properties expressed on a relation between arbitrary sets A and B
logically implies any property not in that subset.

An annotation of a SIG G = (N, E) is a function A whose domain is the set of edges E. For all e € E,
A(e) C{f,i,s,t}. An instance S of G is a valid instance (also called a model) of A, denoted & |= A, if for all
e € E,if f € A(e) (respectively 4,5 or t € A(e)) then Se] is a functional (respectively injective, surjective
or total) binary relation. A SIG schema S is a pair S = (G,.A). In what follows, when discussing a SIG
schema Si, it will be assumed that Si = (G4, A7) and Gi = (Ni, Ei).

The set of instances of S is the set of all instances of G that model A. That is, I(S) = {¥ | & € I(G)
and S | A}. The set of symbols of an instance, denoted Sym(S), is the set of elements of U that appear
in the range of §. For a subset of the universe, Y C U, Iy (S) denotes the set of instances of S that contain
only symbols in YV, Iy (S) = {S | S € I(S) and Sym(S) CY}.

The restriction of an edge to being a selection or projection edge can also be viewed as a constraint on the
set of valid instances of an edge. We use the term constraint to refer to any annotation, selection constraint
or projection constraint.

Edges, like binary relations, can be composed. If r : A — B is a binary relation then for a € A, r(a)
denotes the set of elements of B associated with the element a in r. Additionally, if s : B — C is a binary
relation then sor: A — C denotes the composition where s o r(a) = s(r(a)). Similarly, for compositions of
edges, es 0 e; means e; followed by e;. The composition of two functional (respectively injective, surjective
or total) binary relations is also functional (respectively injective, surjective or total). This motivates the
following definition.

Definition 3.1 Let G = (N, E) be a SIG and A an annotation function on G. A path, p : Ny — Ny, in G
is a (possibly empty) sequence of edges e; : Ny — Na, es : No — N3, ..., ex—1 : Ny_1 — Ny and is denoted
€x—10€p_20..0ep. A path is called functional (respectively injective, surjective or total) if every edge in
the path is functional (respectively injective, surjective or total). Similarly, a path is called a selection path
if every edge on the path is a selection. A path is called a projection path if every edge on the path is a
projection or selection and at least one edge is a projection. The trivial path is a path from a node to itself
containing no edges. The trivial path satisfies all constraints.? °

Paths are denoted by dashed lines in figures.

3.2 An Example SIG

Figure 3 depicts an example SIG schema. Selection edges can be used to model both specialization and
generalization. The nodes Student and Professor are subsets of Employee. There may be elements of
Employee that are not in Student or Professor, so Student and Professor are both specializations of
Employee. However, the node Student is the generalization (that is, the exact sum) of the nodes TA
and RA. The bijective selection edge between Student and TA + RA enforces the constraint that every
Student is either an RA or a TA. The edge teaches represents the fact that every course is taught by a
single professor. Furthermore, each course has a single title and text book as represented by the attr edge.

4 Alternatively, identity edges from each node to itself may have been included in the definition of SIGs. This latter choice
is more consistent with the view of SIGs as categories.

Information Systems, 19(1):3-31, 1994 7

Additionally, selection edges from the TA + RA node indicate that the set of all TAs and the set of all RAs
may be selected out of the constructed node. Similarly, the projection edges from Text x Title contain the
projection of Text and Title values.

Employee
<N
Student Professor
o teaches

tt
Course = Text X Title
Tt

Text Title

;’A + RA(j
TA/ \%A

Figure 3: An example SIG schema.

3.3 Discussion of Model

The SIG model is inherently “data-centric” as opposed to “type-centric”. By attaching a set of type defini-
tions to an entity set, one can express constraints on the structure of individual entities. As noted above,
however, our goal is to reason about constraints on collections of entities in an instance of the entity set,
rather than about the internal structure of a single entity. Thus, instead of focusing on types and type level
operations, we want to focus on instances and instance level operations.

To illustrate the difference between these approaches, consider a schema S1 containing sets of professors
and sets of students (denoted by Professors and Students) and a second schema S2 containing the product
of professors and students (denoted Professors x Students). The product constructor may be viewed as
a type constructor or a set constructor. Under a “type-centric” view, the product constructor defines a
new type; any professor—student pair is an element of this type, but the actual collection of pairs in a given
instance can range from the empty set to the full cross-product of all professors and students.

Under our “data-centric” view, the product constructor operates on instances rather than types. Given
instances of Professors and Students, an instance of Professors x Students is uniquely defined as the
product of these sets. In the SIG model, cross product and union constructors are not viewed as defining
new types (that is, new sets), but as combining existing sets. The motivation, as noted earlier, is to reason
directly about the values in an (arbitrary) instance of the schema. For example, Schema S1 and Schema
S2 are equivalent in the following sense: an instance of the first schema uniquely defines an instance of
the second and vice versa. (This is clearly not true if x is viewed as a type constructor!) In Section 4, we
formally define schema equivalence using as a basis the existence of such one-to-one correspondences between
instances of schemas. Our model allows the expression of such equivalence preserving transformations as
constructing the product or union of sets.

The SIG model also allows the definition of new sets that are only constrained to be subsets of existing
sets, and so it can represent complex types built using union and cross-product (viewed as type constructors)
[9]. While there is thus a connection between SIGs and complex types, there are important differences, as
noted above.

4 Information Capacity

Formal notions of correctness for schema transformations are typically based on the preservation of the
information content of schemas. We use a formalization in which the information content of a schema S
is measured by the set of all valid instances of S, denoted I(S). Such a formalization is appropriate for
applications, like those described in Section 2, where one schema is used to store or access information in

Information Systems, 19(1):3-31, 1994 8

another. Two schemas can be compared based on information capacity. Intuitively, a schema S2 has more
information capacity than a schema S1 if every instance of S1 can be mapped to an instance of S2 without
loss of information. Specifically, it must be possible to recover the original instance from its image under the
mapping.?

Below we consider two formalizations of information capacity dominance and equivalence, namely ab-
solute equivalence and internal equivalence. In our presentation, we analyze whether these definitions are
appropriate for establishing results directly usable in the context of practical integration problems. For each
notion, we present: (1) brief definitions; (2) existing results on testing for equivalence of various classes
of schemas; (3) our results on testing for equivalence of SIGs; and (4) the potential use of this form of
equivalence in practical systems.

4.1 Absolute Equivalence

Absolute equivalence gives a characterization of the minimum that is required to achieve information capacity
equivalence and provides a foundation on which more specialized definitions of equivalence may be built.
It is based on the existence of invertible (that is, injective) functions between the sets of instances of two
schemas.

Definition 4.1 An instance mapping from schema S1 to S2 is any total function f : Iy(S1) — Iy (S52),
where Y CU. .

Definition 4.2 An information (capacity) preserving mapping between the instances of S1 and S2 is a total,
injective function f : Iy (S1) — Iy(S2). An equivalence preserving mapping between the instances of two
schemas S1 and S2 is a bijection f : Iy (S1) — Iy (52).)

Definition 4.3 The schema 52 dominates S1 absolutely, denoted S1=<,4552, if there is a finite Z C U such
that for each Y O Z there exists an information preserving mapping f : Iy (S1) — Iy (S2). Also, S1 and
S2 are absolutely equivalent, denoted S1~.ps52, if for each Y O Z there exists an equivalence preserving
mapping f : Iy (S1) — Iy(S2).)

Work on characterizing absolute equivalence has focused on simple relational schemas and what has been
termed “static schemas”, that is types with no integrity constraints or dependencies. Characterizations
of absolute dominance are known for relational schemas with only (primary) key dependencies [8]. For
more complex static schemas, namely types formed by the recursive application of product, set or union
constructors on infinite base types, absolute equivalence can be characterized by a set of natural restructuring
operators [10]. The restructuring operators are used to define a normal form for these schemas such that two
schemas are absolutely equivalent iff their normal forms are isomorphic. This result has been generalized
to schemas that include finite as well as infinite base types [1]. Again, a (decidable) characterization of
absolute equivalence for the extended set of schemas is given that is based on a set of restructuring operators.
Characterization of absolute dominance for complex types are not known.

We now consider the problem of testing for absolute equivalence (or dominance) of SIGs. SIGs permit
the representation of sets formed from nested product and union constructors, as well as simple constraints
between these sets. The addition of these constraints makes testing for equivalence (and therefore dominance)
of schemas undecidable. This result uses the fact that SIGs can express cardinality constraints on the relative
size of nodes.

Lemma 4.1 Let S = (G, A) be a SIG schema where G = (N,E). Let e : X =Y € E. Let S be a valid
instance of S. If A(e) D {f, s} then |S[X]| > [S[Y]]. .

Our undecidability result is a reduction from the problem of Diophantine equations. Let (%) and ®(Z)
be two polynomials with natural number coefficients over n variables (represented by #). The equation

O(%) = ®(%) is referred to as a Diophantine equation and the problem of determining whether there exists
a solution in the natural numbers is undecidable [6]. The next lemma states that Diophantine equations

5The form of relative information capacity we use in this work was first studied in [8] and [10]. Information capacity has
also been applied to a number of translation and integration problems [1, 12, 15, 16, and others].

Information Systems, 19(1):3-31, 1994 9

without constant terms may be “encoded” in annotated schema intension graphs. The details of the encoding
and proof of the lemma are contained in Appendix A.

Lemma 4.2 Let ©(Z) and ®(Z) be two polynomials in n variables with no constant terms and with co-
efficients in N, the natural numbers. Then, there exists a SIG schema S, called a Diophantine encod-
ing of ©(Z) = ®(Z), containing nodes X1, Xo,..., X, such that the equation O(F) = ®(Z) has a solution
m = (my,ma,...,my), m; € N iff there exists a valid instance S for S where |S[X;]| =m;, 1 <i < n. °

Theorem 4.3 Testing for absolute equivalence of SIGs is undecidable. °

Proof Let ©(Z) and ®(Z) be two polynomials (which may contain constant terms) and let w be a new
variable. Let S = (G, A) where G = (N, E) be the Diophantine encoding of the equation O(Z)w = ®(Z)w
and let the node W correspond to the variable w in the encoding.

Let d : W — W be a new edge not in E. Let G' = (N', E') where N' = N and E' = EU {d}. Let Bl be
an annotation function on G' where Bl(e) = A(e) for all e € E and B1(d) = (). Let B2 be the annotation
function on G' where B2(e) = A(e) for all e € E and B2(d) = {t}. Let S1 and S2 be the two SIG schemas
(G',B1) and (G', B2) respectively.

By the definition of instances, every instance of S2 is an instance of S1, so for any Y C U, Iy (S52) C Iy (S1).

It is easily verified that any valid instance & of S can be extended to a valid instance of &’ of S1 by populating
the edge d with any relation on the set J[W] and that &’ is a valid instance of S2 iff §'[d] is a total relation.
Similarly, any valid instance of & of S1 or S2 restricted to the nodes and edge of S is a valid instance of S.

We now prove that S1+,,,52 iff ©(%) = (&) has a solution. We use the fact that S1~,;:52 iff there exists
some finite Z such that for all Y D Z |Iy(S1)| = |Iy(52)].

(<) Clearly, if ©(F) = ®(£) has a solution 7, then O(F)w = ®(Z)w has solutions for which w # 0. By
Lemma 4.2, there are therefore instances of S with |S[W]| > 0. Let & be such an instance of S. Let &'
be an instance of S1 formed by extending ¥ with &'[d] =). Hence, S’ is a valid instance of S1 but not a
valid instance of S2 (since d is not total on S[W]). Suppose S1~;552, so for some finite Z, for all Y D Z,
|[Iy (S1)| = |Iy(S2)|. Let Y = Sym(S') U Z so Q' € Iy(S1). Since Iy(S2) C Iy(S1), the existence of &'
implies |Iy(S2)| < [Iy(S1)|. This contradicts the assumption that Sl~ps52. Hence, S14£4552.

(=) Now suppose S1+/45552. Then, for any finite Z, there exists some Y D Z such that |Iy(S1)| # |Iy (52)].
Since Iy (S2) C Iy (S1), this implies there exists some § € Iy (S1) where S ¢ Iy (52). The instance & must
populate d with a nontotal relation. If |S[W]| = 0 then there is no nontotal relation on S[W]. Therefore,
|S[W]| > 0. The instance S restricted to the nodes and edges of S is a valid instance of S and so by Lemma
4.2, O(F)w = ®(¥F)w has a solution for which w # 0. Therefore, O(Z) = ®(¥) has a solution.

Since the problem of determining whether ©(#) = ®(#) has a solution is undecidable, testing for absolute
equivalence of SIG schemas is also undecidable. O

In principle, arbitrary mappings f may be used to satisfy the definitions of absolute dominance and
equivalence. In fact, the definitions do not even require that the mappings can be finitely specified; they
can simply be an infinite list of pairs of schema instances. Clearly, such mappings are of little use in a
practical system. Furthermore, there exist very simple schemas with no “natural” correspondence between
them that satisfy the definition of absolute dominance through a very complex instance level mapping [8].
This result, coupled with our undecidability result, show that absolute equivalence and dominance do not
provide a sufficient foundation for analyzing practical integration problems.

4.2 Internal Equivalence

In an effort to overcome some of the limitations of absolute equivalence, various abstract properties have
been proposed that restrict the class of allowable instance mappings [8]. Such restrictions include mappings
that only reorganize and do not invent arbitrary values (termed internal mappings) and mappings that are
queries in some query language. For internal equivalence and dominance, if two instances are associated via
an instance mapping then they must contain (almost) the same set of symbols.

Information Systems, 19(1):3-31, 1994 10

Definition 4.4 Let Z C U be a finite set of data values. An information preserving mapping f : I(S1) —
1(852) is Z-internal if for all & € I(S1), Sym(f(S)) C Sym(S) U Z. The mapping f is said to be internal if
it is Z-internal for Z = {). .

Definition 4.5 The schema S2 internally dominates S1, denoted S1=<;,:52, if there exists a Z-internal
information preserving mapping f : I(S1) — I(S2).° The schemas S1 and S2 are internally equivalent,
denoted S1~;;,; 52, if §1<;,:52 and 52=<;,;S1. °

Characterizations of internal dominance are known for relational schemas with only (primary) key de-
pendencies [8]. For the classes of complex types considered in Section 4.1, internal equivalence is identical to
absolute equivalence [1, 10]. Hence, the characterizations of absolute equivalence can be applied to determine
if two schemas are internally equivalent. Decidable characterization of internal dominance for complex types
are not known.

The use of internal mappings ensures that instances are only associated with instances containing the
same symbols. However, this property is not sufficient to guarantee that internal mappings are well behaved.
Schema instances with no intuitive relationship between them may still be associated under internal mappings
[8]. Furthermore, internal equivalence suffers from the same problem as absolute equivalence in that testing
for both internal equivalence and dominance of schemas is undecidable.”

Theorem 4.4 Testing for internal equivalence of SIGs is undecidable. °

Proof Consider S1 and S2 as defined in the proof of Theorem 4.3. Determining whether S1~;s52 is
undecidable. We now show that S1~ 3,52 iff S1~;,;52.

Suppose that S1~;,;52. Since S1=<;,:52, there exists some o : I[(S1) — I(S2) which is Z-internal for some
Z. For each Y D Z, let oy be the restriction of o to Iy (S1). For each & € Iy (S1), o(3) € Iy (52), so
oy : Iy(S1) — Iy(S2). Since o is a total injective function, so is each oy. Hence, |Iy(S1)| < |Iy(S52)]| for
eachY D Z. Since 52=;,:51, it is also that case that |Iy(S1)| > |Iy(S2)| for each Y D Z. Hence, S1~p552.
(In fact, this argument does not depend on the form of the schemas S1 and S2 so S1~;,152 = S1~4p552
for arbitrary schemas [8].)

Conversely, suppose that S1~,;,552. By the definition of S1 and S2, every instance of S2 is an instance
of S1. So, for any Y C U, Iy(S2) C Iy(S1). Since S1~,;s52, there exists some finite Z such that
Iy (S1)] = [Iy(S2)] for all Y D Z. Let Y = U, then [I(S1)] = [I(S2)| and so I(S1) = I(S2). Let
o : I(S1) — I(S2) be the identity relation. Then o is a bijection, so in particular, ¢ and ¢~! are injective.
Also, 0 and o~! are Z-internal (for any Z). Hence, S1~;p:52. So S1~gpsS2 iff S1~;,;S2 and therefore
testing for internal equivalence of SIG schemas is undecidable. O

5 Structural Transformations

Given our results that no decidable characterization of dominance or equivalence is possible using the given
definitions of equivalence, the question remains as to how practitioners can develop rigorous methodologies.
Our response is motivated by what practitioners currently do. Specifically, the more rigorous of the integra-
tion methodologies propose sets of equivalence preserving transformations that may be used in translating
schemas between or within data models [7, 11, 12, 16, and others]. These transformations have proven to
be successful in automating the translation of both schemas and instances. If it is not possible to test for
dominance of two schemas through an arbitrary abstract instance mapping, perhaps it is possible to test for
dominance through an instance mapping created by some predefined set of transformations.

In this section, we take this approach by considering several schema transformations for SIGs. In un-
derstanding the transformations presented, it is important to note that unlike transformations presented
elsewhere, we are interested in transformations that preserve equivalence or transformations that augment

6This definition of internal dominance corresponds to internal embeddability. However, the proof that these two notions are
equivalent for relational schemas can be extended to SIGs [8].

7Our result shows that even testing for internal dominance through an internal mapping (where Z = @) is undecidable. This
is actually a stronger condition than general internal dominance.

Information Systems, 19(1):3-31, 1994 11

information capacity (that is, transformations that only preserve dominance) [1, 10, and others].® We define
measures of dominance that are complete with respect to these transformations and form sufficient conditions
for internal dominance. The importance of these characterizations comes from the fact that each leads to a
procedure for testing if one schema can be produced from another through any sequence of these transforma-
tions. This procedure can also generate an instance mapping, which is crucial for a schema transformation
to be useful in a practical environment. We conclude this section with a discussion of the complexity of
algorithms for deciding dominance.

In general, a transformation T defines a function on sets of schemas T : S; — S3. The transformations
we consider are defined on the class of all SIG schemas. For schemas S1 and 52, T(S1) = S2 is denoted by

$1-5552. An arbitrary (possibly empty) sequence of transformations T, is denoted —— . If X is a set of
specific transformations then X denotes a sequence containing all the transformations in X.°

In any natural characterization of equivalence, it must be the case that isomorphic schemas are equivalent.
We therefore begin by considering isomorphism as the basis for determining equivalence of schemas. SIG
isomorphism is a special case of graph isomorphism constrained to preserve the types of nodes and all
constraints placed on edges (recall that SIG constraints include annotations as well as projection and selection
constraints).!?

5.1 Annotation Transformations

An annotation transformation (or a-transformation) allows the removal of annotations or projection and
selection constraints from an edge of a schema. An example is shown in Figure 4.

A- 1B f A B

Schema S1 Schema S2

Figure 4: An a-transformation.

Definition 5.1 Let S1 = (G1,.A1) and S2 = (G2,.A2) be two SIG schemas. Let G1 = G2 and Al = A2
except Al(e) O A2(e) for some edge e and if e is a selection (projection) edge in G2 then it is a selection

(projection) in G1. Then, 512492 and a. is called an annotation transformation (a-transformation).!’ e

If S1-%.52 then every instance of S1 is also an instance of S2. Hence, the identity function on I(S1) is
an information preserving mapping from S1 to 52 and we have the following immediate result.

Theorem 5.1 Tf S1-2552 then S1<;,;52. .

5.2 Composition Transformations

Consider again the relational example presented in Section 2. There we had a unique Grant associated with
every Project and wanted to determine if it was possible to move the Grant attribute to the Workstation
table without losing information capacity. We argued informally that if every Workstation determined a
unique Project this would indeed be the case. Figure 5 depicts such a scenario in SIG form. If we have a
functional edge (or path) from Workstation to Project, then we can move the Grant attribute across the
path. The edge g in Schema S2 from Workstation to Grant, can be populated with instances of the path
e op from Schema S1.

8Work on hierarchical data structures includes some consideration of transformations that increase information capacity, but
only characterizes equivalence (and not dominance), under these transformations [1].

9We use this notation when the transformations in X commute so that there is a unique schema S2 such that S1---52.

10STG isomorphism is defined precisely in Appendix B.

When the edge e is understood from context (or not relevant to the discussion) it may be omitted and the a-transformation
denoted «.

Information Systems, 19(1):3-31, 1994 12

e
Project 4—’% Grant Project
p < p
— g
Workstation Workstation —{——}=Grant
Schema S1 Schema S2

Figure 5: Moving an attribute.

5.2.1 Definitions

Using the intuition provided by this example, we consider the general case of how an edge of a schema may
be “encoded” by an edge between different nodes. We want to ensure that any such transformation induces
information preserving instance mappings between edges. Consider the schemas of Figure 6. Intuitively,
instances of Schema S1 can be mapped to instances of Schema S2 by populating the edge g with the result
of composing p with e. For this to be an information preserving transformation, however, it must be the case
that every instance of the edge e determines a unique instance of g so that an instance of e is recoverable
from its image under the transformation. Lemma 5.2 defines precisely when this is the case.

Aie B A B
i < 7 /
& C
Schema S1 Schema S2

Figure 6: A o-transformation.

Lemma 5.2 Let S[A], S[B], and S[C] be finite sets. Let S[p] : S[C] — S[A] be a relation.

1. If Q[p] is a surjective function, then for all relations Se] : S[A] — S[B], there exists a unique relation
Sg] : S[C] — S[B] such that I[g] = I[e] o I[p].

2. If |[B]| > 1, then for all S[e] : S[A] — J[B], there exists a unique relation J[g] : I[C] — J[B] such
that S[g] = S[e] o S[p], only if F[p] is a surjective function. o

Proof The proof uses simple algebraic reasoning. m|

Using this result, we can encode an instance of an edge e : A — B in an edge g : C — B that shares
a common end node, so long as there is a surjective functional path from C to A. Furthermore, Lemma
5.2 indicates that this encoding (using the composition) is only possible if the path is a surjective function
or some set of constraints serve to restrict the set of all valid instances of B to sets of size 1 or 0. Since
determining this latter property is undecidable [14], we restrict our transformations to use only the first
property.

We now examine if it is possible to encode the edge e in an edge g : C — D with two different end points.
In Figure 7, we show that Lemma 5.2 can be applied twice to encode e : A — B in the edge g : C — D. This
motivates the following definition of composition transformations.

Definition 5.2 Let e : A — B be an edge of S1 and let p : C — A and r : D — B be (possibly trivial)
surjective functional paths in S1 not containing e. Let G2 = G1 except e is replaced by g : C — D and the

[e]
constraints on g in S2 are exactly the constraints on the path 7° oeop in S1. Then S1—-52 is called a
simple composition transformation (a simple o-transformation).'? °

12 Again, the edges e or g may be omitted and the o-transformation may be denoted o (o€ or og).

Information Systems, 19(1):3-31, 1994 13

A8 A B A B
3 < p/ < 7
H H ' ' H g H
C D —_— C D —_— C—D
Schema S1 Schema S2 Schema S3

Figure 7: Two o-transformations.

Theorem 5.3 Let oy be a simple o-transformation that uses the surjective functional paths p and r. If

o°
S1—552 then S1=;,;52. If Al(p) = Al(r) = {f,1,s,t} and the constraints of g are equal to the constraints
of e then S1~,,,;52. .

Proof We use an instance mapping f : I(S1) — I(S2) that is the identity everywhere except f(S)[g] =
S[r°] o Sle] o S[p]. The binary relation f(S)[g] satisfies all constraints satisfied by each of e, p and r°, which
by Definition 5.2 are the same as the constraints on g. Hence, f(S) defines a valid instance of S2. Also, f
is clearly a total function and is internal.

By Lemma 5.2, given an instance of p, for any instance of e there is a unique instance of eop. Applying the
lemma a second time, for any instance of e o p and r°, there is a unique instance of r° o e o p. Hence, the
instance mapping f is injective. Therefore, f is information preserving and S1=<;,,;52.

Assume that p and r are bijective paths and the constraints of g are equal to the constraints of e. Then, for
any instance of g, r o g o p° is a valid instance of e so the mapping f is surjective. Hence, the mapping f is
bijective and therefore equivalence preserving and so S1~;,;S52. |

While we would like to say that a o-transformation is equivalence preserving iff Al(p) = Al(r) =
{f,i,s,t}, this may not be true. The problem of annotation implication is undecidable for SIGs [13]. Hence,
it may be the case that A1(p) C {f,14,s,t} and yet the only valid instances of p are bijections. In this case,
the o-transformation could still be equivalence preserving.

We now consider sequences of simple o-transformations. The application of a o-transformation cannot

create new surjective functional paths. More precisely, if 51-25 S2 and there is a surjective functional path
p: A—Bin S2, then there is some surjective functional path p’ : A— B in S1. Clearly, a o-transformation may
destroy surjective functional paths. Hence, there may be sets of transformations that cannot be serialized.
For example, there may be two transformations, each of which can be applied to a given schema. Once either
transformation is applied though, the second transformation cannot be applied to the transformed schema
because one or both of the surjective functional paths required by the transformation has been removed.
However, by applying both transformations in “parallel”, we can still construct a meaningful information
preserving instance mapping. We therefore generalize the definition of o-transformations to allow simple
o-transformations to be applied in parallel. This definition permits a broader class of transformations.

Definition 5.3 A o-transformation is a set of one or more simple o-transformations. A o-transformation

. {og1,-.05n} ; . . .
is denoted S1' ““57"" 52 where the og; are simple o-transformations and all g; are distinct. For the case

I

n = 1, the braces may be omitted, S1—%52. .
061____06"

Theorem 5.4 Let Sl{ SN ”"}52. Then, S1<;,;S2. If each component simple o-transformation is equiv-

alence preserving and all e; are distinct then S1~;,:52. .

Proof Let O = {of},..0fn}. Again, we use an instance mapping f : I(S1) — I(S2) that is the identity
everywhere except for each ofi € O, f(3)[gi] = J[rf] o Sle] o S[p]. For each 4, the binary relation f(3)[gi]
satisfies all constraints satisfied by each of e;, p; and r{, which by Definition 5.2 are the same as the
annotations on g;. Hence, f(S) defines a valid instance of §2. Also, f is a total function. By Lemma 5.2,
for any instance of e;, p; and r{ there is a unique instance of r{ o e; o p;. Hence, the instance mapping f is

injective. Therefore, f is information preserving. The mapping f is also internal so S1<;,:52.

Information Systems, 19(1):3-31, 1994 14

Assume that all p; and r; are bijective paths. Then, for any instance of g;, r; o g; o p{ is a valid instance of
e;. Since each e; is distinct, every edge of S1 corresponds to exactly one edge of S2 so f is surjective. Hence,
the mapping f is bijective and therefore equivalence preserving. So, S1~;,;52. |

By permitting the application of simple o-transformations in parallel, we also allow a single edge e of
S1 to be mapped to multiple edges of S2. This permits the transformation of Schema S1 of Figure 8 into
Schema S2. The edge work-addr is mapped both to itself and to the edge home-addr. Intuitively, instances of
S1 are a subset of the instances of S2 where home-addr is populated with the work address of each employee
and people who are not employees have no home address. Clearly, S1 and S2 are not equivalent under
this mapping since there are instances of S2 that populate work-addr and home-addr with different binary
relations (and that assign unemployed people home addresses).

work-addr work—addr

Employee 4% Address Employee 4% Address
isa < isa

Person Person
Schema S1 Schema S2

home-addr

Figure 8: A o-transformation mapping work-addr to work-addr and home-addr.

The composition of the information preserving mappings created by o-transformations and a-transforma-

. ao * .,
tions is also information preserving. The notation — indicates an arbitrary sequence of a-transformations
or o-transformations.

Corollary 5.5 If Sla—o>*52 then S1=<;,:52. .

Several researchers have made use of information or equivalence preserving transformations that move
or copy attributes between entities or classes within other data models [7, 17]. These transformations
are special cases of o-transformations. However, no complete characterization of dominance under these
transformations has been given. Hence, it was not previously possible to determine if an arbitrary schema
could be transformed into another via these transformations.

5.2.2 Characterization of Dominance

We now define a notion of dominance for SIGs that is complete with respect to both a-transformations and

o-transformations. Specifically, we define ao-dominance (<n0) such that 5125 52 iff S1=<n0 S2' for some
52’ that is isomorphic to S2. The definition uses node and edge maps (defined in Appendix B), which are
binary relations defined to preserve node construction and edge inversion, respectively.

Definition 5.4 Let S1 and S2 be two SIG schemas. Then, S2 ao-dominates S1, denoted S1=<40 52, if there
exist a bijective node map 1 : N1 — N2 and a total, surjective, injective edge map 6 : E1 — E2 satisfying
the following: 13
eife: A— B € FE1 then for all ¢’ € f(e) (where ¢ € E2 and ¢’ : C' — D', v }(C’") = C and
t~1(D') = D), there exist surjective functional paths p: C — A and r : D — B (not containing e) in
S1 and
e the constraints on ¢’ in S2 are a subset of the constraints on the path r°oeopin S1.

Definition 5.5 Let S1 and S2 be two SIG schemas. Then, S1 is ao-equivalent to S2, denoted S1~no S2,
if S].jogo S2 and SQjao S1. [}

13To add clarity to the proofs, when the schemas S1 and S2 are arbitrary STGs, we use the convention that edges and nodes
in S2 are denoted by primed symbols (for example, e’ and A') while edges and nodes in S1 are denoted by nonprimed symbols.
When S2 is created by a series of transformations from S1, we may also find it convenient to denote nodes and edges in S2
that are not also in S1 by primed symbols.

Information Systems, 19(1):3-31, 1994 15

Before proving that ao-dominance completely characterizes schemas that can be obtained through a
sequences of a-transformations and o-transformations, we state two lemmas that will be used in the proof.
The proofs of these lemmas are in Appendix C. The first lemma states that if a sequence of o-transforma-
tions creates an edge then there exists a single o-transformation on the original schema that creates an edge
between the same nodes with the same constraints. The second lemma states that any a-transformation can
be “pushed to the right” past o-transformations.

Lemma 5.6 Let S1— S2 where S2 contains the edge ¢’ : C — D. Then, there exist an edge e : A— B and
surjective functional paths p: C — A, r : D — B (not containing e) in S1 such that the constraints on ¢’ in

S2 are exactly the constraints on the path r° oeopin S1. °
Lemma 5.7 If Sla—o>*52 then there exists an S1’ such that S1—= S1'-% §2. .

Theorem 5.8 Let S1 and $2 be two SIG schemas. Then, S12% §2 iff S1<q0 S2, where §2' = §2. o

Proof (<) We first show that if S1<n0 52’ then §12%" 52 for some §2 = 2.

Let v and 6 be specific node and edge maps satisfying the definition of ao-dominance. Let g’ : ©(C) — ¢(D)
be an edge of S2' and let e : A — B be the edge of S1 such that ¢’ € 6(e) (e exists and is unique since 6 is
surjective and injective). We define of to be the transformation carrying e to g : C'— D. By the definition
of a0, there must be surjective functional paths p : ' — A and r : D — B in S1 and so of is a valid
transformation that creates an edge g with exactly the constraints on the path r° ceop. We also define a4
to be the a-transformation that removes from g all annotations on the path 7° o e o p that are not on the
edge ¢'. By the definition of ao-dominance, the constraints on g’ are a subset of the constraints on this path

so this is a valid a-transformation.

Let op be the o-transformation containing all o-transformations created in this manner, op = {of e € E1
and ¢’ € f(e)} and let A be the set of all a-transformations created. Let S2 be a SIG schema that results

from the application of og and A to S1, $1°2257-2,82. Let 7 : E2 — E2' be an edge map such that for
all g € E2, 5(g) = ¢’ € E2'. Since 0 is total, every edge g of S2 is created by some (possibly trivial)
o-transformation of and so j is a bijective edge map. The nodes of S2 are the same as the nodes of S1 so
1) is a bijective node map on the nodes of S2 and S2'. The schema S2 is isomorphic to §2' via the edge

bijection j and node bijection).

(=) Next, we show that if 5122799 then S1=q0 S2 by constructing maps 1) and 6.

The a-transformations and o-transformations do not create or delete nodes so N1 = N2. Let ¢ be the
identity on N1.

Since SlﬂxSQ, by Lemma 5.7, there exists a sequence of transformations such that SlL*Sl’ i>*S2.
Since a-transformations do not remove or add edges, E1' = E2. Let E = E2— E1 be the edges of S2 created
by the o-transformations. For each g € E, by Lemma 5.6, there exists an edge e : A — B and surjective
functional paths p: C' — A, r: D — B in S1. Since the a-transformations only remove constraints, it must
be the case that the constraints on g in S2 are a subset of the constraints on the path r° oeopin S1. We
therefore let g € 6(e) (and g° € 6(e°)). All other edges e € E1 are in E2 so let e € 6(e). For these edges,
the paths p and r are the trivial paths and clearly, the constraints on e in S2 are a subset of the constraints
on e in S1. The map @ is defined on all edges of E1 and is therefore total. Since every edge of S2 must
exist in S1 or be created by some o-transformation, 8 is also surjective. Additionally, by its definition 6 is
an injective edge map. Hence, 6 satisfies the requirements of Definition 5.4 and S1=<40 S2 via 6 and the
identity node map.

The composition of any SIG isomorphism (that is, the node and edge maps of an isomorphism) with the
maps 1 and 6 also satisfies Definition 5.4 and so if S2 = S2' then S1=<40 S2', as required. |

By Theorem 5.8 and Corollary 5.5, we obtain the following result.
Corollary 5.9 If S1<40 S2 then 51<;,:;52. If S1~no0 S2 then S1~;,;S52. °

Information Systems, 19(1):3-31, 1994 16

5.2.3 Testing for Dominance

The importance of Definition 5.4 is that it leads immediately to an algorithm for determining when two
arbitrary SIG schemas are in an ao-dominance relation. By Theorem 5.8, ao-dominance holds precisely when
a schema may be obtained from another through some sequence of a-transformations and o-transformations.
Hence, it is not necessary to consider all possible sequences of a-transformations and o-transformations. The
monotonic nature of a-transformations ensures that there are only a finite number of possible sequences of
(nontrivial) a-transformations that apply to a given schema. However, the definition of o-transformations

permits an infinite number of sequences. We are only able to determine whether $12%° 52 because the
decidable characterization of Definition 5.4 is complete with respect to a-transformations and o-transforma-
tions. Furthermore, we have both a sufficient condition for internal dominance and an algorithm testing this
condition.

The proof of Theorem 5.8 is constructive. That is, if S1=40 52 we can produce both a sequence of
a-transformations and o-transformations such that S1-2% $2 and the instance mappings induced by these
transformations.

Corollary 5.10 If S1<40 S2 then we can construct a sequence of a-transformations and o-transformations
such that S12% $2 via this sequence and an information preserving mapping f : I(S1) — I(52). .

As demonstrated by the examples of Section 2, being able to generate the instance mappings between

schemas as in the above corollary is important. Furthermore, the actual transformation sequence can be

used to explain to a designer the reason two schemas are equivalent or in a dominance relation. We address
the complexity of the construction in Section 5.5.

5.3 Selection Transformations

The introduction of o-transformations allowed us to consider mappings of edges to multiple edges in a trans-
formed schema. However, ao-dominance still requires a bijection on nodes. We now consider transformations
that permit mappings of nodes to multiple nodes.

5.3.1 Definitions

Selection transformations (s-transformations) are transformations of the form shown in Figure 9. They
permit the creation of new nodes and edges.

a, G,,
A E Aé’—A’%AJ A E A@ OA Aé’—A’%A’ E A A’

a) Node creation b) Edge creation c) Edge Deletion

Figure 9: Selection transformations.

A node creation ¢-transformation creates a new node that is isomorphic to an existing node (Figure 9a).
A bijective selection edge between the two nodes enforces the constraint that the nodes be assigned identical
sets in any valid instance.
Definition 5.6 Let A be a node of schema S1. Let A’ be a new node not in S1 and 4 : AdHA" a new
bijective selection edge. Let S2 be S1 with the addition of the node A’ and the edge o 4/. Then, S1°4,52
is called a node creation ¢-transformation, and §2°4,81 is called a node deletion ¢-transformation. °
Note that we only permit the removal of a node A’ (and the incident bijective selection edge) when

the selection edge is the only edge incident to A’. However, any edges incident to A’ can be moved (using
o-transformations) across the selection edge to the node A before removing A’.

Information Systems, 19(1):3-31, 1994 17

In addition to transformations that add and remove nodes, we consider transformations that add and
remove edges. An edge creation ¢-transformation creates a new edge (Figure 9b). To preserve information
capacity, the new edge is a bijective selection edge on a node. Note that o-transformations and a-transfor-
mations can subsequently be used to move the edge or remove the constraints on the new edge. An edge
deletion ¢-transformation removes an edge (Figure 9c¢). If information capacity is to be preserved, arbitrary
edges cannot be removed from a SIG. However, instances of bijective selection edges are fully defined by
the instances of the incident nodes. Such edges may therefore be removed. If a bijective selection edge
o4 : A A’ is removed, information capacity may be augmented since the constraint that A and A’ be
assigned the same set in any valid instance may have been removed. However, if A = A’ then information
capacity is preserved.

Definition 5.7 Let o4 : AP A’ be a new bijective selection edge between nodes A and A’ of S1 and let
So
S2 be S1 with the addition of 04. Then, S2--451 is an edge deletion ¢-transformation and if A = A’ then

So . .
S1-2452 is an edge creation ¢-transformation. .

Theorem 5.11 Let S1->5S2. If ¢ is a node creation, node deletion or edge creation ¢-transformation,
then S1~;,;S2. If ¢ is an edge deletion ¢-transformation that removes an edge from a node to itself, then
S1~;ntS2. Otherwise, ¢ is an edge deletion ¢-transformation that removes an edge between distinct nodes
and SljlntSQ [}

Proof Let S1-%52 be a node creation -transformation and S2-%51 be a node deletion ¢-transformation.
Let f : I(S1) — I(S2) be an instance mapping that is the identity on all nodes and edges common to S1
and S2 and let f(3)[A'] = S[A4] and f(S)[oa] = 14. The mapping f creates a valid instance of S2 and is
bijective and internal. Hence, S1~;,;S2.

So
Let S1--%S2 be an edge creation ¢-transformation. Let f : I(S1) — I(S2) be an instance mapping that is
the identity on all nodes and edges common to S1 and S2 and let f(3)[o4] = 14. The mapping f creates a
valid instance of S2 and is bijective and internal. Hence, S1~;,;52.

Let Slga—AnS’Q be an edge deletion ¢-transformation where o4 : A — A’. Let f : I(S1) — I(S2) be an instance
mapping that is the identity on nodes and edges common to S1 and S2. The mapping f creates a valid
instance of S2 and is a total, injective, function and internal. Hence, S1<;,:52. If A = A’ then the mapping
f is surjective and so S1~;,:S2. (If A # A’, the mapping f is not necessarily surjective since there may be

valid instances of S2 in which A and A’ are not populated with the same set.) |
Corollary 5.12 If §12°5 2 then S1=;,,52. .

Selection transformations are of limited use in isolation. However, when combined with o-transforma-
tions and a-transformations, they permit complex additions and modifications to be made to a schema. An
example is given in Section 5.4.

5.3.2 Characterization of Dominance

We now develop a characterization of dominance that is complete with respect to all transformations con-
sidered, a-transformations, o-transformations, and ¢-transformations.

In the definition of aoc-dominance, there are three main changes from the definition of ao-dominance.
First, the node map is no longer required to be a function. For a node A € N1, if A', B’ € ¢¥)(A) then B’ is
the image of a node created by a node ¢-transformation from A. Second, the node and edge maps are no
longer required to be total. If a map is not defined on a node or edge of S1, then (intuitively) this node or
edge has been removed by an ¢-transformation. Finally, an edge of E2 may map via 6! to an edge of E1
(as before) or to a node of N1. This latter case indicates that in the sequence of transformations creating
S2 from S1, this edge of E2 is created by a ¢-transformation. In an instance mapping between S1 and 52,
such an edge will be populated with the identity relation.

Definition 5.8 Let S1 and S2 be two SIG schemas. Then, S2 ao¢-dominates S1, denoted S1=qo¢ 52, if
there exist a surjective, injective node map ¢ : N1—N2 and a surjective, injective edge map 8 : (E1UN1)—E2

Information Systems, 19(1):3-31, 1994 18

satisfying the following.

1. If A € N1 and 9 is not defined on A, then there exists a bijective selection path in S1 from A to a
node B where v is defined on B.

2. If A € N1 then for all ¢’ € §(A) (where ¢ € E2 and ¢' : C' — D', 4= (C") = C and ¢y~ 1(D') = D),
there exist surjective functional paths p: C — A and r : D — A in S1 and the constraints on ¢’ in 52
are a subset of the constraints on the path r° opin S1.

3. If e € E1 and 6 is not defined on e, then e is a bijective selection edge in S1.

4. If e : A — B € E1 then for all ¢’ € f(e) (where ¢’ € E2 and ¢’ : C' — D', 9y=1(C") = C and
»~1(D') = D), there exist surjective functional paths p : C — A and r : D — B (not containing e) in

S1 and the constraints on g’ in S2 are a subset of the constraints on the path r° oeo pin S1. °
Definition 5.9 Let S1 and S2 be two SIG schemas. Then, S1 is aog-equivalent to S2, denoted S1~poc S2,

We now state the main result of this section that aog-dominance is complete with respect to all trans-
formations considered, a-transformations, o-transformations, and ¢-transformations. The proof is rather
involved and is included in Appendix D along with a number of lemmas used in the proof.

Theorem 5.13 Let S1 and S2 be two SIG schemas. Then, S1%%5 §2 iff S1=<noc 52/, where §2/ = §2. o

By Theorem 5.13 and Corollary 5.12, we obtain the following result.
Corollary 5.14 If S1<,0¢ S2 then 51=<;,;52. If S1~goc 52 then S1~,:S2. °

5.3.3 Testing for Dominance

Definition 5.8 essentially gives an algorithm to test if two SIG schemas are in an aog-dominance relation,
which by Theorem 5.13, also determines if a schema may be obtained from another through any sequence
of transformations. As was the case for ac-dominance, if S1<n0¢ 52 we can produce both a sequence of

transformations such that S12°5 S2 and the instance mappings induced by these transformations.

Corollary 5.15 If S1<no¢ S2 then we can construct a sequence of a-transformations, o-transformations

and ¢-transformations such that Sla—og>*52 via this sequence and an information preserving mapping f :
I(S1) — 1(S2). o

5.4 An Example

The example of Figure 10 illustrates the generality of the transformations we have considered. A designer
wishes to determine if an arbitrary instance of S1 can be transformed into an instance of S2 without losing
any information. On the surface, the schemas appear to be quite dissimilar and no immediate instance level
mapping is evident.

works—for works=in works—for
RA -}—{=Boss -} = Subject RA +——= Boss
52(9) sa(0) | e Advisor
Student ggS{;orQStudent Studies Major
Schema S1 Schema S2

Figure 10: Does Schema S2 dominate Schema S17?7

We can use our characterization of ao¢-dominance to determine that S1<;,;52 and to produce the
instance level mapping. Suppose we are given the typing information that nodes with like names have

Information Systems, 19(1):3-31, 1994 19

the same type and further that 7(Subject) = 7(Major) and 7(Boss) = 7(Advisor). We can produce the
following mappings ¥ and 6 satisfying Definition 5.8.

Y(RA) = {RA} P (Student) = {Student}

(Boss) = {Boss, Advisor} ¢(Subject) = {Major}

f(isa) = {isa} O(worksfor) = {works for, advisedby}
O(worksin) = {studies} 6(Student) = {peeradvisor}

These mappings correspond to the following sequence of transformations. A node creation ¢-transforma-
tion, ¢ Agyisor, creates the node Advisor and a bijective selection edge o p,ss between Boss and Advisor. The
edge works for is copied to worksfor and to advisedby (across the paths p = isa and r = oposs). The edge
worksin is moved to the edge studies across the path p = works foroisa. The result of these transformations
is the intermediate schema depicted in Figure 11. Next an edge creation ¢-transformation, ¢g¢ydent, Creates
the bijective selection edge peeradvisor on Student. An a-transformation, apeeradvisor, removes the selection,
surjectivity and injectivity constraints on the edge. Another a-transformation, cworksfor, removes the
surjectivity constraints on the worksfor edge. Finally, an edge deletion ¢-transformation, ¢, .., removes
the edge oposs. The result of these transformations is the schema S2.

works—for
RA |——= Boss
isa (O) o Oposs
-\Sed’ .
adN Advisor
Student . .
Studies Major

Intermediate Schema T

Figure 11: Intermediate schema Sla—()g>*Ta—()§>*52.

To automatically translate queries on S2 into queries on S1, the instance mapping
f:I(S1) — I(S2) may be produced from the maps ¢ and . A portion of f is show below.!*

f(S)[Advisor] = S[Boss] f(S)[Boss] = S[Boss]
[(S)[studies] = Slworksin] o S[work for] o Slisa] f(I)[peeradvisor] = 1g1student]

There may be more than one possible instance mapping (produced by different sequences of transforma-
tions). Our algorithms can automatically produce all valid instance mappings. However, the algorithms,
necessarily, perform only syntactic analysis of the schemas. They may take advantage of semantic informa-
tion (such as node types) provided by the designer but they can never fully automate a designer’s semantic
understanding of a schema.

In the example presented, the peeradvisor edge of Schema S2 is populated with the identity relation
on Student. Such a mapping is valid but may not make semantic sense. Can a student advise herself or
himself? If typing information on edges is provided, such mappings may be avoided. For this example, a
designer may declare the type of worksfor to be the same as advisedby but the type of peeradvisor different
from 1giydent- In general, it may not be possible to specify a priori such typing information. Furthermore,
not all semantic information may be conveyed by types on edges or nodes.

What a tool provides is an automatic way of testing for information capacity preservation. It relieves a
designer of the burden of having to verify that for each instance of a schema, a unique instance of another
may be created without loss of information. It cannot, however, fully understand the semantics of arbitrary
schemas. Rather than trying to automate semantic understanding of schemas, our results permit the devel-
opment of tools that identify when instances may be rearranged in a certain fashion. The final decision on
whether the rearrangement makes semantic sense must always come from a designer.

14 The function 15[Student] 18 the identity relation on the set S[Student].

Information Systems, 19(1):3-31, 1994 20

5.5 Complexity of Dominance Algorithms

If every node of both schemas has the same type and every edge has the same set of constraints then
T-dominance'® holds precisely when there exists an isomorphism on the underlying graphs of the schemas.
There are no known algorithms for graph isomorphism in polynomial time and it is an open problem whether
this problem is NP-complete. Thus, the best (worst case) bound for T-dominance we have is NP (nonde-
terministic polynomial time). This result uses a simple modification to graph isomorphism.

However, such worst case behavior is of theoretical rather than practical importance. The schemas that
arise in practice do not exhibit this worst case behavior. In particular, they are formed from nodes of different
abstract types with edges having diverse combinations of constraints. Both of these facts can be used to
reduce the number of possible mappings between schemas that are considered by an algorithm. Additionally,
information about the structure of common schemas can be used to produce algorithms that are efficient
on such schemas. Below, we briefly examine the process of generating both the node maps and edge maps
required by the definitions of T-dominance. While space prohibits the presentation of a full algorithm, we
mention some key points that enable the development of efficient algorithms.

5.5.1 Node Maps

There are typically only a few nodes of the same type in a schema and these nodes are often related in a tree
structure (through an inheritance hierarchy represented in SIGs by selection edges). Even in the absence
of an inheritance hierarchy the annotations on edges permit us to define a partial order on the nodes of a
graph.

Definition 5.10 Let S be a SIG schema. For nodes A, B € N, A is node dominated by B, denoted A < B,
if there exists a surjective functional path from B to A. .

The relation <« defines a partial order on equivalence classes of nodes.'® Furthermore, in any valid

instance of S, the node B must be assigned at least as many elements as A. We can use this fact to prove
the following theorem about any node map 1 used to show that S1<752.

Theorem 5.16 If A’ <« B’ in S2 then for any node map 1 satisfying the definition of T-dominance,
A < p~H(B') in S1. o

Depending on the structure of the schema, the above theorem can severely reduce the number of possible
node maps that must be considered. Furthermore, the partial order on nodes can be computed in a single
traversal of the schema graph.

5.5.2 Edge Maps

Knowledge about constraints on edges can be used to prune the search space of potential edge maps. In
general, an edge e of S1 can be mapped to any edge ¢’ of S2 if surjective functional paths p and r exist in
S1 between the end points of ¢’ and the end points of e. Furthermore, the existence of constraints on ¢’
implies that certain additional constraints must be present on the paths p and r. If, for example, ¢’ : C' — D’
is functional, only injective paths r need to be considered. If ¢’ is a selection edge then only selection paths
need be considered. Constraint information alone typically reduces the number of possible maps of an edge
to a small number.

6 Applications of Dominance Tests

In the previous section, we presented examples that demonstrated how our characterizations can be used
to identify complex correspondences between schemas. A designer may not be able to detect (or keep

151n this discussion, T-dominance will refer to any of the forms of dominance defined for different sets of transformations
considered in this work.
16 The proof of this requires some inference rules on annotations that are presented elsewhere [13].

Information Systems, 19(1):3-31, 1994 21

track of) a long trail of correspondences between components that might be used to define information
preserving mappings. Our characterizations allow this process to be automated. However, the application
of our results will be limited if a designer is forced to understand the intricacies of the SIG data model and
the correspondence between SIGs and the designer’s working model. In this section, we briefly sketch how
the results of any computations (that is, transformations or dominance tests) can be easily translated into
the terminology of common data models. We present a specific example of how this may be done for the
relational model.

Our exposition highlights another important point. Because our methodology is based on local structural
manipulations, a dominance detection algorithm may be easily extended to create an interactive tool that
aids in the design of equivalent or dominating schemas. Such a tool could be used in defining a view that
must express all information in a certain portion of the underlying schema (that is, a view that dominates
the underlying schema). Specifically, when a dominance test fails, the algorithm can provide a designer
information on how a schema can be changed to obtain the desired relationship. If strict dominance is not
required and part of the information in underlying schemas may be hidden, a tool may also aid a designer
in verifying that only the desired information is left out of the view.

Consider the relational schemas of Figure 2. In Section 2, we described two scenarios requiring knowledge
of the relative information capacity of R1 and R2. In the second scenario, a designer had changed Schema
R1 to Schema R2. Below, we show how the results of Section 5 (specifically, aog-dominance) can be used by
a tool to establish an instance mapping between R1 and R2.

The SIG equivalents of R1 and R2 are depicted in Figure 12 (Schemas S1 and S2, respectively). The
test for aog-dominance of these schemas fails. However, since dominance is based on structural properties,
we can do more than tell the designer that dominance does not hold. In this example, since all nodes have
different types, there is only one possible node mapping ¥ between S1 and S2. If we consider possible edge
mappings, we see that [may map to I’ and n to n’, but there are no surjective functional paths across which
the edge g can be mapped to ¢’. This is the information that needs to be conveyed to the designer. In
attempting to establish an instance mapping, a tool may inform the designer of the following: “For Schema
R2 to dominate R1 there must be a unique Project associated with every Workstation and every Project
must be associated with at least one Workstation.”

m IR % e

Leader Grant Name Leader Grant Name
Schema S1 Schema S2
Pno—zi-------- +-SNo PNO —zi---nee-

Leader Grant Name Leader Grant Name
Schema S1’ Schema S2’

Figure 12: SIG equivalents of the relational schemas of Figure 2.

The above response translates the requirements into commonly understood terms about how entities may
be associated. A tool may also be built to translate this information into the terms of the native data model,
in this case the relational model. Here, information about how surjective functional paths may be created
within the relational model must be used. Functional dependencies can be specified between attributes in the
same table or transitively through a chain of attributes in different tables that are also related with inclusion

Information Systems, 19(1):3-31, 1994 22

dependencies. In other data models, there may be many ways to define surjective functional relationships.
However, a tool can be designed to use knowledge of how such relationships can arise to guide a designer in
supplying additional design information.

7 Conclusions

We have shown that no decidable characterization is possible for internal equivalence or dominance on
schemas of practical interest. We have given a set of general structural transformations that guarantee inter-
nal dominance (or equivalence) and provided complete characterizations of these transformations. While the
transformations we have presented are far from exhaustive, they are foundational and represent a solid start-
ing point for the development of dominance tests for more complete sets of transformations. Furthermore,
this research methodology should enable practitioners to develop rigorous schema integration methodolo-
gies. It permits practitioners to select the structural transformations they consider semantically meaningful
and also provides rigorous (sufficiency) tests for both information capacity dominance and equivalence of
schemas.

Our methodology enables reasoning about instances of schemas. This reasoning can be applied to schemas
developed in any data model. Schema integration is often performed on schemas expressed in semantic data
models, which are rich in constructs. When considering information capacity of schemas, the commonality
of constructs (in terms of their ability to express instances) must be understood. By reasoning within a
data model containing an economy of constructs and constraints, we have been better able to understand
the redundancies in constructs of end-user data models. We have also proposed transformations that are, to
some extent, “data model independent” in that they use only reasoning about sets and relations.

Many of the equivalence preserving transformations in the literature are due to redundancies in the data
model considered and others are specific sequences of structural transformations that we have considered
[7, 17, and others]. For example, the key copying transformation proposed in a methodology based on the
ER+ model is composed of a single o-transformation followed by an edge ¢-transformation to copy a set of
key attributes across a functional relationship [17].

We are currently examining other transformations proposed in the literature to understand the basic
set theoretic properties they use and develop additional fundamental transformations. We have already
developed transformations involving constructed edges and nodes (where a single edge can encode the in-
formation of multiple edges) and transformations involving nodes with finite types. We are working on
developing characterizations of dominance and equivalence for these additional transformations.

Information Systems, 19(1):3-31, 1994 23
Appendix

A Proof of Lemma 4.2

In this appendix, we prove Lemma 4.2 which we restated here for ease of reference.

Lemma A.1 Let O(Z) and ®(&) be two polynomials in n variables with no constant terms and with co-
efficients in A/, the natural numbers. Then, there exists a SIG schema S, called a Diophantine encod-
ing of ©(F) = ®(&), containing nodes X, X, ..., X,, such that the equation ©(%) = ®(Z) has a solution
m = (my,ma,...,my), m; € N iff there exists a valid instance & for S where |S[X;]| = m;, 1 <i < n. .

Proof Let Z = (z1,z2, ...,) and

For all j, 1 < j < s and for all k, lgkgn,a]‘ENandcéEN’.
Forallj, 1<j<tandforalk, 1<k<n, bje./\/'anddi eN.
We define a SIG schema S = (G, A), where G = (N, E), as follows.

) J j
For each z;,1 <i <mn, let X; € N. For each term, t; = aja:ilmgz...a:,c;", of the polynomial ©, (1 <j < s), let
Y; be the following constructed node in N

c] times ¢l times ¢l times

Y'J-=X1><X1x...xX;xngXgx...xX;x...xs(nxan...xX;

Since © contains no constant terms, some ¢, # 0, so Y; is always a valid node in N. For k = 1 to aj, let
ij € N, let ef 1Y, — Y]’C € F and let A(ef) = {f,i,s,t}. Let the type of each ij be distinct. Hence, in any
valid instance for A there will be a; separate simple nodes that must contain sets of the same size. Let Yy
and Y be the constructed nodes in N defined below. The polynomial O(Z) is encoded by the node Y.

peYt o v=Yy
k=1 j=1

Similarly, the polynomial ®(¥) is encoded by a node Z, constructed from the terms of ® in the same manner
as the node Y. Let the edges in this latter construction be label df, for 1 <k <b;.

The one additional edge e : Y — Z € E with A(e) = {f,4, s,t} encodes the equality (%) = ®(Z).

Let m = (m1,ma, ..., my,) where each m; € N. We now prove the following: 7 is a solution to the equation

O(F) = ®(Z) iff there exists a valid instance S for S such that [S[X;]| =m;, 1 <i < n.

(=) Suppose O(m) = ®(m). We construct a valid instance § of S as follows. Let S[X;] be any set of

size m;, for all i, 1 < i < n. Hence, by the definition of SIG instances, for all j, 1 < j < s, [S[Yj]| =

(\%[X1]|)C{ s (IS[X2]))e * ... % (IS[XR]))em = mi{m;é...m%]". Also, for all j, 1 < j < t, |3[Z;]] = (|S[X1]])4 *
J J d? d? i

(IS[Xa])% # o x (IS[X, D% = m my>..mp”.

Forallj,1<j<s,andk, 1<k <aj,let %[Y]"] be a set of size |J[Y}]|. Let S[ef] be any bijection between

sets 3[Y;] and S[Y}]. Clearly, this is a valid instance of the edge ef.

Similarly, for all j, 1 <5 <t,and k, 1 < k < by, let %[Zﬂ be a set of size |J[Z;]| and let %[d;‘] be any

bijection between the sets J[Z;] and %[ZJI‘}

Since the types of the nodes Y} are distinct, the sets S[Y}] are disjoint so |S[V]| = ©(si). Similarly,

IS[Z]| = (). By supposition, O(m) = ®(1) so there exists a bijection between the sets J[Y] and J[Z].

We let Sfe] be any such bijection.

Information Systems, 19(1):3-31, 1994 24

From the definition of S, it can be seen that S |= A and so is a valid instance of S.
(<) Conversely, suppose S is a valid instance for S. Let m; = |S[X]]|.
Since for all j, 1 < j < s, and k, 1 < k < aj, each %[ef] is a bijection, by Lemma 4.1, \%[YJ"]\ =

ISY;]| = mi{m;é...m%]". Also, since the types of the nodes Y} are distinct, the sets S[Y}] are disjoint and
so |S[Y]| = ©(m).

Similarly, for all j, 1 < j <, and k, 1 <k < by, [S[ZF]| = [S[Z;]] and |S[Z]| = ®(11).

By Lemma 4.1, since e : Y — Z is a bijection, |S[Y]| = |3[Z]|. Therefore, ©(m) = ®(m) so 7 is a valid
solution to O(%) = ®(7). O

B SIG Isomorphism

We present the full definition of SIG isomorphism. We first give preliminary definitions of node and edge
maps. An edge map is any binary relation on the sets of edges of two schemas that respects inverses.

Definition B.1 A edge map between two schemas S1 and S2 is a binary relation, 8 : E1 — E2, such that if
(e,e’) € 6 then (e°,€'°) € 6. o

A node map is a binary relation on the sets of nodes of two schemas that respects the product and sum
operators on nodes. Constructed nodes may be associated via a node map iff their respective component
nodes are associated. Such maps are fully defined by the association between simple nodes of two schemas.

Definition B.2 A node map between two schemas S1 and S2 is a binary relation,) : N1 — N2, such that:
o forall (A,A4") € ¢, 7(A) =7(4");
e for all nodes A; x Ay...x A, € Nl and A} x A,...x A}, € N2, (A1 x As...x A,,), (A] x Ay..x A])) € ¢
iff (A;, A}) € ¢ for 1 <i < n; and
e for all nodes A1 + As...+ A, € Nl and A| + AL...+ A, € N2, (A1 +As...+ Ap), (A + AL+ A))) € 9
iff (A;, A)) €y for 1 <i<n. .

We assume that constructed nodes are represented in a normal form that is essentially disjunctive normal
form (where x is “and” and + is “or”). For example, a node A x (B + C) is represented as the node
A x B+ A x C. Furthermore, we assume that differences due to the commutativity and associativity of x
and + are ignored. For example, A x B + A x C' is the same node as C' x A + A x B. By doing so, we are
incorporating the natural equivalence preserving transformations for + and x constructors. For example,
these transformations allow each instance of the node A x (B+ C') to be transformed into a unique instance of
the node C' x A+ A x B and vice versa. These transformations are essentially the transformations discussed
elsewhere for hierarchical types (without the use of the set constructor) [10]. These equivalences can be
proven directly by viewing SIG schemas as algebraic categories. Many of the properties of SIGs that we use
in this paper are derived from the categorical structure of SIGs [5].

Definition B.3 Two SIGs are isomorphic, denoted S1 = 52, if there exist a bijective node map ¢ : N1—N2
and a bijective edge map 0 : E1 — E2 satisfying the following;:

e ife: A— B then f(e) : (A) — ¢(B) and

o A2(0(e)) = Al(e) and f(e) is a selection (projection) iff e is a selection (projection). .

Certainly, if S1 = S2 then S1~;,;52. In general, it may be possible for the annotations on a graph to
imply additional annotations. Given a graph G and two SIG schemas S1 = (G, Al) and S2 = (G, A2),
then A1 logically implies A2 (denoted A1 = A2) if every valid instance of S1 is a valid instance of S2
(that is, I(S1) C I(S2)). Logical implication is certainly a sufficient condition for internal equivalence. We
would therefore like to make all possible inferences before computing whether two SIGs are isomorphic. This
would permit the detection of internal equivalence for a larger class of schemas. Unfortunately, implication
of annotations in SIGs is undecidable. We can however consider the implication of annotations for some set
of sound inference rules. In this paper, we assume that the schemas considered are the closures under known
inference rules. A discussion of sound inference rules for SIGs and the proof of undecidability of annotation
implication are given elsewhere [13].

Information Systems, 19(1):3-31, 1994 25

The SIG formalism may be extended to permit types to be assigned to edges as well as nodes. The definition
of SIG isomorphism may be modified to reflect this addition by simply restricting the acceptable edge maps
to only those maps that preserve edge types.

C Proof of Lemmas 5.6 and 5.7

Before proving Lemma 5.6, we prove that o-transformations cannot create new surjective functional paths.

Lemma C.1 If S1-> 52 and there is a surjective functional path s’ : E — F in S2, then there is some
surjective functional path s: E — F in S1 with the same constraints. °

Proof The proof is by induction on the length of the sequence of o-transformations used to transform S1
into S2.

{o;}...ozg}

(Base Case) S1 “— " S52. Suppose s' : E — F is a surjective functional path in S2. If none of the edges g;
(or their inverses) are contained in ', then s’ is a path of S1. Suppose some g; is an edge of s’ so g; : C— D is
a surjective function. There must be surjective functional paths p; : C — A, r; : D — B and an edgee; : A— B
in S in order for the o-transformation to be valid. Furthermore, since g; is a surjective function, the edge
e; must be a surjective function and r; must also be a total injection. The path s; =r oe;op; : C — D is
therefore a surjective functional path in S1 and the constraints on s; are the same as the constraints on g;.
Similarly, if g7 : D — C is an edge of s’ then there is a surjective functional path s{ = pfoefor; : D —C in
S1. For any i, we can therefore replace each occurrence of g; or g7 in s’ with the paths s; or s?, respectively,
to obtain a path s : E — F in S1 where the constraints on s and s’ are the same.
“ el en

(Induction Step) Let 51> T Ogllsg"}SQ. Applying the same reasoning as for the base case, if there is a
surjective functional path in S2 then there is a surjective functional path between the same nodes with the
same constraints in 7. By the induction hypothesis, if there is a surjective functional path in 7' then there
is also some surjective functional path between the same nodes with the same constraints in S1. Hence, for
any surjective functional path in S2 there is some surjective functional path between the same nodes in S1
that has the same constraints. O

We now use this result in proving Lemma 5.6 which we restate below.

Lemma C.2 Let S1— §2 where S2 contains the edge ¢’ : C — D. Then, there exist an edge e : A — B
and surjective functional paths p: C — A, r : D — B (not containing e) in S1 such that the constraints on ¢’
in S2 are exactly the constraints on the path r° ceopin S1. .

Proof The proof is by induction on the length of the sequence of o-transformations used to transform S1
into S2.

(Base Case) $1-2552. The lemma is true by the definition of o-transformations.

{oe’l oe’n
o179

(Induction Step) Let 12 7t }SZ. Each edge of S2 that is not one of the g; is an edge of T. By
the induction hypothesis, the lemma is true for these edges. For each ¢} : C — D, there is an edge e} : A— B
and surjective functional paths p} : C — A, r; : D — B in T. By Lemma C.1, there are surjective functional
paths p; : C — A and r; : D — B in S1 with the same constraints as p; and r}, respectively. If e} is an edge of
S1 then the lemma is proven. Otherwise, by the induction hypothesis, e} : A — B was created from an edge
e; : B — F using surjective functional paths s;: A— E and t; : B— F in S1. So, ¢; : E — F' is an edge of S1
and s;op; : C — E and t; or; : D — F are surjective functional paths in S1 where the constraints on g are
exactly the constraints on the path r; ot} oe; 0 s; 0 p;. |

We now restate and prove Lemma 5.7.

Lemma C.3 Tf S1-%%" 52 then there exists an S1 such that S1-> §1'-% 2. .

Proof Suppose T12572-2,73 where a. is a specific a-transformation and O is a o-transformation. Since
T2 is identical to T'1 except it has fewer edge constraints or annotations, any o-transformation that can be

applied to T2 can be applied to T'1. So T1-25T2'. For each simple o-transformation in 032- € 0, if e is

Information Systems, 19(1):3-31, 1994 26

contained in the path rj oe; o p; used by the o-transformation, let ay; be an a-transformation that removes
all the constraints removed by a.. If e° is contained in the path rj oe; op;, then let ay; remove all project and
selection constraints and the dual annotations of those removed by «.. (Totality is the dual of surjectivity
and vice versa. Functionality is the dual of injectivity and vice versa.) Let A = {a.} U {aylof; € O} and

let A be some sequence containing all the transformations in A (we note that a-transformations commute

with each other). Then, T1-5T2' 2573,
So, a-transformations can be pushed to the right past o-transformations. For any sequence of transformations

S14% S2, this process can be repeated until all o-transformations are applied before any a-transformations.
To show that this process eventually terminates, we note that no new o-transformations are created. Addi-
tionally, there exist only a finite number of nontrivial a-transformations. So while each step may introduce
new a-transformations, by eliminating redundant or trivial a-transformations, the process terminates with

a sequence of transformations such that 512 81-% 59 O

D Proof of Theorem 5.13

Before proving Theorem 5.13, we state and prove a few lemmas that will be used in the proof. We find it
convenient to define a canonical form for transformations where all isomorphic nodes (nodes connected by
bijective selection paths) are removed and then additional transformations applied. Using ¢-transformations,
we can reintroduce any nodes that remain in the transformed schema S2, but removing these nodes first
allows us to assume all node ¢-transformations are applied to a single node out of a collection of isomorphic
nodes.

Definition D.1 The reduction of S, denoted S, is a schema formed by collapsing all isomorphic nodes into
a single node. We define a set of equivalence classes of nodes where for any class C;, and distinct nodes A
and B, A € C; and B € C; iff there exists a bijective selection path o : A¢-»B. The schema S' is defined
as follows. For each class C; of S, select a single node N; € C;. Let N; be a node of N!. For each edge
e : A — B (that is not a bijective selection edge) where A € C; and B € Cj, let ' : N; — N; be an edge in
E' and let the constraints of e’ be exactly the constraints of e. .

The reduction of a schema S is internally equivalent to S and Slia—og»*S? iff S’la—o%*SZ

Lemma D.1 If §1:2%5" 2, then there exist intermediate schemas T1 and T2 such that §1} =571 - T2

22, 13-4, §2 where ¥, is a set of node and edge creation ¢-transformations and X is a set of edge deletion
¢-transformations. .

aoc*

Proof Clearly, all a-transformations can be pushed to the right. So if S1!=3 S2, then
5112512 g9,

Suppose the sequence of transformations from S1! to S2 contains a node deletion ¢-transformation, ¢ 4, that
removes a node A’. Then, there must be a previous node creation ¢-transformation that creates either A
or A’ (since we begin with the reduction of S1 to which no node deletion ¢-transformation can be applied).
Clearly, we can produce a modified sequence of transformations producing S2 and containing no node deletion
¢-transformations. The modified sequence contains only the node creation ¢-transformations corresponding
to nodes that were not later removed by a node deletion ¢-transformation in the original sequence.

oc

Let T1—5T2-°5T3 where ¢ is a node creation or an edge creation ¢-transformation. These two transforma-
oc

tions commute so T1—-T2' —5T3.

o°
Let T1-T2—5T3 where ¢ is an edge deletion ¢-transformation. Any o-transformation that follows the
edge deletion ¢-transformation must not use the deleted edge. Hence, the o-transformation can be applied

°F oy S
first. So T1—T2'—=>T3.

Information Systems, 19(1):3-31, 1994 27

Let T1-5T2-2%T3 where G1 is an edge deletion ¢-transformation and ¢, is a node creation or an edge
creation ¢-transformation. Then, 715792 2573,

Hence, node deletion ¢-transformations can be removed from the sequence of transformations, node creation
and edge creation ¢-transformations can be moved left in the sequence and edge deletion G- transformations

can be moved right. So we can create a sequence of transformations 5’11—>T1—> T2—>T3—> S2 where
Y1 is a set of node and edge creation ¢-transformations and X is a set of edge deletion ¢-transformations. O

The next result states that any sequence of transformations can be modified to create a sequence producing
the same result schema in which all node creation transformations are applied to nodes in the original schema
S1 (rather than nodes in intermediate schemas).

Lemma D.2 If SNMg S2 via any set of transformations then S112%5 82 via a set of transformations in
which all node creation ¢-transformations are applied to nodes of S1t. .

Proof By Lemma D.1, we can separate the transformations and produce a set of transformations where
all node and edge creation transformations are applied first. Clearly, we can also apply all node creation

transformations before edge creation transformations. So 5’11—>T1—>5’2 where ¥ contains only node
creation ¢-transformations and X does not contain any node creation ¢-transformations.

Suppose there exists a node creation ¢-transformation, ¢/, that creates a node A” from a node A’ ¢ N1'.
Then, there must be a bijective selection path in 7'1 from some node A of S1! to A’. We can therefore
replace ¢4 with two transformations: a node creation ¢-transformation, ¢4, that creates a copy of the node
A and a selection edge 04 and a o-transformation, 0?4, that moves o4 across the bijective path to the node
A’. Repeating this process we can obtain a set, X', of node creation ¢-transformations on nodes of S1 such

that 51125712 171,92 O

We now prove 5.13 which is restated for convenience.
Theorem D.3 Let S1 and S2 be SIG schemas. Then, S12°5 §2 iff §1<qoc 52/, where S2' = §2. .

Proof (<) We first show that if S1<q0c 52’ then §12°57 52 for some §2 = 2.

1. Let A € N1, where 1 is not defined on A. By Definition 5.8, there is a bijective selection path p in
S1 from A to some node B where 9 is defined on B. Let O4 be a set of o-transformations moving
all edges incident to A onto the node B. Let ¢4 be a node deletion ¢-transformation that removes
the node A. Let O contain all o-transformations and X p contain all node deletion ¢-transformations
created by this process.

2. Let e € E1, where 6 is not defined on e. Let ¢, be an edge deletion ¢-transformation that removes e.
Insert into X p all edge deletion ¢-transformations created by this process.

3. Let A € N1, where ¢ is defined on A and ¥(A) = {Aj, A},...A,} for some n > 0. Let #(A4) =
{91, 9%, s gl } (m >0, if m =0 then 8(A) = (). We define 1(A}) = A and +(A}) = A} for i > 1. Each
node A} (i > 0) is created by a node creation ¢-transformation. If m < n then some of the selection
edges created by these ¢-transformations have been removed by edge deletion ¢-transformations. If
m > n then some additional edge creation transformations have been applied.

e For i =1 to min(m,n), let ¢; be a node creation ¢-transformation that creates the node A} and
selection edge o;.

e For i = min(m,n) + 1 to n, let ; be a node creation ¢-transformation that creates the node A}
and selection edge o;. Also, let ¢,, be an edge deletion ¢-transformation that removes the edge
ag;.

e For i = min(m,n) + 1 to m, let ¢; be an edge creation ¢-transformation that creates o;.

Insert into X p the set of all edge deletion ¢-transformations and into X the set of all remaining

¢-transformations created in the above process. Let S1t2e1.
4. For each ¢’ : C' — D' € E2', let ¢y~ }(C") = C and v~ *(D’) = D. Since 6 is surjective onto the edges
of E2, one of the following two cases must hold for ¢'.
o If ¢’ € H(A) then ¢’ comes from a selection edge o4+ : A'— A created by a (node or edge) ¢-transfor-
mation. Constraints on the original selection edge may have been removed by an a-transformation

Information Systems, 19(1):3-31, 1994 28

and the edge may have been moved (or copied) by a o-transformation. By Definition 5.8, of is
a valid o-transformation on the schema 7T'1 creating an edge g : C' — D that may have more
constraints than g’ (but cannot have fewer constraints). Let of € O and let 5(g) = ¢'.
o If g’ € f(e), for some e : A — B, then by Definition 5.8, of is a valid o-transformation. Let oy € O
and let 5(g) = ¢'.
If any edge ¢’ of E2' has fewer constraints than j7!(g’) then, we create an a-transformation to remove
any additional constraints. Let A be the set of all a-transformations created.

Tt is easily verified that S1-%T1-25722273-2,52 where S2 2 S2' via the node bijection ¢ and edge
bijection ;.

(=) Next, we show that if S1225 §2 then S1=qoc S2 by constructing injections % and 6.
* % %
Since S12%5 §2 and S112%5 1, $112%5 §2. By Lemma D.1, there also exists a sequence of transformations
S % S} *
of the following form $112571-25 7225 73-% §2 where Y is a set of node and edge creation ¢-trans-
formations and X p is a set of edge deletion ¢-transformations. Furthermore, by Lemma D.2, we can assume
Y contains only node creation ¢-transformations that are applied to nodes in S1!.

We define the node map 9 and a set of edges E, as follows. For each node 4 € N1!, let A € ¥)(A). For
each node creation ¢-transformation in X¢ that creates a node A’ (from the node A) and a selection edge
oar, let A" € Y(A) and let 04 € E,. For each edge creation ¢-transformation in X that creates the edge
oa,let o4 € E,.

For each edge ¢’ in T2 created from an edge e € F1!, we let ¢’ € 6(e). For each edge ¢’ in T2 created

from an edge o4/ € E,, that is not later removed by an transformation in X p, we let ¢’ € 6(A). It is easily
verified that 6 and ¢ satisfy Definition 5.8. |

Information Systems, 19(1):3-31, 1994 29

References

1]
2]

3]

[5]
(6]
[7]
8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]
16]
17)
18]
19]
20]
21]

[22]

S. Abiteboul and R. Hull. Restructuring Hierarchical Database Objects. Theoretical Computer Science,
62:3-38, 1988.

J. Albert, R. Ahmed, M. A. Ketabchi, W. Kent, and M. C. Shan. Automatic Importation of Relational
Schemas in Pegasus. In Proc. of the 3rd Int’l Workshop on Research Issues in Data Eng.: Interoperability
in Multidatabase Systems, pp. 105-113, Vienna, Austria, Apr. 1993.

M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall, New York, NY, 1990.

C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys, 18(4):323-364, Dec. 1986.

J. L. Bell. Toposes and Local Set Theories - An Introduction. Oxford Science Publications, Oxford,
U.K., 1988.

M. Davis. Hilbert’s Tenth Problem is Unsolvable. American Mathematical Monthly, 8(3):233-269,
Mar. 1973.

C. F. Eick. A Methodology for the Design and Transformation of Conceptual Schemas. In Proc. of the
Int’l Conf. on Very Large Data Bases, pp. 25-34, Barcelona, Spain, Sep. 1991.

R. Hull. Relative Information Capacity of Simple Relational Database Schemata. SIAM Journal of
Computing, 15(3):856-886, Aug. 1986.

R. Hull. A Survey of Theoretical Research on Typed Complex Database Objects. In J. Paredaens,
editor, Databases, chapter 5, pp. 193-256. Academic Press, London, U.K., 1987.

R. Hull and C. K. Yap. The Format Model: A Theory of Database Organization. Journal of the ACM,
31(3):518-537, 1984.

L. A. Kalinichenko. Methods and Tools for Equivalent Data Model Mapping Construction. In Proc. of
the Int’l Conf. on Extending Database Technology, pp. 92-119, Venice, Italy, Mar. 1990.

V. M. Markowitz and A. Shoshani. Representing Extended Entity-Relationship Structures in Relational
Databases: A Modular Approach. ACM Transactions on Database Systems, 17(3):423-464, Sep. 1992.

R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema Intension Graphs: A Formal Model for the
Study of Schema Equivalence. Technical Report 1185, Dept. of Computer Sciences, U. of Wisconsin,
Madison, WI, 1993.

R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The Use of Information Capacity in Schema
Integration and Translation. In Proc. of the Int’l Conf. on Very Large Data Bases, pp. 120-133, Dublin,
Ireland, Aug. 1993.

C. O’Dl’lnlaing and C. K. Yap. Generic Transformation of Data Structures. In Sym. on Foundations of
Computer Science, pp. 186195, Chicago, IL, Nov. 1982.

A. Rosenthal and D. Reiner. Theoretically Sound Transformations for Practical Database Design. In
Proc. of the Int’l Conf. on Entity-Relationship Approach, pp. 115-131, New York, NY, Nov. 1987.

A. Rosenthal and D. Reiner. Tools and Transformations - Rigorous and Otherwise - For Practical
Database Design. Technical report, MITRE Corp., Feb. 1993.

A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Distributed, Heterogeneous,
and Autonomous Databases. ACM Computing Surveys, 22(3):183-236, 1990.

A. P. Sheth and H. Marcus. Schema Analysis and Integration: Methodology, Techniques, and Prototype
Toolkit. Technical Report TM-STS-019981/1, Bellcore, Mar. 1992.

P. Shoval and S. Zohn. Binary-Relationship Integration Methodology. Data and Knowledge Engineering,
6:225-250, 1991.

M. Templeton, H. Henley, E. Maros, and D. J. Van Buer. InterViso: Dealing with the Complexity of
Federated Database Access. Technical report, Data Integration Inc., Los Angeles, CA, Dec. 1992.

G. Thomas, G. R. Thompson, C.-W. Chung, E. Barkmeyer, F. Carter, M. Templeton, S. Fox, and
B. Hartman. Heterogeneous Distributed Database Systems for Production Use. ACM Computing
Surveys, 22(3):237-266, Sep. 1990.

