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the implementation of recursive query processing algorltbms. Several possible decompositions of a

gwen operator are presented that Improve the performance of the algorithms, a~ well as several

transformations that give the ability to ta~e into account any selections or projections that are present m

a given query. In addition, it is shown that mutual hnear recursion can also be studied within a closed
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1. Introduction

Thus far, with few exceptions [13, 14], recursion in the database context has

been studied under the formalism of relational calculus, which is a subset of

first-order logic, rather than relational algebra. A possible explanation is that in

conventional database systems, where no recursion is allowed, relational alge-

bra has proved to be neither a good query language nor a useful representation

for optimizing database commands (although some optimization techniques are

expressed in the algebra more naturally). Recent results, however, indicate that,

with recursion, there are several cases where relational algebra offers advan-

tages over relational calculus. In particular, algebraic techniques have been

used to devise new efficient algorithms for recursive query processing [27], to

study several properties of recursive programs that allow transformations of

such programs into more efficient ones [29, 30], and to develop a firm

algebraic framework for query optimization by simulated annealing [31]. Most

of the aforementioned results are hard and unnatural to obtain in a nonalgebraic

setting, if possible at all. Of course, there are other results that can be obtained

more naturally in a logic-based setting. The two approaches are equivalent in

terms of expressive power, but each one is a better tool for the study of

different aspects of logic programs. The effectiveness of the algebraic approach

is based on the ability that it offers to express the query answer itself in an

explicit form within an algebraic structure, which is absent in the logic-based

approach. Algebraic manipulation of the query answer is thus affordable,

offering useful insights into specialized properties and efficient processing

strategies of recursive queries.

In this paper, we develop an algebraic theory for the study of recursion in

Horn clause programs. In order to put the results of this algebraic theory in

perspective, we first provide an abstraction of the query optimization process in

a database system. Given a recursive Horn clause program (or any program for

that matter) and a query on one of the relations defined by it, several execution

plans exist that can be employed to answer the query. In principle, all the

alternatives need to be considered, so that in conjunction with statistical

information about the database, the one with the best performance is chosen. An

abstraction of the process of generating and testing these alternatives is shown

in Figure 1 This process can be seen ~s having three stages: ~ewriti~g,
ordering. and planning. For each alternative that is sent into some stage,

multiple alternatives are produced in that stage and sent to the next (lower) one.

Each stage can be seen as operating at a different level of representation of the

original program– query pair. Proceeding from the higher levels to the lower

ones, the representation becomes less abstract and more detailed. In real

systems, the stages do not have so clear-cut boundaries as in Figure 1, and even

if they do, the process of generating all the alternatives may involve significant

interaction between them. Nevertheless, for our purposes, Figure 1 is an

appropriate abstraction. The three stages are anal yzed below:
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FIG. 1 Query optimizer architecture.

Rewriting. This stage produces other program-query pairs that give the

same answer as the original query on the original program. Some of the

transformations that produce the alternative program-query pairs are applicable

only if the original one has certain properties (modules 1 to N in Figure 1),

whereas others are always applicable (modules N + 1 to AZ in Figure 1). For a

transformation of the former type, the original program is first passed through a

decision module (‘’ Cond_ Tester” in Figure 1) that tests for the appropriate

properties, and if it qualifies, it is then passed through a rewriting module. For

a transformation of the latter type, the original program is simply passed

through a rewriting module. In both cases, the rewritten program is sent to the

next stage. If the transformation is known to always be beneficial, the original

program-query pair is discarded; otherwise, it is sent to the next stage as well.

Needless to say that some of the rewritten programs may qualify for further

rewriting based on other properties, so this process may repeat itself multiple

times. This stage works at the declarative level. Horn clause programs are

transformed into other ones, and the transformations depend only on declara-

tive, that is, static, characteristics of the programs. The objects manipulated at

this stage are formulas of logic, so it can also be characterized as working at the

logical level.

Ordering. This stage produces orders of execution of actions for each

program-query pair produced in the previous stage. All such series of actions

produce the same query answer, but their performance may very well be

different. If an ordering is known to always be suboptimal, it is discarded;
otherwise, it 1s sent to the next stage. This stage works at the procedural level.
Ittakes into account procedural characteristics of the programs, and produces

algorithms for answering the query. The objects manipulated at this stage are
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functions accepting data as input and producing data as output. so it can also be

characterized as working at the functional level.

Planning. This stage produces detailed execution plans for each ordered

series of actions produced in the previous stage. Each execution plan specifies

what indices are used, what supporting data structures are built on the fly,

if/when duplicates are eliminated, and other implementation characteristics of

this sort. This stage works at the structural level. It specifies the implementa-

tion of processing strategies at the level of data structures, and produces

complete access plans. The objects manipulated at this stage are physical

entities, so it can also be characterized as working at the physical level.

The algebraic theory developed in this paper is used to study several

properties of Horn clause program-query pairs that lead to the realization of

many alternative, often more efficient, query execution plans. Some of these

algebraic properties are useful in identifying alternatives at the rewriting stage

and some at the ordering stage (Figure 1). It should be noted that, in this paper,

we put the foundations of the algebra and only present the alternative execution

plans that these algebraic properties imply. We do not discuss any decision

algorithms for these properties, that is, any algorithms for the ‘‘ Cond_Tester”

modules of Figure 1. Such algorithms for some of the discussed properties

appear elsewhere [29]. Also, we do not discuss in any detail the implications of

such properties on performance and whether it is always beneficial to alter a

program based on them. Partial results in that direction are also found else-

where [27]. Further investigation of these problems is part of our current and

future research.

This paper is organized as follows: Section 2 gives several definitions of

algebraic systems that are encountered later in the paper. In Section 3, we

define the set of relational algebra operators that we consider in the paper and

show that it forms a closed semiring. Section 4 formulates immediate linear

recursion as an algebraic problem and shows how solving an equation provides

a query answer expressed in an explicit form. In Section 5, mutual linear

recursion is formulated as an algebraic problem by embedding linear systems of

Horn clauses into the closed semiring of linear operator matrices. Section 6

provides several examples of cases where algebraic manipulation of the query

answer at the rewriting stage gives computationally advantageous results.

Section 7 does the same at the ordering stage. In Section 8, multilineal

recursion is studied within the nonassociative closed semiring of relation

vectors. Section 9 provides several conditions for bilinear recursion to be

equivalent to a linear one of a specific form, most of which require testing for

equivalence or containment of recursive programs. Section 10 embeds bilinear
recursion into a nonassociative algebra and describes the derivation of one more

sufficient condition for linearizability that only requires testing for equivalence

of nonrecursive programs. In Section 11, we compare the algebraic approach

with the logic-based approach and discuss the merits and limitations of the

former. Finally, in Section 12, we summarize our results.

2. Definitions of A lgebraic Systems

Before investigating recursion from an algebraic viewpoint, we need some

definitions from algebra. In the following, any algebraic system with set S is

represented by 17~. Also, for a system S on which a partial order s is
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defined, limits of sequences are defined as follows: If T is a subset of S, then

b is the least upper bound of T (denoted as sup T) if for all x e T, x s b,
and for any other c satisfying x s c for all x e T, the inequality b s c must

hold. The greatest 10wer bound of T (denoted by inf T), if it exists, is

defined similarly. For a sequence { XL}, x~ e S, we define its limit superior as

lim x~ = inf~ sup~g ~ x~. Similarly, we define its limit inferior as lim

x~ = Supfl inf~< ~ x~. The sequence { x~} converges if and only if lirn x~

= lim x~. In that case, the limit of { Xk} is I = lim x~ = lim XL. This

definition is extended to convergence of a series. We say that a series { x,}

converges if the sequence { y~ = X:= ~ xl} converges. In this case, the limit of

the series is denoted by Z:=, x,.

Definition 2.1. A group is a system Es = (S, +, O), where S is a
nonempty set and + is a binary operator on S, such that for all a, b, c e S the

following hold:

(1) S is closed under +, that is, a + b c S.
(2) The operator + is associative, that is, (a + b) + c = a + (b + c).
(3) O is an identity element with respect to +, that is, a + O = O + a = a.
(4) For all elements in S, there is an inverse element in S, that is, there exists

b such that a + b = O.

If (4) fails to hold (there is no inverse element), then Es is a monoid. If (3)

and (4) fail to hold, then Es = (S, + ) is a semigroup. If the operator + is

also commutative, that is, a + b = b + a for all a, b e S, then the above

structures are called abelain groups, mono ids, and semigroups respectively.

Definition 2.2. A field is a system Es = (S,+, *,0, 1),where S is a

nonempty set, and + and * are binary operators on S, such that the following

hold:

(1) (S, +, O) is an abelian group.

(2) (S, *, 1) is an abelian monoid, and (S-{ O}, *, 1) is an abelian group.

In addition, for all a, b, c e S the following holds:

(3) The operation * distributes over +, that is, a*(b + c) = a*b + a*c and

(b + c)*a = b*a + c*a.

Example 2. i. The system Efl = (R, +, *, O, 1), where R is the set of real

numbers, and + and * the traditional addition and multiplication is a field.

Definition 2.3. A vector space over a field F, is a system 13b =

(V, +, O, F), where V is a nonempty set and + is a binary operator on V, such

that the following holds:

(1) (V, +, O) is a abelian group.

In addition, for all v ~ V and a e F, an element a v is defined in V, such that

for all v, w G V and CY, ~ E F, the following hold:

(2) a(v+ w) = av+ O!w.
(3) (a+p)v = O!v+ pv.
(4) cl(~v) = (a~)v.
(5) Iv = v.
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In the last condition, 1 represents the

multiplication.

Definition 2.4. An algebra over a

F), where V is a nonempty set and +

that the following hold:

(1) (V. +, O, F) is a vector space.
(2) (V, *) is a semigroup.

Y. E. IOANNIDIS AND E. WONG

identity element of F with respect to

field F is a system 17J, = ( P’,+, *, O,

and * are binary operators on V. such

In addition, for all u, v, w e V and a c F, the following hold:

(3) The operation * distributes over +, that is, u*( v + w) = U* v + u* w and

(v + W)*U = V*U + W*U.
(4) CY(V*W) = (o!v)*l’v = v*(a!w).

If associativity of * fails to hold, then Es is a nonassociative algebra.

Definition 2.5. A closed semiring is a system Es = (S,+, *, O, 1), where

S is a nonempty set on which a partial order s is defined, and + and * are

binary operators on S, such that for all a, b, c c S, the following hold:

(1)

(’2)
(3)

(4)

(5)

(S, +, O) is a abelian monoid and the operation + is idempotent, that is,

a+a=a.
(S, *, 1) is a monoid and O is an annihilator, that is, then a*O = O*a = O.

The operation * distributes over +, that is, a*(b + c) = a*b + a*c and

(b + c)*a = b*a + c*a.
If a, e S, i > 1, is a countably infinite set, the limit 2;=, a, of the series

z:= , al exists, it is unique, and it is an element of S. Moreover,

associativity, commutativity, and idempotence apply to countably infinite

sums.

The operation * distributes over countabl y infinite sums.

If associativity of * fails to hold, then Es is a nonassociative closed senziring.
If 1 does not exist, then (S,+, *, O) is a closed semiring without identity.
Finally, if an additive inverse exists for all elements of S, that is. if ( S, +, O) is

an abelian group, then Es is a closed ring.

Example 2.2.
OR, AND, false,

Inductively, the

as:

ao =

The following system is a closed semiring: ({ false, true},
true) [2]. U

powers of an element a of a closed semiring may be defined

1, a“ = a’Z- [*a = a*a~-l, for all n 20.

Likewise, the transitive closure of a, denoted by a+. is defined as

m

Note that property (4) of closed semirings guarantees the existence of a* in

S. Also note the similarity between the definition of a closed semiring and a

path algebra [12, 42]. The on] y difference is that a path algebra does not
necessarily satisfy properties (4) and (5).

Definitions 2.1 to 2.4 can be found in any standard text on algebra [26].

Closed semirings have been defined elsewhere as well [2, 20]. Our definition is
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the one used by Aho et al. [2], but it is slightly different by being more precise

in the definition of the limit of a series. Final] y, some researchers have given a

less general definition of closed semirings, which requires the existence of a

separate transitive closure operator instead of the existence of the limit of all

countable series [5, 34]. Although this less-general definition is adequate for

our work, we nevertheless decided to adopt the more general one.

3. Closed Semiring of Linear Relational Operators

Consider a fixed, possibly infinite set C. A database D is a vector D = (CD U

{ERROR}, R1.. . . . R ~) 1, where CD G C is a (possibly infinite) set, ERROR
~C~, and for each 1< i s n, RI G CJ is a relation of arity a,. The

implications of allowing infinite relations in D will be discussed later. Each

element of R, is called a tuple. Without loss of generality, we assume that the

constants in the database are typeless, and so a relation scheme is defined as a

relation name together with a relation arity.

Relational algebra was introduced by Codd to formally describe the opera-

tions performed on relations in a database system [17]. This paper focuses on a

subset of the operators originally proposed. We are interested in the set

S = {X, Oq, ZP} of relational operators, where each operator is defined as

follows:

X: Cross product of relations.

‘~ : Selection of tuples in a relation satisfying some constraint q of the form

“column 1 op column2” or “column op c,” c~CD, with ope{=, ~

,>, s,<}.

‘P
: Projection of a relation on a subset of its columns in some order specified

by P.

Several other interesting relational operators can be expressed using the ones

in S. Natural join, denoted by m, is equal to a cross product followed by an

equality selection and elimination of the joined columns of one of the relations

by projection. For relations of the same arity. intersection is equal to a cross

product also, followed by a series of equality selections that compare corre-

sponding columns of the two relations and cover all the columns of both

relations, followed by a projection of the columns of one of them. There are

only two relational operators from the original proposal that are not incorpo-

rated in this study, namely, division ar d set-difference. The significance of the

exclusion of the latter from S will become clear shortly.

Consider a database D = (CD, R,, . . . . R.) and the set S of primitive

relational operators for D. Each element of S can be seen as a unary operator

applied on some relation. This is obvious for selection and projection. For cross

product, one of the operand relations is designated as a parameter of the

operator (i. e., it is considered as part of the operator), so that the operator is

applied on the other relation alone. In this sense, an operator A e S is a

mapping A: 2 c%- 2 Ch. The set 2 Cfi is the domain and the set 2 c:; is the
range of A, that is, A takes relations of arity a as input and p~oduces relations

of arity b as output. Operators with the same domain are called domain-
compatible and operators with the same range are called range-compatible.

‘All relatlons appear m bold.
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Likewise, if the domain of the operator A is the same as the range of the

operator B, then A is called dr-compatible to B (dr for domain-range).

Replacing every parameter relation in an operator by the corresponding relation

scheme produces an operator scheme. Clearly, the mapping from operators to

operator schemes is many-to-one. In the absence of a cross product, however,

an operator coincides with the corresponding operator scheme.

Consider S = {X, Oq, mP}, the set of primitive relational operators for

database D. The operator X in S is used to represent all possible cross

products, that is, having as a parameter any possible relation in D. Likewise,

the operators Oq, ZP in S are used to represent all possible selections and

projections, that is, having as subscripts all possible q‘s and p ‘s, respectively.

In addition, because of the existence of operators in S that are not all

appropriately compatible, we introduce a new operator o: U ~=, 2 Ch ~ 2 ~ER~oR}.

The operator co can be thought of as the error operator. Applied on any

nonempt y relation, it returns the relation { ERROR}. Applied on 0, it returns

@, that is, OJ0 = 0. Note that o is domain compatible with all other

operators, but it is range compatible with no other operator. With S as the basis

set together with u, the algebraic system E~ = (R, +. *, O, 1) is defined as

follows:

R The set of elements is defined as follows:

—If AeSU{O, l,co}, then AeR.
–If A, BcR, then(A +B)e R.
—If A, Be R,then(A*B)~R.

—R k minimal with respect to these conditions.

+ For A, B domain- and range-compatible operators in R, addition is defined

as follows: for all P in the domain of A and B, ( A + B)P = AP U BP.

Otherwise, ( A + B) = ~.

* For A, B operators in R with A dr-compatible to B, multiplication is

defined as follows: for all P in the domain of B, ( A*B)P ==A( BP).

Otherwise, ( A *B) = co.

O The operator O:U~ ,2c~ U {{ERROR}} - { a} can be applied on any

relation and always returns the empty relation: OP = @.
1 The operator l:lJ~12C~ U {{ERROR}} ~ lJ~12c~ U {{ERROR}] can

be applied on any relation and leaves the relation unchanged: 1P = P.

Note that u 1 = 1 u = a and 00 = Ou = O. For notational convenience the

multiplication symbol * is omitted. Whenever ( AB)P is used, with A B e R

and P a relation. it actually represents ( A * B)P. Since + and * are associa-
tive, we often omit the parentheses around them. In that case, we assume right

associativity for them. Equality of relational operators (even outside of R) is

naturally defined through set equality as

A=Bw for all P, AP= BP.

Moreover, since + is associative, idempotent, and commutative. system ER

may be enriched in structure by a partial order defined on R using set
inclusion:

A<B% for all P, APG BP.
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Evidently, with respect to this ordering, O is the greatest lower bound of R. To
the contrary there is no least upper bound of R. For the purpose of having a

well-defined notion of limit, we define a new operator u: IJ ~’ ~2 CL U

{{ERROR}} ~ { U~lCj U {ERROR}}, which satisfies A s u, for all A

e R. The operator u can be thought of as the universal operator. Applied on

any relation, it returns the set of all tuples of all arities on CD, including the

element ERROR. Note that u is not a member of R, whereas O is.
Before proceeding in investigating the structure of E~, some characteristic

properties of the relational operators in R are identified.

Definition 3.1. A relational operator A c R is /inear if

(a) for all relations P, Q in its domain, A(P U Q) = AP U A Q, and

(b)AO = @.

PROPOSITION3.1. If A e R, then A is linear.

PROOF. Consider an operator A e R. The claim is proved by induction on

k, which represents the number of times that addition and multiplication are

applied on operators in S U {O, 1, OJ} to form A.

Basis. For k = O, A e S U {O, 1, a}. It is simple to show that all these

operators are linear.

Induction Step. Assume that the claim is true for all operators formed

using up to k – 1 multiplications and additions. Let A be an operator that

needs k such operations. The last operation is either addition or multiplication.

Thus, A has one of the following forms:

(i) A= B+ C+ A(PUQ)=(B+C)(PUQ)

-A(PUQ) =B(PU Q) U C(PUQ)
Definition of +

-A(P U Q) = (BP UBQ) U (CP U CQ)

Induction hypothesis

+A(PUQ) =( BP UCP)U(BQUCQ)
Associativity of U

-A(PUQ) =( B+ C) PU(B+C)Q
Definition of +

=A(P U Q) =AP U/IQ.

A= B+ C= AO=(B+ C)@
*A@=B@U~ Definition of +

-A@ = @. Induction hypothesis

(ii) A = BC=A(P U Q) = (BC)(P U Q)

-A(P U Q) = B(C(P U Q)) Definition of *

-A(P U Q) = B(CP U CQ) Induction hypothesis

-A(P U Q) = BCP U BCQ Induction hypothesis

=A(PUQ)=APUAQ.

A =BCe AQl = (BC)O
=AO = B(m) Definiton of *

2AQ3 =~ Induction hypothesis

-A@ = @. Induction hypothesis

In both cases, A is proved to be linear. ❑
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Hereafter, unless otherwise mentioned, the term “relational operator” refers

to a linear relational operator.

Definition 3.2. A relational operator is monotone if for all relations P, Q

in its domain P G Q = AP Q AQ.

PRo~osrrIoN 3.2. IJ a relational operator is [inear. then it is monoto?le,

PROOF. PGQ+PIJ AQ=Q+zzl(PIJAQ)= AQ=APUAAQ=

AQ=APz AQ. D

Proposition 3.1 and 3.2 ensure that all operators in R are both linear and

monotone. To the contrary, set-difference, which has been excluded from the

set of primitive relational operators S, is neither linear nor monotone.

PROPOSITION 3.3. Let A, B, C, D e R be appropriately compatible
relational operators, that is the result of any addition or multiplication is
not a. The partial order defined on R enjoys the follo wing properties:

(a) As A+B;

(b) AS B* A+ B=B;
(c) As B+ A+ CSB+C;
(d) A s B, C s D, and A, B are monotone = AC < BD.

PROOF. The proofs of these properties are straightforward and are omitted.

For ( d), Propositions 3.1 and 3.2 ensure that all relational operators under

consideration are monotone. ❑

Definition 3.3. A relational operator is product-only if it can be formed

by applying only multiplication to elements of S U {O, 1, u}.

With the exception of 1, 0, and OJ, any product-only operator A e R can be

brought into the following canonical form: A = ~Pa~l 04Z . . “ o~~(Q X), that

is. having no O, 1, or co as factors. If we denote A by A = B1 “ “ ~

B~_lBkB~hl ““. B,,, this can be achieved as follows:

—Forall l<k<rz, ifBA= l, then A =Bl ““- BL_l BA+l o“” B,,.
–Forall l<k Sn, if BA=O, then A=O.
—Forall l<k Sn, if Bk=u, and foralll =j=n, BJ#O, then A =u,

otherwise A = O.

Hence, with the exceptions of A being equal to 1, 0, or u, A can be written

as a product of projections, selections, and cross products. Moreover, associa-

tivity and commutativity between such operators allow the projections and

selections in A to be moved to the left and cross products to be multiplied

together to produce a single cross product with a larger relation, bringing A
into the canonical form A = ~p CJO,Ooz “ “ “ o-G~(QX ). (For some operators, the
projection, or the selections, or the cross product may be missing. ) In the

sequel, we assume that all such operators (and operator schemes) are expressed

in this canonical form.

Before proceeding with the theorem that algebraicly characterizes E~, we
need to prove the following two lemmas.

~EMMk 3.1. There exists a finite set of canonical operator schemes. such
that any product-only operator A is equal to an operator corresponding to
a scheme in that set. 2

2These operator schemes may involve relatlon schemes that are not present m the orlgmal database
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PROOF. Let A:2 Cfi + 2c~ be in the canonical form A = xPo~l O(lZ “ “ “

a~L(Q X). Let Q ~ C:. The arity c of Q and the number of selections k can
be arbitrarily large. We show that A is equal to an operator in canonical form

A’ = KP<(JqrlO~)z. “ “ CJ~,k,(Q’X), with Q’ G C~, such that both the arity c’ of

Q’ and the number of selections k’ are less than certain upper bounds (which

depend on a and b only). The following series of steps in the given order

construct A’ from A. In every step, we show what happens to the set of

selections and what happens to Q.

(a) All selections between two columns of Q or a column of Q and a constant

are applied on Q, producing a new relation, and then are removed.

(b) For each column CO1 of the domain of A and each operator op, consider

the following set of selections: { (CO1 op CO1,): CO1, is a column of Q that

does not appear in p} U { (CO1 op c,): c1e CD}. All the selections of this

set involve the same column of the domain of A, the same operator, and

columns of Q that do not contribute to the range of A or constants. Each

such set is treated different] y depending on the specific op.

(b 1) If op is = , equality selections among the columns of Q {co], } and

between these columns and the constants { c,} are applied on Q, the

columns of Q in the qualifying tuples are replaced by a single column

CO1’containing the value of the original columns and constants (there is

only one), and the set of selections is replaced by a single selection of

the form (CO1 = CO1’).

(b2) If op is <, the columns of Q are replaced by a single column CO1’

containing the minimum value of the original columns and the con-

stants { cl}, and the set of selections is replaced by a single selection of

the form (co] < CO1’). (The same applies if op is s .)
(b3) If op is >, the columns of Q are replaced by a single column CO1’

containing the maximum value of the original columns and the con-

stants { c,}, and the set of selections is replaced by a single selection of

the form (CO1 > CO1’). (The same applies if op is > .)

(c) All columns of the original relation Q that do not contribute to the range of

A are removed.

The rest of A remains unchanged. It is straightforward to verify that A‘

constructed as above is equal to A. An upper bound on the number of columns

of Q’ can be derived as follows. Because of (c), the only columns of Q that are

kept in Q’ are those that contribute to the range of A. In addition, columns in

Q’ are created only in (b), one for each possible column in the domain of A

and each possible op. Thus, there are at most b columns of Q kept in Q’ and

there are at most 5a new columns created in (b) (5 operators and a columns in

the domain of A). Hence, the arity c’ of Q’ is at most 5a + b. An upper bound

on the arity of Q’ implies an upper bound on the number of selections that can

be applied on the cross product of Q’ and the operand relation, because no

selection with a constant has remained in A’. With 6 a + b total number of
columns and 5 ops, there are at most (6a + b) z pairs of columns and at most

5(6 a + b)2 possible selections.

We have shown that A’ has a bounded arity for Q’, a bounded number of

selections, and a bounded number of projected columns ( b to be exact). Hence,



340 1. E. IOANNIDIS AND E. WONG

we may conclude that there is a finite number of possible schemes for A’. This

implies that any product-only operator can be reduced to one from a fixed,

finite collection of schemes. ❑

In the proof of Lemma 3.1, note that if CD is finite, there is only a finite

number of relations that correspond to the scheme of Q’, and therefore, there is

only a finite number of operators that correspond to the same operator scheme.

Hence, there is a finite number of operators with finite relations from a given

domain to a given range.

LEMMA 3.2. A countable sum of operators of the same scheme in
canonical form is equal to a single operator of that scheme, whose
parameter relation is the union of the re~ations of the individual operators.

PROOF. The truth of the lemma can be seen by exchanging the roles of the

domain of the operators and their parameter relations in the cross product.

From A = ~~= ~ A ~, with Q ~ the ~arameter relation in the cross product of

A ~, this exchange produces B (U ~= ~Q~). The operator scheme B has the

domain of the operators { A ~} as the parameter relation scheme of its cross

product. It is known that U ~= ~Q~ is well defined, so suppose it is equal to Q.

Reversing again the roles of the domain and the parameter relation yields a

single operator, which is equal to A, it has the same scheme as

all the operators { A ~}, and it has Q as the parameter relation of its cross

product. ❑

We now proceed to the following theorem, which characterizes the algebraic

structure of the system of linear relational operators 13~.

THEOREM 3.1. The system E~ = (R,+, *, O, 1) of linear relational opera-
tors is a closed semiring.

PROOF. The proofs of properties 1, 2, and 3 of Definition 2.5 follow directly

from the definitions of + and *. For points 4 and 5, let { A,} be a countably

infinite set of operators in R. If some A,, AJ are not domain-compatible or

they are not range-compatible, or if some A, is equal to ~, then

lim~+~ Z:= ~ A, = o. The proof is straightforward given the definition of

limit. It makes use of the fact that u is the least upper bound of R and O is the

greatest lower bound of R. For this pathological case, points 4 and 5 of

Definition 2.5 clearly hold.

Assume that all the operators { A,} are domain- and range-compatible

(without any being equal to u) and in canonical form. By Lemma 3.1, we

conclude that all those operators are equal to ones whose schemes belong to a
finite set R ~~. By Lemma 3.2, we conclude that the sum of all operators of the

same scheme is equal to a single operator. Hence, A = lim ~~~ Z:=, A, is

equal to the sum of a finite set of operators, whose schemes belong to R ~~.

Therefore, A is well defined and it is a member of R. Since A is equal to a

finite sum of operators, points 4 and 5 of Definition 2.5 are easy consequences

of the definitions of + and *. ❑

Note that multiplication with the set-difference operator does not always

distribute over addition; if d is set-difference and A, B two other operators

then the equality d( A + B) = dA + dB does not always hold. Including d in

R would make ,ER not to be a closed semiring.
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Since ER is a closed semiring, the definitions for the rzth power and the

transitive closure of a relational operator A that is dr-compatible to itself follow

directly:

A“ = A*A* . . . *A (n times).

with AO = 1 and

A* = ~ Ak.
k=O

An interesting question is whether J5R is a richer system than a closed

semiring. Specificly, it would be computationally advantageous if E~ were a

closed ring. Unfortunately. the answer is negative.

PROPOSITION 3.4. The system E~ = (R,+, *, O, 1) defined above on the
relational operators R is not a closed ring.

PROOF. In order for 13~ to be a closed ring, every relational operator must

have an additive inverse, that is, for every A G R another operator B e R must

exist such that A + B = O. If suffices to find one operator in R that lacks an

additive inverse. The multiplicative identity 1 serves this purpose. Assume that
there exists an operator – 1 such that 1 + ( – 1) = O. Then, for any nonempty

relation P,

(1+( -l)) P= O+ Pu(-l)P=@,

which is a contradiction, since P was taken to be nonempty. ❑

4. Immediate Linear Recursion

Consider a range-restricted linear recursive Horn clause of the form

P(x(0)) AQ, (&)) A ““ . AQ&)) + P(&+’)),— (4.1)

where P is a derived relation, and for each i, Q, is a relation stored in the

database and x(’) is a vector of variables, It is range-restricted because we

require that every variable in ~( ~+ 1) appears among the variables of &(’),
O s i s k. It is recursive because P appears in both the antecedent and the

consequent. It is linear because P appears only once in the antecedent. (The

dual use of “linear” for a recursive Horn clause and for a relational operator in

R will be justified in Proposition 4.1. ) Note that we make no assumptions about

the relations being finite. This allows a non-range-restricted Horn clause to be

represented by a range-restricted one of the form in (4. 1), by introducing

infinite relations in the antecedent. It also allows arithmetic functions (e. g.,

addition) to be represented by infinite relations. (Clearly, such functions are

directly evaluable and they are not explicitly stored. ) In addition, constants can

be represented by introducing singleton relations in the antecedent. Thus, the
form of (4.1) is general, and every linear recursive Horn clause can be

expressed in it.

Such a Horn clause can be expressed in relational terms as follows. Let P,

{Qz} be relations, P G Ca
. 2C; + 2CE.~, and j’[Q,} (P) be a function on P, f{Q,}.

(The set of relations { Q,} is part of the function.) Then, (4.1) takes on the form
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.f[~,} (p) G p. or equivalently p U f{~,l (p) = p. In addition to (4.1), con-
sider a nonrecursive Horn clause of the form

The problem of recursive inference can be stated in relational form as follows.

Given fixed relations Q, Q ~, . . . . Q~ and function ~{~,), find P such that

(0 f{Q ~ U’) Q p
(ii) Q k P

(iii) P is minimal with respect to (i) and (ii), that is, if P’ satisfies (a) and (b)

then P G P’.

Conditions (i), (ii), and (iii) are equivalent to the following ones:

(A) QU~{~, (P)=P
(B) P is min!mal with respect to (A), that is, if P’ satisfies (A) then P G P’.

Our goal is to find P that satisfies (A) and (B).

PROPOSITION4.1. Consider a function f[~,}. (P) on P, where f{~,}: 2 C: +
2 G, a z 1. The function f{Q,,} represents a linear recursive Horn clause of
the form (4. 1) if and only lf it corresponds to a linear relational operator in
R.

PROOF. For every recursive Horn clause of the form (4.1), there is a unique

underlying nonrecursive one that corresponds to it, which is a conjunctive
query [15]. Every conjunctive query can be expressed as a composition of

projections, selections, and cross products and vice versa [15]. Therefore, a

function ~{Q,}, having {Q, } as parameters and P as input, corresponds to

a linear recursive Horn clause of the form (4.1) if and only if it corresponds to a

linear operator in R. ❑

By Proposition 4.1, the established algebraic framework can be used to define

the problem of recursive inference. Consider a linear recursive Horn clause that

corresponds to a linear operator A, so that

APGP.

Consider some constant relation Q that is either stored or produced by some

other nonrecursive Horn clause, so that

QGP.

The relation defined by the Horn clause is the minimal solution to the equation

P= APUQ. (4.2)

Presumably. the solution is a function of Q. Moreover, we are interested in

solutions that can be computed by applications of selections, projections, cross

products, and their sums or compositions. Thus, we restrict our attention to

functions that correspond to operators in R. that is. P is written as P = BQ,

B e R. The problem becomes one of finding the operator B. Manipulation of

(4.2) results in the elimination of Q, so that the equation contains operators

only. In this pure operator form, the recursion problem can be restated as
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follows: Given operator A, find B satisfying:

(a)l+AB=B

(b) B is minimal with respect to (a), that is, 1 + AC = C + B s C.
(4.3)

THEOREM 4.1. Consider eq. (4.3a) with restriction (4.3 b). Its solution is
A*.

PROOF. It has already been mentioned that A e R, so it is linear and

monotone. The system 13~ is a closed semiring (Theorem 3. 1). Thus, A* exists

and is unique for any A. First, A* is a solution of (4.3a):

l+ AA*= l+ A(l+A+””o)=l+ A+AZ+””. =A*.

The second equality is due to the property that multiplication distributes over

countable sums (Definition 2.5). Second, A* is indeed the minimal solution

(least fixpoint) of 1 + AB = B. That is, for all operators B that satisfy (4.3a),

A* < B. This is shown by induction on the number of terms in A* = X:={} A~.

Busis. For n = O, X~=O A~ = 1, and from (4.3a) and Proposition 3.3a,

l<B.

Induction Step. Assume that E~=O Ak < B for some n >0. Then,

~AkSBx A~AkSAB Proposition 3 .3d
k=O ‘=O

*l+A~#<l+AB Proposition 3. 3c
‘=O

n+l

-~AkSl+AB Closed Semiring Properties
‘=0
n+l

* ~ A’<B.— From (4 .3a)
k=O

So, for all n 20, Z:= ~ A ~ s B. Since the sequence (of the partial sums) is

upwards bounded by B and is monotone, its limit A* is also bounded by B.
Hence, for any B satisfying B = 1 + AB, A* s B. and A* k the least

fixpoint of (4,3a). U

Theorem 4.1, originally due to Tarski [51], has been used in the study of the

semantics of logic programs extensively [4, 54]. In the database context, it was

first examined by Aho and Unman [3]. It is the first time though that the

solution of (4.3) is expressed in an explicit algebraic form within an algebraic

structure like the closed semiring 17~. One can now algebraicly manipulate the

query answer, which is represented by A* possibly multiplied with other

operators also, for example, selections and projections, and study its behavior.

Some of the implications of the manipulative power thus afforded are discussed

in Sections 6 and 7.

5. Mutual Linear Recursion

Until this point, we have concentrated on immediate recursion. However, the

above algebraic framework can be extended so that it can be applied to the cases

where mutual recursion exists as well. Without loss of generality, we assume
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that all relations that are not derived recursively are stored in the database, that

is, they are not produced by some nonrecursive Horn clause,

Definition 5.1. Consider a set of Horn clauses, and let {PI, P2, . . . . P~}

be the relations in the consequent of its elements. The set of Horn clauses is

called linear if each Horn clause has at most one of {PI, P., . . . . P.} in its

antecedent.

Example 5.1. The following system of mutually recursive Horn clauses is

linear:

Q(x, z) AT(z. Y) ~P(x, Y),

P(y, x)+ P(x, y),

P(z, x) AS(Z, Z, Y)+ Q(X, Y),

R(x, y)+ Q(x, y).

To the contrary, the next one is not, because of the presence of both P and Q in

the antecedent of the first Horn clause.

P(w, z) AQ(x, z)AT(z,Y) +P(x, ~),

P(y, x) +P(x, y),

P(Z, X) AS(Z, Z, Y)+ Q(X, Y),

R(x, y)~Q(x, y). ❑

Note that this definition of linear is different (more restrictive) from the one

given by Bancilhon and Ramakrishnan [8]. That definition includes systems that

are not linear. In particular, it includes systems that can be decomposed into

component linear systems. These can be solved in such an order that the

relations produced by one component become parameters to the next one. We

believe that a more precise term for such a system is piecewise linear [18] and

we use the term linear according to Definition 5.1.

Consider a linear system of mutually recursive Horn clauses defining rela-

tions P), P,, . . ., P.. Each Horn clause is represented algebraicly using a

linear opera~or in R. Thus, a system of n equations is generated with n
unknown variables P,, PI, . . , P,, and is solved as an ordinary linear system.

The interaction between the Horn clauses can be arbitrarily complex as long as

the resulting system is linear. The possibility of immediate recursion is not

excluded either. The system produced is sufficiently general to give the solution

for the relations concerned.

Example 5.2. Consider the most general case for two relations PI and Pz,
that are defined by both immediately recursive and mutually recursive Horn

clauses in a linear way. With A. B, C, and D being the appropriate linear

operators in R, the situation is represented by the following linear system:

P1=AP1UBP2UQ1,

P2=CP, UDP2U Q,. ❑

Define &f~( k!) as the set of n x n matrices, n > 1, whose entries belong to

the set of linear relational operators R. Note that for any such matrix, all the

operators in a column are domain-compatible and all the operators in a row are
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range-compatible. With M.(R) as its set of elements, the system E~n( ~, =

( M.( R), +, *, Q 1) is defined as follows:

+ If ~ = [ A ,J], ~ = [ B,J are two matrices in &f,l( R), then addition is

defined by ~ + ~ = [A,, + l?,,].

* If d = [ A ,J], ~ = [ B[y] are two matrices in iWJ R), then multiplication
is defined by 4*IJ = [X;=l A,~B~j].

~ The matrix (j has all its elements equal to O.

~ The matrix 1 has all its elements equal to O, except the ones on the principle

diagonal, wfiich are equal to 1.

Similarly to the situation for simple operators, the multiplication symbol * is

omitted.

THEOREM 5.1. The system EM ~~) = (MJR), +, *,0, 1) is a closed

semiring.
n

PROOF. It is known that matrices over a closed semiring form a closed

semiring [2]. Since E~ is a closed semiring, one can conclude that EM ~~, is
also a closed semiring. ❑

n

Powers of matrices are defined as

with ~“ = ~, and

~m=A*A*...*A (m times),— —

the transitive closure of a matrix is defined as

A* = ~ Ak.
k=O—

Consider a linear system of equations like the one of Example 5.2. Using

elements of M.(R), we can write it in a matrix form as

~= AP @Q, (5.1)
—

where P is the vector of unknown relations, Q is the vector of stored relations,

and addition o for relation vectors is defined as

P6~’=(P, uP(, P,u P;,... ,Pnu P;,).

Since both 11~ and E~ti(~) are closed semirings, the minimal solution to (5.1)

can be found in exactly the same way as that of (4.2) and is P = 4*Q.

Example 5.3. Consider the linear system of Example 5.2. Written in

matrix form, it is equal to

Solving the system yields
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The individual solutions for PI and Pz are:

P, = (A +BII*C)*(Bll*Q, U Q,).

P, = (D + CA*B)*(CA*Q, U Q,). ❑

The importance of the algebraic formulation of the problem should be

emphasized at this point. Until now, few people have dealt with mutual

recursion in its full generality. The methods proposed for processing queries on

relations defined by a complex recursive system of Horn clauses tend to be

complicated and in some cases incomplete [25]. The power of the algebraic

tools lies with the fact that the solution for arbitrarily complex linear systems

can be expressed in a concise way. Algebraic manipulations of this solution

generate multiple equivalent expressions, some of which may be more efficient

than the straightforward implementation of the original solution. Such optimiza-

tion is virtually impossible in the absence of an explicit representation of the

solution, due to the complexity of the corresponding processing algorithms. The

level of complexity that one faces should become more clear with the following

example.

Example 5.4. Consider the case of three mutually recursive relations, with

no immediate recursion for any of them. The linear system representing the

situation is

E:l”[l: :: t:l~:
Solving for P,, for example, yields the solution

PI = [(Au +~13~32)(~23~32)

‘( A13+A12A23 )(~32A3)*~3, ]*Q>

where the relation Q is equal to

Q = Q, u (~12 +A13A32)(A23A32)*Q2

U(Z413 + Z412Z423)( Z432~23)*Q3.

The expression is long. Nevertheless, it represents a complete solution of the

linear system for P,. This was hard to express before, if at all possible. ❑

6. Algebraic Transformations of Linear Recursion at the Rewriting Stage

In this section, we give several examples of cases where algebraic manipulation
of an explicit representation of the query answer yields computationally advan-

tageous results. The results presented here affect the rewriting stage of query

optimization (Figure 1). The first subsection presents decompositions that are

applicable to A* for a linear operator A c R that has the form A = B + C.

The second subsection presents decompositions that are applicable to A* when

A has the form A = BC. The third subsection presents replacements of A*
with transitive closures of other operators, The final subsection presents

transformations of the product of A* with other operators, primarily selection

and projection.
All the optimization results presented in this section depend solely on the

algebraic properties of closed semirings. Hence, the results can be generalized
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to mutual linear recursion as well, by simply using linear operator matrices in

place of linear operators. Moreover, unless explicitly restricted to operator

schemes, all results in this section hold for both operators and operator

schemes. With one exception, however, all examples involve operator schemes.

6.1. DECOMPOSITIONSOF (B + C)*

THEOREM 6.1. Let A = B + C. If there exist k and 1 such that

andeitherke {O, 1} orle {O, 1}3, then A* = (B + C)* = B* C*.

PROOF. Clearly, A* = (B + C)* = ~~=o (B + C)’. This means that

A* =
f

BIICJ,BL,CJ, . . . Blmclm. (6.2)
l],J1.....Zrn, ,.J =0

Consider an arbitrary term D = B“ CJ1B“ CJ’ . . . B’mCJmI. Assume that CB 5
Bh Cl, with k e {O, 1} (the case of 1 e {O, 1} is handled similarly). We prove

by induction on n = il + “ “ “ +i~ that D s B~C~, J a O, where 1 = i, if

k= O,orl=n =il+. ”.+i,Hif k=l.

Basis. For n = O, D = CJ’CJ’ “ “ “ CJm = CJ’~J’+ ““’ ●J’Iz, which is al-

ready in the desired form, with 1 = O.

Induction Step. Assume that the claim is true for some n >0. We prove it

for n + 1. We distinguish two cases, k = O and k = 1.

k= OIfj[+jz +.” “ +.jVl _, = O, then D is already in the desired form.
Otherwise, D can be written as D = (B” C~’ “ . “ B’”- 1)BCJm. By the

induction hypothesis, we have that D < B“ CJBCJ”Z, with J # O.
Applying (6. 1) with k = O yields D 5 B“CJ’1 CtCJIn, which proves

our claim.

k=l Again, ifjl+jz -l-”. o -tj~ _ * = O, then 11 is already in the desired
form. Otherwise, D can again be written as D = (B” CJ’ “ “ “
B’” - 1)BCJ”. By the induction hypothesis, we have D s B nC ‘BCJm,
with J # O. The result of applying (6.1) on the above formula J times

isD<B n+ 1(7[”JcJn, which again proves our claim.

Hence, every term of the sum in (6.2) is < to a term of the form BrCJ. For all

1 and J, the term BICJ exists in (6.2) already. Thus, (6.2) can be modified

into A* = ~~=o, J=o BrCJ = B* C*. ❑

COROLLARY 6.1. If B and C commute, that is, BC = CB, then (B -1-
C)* = B*C* = C*B*.

Note that Corollary 6.1 states that if B and C commute, then the separable

algorithm is applicable [36]. A similar observation has been made indepen-

dently by Ramakrishnan et al. [41]. Further elaboration on the relationship

between commutativity and separability appears elsewhere [29].

~The condition of Theorem 6.1 can be easily tightened to CB < ( 1 + B)C* or CB s B*( 1 + C) For

operator schemes, the two conditions are ecpuvalent [46], whereas for operators, the tighter condition IS

strlctl y more general. Similar comments apply to Theorems 6.2 and 6,3. We have chosen to describe

the less general condition for ease of presentation.
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Example 6.1. As an application of Theorem 6.1 (and Corollary 6. 1),

consider the following program:

p(x, z) AQ(z, Y)~p(x, Y),

R(x. z) AP(z, Y)+ P(x, Y),

s(x, y)+ P(x, y).

The two recursive Horn clauses correspond to the backward and forward

computation of the transitive closure of the binary relations Q and R, respec-

tively. It is easy to verify that the underlying conjunctive queries commute,

since composing the two in both possible ways yields one that underlies the

following Horn clause:

R(x, z) AP(z, z’)AQ(z’, Y) +P(x, y).

Theorem 6.1 guarantees that the fixpoint of the first Horn clause can be

computed independently of the fixpoint of the second one, as long as in the end

the two are combined by an additional nonrecursive operation between them.

This is captured by rewriting the original program as follows:

P2(x, y)- P(x, y),

R(X>Z)A P,(Z. Y)+ PZ(X. Y)>

P,(x, y)+ P2(x, y),

P,(x>z)AQ(z, Y) ‘1’, (x, Y),

S(x, y) +P, (x, y). ❑

THEOREM 6.2. Let A = B + C. If there exist k and 1such that

and there exists p such that either Bp = O or CP = 0, thetl A* = ( B + C)*
= B* C*.

PROOF. If k <2 or 1<2, Theorem 6.1 ensures the truth of the statement

of this theorem as well. Assume that k > 2 and I > 2. In (6.2), consider an

arbitrary term D = Bri CJ’B’’CJ~ . “ “ B” CJm. Assume that there exists p
such that Cp = O (the case of Bp = O is handled similarly). If m = 1, then D

is in the desired form. If not, this means that both j, > 1 and iz 2 1. If

~1 = 1, i~ = 1, and ~n = 2. that is, if D is of the form D = B’ICBCJ’. then
applying (6. 3) yields D s B” B ~C/CJ’, which is in the desired form. Other-

wise, either ~1 = 2 or iz ~ 2 or m > 2. In the first case, D is of the form

~ = ~1 CZBDZ, where DI and Dz are some product-only operators. In the

second case, D is of the form D = D, CB2D2. In the third case, applying (6.3)

yields either D < D1C2BDZ or D < DICBZDZ. We show that in all cases
D = O. Equation (6.3) yields

Replacing D, BkC[- ~ by D1 in the latter expression yields D1 CBkCID1.
Hence, if J[ 22 or il >2 or m >2, we have shown that D 5 DICBkCtDz.
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Ourgoal isto prove that DICBkCIDz =0. Reachieve this by showing that

CBkC1 s ((
B~ct-l~k-2BkC/-~gCBkC,g+1[ forallg. (64)

)

The formula to the right of < is well defined, since both k >2 and 1>2. We

prove (6.4) by induction on g.

Basis. For g = O, (6.4) yields CBkC/ s CBkC1, which clearly holds.

Induction Step. Assume that the claim is true for some g >0. We prove it

for g + 1 by repeated applications of (6.3).

(
CBkC1 < (Bk&l k-~

)
) Bk&z ‘CBkC&+l)l

Induction hypothesis

< (( )
Bkc[-l)k-2Bh&2 ‘Bkc[Bk-lc(~+l)/

Applying (6.3) once

< ((
Bkc,-,)k-2Bkc,-2 ]gBkc[-,Bkc/Bk-, c,,+,,[

Applying (6. 3) twice

~ ((
Bk~[-l)k-2Bkc/-2 ]gBkc/-,Bk,Bh~[ Bk[3c,,+,,+,,/

Applying (6. 3) three times

~kc,-,)h-lBkc,Bk-, c,~+,,[

Applying (6.3) h times

Applying (6.3) k times

< ((
Bkc,-l)k-2Bk~,-2 )g(Bkc,-,)k-2 Bkc/-lBkc,,+2,[

<
((

Bkc,-,)k-2Bkc[-2 )g+’cBkc,,+~,,

By taking an arbitrarily large g, we can construct arbitrarily high powers of C

in C(g+2)~. For a value of g that satisfies (g + 2)1 z p, since CP = O, (6.4)

yields that CBkC1 = O, which in turn implies that D = O. Thus, considering

all cases, either D s B ‘C ~, for some 1, J, or D = O. Hence, we conclude

that A* = (B + C)* = B* C*. El

Theorem 6.2 is vacuously true for operator schemes, since for an operator

scheme B, Bp = O can only be true when B = 0. Thus, this theorem is only
interesting for operators, in which case the meaning of BP = O ( Cp = O) is
that the data in the parameter relations of B (C) is acyclic. The intuition behind

the proof is that, in order for the conditions of the theorem to hold, the data in

the parameter relations of B and C must not interleave in any nontrivial ways,

that is, CBkC1 with k z 2 and 1>2 is equal to O.
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Theorems 6.1 and 6.2 give sufficient conditions for (B + C)* = B* C*. The

next theorem gives sufficient conditions for ( B + C)* = B* + C*.

THEOREM 6.3. Let A = B + C. If there exist k and 1 such that

and

then A*=(B+C)*=l?*+ C*.

PROOF. condition (6.5a) implies that the conditions of Theorem 6.1 hold.

Thus, A* = (B + C)* = B*C* = B* + C* + B*BCC*. Assume that in

(6.5b) it is BC s B/ that holds (the other case is treated similarly). Consider an

arbitrary term of B*BCC*, that is, D = B’CJ, i, j z 1. We distinguish two

cases:

1>1: Clearly, (6 .5b) implies that

BLCJ<B1-~+lCJ-~ < BL-~+~lcJ-2< . . . <B1+([-~)J

1=0: Similarly to the previous case, if i> j, then B’CJs B’-J,

otherwise, if i~j, then BICJSCJ–(.

In both cases, B’CJ is < to a term of B* or C*. Thus, we may conclude

that A* = (B + C)* = B* + C*. ❑

Example 6.2. This example of the applicability of Theorem 6.3 involves

operators to demonstrate that the results in this section are useful not only with

operator schemes. Let S be a binary relation corresponding to a directed graph.

The following logic program computes the transitive closure of S:

P(X, Z) AS(Z, Y)+ P(X. Y)>

s(x, y)+ P(x, y).

Assume that the underlying undirected graph of S consists of two connected

components, which correspond to the relations Q and R, that is, Q U R = S.

Clearly, the above program is equivalent to the following one:

P(x, z) AQ(z, Y)+ P(x, Y).

P(x, z) AR(z, Y)+ P(x, Y),

Q(x, y)+ P(x, y),

R(x, y)+ P(x, y).

Let B and C be the operators corresponding to the underlying nonrecursive

Horn clauses of the two recursive ones in the above program, for the specific

instances of Q and R. It is easy to verify that BC = CB = O. Thus, by

Theorem 6.3, independent computation of the transitive closure of each con-

nected component and a union of the two results is enough to compute the

transitive closure of the whole graph. This can be captured by rewriting the
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original program into the following one:

PQ(x, y)+ P(x, y),

PR(X, y)+ P(x, y),

p~(x, z)~Q(z, y) ~p~(x, y),

Q(x, Y)~p~(x>Y)

P~(X, Z) AR(Z, Y)+l?~(X>Y)

R(x, y)+ P~(x, y). ❑

The results of Theorems 6.1, 6.2, and 6.3 can be extended to sums ofan

arbitrary number ofterms in straightforward ways. Their importance lies with

the fact that computing B* and C* separately, andthen either multiplying them

or adding them, has the potential of being significantly cheaper than computing

(B + C)*. The main reason for this is that the latter computation produces at

least as many duplicates as the former, and often many more. The proof of this

fact is given elsewhere [29].

All three Theorems 6.1, 6.2, and 6.3 provide sufficient conditions for the

corresponding decompositions to hold. Clearly, the theorems hold for both A,

B, C being operators and A, B, C being operator schemes. Alternatively, the

theorems hold both when taking into account the database and when not.

Nontrivial and practical necessary conditions for ( B + C)* = B*C* or (B +
C)* = B* + C* are hard to derive if B and C are operators. The following

theorems give necessary conditions for decompositions of operator schemes.

Moreover, the condition of Theorem 6.3 for the second type of decomposition,

that is. ( B + C)* = B* + C*, is shown to be necessary and sufficient.

THEOREM 6.4. Consider operator schemes A, B, and C, such that
A = B + C. If A* = (B + C)* = B* C*, then there exist k and 1such that
CB < BhC1.

PROOF. Assume that A* = (B + C)* = B* C*. This implies that (B +
C)* s B* C*. Since we are dealing with operator schemes, we can use the

theorem of Sagiv and Yannakakis that every term of the sum (B + C)* must

be s to a term of B*C* [46].4 The operator CB is a term in ( B + C)*. This

yields that there exist k and 1 such that CB < B~Ct. ❑

THEOREM 6.5. Consider operator schemes A, B, and C, such that
A = B + C. Then, A* = (B + C)* = B* + C* if an only if there exist k
and 1 such that

PROOF. The sufficiency of the condition for the decomposition is implied by

Theorem 6.3. For the other direction, assume that A* = (B + C)* = B* +
C*. Again, we may apply the theorem of Sagiv and Yannakakis for the terms

4Actually, the result of Sagiv and Yannak~kis deals with finite sums only, but It can easily be

generahzed to countably mtinite sums. In the sequel, we refer to them result m the more general form.
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CB and BC of ( B + C)* [46]. This yields that there exist k and 1 such that
CB<Bkor CB<CL, and BC<B[ Or BC<C1. ❑

6.2. DECOMPOSITIONSOF ( BC) *

THEOREM 6.6. Let A = BC. If there exists k such that

CB z BkC,5 (6.6)

then

PROOF. Clearly. A* = (BC)* = Z:= O(BC)”2. Consider an arbitrary term

of the sum, II = (BC)’”. We show by induction on m that

Basis. For m = O, (BC)O = B(X~:(’ k’) Co = B°CO = 1.

Induction Step. Assume that the claim is true for some m >0. We prove

it for m + 1 by an application of (6.6).

(BC)H2 = B’zflL~’ “) Cm’ Induction hypothesis

= (BC)~+’ = BB(k”x~~’ “) C’”+’ Repeated applications of (6 .6)

By the above induction, the claim is true for all terms of the sum of A*, which

is therefore equal to

A* = (B(7)* ~ ~ B(L~~~,’k’) Cm ❑
/?1= o

COROLLARY 6.2. If B and C commute, that is, BC = CB, then A* =

(BC)* = 2;.0 BnCmz.

PROOF. Replacing k = 1 in Theorem 6.6 yields the desired result. ❑

Note that Corollary 6.2 states that if B and C commute, the powers of B and

C can be computed independently and then the corresponding ones can be

multiplied for the final result. The expectation is that computing the powers of

B and C separately will often improve performance, because B and C are
likely to be operators that involve “smaller” relations than BC, both in terms

of the number of tuples and in terms of the arity. Investigation of the precise

implications of such decompositions on performance is part of our future plans.

Example 6.3. The classical example of the applicability of Theorem 6.6,

and more specifically of Corollary 6.2, is the “same generation” program:

up(x, z) Asg(z, w) Adown(w, y) + sg(x, y),

fiat(x, y) + sg(x, y).

sSimilar ~esult~are obtained if CB = ‘Ck
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The recursive clause in this program is a product of the following two clauses:

up(x, z) Asg(z, y)~sg(x, y),

sg(x, w) Adown(w, y) ~ sg(x, y).

We have shown in Example 6.1 that the above clauses commute with each

other. Hence, by Theorem 6.6, sg can be computed by processing the two

clauses independently of each other, and then combining the results accord-

ingly. This can be achieved by rewriting the original program in several ways.

The most straightforward (but not necessarily the most efficient) one is the

following:

down_ sg(x, y,O) + sg(x, y),

down_ sg(x, w, i + 1) Adown(w, y) + down_ sg(x, y, i),

up_sg(x, y, i) ~ down_ sg(x, y, i),

Up(x, z) Aup_sg(z, y,~) +up-sg(x, y,i+ 1),

flat(x, y) - up_sg(x, y, O). ❑

For the next theorem, we need the following definitions. An operator B e R
is uniformly bounded, if there exist K and N, K < N. such that B N < B ~.
An operator B e R is torsion, if there exist K and N, K < N, such that

BN = Bh’. The former definition is inspired by the uniform boundedness

property of linear recursive Horn clauses [28, 38]. Clearly, every torsion is

uniformly bounded, but the opposite is not true in general.

THEOREM 6.7. Let A = BC. If CB = BC and B is torsion, with N being
the lowest number such that, for some K < N, the equality B K = BN
holds, then

A’– I

(::: )

A* = (BC)* = ~ B“’Cm + (CN-~)* ~ BmC”z
??1= o

PROOF. Since BK = B ~, ittakes an easy induction to show that

The theorem is the result of the

(6.7):

K– 1

A*=(BC)* = ~ BmCnZ+
~=o

for all KSnz<Nandalli 20. (6.7)

following transformations, which make use of

~ B’nC’n Corollary 6.2
in = K

K– I

= ~ BnZCmz+
~=o
K– 1

:’ B& C’n+z’~-&)) From (6.7)
~.K 1=()

(

N– 1

I= ~ BmC”l + (C(N-K))* ~ BmC’n .
~=() \ I?z=K i

Example 6.4 [37]. Consider the following logic program:

knows(x, Z) Abuys(z, y) A cheap(y) ~ buys(x, y),

definitely _buys( x, y) -+ buys( x, y).
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The recursive clause can be written as a product of the following two Horn

clauses:

knows(.x, z) Abuys(z, y) ~ buys(x, y),

buys(x, y) A cheap(y) -+ buys(x, y).

The above two clauses commute with each other, since composing them in both

ways yields the original recursive clause. Let the second clause correspond to

the operator scheme B in the statement of Theorem 6.7. Composing that clause

with itself to compute Bz yields the clause below:

buys(x, y) A cheap(y) A cheap(y) - buys(.x, y).

Clearly, the equality Bz = B holds. Since all the premises of Theorem 6.7

hold, we conclude that B can be ignored from the processing of the original

clause beyond its first power, that is, the original program can be replaced by

the following one:

knows(x, Z) Abuys(z, y) ~ buys(x, y),

knows(x, z) A definitely _buys(z, y) A cheap( y) ~ buys(x, y),

definitely _buys( x, y) ~ buys( x, y). ❑

With respect to operator schemes, Theorem 6.7 identifies cases in which the

powers of B and C can be computed separately, and for B, only a finite

number of them is necessary, as in the case of computing B*. This result is

related to the work of Naughton on recursively redundant predicates [37],
which was the source for the program of Example 6.4. The relationship
between commutativity, uniform boundedness, and recursively redundant predi-

cates is examined in detail elsewhere [29].

6.3. REPLACING A* WITH TRANSITIVE CLOSURES OF OTHER OPERATORS

THEOREM 6.8. Let A, B, C be linear operators. If AB = BA and

AC = BC, then A*C = B*C.

PROOF. We prove by induction on m >0 that A ‘“C = B “’C,

Basis. For m = O, the claim holds trivially.

Induction Step. Assume that the claim is true for m >0. We prove it for

m + 1. We have the following:

A“’+l C = A(AmC) == A(B’’l C) = B’”( AC) = B“’+l C.

The second equality is by the induction hypothesis. the third equality is by

commutativity of A and B, and the fourth equality is by the premise that

AC = BC. From the above, we have that

02 52
A*C = ~ (A’”C) = ~ (WC) = B*C.

m=o m=l)
❑

Example 6.5. Theorem 6.8 allows the interchange of the two linear forms

of transitive closure. More precisely. there are two equivalent sets of linear
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Horn clauses that express the calculation of the transitive closure of a binary

relation Q:

~(x3z)A Q(z. Y)+~(xt Y)+

Q(-x, y)+ P(x, y),
(6.8)

and

Q(x, z) Ap(z, y)+ P(x, y),

Q(x, y)+ P(x, y).
(6.9)

Clearly, the two programs are equivalent. Note, however, that they would not

be equivalent if the nonrecursive Horn clauses in them did not have Q in their

antecedent. To take into account that fact, we introduce a Horn clause that

corresponds to an operator whose output is always Q for any nonempt y input:

I(u) AQ(x, Y)-+ P(x, Y).

Using the above, and assuming that 1 is nonempty, (6.8) and (6.9) are

equivalent to the following two programs:

P(x, z) AQ(z. Y) ‘P(x. Y).

I(u) AQ(x, Y)~P(x, Y),
(6.10)

and

Q(x, z) AP(z, Y)+ P(x. Y)

I(u) AQ(x, y)+ P(x, Y).
(6.11)

If A and B are the corresponding operator schemes for the recursive clauses of

(6. 10) and (6. 11) respectively, then AB = BA (Example 6.1). In addition, if

C is the corresponding operator scheme for the nonrecursive clause of both

(6. 10) and (6. 11), it is easy to see that AC = BC, since both products

correspond to the same Horn clause:

I(U)AQ(X,Z)A Q(Z, Y)+ P(X,Y).

Hence, the conditions of Theorem 6.8 hold, and the two programs can be

interchanged. ❑

THEOREM 6.9. Let A = BC. Then,

A* = (BC)* = 1 + B(CB)*C. (6.12)

PROOF. The following series of equations proves the theorem:

co

A*=(BC)* = ~ (BC)n’=l + ~ (BC)’”
~=o ~=1

(

cc

)
= 1 + B ~ (CB)n2 C=l+B(CB)*C. ❑

m=o

Expression (6. 12) corresponds to a program that is equivalent to the original

one corresponding to A*. The significant difference of the two programs is in

the operator whose transitive closure is computed, namely ( CB) * instead of

( BC)*. Depending on what B and C are, the second algorithm may be more

efficient.
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Example 6.6. As an example of how Theorem 6.9 may be applied,

consider the following set of Horn clauses:

P(u. v,w)AR(u, v,w)AS(W, X, Y, Z)-+ P(X, Y, Z),

Q(x, y,z)~P(x, y, z).
(6.13)

The recursive Horn clause is a product of the following two ones:

P(u, v, f) AR(u, v,t)+ P’(t),

P’(w) AS(W, X, y, Z) -P(x, y, Z).

The product of these two clauses in the opposite direction corresponds to the

following clause:

P’(w) AS(W, r,s, t) AR(T-, s, t) +P’(t).

Given the above, rewriting (6. 13) according to Theorem 6.9 yields the follow-

ing program:

Q(u, v,w)AR(u, v,w)+ P’(w),

P’(w) AS(W, T-, ,S, t) AR(r, ,S, f)+ P’(t),

P’(f) AS(f, X, Y,Z) +P(x, Y, z),

Q(x, y, Z) ~P(X, y, Z).

Note that the above program is equivalent to the original one, but has a great

potential of being more efficient, primarily because its recursive Horn clause is

monadic, that is, has arity one, where the one of the original program had arity

three. Such reductions in the arity of recursive predicates are known to

significantly affect performance [9, 39]. ❑

6.4. PUSHING SELECTIONS AND PROJECTIONSTHROUGH A*

THEOREM 6.10. Let A, p be linear operators. If there exists another
linear operator B such that

then PA* s B*P. If (6. 14) holds with equality. then PA* = B*p.

PROOF. Assume that p A s Bp. We first show by induction on m >0 that

pAm < Brnp.

Basis. For m = O, the above formula is satisfied trivially.

Induction Step. Assume that the claim is true for some m >0. We prove
it for m+ 1.

PA ~+’ = (PA~)AS(B~P)A Induction Hypothesis

= B~(p A)s Bn’(Bp)=B’”+’p From (6. 14).

Having established the above, we can proceed in proving the theorem.

The case where (6. 14) holds with equality is easily seen to be true as well. ❑
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An interesting case arises when (6. 14) holds with equality and B = A. Then,

the above theorem states that if A and p commute, then p can be pushed

through the transitive closure of A. The most common such case is expected to

be for p being a selection. Such transformations on selection pushing were

among the first proposed for recursive programs in database systems [3, 32].

Another interesting case is when (6. 14) holds with equality, p is a projection m.

and B=AW, which is the same operator as A but operating only on some of

the columns of its input (the ones indicated by the projection T). Again, in

some sense, applying the above theorem results in the projection being pushed

through the transitive closure of A. Usually, such transformations cause

significant improvements in performance.

Example 6.7. As an application example of Theorem 6.10, consider the

transitive closure program (6. 8) with the query

P(c, y)?.

where c is a constant. Assuming that o is the selection and m is the projection

expressed in the above query, and that A is the operator scheme that corre-

sponds to the recursive clause of (6.8), the answer of the above query can be

expressed algebraicly as T UA *. Clearly, aA = A a, since both products are

equal to the following clause:

P(x, z) AQ(z, y) Ax=c+P’(x, y).

Also, XA = ATT (again, Am is the same operator scheme as A but accepting

as input and operating only on the columns specified by m), since both products

are equal to the following clause:

P(x, z) AQ(z, Y)+ P’(Y).

Thus, the conditions of Theorem 6.10 are satisfied, and m aA* can be replaced

by ( A W)*Z o, which corresponds to the following linear program:

P’(z) AQ(z, Y)+ P’(Y),

Q(c> y) -+ p’(y).
(6.15)

Note that (6. 15) is more efficient than (6.8), since the arity of the recursive

predicate has been reduced and the query selection is taken into account right

from the beginning. ❑

COROLLARY 6.3. Let A be a linear operator and T be a projection. If
~A < ~, then ~A* = ~.

PROOF. Assume that mA s m. From Theorem 6.10, with B = 1, we have

that ~A* s T. By Proposition 3. 3d, however, since 1 s A*, we have that

r s TA*. Hence, we can conclude that mA* = r. ❑

Corollary 6.3 allows for the elimination of recursion when its premises hold.

The projection m is pushed through A in a way that the latter disappears.
Similar work on projection pushing in a logic-based setting has been conducted

by Ramakrishnan et al. [40], who derived several syntactic characterizations to

capture the conditions of Theorem 6.10 for pushing projections and Corollary

6.3 for elimination of (recursive) clauses. We present two examples that are
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essentially taken from the above worh and show that applying Corollary 6.3

produces the same results.

Examp/e 6.8. Consider the following program-query pair:

P(X, tOAQZ(U, W, Z)~P1(X, U, Z),

P(X, U) AQ3(U, W, Z)+ P1(X, U, Z),

P,(X, U, Z) AQ4(Z, Y, V)+l?(X, Y)t

Q[(X>Y)+P(X. Y),

P(x. _)’?

If A, B, and C are the operator schemes that correspond to the first three

(recursive) clauses in the above program, then the whole program corresponds

to the following matrix equation:

Solving for P and incorporating the projection m specified in the query yields

T(C( A + B))* (see Section 5). It is easily verifiable, however, that TX < m,

for all Xc { A, B, C}. Thus, by Corollary 6.3, r(C(A + B))* = m, and the

above program can be replaced by the nonrecursive

Q,(X, Y)+ P(X, Y),

P(x, _)? n

Example 6.9. As a second example, consider the following program-query

pair:

P,(x. z,u)AQ, (z, u,y) ~P(x, y),

P1(X, W, W) AQ2(W, Z. U)+ P1(X, Z, U),

P(X, V) AQ3(V, Z, U)+ P1(X, Z,. U).

Q.(x, Z.U) ‘P, (x, z, u),

P(x, _)’?

If A, B, and C are the operator schemes that correspond to the first three

clauses in the above program then the whole program corresponds to the

following matrix equation:

Solving for P and incorporating the projection T specified in the query yields
T( All* Cl*AB*. Again, it is easily verifiable that TX s T, for all X = { A,

B, C}. Thus, by Corollary 6.3, T( AB*C)*AB* = 7rAB*. The above opera-

tor corresponds to the following program, which can be obtained from

the original one by removing the third clause, that is, the one that corresponds

to c:
P1(X, Z, U) AQI(Z, U. Y)+ P(X, Y),

P1(X, W, W) AQ2(WZ, U) API(x, z, u),

Q~(x. Z,ZJ) ‘P, (x. z. u),

P(x, _)? n
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7. Algebraic Transformations of Linear Recursion at the Ordering Stage

In this section, we present algebraic transformations of the query answer that

affect the orclering stage of query optimization (Figure 1). We show how

several algorithms that have been proposed in the literature are expressed as

different parenthesizations of an algebraic representation of the query answer.

In the first subsection, we derive expressions that correspond to algorithms that

are applicable to any linear recursive program. Practically, there is no limit in

the number of expressions that are equal to A*. We only present a small

number of them that have been previous] y proposed in the literature. In the

second subsection, we derive expressions that correspond to algorithms that are

applicable only to recursive programs of a specific form.

As in the previous section, all the optimization results presented in this one

depend solely on the algebraic properties of closed semirings. Hence, the

results can be generalized to mutual linear recursion as well, by simply using

linear operator matrices in place of linear operators. Moreover, all results in

this section hold for both operators and operator schemes.

7.1 GENERAL TRANSFORMATIONS OF A*

7.1.1 Naive Evaluation [3, 6]. This is the original algorithm proposed for

the evaluation of a (not necessarily linear) recursive program. Its algebraic

expression in the linear case is based on the fact that ~~~,~,, A ‘“ = ( 1 + A) ‘2.

Hence, we have that

A* = lim (1 +A)”.
l?+CC

(Recall that whenever explicit parenthesization is omitted, right associativity is

assumed for multiplication. ) Moreover, each power is computed from the

previous one: (1 + A)’”+l = (1 i- A)(1 + A)’”.

7.1.2 Semi-Naive Evaluation [6]. This algorithm corresponds to the defi-

nition of A* as a series, that is, A* = X: DO A’”. Again, each power is

computed from the previous one: A ‘“ + 1 = AA ‘“.

7.1.3 Smart/Logarithmic Evaluation [27, .52]. This algorithm corre-

sponds to the following form:

A*= fi(l+A2’)= ““. (I+ A4)(1+AZ)(1+ A).
,&=o

The number of multiplications in the expression of smart is much smaller than

that of semi-naive (for any finite expansion of A*, it is approximately equal to

2* log z N for smart vs. N for semi-naive), but they involve larger operators.

7.1.4 Minimal Evaluation [27]. This algorithm corresponds to the follow-

ing formula:

A* = H (1 +Ask +/f S3’)

k=O

= . ..(l+A9+ A18)(I+ A3+A’)(l+A~A2).

This expression has approximately 3 logs N multiplications (when semi-naive

has N). Clearly, algorithms can be created that need n log,, N multiplications
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for arbitrary n. They correspond to the following family of formulas:

[ )

A* = H ‘~’ *l.nh
k=O 1=0

The formulas for smart and minimal are special cases of the above for n = 2

and n = 3. respectively. The expression n log ~N, which gives the number of

multiplications of this formula, with n restricted to the integers, has a minimum

for n = 3, regardless of the value of N.

7.1,5 Query -llubquery ( QSQ) Evaluation [55]. For the query that in-

volves a selection, the QSQ Evaluation has been proposed by Vieille. QSQ tries

to take into account the selection as much as possible. The corresponding

algebraic formula is shown below:

m

(h4*=cT~ Ak= f- (f-JAL)= (J+ f (cJAk-l)A.
k=O k=O h=l

Note that the selection a is taken into account from the beginning, and that the

product of o with each power of A is computed from the product of o with

the previous one: oAk = (aAA - 1, A.

7.1.6 Prolog [16]. The formula that corresponds to the execution plan of

Prolog is the same as QSQ. The difference is in the details of the planning

stage, that is, Prolog processes one tuple at a time, whereas QSQ processes one

relation at a time. This is an example of the fact that the algebra developed in

this paper is not a useful tool for the planning stage of a recursive query

optimizer: two different execution plans are represented by the same formula at

the ordering stage.

7.2. SPECIALIZED TRANSFORMATIONS OF A*. Let A = BC = CB. By Corol-

lary 6.2, we have that A* = S~=O BrnC’n. This formula corresponds to a

rewritten program for A* that keeps track of the powers m in B and C and

then multiplies the corresponding ones (Example 6.3). There are several

different parenthesizations of the above formula, each one of which corresponds

to an algorithm that has been previously proposed in the literature. The

algorithms and their corresponding parenthesizations are presented below, for

the case where the product of a selection o with A* is desired, where

OB = Bo. In that case, we have that

m

oA* == ~ B’”GCm. (7,1)
m.()

7.2.1 Henschen-Naqvi [25]. According

Henschen and Naqvi, (7.1) is parenthesized as

to the algorithm proposed by

, B’l(~c’n-’)O

Moreover, the product of u with a power of C is computed from the same

product with the previous power: o Cm = (o C’n - *) C.

7.2.2 Counting [7, 43, 44]. The Counting algorithm as proposed by

Bancilhon et al. [7] and by Sacca and Zaniolo [44] corresponds to the same



Towards an Algebraic Theory of Recursion 361

formula as Henschen-Naqvi. The two algorithms are different in implementa-

tion details that belong to the planning stage of the query optimizer, that is,

whether all the products OC’H are computed first, before any multiplications

with B (Counting), or every product is immediately multiplied with the

corresponding number of B’s (Henschen–Naqvi). (Note that explicit parenthe-

sization of a formula only partially specifies the order of processing of each

operator. ) This difference can be further enhanced by the form of duplicate

elimination performed by the two algorithms. (It has been noted elsewhere as

well that Counting can be thought of as an efficient implementation of

Henschen-Naqvi [7].)

We want to emphasize that, although Corollary 6.2 deals with the product of

two operators only, its results can be generalized to products of an arbitrary

number of operators, thus capturing algebraicly the results of previous work by

Sacca and Zaniolo [43, 44]. In particular, given a set of operators { A,},
1 s i s n, that are mutually commutative, and a set of selections { o,},
O s i s n, such that o, commutes with all operators except A,, the following

holds :

One can now apply the Counting algorithm computing the powers of each A,

separately and then multiplying the corresponding ones together. Usually, most

of the selections will not be present. In the presense of multiple selections, for

each i such that o, is present, it is an interesting optimization problem to decide

whether to compute al A ~ + 1 from O,A ~ or not.

7.2.3 Shapiro-McKay [49]. Shapiro and Mc~ay presented an algorithm

that corresponds to the following parenthesization of (7. 1):

(JA* = cr+ o ~ B(BW’-l C’”-l)C.
~=1

Only two multiplications for each power of A are performed, but the selection

a is not taken into account in the evaluation of the transitive closure.

7.2.4 Han -Lu [24]. In a performance evaluation conducted by Han and

Lu, three algorithms were presented for (7. 1). The first was Henschen- Naqvi,

the second was Shapiro-McKay, and the third we call Han- Lu. The Han–Lu

algorithm corresponds to the following parenthesization of (7. 1):

(JA* = ~+ ~ (B~-’B)((OC”’- l) C).
m=l

Note that not only u C n+ 1 is computed from u Cm’ (as in Henschen– Naqvi),

but also Brn+ t is computed from B ~.

8. Multilineal Recursion

We now turn our attention to nonlinear recursion. In contrast to our approach to
linear recursion, where we first studied immediate recursion and then general-

ized to mutual recursion, we study mutual nonlinear recursion in its general

form directly.
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Recall that D is a database and CD is a fixed set of constants in D. Consider

a set of mutually recursive Horn clauses, and let ~ = (Pl. Pz, . . . . P,, ) be the

vector of relations that appear in the consequent of its elements with arities

{a,, az,. ... a.}. Again, we make no assumptions about the relations in the

Horn clauses being finite. Also consider a set of n nonrecursive Horn clauses

of the form Q,+ P,, i=l,2, ..., n, and let Q be the vector Q = (Q ~,

Qz,. . . , Q.). These two sets of Horn clauses can be expressed in ~lational

terms as follows. Consider the set of recursive Horn clauses having P, in their

consequent, for some 1 < i 5 n. Let J be the function that represents the

operations on ~ that these Horn clauses express. (If there are multiple Horn

clauses in that set, then ~, involves taking the union of relations. ) Then, the

complete set of Horn clauses takes the following functional form:

f-, (l?)G 1’,,
Q[g P,,

As in Section 4, the minimal solution

of equations

~,(g) U Q, = P,,

Let P=2c~x” ””x2C%, a, al.

in P—is defined as—

~@ P’=(P, uP’ 1>

i=l,2, . . ..n.

i=l.2, . . ..n.
(8.1)

of (8.1) is the minimal solution of the set

i=l,2, . . ..n. (8.2)

Clearly, ~ e?. Recall that addition G

P2 UP:,.. ., Pnu P:).

In addition, if @ is the ~t-vector (0, @, . . . . 0), note that @ o ~ =

~ o @ = P. The system of equations (8.2) can now be written as a single

equation

P =~(P) o Q. (8.3)
—

The following definitions introduce some classes of functions on P that are of

specific interest to the algebraic formulation of Horn clause recur~ion.

Definition 8.1. A function f:~ ~ ~ is linear if

(a) for all vectors P, ~’ in its domain, ~(~ o ~’) = f@) o f@’), and

(b) f(@) = 0.

Definition 8.2. A function g:? x ~ ~ & is bilinear if for a given ~’,

g(~, E’) is linear in ~, and for a gwen P, g@. ~~ is linear in ~’.

Definition 8.3. A function g:@ x ~ x 0. “ x ~ ~ & (the domain of g is

the product of ~ m times) is m-linear if for all i, given El. . . ., ~,_,,

P P the function g(~l, . . . ,~1, . . . ,~,~) is linear in P,. When nz is_I+l~...~_Pn,
not specified, such functions are called multilineal.

A system of recursive equations of the form (8.3) is linear, bilinear, or

m-linear, if f is linear, bilinear, or m-linear, respectively. Linear systems of

recursive equations can further be put into the form shown in Section 5 and

analyzed using the properties of closed semirings. Unfortunately, this is not

possible for nonlinear systems. The importance of m-linear functions in the

study of Horn clause recursion is demonstrated in the following proposition.
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PROPOSITION 8.1. If ~ = f (P, ~, . . . . ~) e Q is the equation represent-

ing a set of mutually recursive Horn cIauses, where f: (~) ‘“ -~, then f is
m-linear.

PROOF. Clearly, the m-linearity of f depends on the k-linearity, k ~ m,
of the individual recursive Horn clauses. Let g be the function corresponding

to one such clause, and assume that k s m elements of P appear in it.

Given fixed Ql, . . .,~, _l, Q,+l, . . . ,Q~, consider g(Q1, . . . ,Q,. . . . ,Q~)

as a function of Q,. Clearly, g can be expressed as a composition of pro-

jections, selections, and cross products of QI, . . . . Q,_,, Q,+,, . . ., Qk.

Thus. in general, g corresponds to an operator in R, which is a set of linear

relational operators. By Proposition 3.1, g is linear in Q,. This is true for all

i, so by Definition 8.3, g is k-linear. Since g was chosen arbitrarily

among the functions of the individual Horn clauses, we can conclude that f
is m-linear. ❑

Having established the multilinearity of all recursive Horn clause systems,

we proceed by showing the universality of bilinear recursion in the vector form

as we have defined it. This is achieved by the following propositions.

PROPOSITION8.2. A recursion consisting of only linear and bilinear terms
is equivalent to one with only bilinear terms.

PROOF. Consider the following equation, consisting of only linear and

bilinear terms:

The linear term, which involves the operator matrix ~, can always be

eliminated by treating the bilinear term as constant and solving the above

equation using the techniques of Sections 4 and 5:

r =A”g(r$.r) @.4*Q = ‘f f’(E,P) @Q.

Given a fixed ~’, the linearity of 4* and the bilinearity of g establishes the

linearity of g’~, ~’) in ~:

d(l? @g’) =4*dB @ Q>E’)=4!*(MV+U(Q3”))
=A*g(P, P’) @ ~*g(Q, ~’) = #(~, P’) o #(Q, ~’).

.#(@. g’) =~*g(O, y’)=~*@=g.

Linearity of g ‘(~, ~’) on ~’ is established similarly. Hence, the function
g’ = ~*g is bilinear. ❑

PROPOSITION8. ~. Any mu[tilinear recursion can be reduced to a bilinear
recursion.

PROOF. Consider the m-linear recursive equation.

E= f(r>E$. ..>E) @Q. (8.4)
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bilinear functions g,, . . . . g,. _,, whose composition is equal to
new vectors ~1, . . . , En _ ~ such that

P_m—2 = g,n_2(~,ym_3)

r = g,n-l(l?t E,,l-2) @Q.

Clearly, the above system is equivalent to (8.4) and it is bilinear. ❑

Because of the universal character of bilinearity expressed in Propositions 8.2

and 8.3, we can confine our consideration to bilinear recursion only of the form

~ =g(P, ~) o Q. (8.5)

All Horn-clause derived recursions can be treated in this way. The minimal

solution to (8.5) is provided by Tarski’s Theorem [51]. For its proof, a partial

order on & is needed, which is defined as P G P’ @ (Pl G P;, . . ., P. G P;).— .

THEOREM 8.1. The minimal solution of’ eq. (8.5] is the limit of the
sequence

P—m+ 1 =g(Ern>R)@Q>

Po=g. –
(8.6)

PROOF, Because g is bilinear, g is also monotone on both arguments of it

(by Definition 8.2 and Proposition 3.2). The following induction on m proves

that {~~} is an increasing sequence, with respect to the partial order in p.

Basis. For m =0, itis PO= @G Q=~l.
—

Induction Step. Assume that, for some m >0, it is ~ti, G P,. + ~. This,

together with the monotonicity of g, yields

E,. ~ E,. + 1 = g(ym,y.,) ~ g(Em+lj E’,,, +l) =E,,, +l Qrm+z.

If follows that {~~} monotonically converges, and its limit, which is the

solution of (8.5), is equal to~ = limti,+~~,~ = lJ~=O~~. U

Note that straightforward adoption of (8.6) as an iterative procedure to

compute the limit of the sequence is equivalent to the naive evaluation [3, 6],

which was described in Section 7.1 in its special form for linear recursion.

For the rest of the paper, g is viewed as multiplication. that is, g(~. Q) =

P “ Q. Note that o is not necessarily associative. Define the system

EE= (~,@ >“,@),

As follows:

~ The set of n-vectors of relations from CD with arities { al, az, . . . . a.}.
8 Addition of vectors as defined above.

- Multiplication of vectors defined as ~ “ Q = g~, Q).

@ The additive identity, that is, the n-vecto~of empt~relations.

The following theorem characterizes the algebraic structure of EP.
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THEOREM 8.2. The system EP is a nonassociative closed semiring without
identity.

PROOF. The proof is straightforward and is omitted. It depends on well-

known properties of sets and unions of sets and on the bilinearity of “ . ❑

In EP, power is defined as

El =~,p”=~ . p“-1, for alln al<— .

Note that, since o is nonassociative, it is not necessarily true that ~‘2 =
~n-1 “ ~.

With the above, we have established the appropriate algebraic framework to

study multilineal recursion, namely the system EF. We have shown that any

such recursion is equivalent to a purely bilinear one. In the next two sections,

we investigate various conditions under which a bihnear recursion is equivalent

to a linear one.

9. Equivalence of Bilinear to Linear Recursion

In the sequel, since g has been represented syntactically as multiplication, the

following equation is used instead of (8.5):

~=P”~@Q. (9.1)

Moreover, none of the forthcoming results is of any value when o is parametri-

zed with actual relations, so we shall always be concerned with o being

parameterized by relation schemes (i.e.. the database will not be taken into

account). If a bilinear recursion (9.1) is equivalent to a linear one, it is called

linearizable. Linearizability is not known to be decidable [2 1]. We restrict our

attention to a specific type of Iinearizability. In particular, we want to derive

conditions that ensure the equivalence of (9.1) to a linear equation of the form

~=~”QeQ
—

or of the form

~=Qo~oQ. (9.2)

In the former case, (9.1) is called right-linearizable, whereas in the latter case

it is called left-linearizable. The two cases are completely symmetrical, so we

are mostly concerned with left-l inearizability. Note that the solution of (9.2) is

72;=, Q’.6

LEMMA 9.1. Let ~% denote the solution
holds:

~*z~Qk
k.l —

of (9. 1). Then, the following

PROOF. Using (8.6), we prove by induction on m, rn >0, that

m+l

P_,n+l Z ~ Qk.

k=l —

‘~ denotes a series with respect of @
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Basis. For m = O, the above yields ~1 z Q, which is a consequence of
.

(8.6) with & = 0.

Induction Step. Assume that the claim is true for some m >0. We prove

it for n? + 1. From (8.6) we have that

P—m+ 2 =~,n+l O~,n+l@Q

??1+ I ?n+l

z ~ Q[. ~ Qke Q Induction hypothesis and
[=1 — k=l — — monotonicity of o

m+l r?z+2

~Q. ~ Qk @Q= ~ Qk. Monotonicity of “
— k=, - — k=l —

Taking the limits of the two sequences, ~,n and ~~= ~ Qk, we concluded that

P* z E;=, QL. ❑
—

—

As we prove later, associativity of o is a simple, albeit strong, condition to

ensure linearizability. The latter, however. is ensured by a range of conditions

that are weaker than associativity. They are all variants of the notions of

power-associativity and alternativeness. We have borrowed both terms from the

study of nonassociative algebras, where they are in common use [48]. We

proceed from the strongest (least general) to the weakest (most general)

condition.

Definition 9.1. The bilinear multiplication “ is called left-subalternative
if, for all ~, Q= ~, there exists n a 1 such that

—

p2.Q~p. —, (;(!?”(P”Q)).”.), (9.3)

and it is called right-subalternative if, for all ~, QG ~, there exists n > 1

such that

lt is subalternative if it is both left- and right-subalternative. If n == 2 and the

above equations hold with equality, “ is left-alternative, right-alternative,
and alternative, respectively.

THEORE~i 9.1. [f - is Ieft-subalternative, then (9.1) is left- linearizable.

PROOF. Using (8.6), we first prove by induction on m >0 that, if “ is

left-subalternative, then ~,,z satisfies the following two formulas:

-H-I+, ~ ,$, Q’,P (9.4)

and

P _“(Q”(”””(Q”x)”””)). for all x. (9.5)_,n+l. XGEQ
_ n—
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Basis. For m = 0, (9.4) is derived from I?l G Q, which is a consequence

of (8.6) with ~c) = 0. Similarly, (9.5) follows—immediately from (8.6):

~,”XGQ.X.-

Induction Step. Assume that the claim is true for some

it for m + 1. From (8.6), we have that

(Em+,) “ ~

(Em+,“~.,+I@Q) “.x

(R.+, “R?+,) “x@Q”x

m > 0. We prove

Bilinearity of “

Repeated applications of induction hypothesis (9.5) and

monotonicity of “

Similarly, we have that

P—.-Hz+ 2 = E,n+l “~,,,+, e Q

Induction hypothesis (9 .4) and monotonicity of o

Q:ly((~(:,$(;(QQ)))))
k

Induction hypohtesis (9.5)

=$2,(4”(Q”[”””(Q”Q)””’)).
k

Bilinearity of “

This concludes the induction step, which proves (9.4) and (9. 5). Equation (9.4)

implies that the solution ~* of (9. 1) satisfies R* = Ey. IQk. Together Wi:h

Lemma 9.1, this implies that the solution of (9.1) is given by E* = ~;= 1Q ,
that is, it is equal to the solution of (9.2). Hence, because of the left-subalter-

nativeness of “ , the bilinear (9. 1) is left-linearizable. O
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COROLLARY 9.1. If “ is right-subalternative, then (9. 1) is right-lineariz-
able.

PROOF. This is the symmetric case of Theorem 9.1 and can be proved

similarly. ❑

COROLLARY 9.2. If ● is subalternative or alternative, then (9.1) is both
left- and right-linearizable.

PROOF. This is a straightforward consequence of Theorem 9.1, Corollary

9.1, and Definition 9.1. U

The following is an example of a bilinear Horn clause that is right-alternative

but not left-alternative.

Example 9.1. Consider the bilinear Horn clause

P(x, z) AP(y, v)+ P(x, y).

Let o represent the ftmction of the Horn clause. We show that (Q “ P) “ P =

Q “ (P c P), whereas (P o P) . Q # P “ (P . Q). The Horn clauses that cor-

respond to the above algebraic equations are

Q(-x. z’)AP(z, v’)Ap(Y, v) +P(x, Y), (9.6)

Q(-x, Z) Ap(y, z“) Ap(v, v“) ~ P(.x, y), (9.7)
P(x> z’)AF’(z, v’)AQ(Y, v) +P(x. Y), (9.8)
p(x, z) AP(Y, z“) A Q(v, V“) + p(x, y). (9.9)

Clearly, (9.6) and (9.7) are equivalent, whereas (9. 8) and (9,9) are not. This

implies that the original Horn clause corresponds to a function that is right-

alternative but not left-alternative. Nevertheless, Corollary 9.1 guarantees that

it is equivalent to a linear recursion. U

COROLLARY 9.3. If “ is associative, then (9. 1) is both left- and right-
linearizable.

PROOF. We show that associativity implies alternativeness, whence by

Corollary 9.2, the claim follows a fortiori. Associativity implies that for all ~,

Q, ~ Ey, ~ “ (Q “ ~) = & “ Q) . R. Left-alternativeness is obtained by

taking ~ = Q in Yhe above formula, whereas right-alternativeness is obtained

by taking Q= ~. El

In addition to the various conditions related to alternativeness, linearizability

is also ensured by properties related to the notion of power-associativity.

Definition 9.2. The bilinear multiplication “ is power-subassociative if.

for all ~ e&, and for all m, n > 1, there exists k > 1 such that

(9.10)

lt is power-associative if k = m + n and (9. 10) holds with equality.

THEOREM 9.2. (9. 1) is left-linearizable if arid only if “ is po wer-stlbas-
sociative.
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PROOF. Assume that o is power-subassociative. Using (8. 6), we prove by

induction on m, m >0, that the following holds:

(9.11)

Basis. For m = O, (9. 11) is derived from PI G Q, which is a consequence

of (8.6) withl?o = ~.

Induction Step. Assume that the claim is true for some m >0. We prove

it for m + 1. From (8.6), we have that

P—n]+ 2 =~wz+lO~,n+l@Q

~’&Qk.~Q’@Q Induction hypothesis and
k=, — /=, — —

monotonicity of “
m

= ~ Qk. (J’@(J Bilinearity of “
‘=l,l=l— — —

m

G ~ QkCBQS ~ Qk. Power-subassociativity of o
&K — — k=l—

In the next to last expression, ~ denotes some subset of the natural numbers.

Formula (9. 11) implies that the solution E* of (9.1) satisfies P* ~ IS;= ~Qk.

Together with Lemma 9.1, this implies that the solution of (9.1) is given by

(9.12)

The right-hand side of (9. 12) represents the solution of (9.2). Hence, because of

the power-subassociativity of “ , the bilinear (9. 1) is left-linearizable.

For the other direction, assume that (9kl) is, left-linearizable, which implies

that (9. 12) holds. Clearly, for all k, 1, Q . Q z E*. Hence, from (9. 12), we

have that for all k, 1, Qk “ Q/ 2 E;= ~Q”z .—The left-hand side of the above

formula is a conjunctiv~ query [15] a~d the right-hand side is a set of

conjunctive queries. Applying the theorem of Sagiv an~ Yannakakis [46] yields

that for all k, 1, there exists some m such that Qk . Q G Q’”, that is, that o is— —
power-subassociative. ❑

—

COROLLARY 9.4. If o is power-associative, then (9.1) is both left- and
righ t-linearizable.

PROOF. Power-associativhy implies power-subassociativity. Hence, by The-

orem 9.2, (9. 1) is left-line~~izable. In addition, power-associativity implies that

Q“’ - Q=Q “ Q’n=Q .ThUS,When- is power-associative, (9.1) is right-

linearizable as w—en. ~

Example 9.2. Consider the following bilinear recursive Horn clause:

P(x, z) AP(z, w) AR(Y) -+ P(x, Y).
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Let “ represent the function of the Horn clause. We show that, for all P, Q. S,

(P . Q) “ S G P “ Q. The Horn clauses that correspond to the above algebraic

formulas are

P(x, z’)AQ(z’, w’)AR(z)AS(Z, w) AR(Y) +P(.x, y) (9.13)

P(x, z) AQ(:, wJ) AR(Y) ‘P(x, Y). (91’$)

Clearly, viewed as conjunctive queries, (9. 13) is contained in (9. 14). Replacing

Q and S with arbitrary powers of P yields (P . P‘) o P [ ~ P o P h, or
p~+l . P/cPA+], that is— . 0 is power- subassociative. Theorem 9.2 guaran-

tees that the given bilinear recursion is left-linearizable. It is easy to verify that

o is not associative, so the above example establishes the usefulness of the

condition of power-subassociativity over associativity. ❑

By Corollary 9.4, power-associativity implies that (9. 1) is both left- and

right-linearizable. To the contrary, power-subassociativity implies that (9. 1)

is left-linearizable only. Naturally, there is a condition similar to power-

subassociativity that implies that (9.1) is right-linearizable. The condition is

called reverse power-subassociativity and it is defined as follows: The multi-

plication o is reverse power-subassociative if, for all ~ 6 ~, and for all m,
n > 1, there exists k ~ 1, such that

It is straightforward to see that reverse power-subassociativity is implied by

power-associativity.

Recently, the result of Theorem 9.2 has been made tighter by Ramakrishnan

et al. [41]. Before their result can be presented, some definitions and a lemma

are necessary.

Definition 9.3. The bilinear multiplication

if, for all P e<, and for all 1 > 1, there exists.

E2 . p[~p~?l—.— —

o is po wer-[eft-subaltern ative
nz > 1 such that

(9.15)

Note that the form of (9, 15) is a special case of both (9. 10) and (9.3), which

define power-subassociativity and left-subalternativeness respectively. The name

of the property expressed in (9. 15) is due to this observation.

LEMMA 9.2. If “ is po wer-left-subalternative, then for all ~ ~ ~ and for
alln > 1, @ @ P2)” G E~=l g’”.—

PROOF. The proof is by induction on n.

Basis. For n = 1, the lemma is satisfied trivially, since ~ EB~ 2 is a finite

sum of powers of ~.
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Induction Step. Assume that the lemma is

it for n + 1.

371

true for some n > 1. We prove

(E ~ p)”+’
— = (E@E2)”(P @ P’)n

~(ror’)”:p’n
??1=1

co m

??1=1 ??7=1
CC

~ E I?’’’+’@ E l?’”
m=l t??eh

Induction hypothesis

and monotonicity of “

Bilinearity of o

Power-left-subalterna-

tiveness of “co

m=l

In the above, JY is some set of natural numbers. This concludes the proof of the

lemma. ❑

We now proceed in proving the theorem of Ramakrishnan et al. [41] in the

algebraic framework of this paper. Although the two proofs are different, they

essentially use the same techniques.

THEOREM 9.3 [41]. The bilinear multiplication “ is po wer-left-subalter-
native if and only if it is power-subassociative.

PROOF. Clearly, if c is power-subassociative, then h is power-left-subalter-

native as well. For the other direction, assume that “ k power-left-subalterna-

tive. We prove that, for all P GP and for all k, 1> 1, there exists M > 1 such

that ~ k o P 1 G ~ ‘il. The pr~of~s by induction on k.—

Basis. For k = 1, the above claim is satisfied trivially, since P o ~ [ =
pl+l.

Induction Step. Assume that the claim is true for some k > 1. We prove it

for k + 1. Let Q be defined as Q= ~ o EL. Clearly, for all k > 1, the

following hold: –
.

~’~(1~~’)’ = Q’,

~’+’G(~@P’)’=Q.
—

Hence, we have that

~k+l. p[c Qk. QL Monotonicity of o—— — —

~Q”=(~~~z)”, for semen > 1 Induction hypothesis

G-g p’. Lemma 9.2
i?z= 1

Pm, Since the left-hand side of theThuc, we have shown that P k a p [ c E;=, _

above formula is a conju~ctive query and its right-hand side is a set of

conjunctive queries, we can again use the result of Sagiv and Yannakakis [46]

to yield ~ ~ o P i G ~ ‘n, for some m > 1. This concludes the induction step,

and the proof =f the theorem is complete. ❑
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FIG. 2 Relationship of properties of - lmplymg hneanzablhty

Power-right-subalternativeness is defined symmetrically to Definition 9.3,

and results similar to those of Lemma 9.2 and Theorem 9.3 can be derived.
The sufficient and necessary-and-sufficient conditions for linearizability that

have been presented in this section are summarized in Figure 2. There, an

arrow from property x to property y indicates that property x implies property

y. Some properties are linked with bidirectional arrows, signifying that they are

equivalent. An interesting by-product of this study is that, in Ep, left-subalter-

nativeness implies power-subassociativity. We do not expect Ibis to hold in

general, that is, for all nonassociative closed semirings. In that respect,

nonassociative algebras are different: for all such structures, alternativeness

always implies power-associativity [48].

10. Embedding EP in an A Igebra—
Unfortunately, all properties that are equivalent to left-linearizability, that is,

power-subassociativity and power-left-subalternativeness, require testing for

containment of recursive programs, which is in general undecidable [50]. One

could consider uniform containment [45] of the programs involved in these

conditions and obtain decidable sufficient conditions for linearizability [41], but

the required tests are still expensive. In fact, among the conditions in Figure 2.

only those that are at least as strong as left-alternativeness can be easily tested,

in the sense of only requiring testing for equivalence of conjunctive queries. In

this section, we derive another sufficient condition for left-linearizability, which

is related to power-associativity and requires testing for equivalence of nonre-

cursive programs as well. This is done by embedding EP in an algebra.

In general, given a system Es of a given algebraic structure A, one can

embed it in a richer algebraic structure 1? by extending the set of properties of

its elements and/or its operations, so that the requirements of B are satisfied.

By appropriate mappings of the properties of B to the properties of A,

theorems that are derived within B can be used to derive additional ones that

hold within A. Schematically, this is shown in Figure 3, where T~ and T~

denote theorems that hold within A and B, respectively. System Es is
embedded in B (in the opposite direction of the arc B ~ A), T~ is derived
within the embedded system, and T~ is derived by reversing the mappings used

in the embedding. The final result is a theorem within A.
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B––––– ____ + TB

1 1 PIopcIryandOperabonMapping

A––––––––––~fi ‘––– Deriv’t’”n

FTC. 3. Schematic representation of embedding.

In our specific case, the system of interest is EP, A is a closed semiring, B
is an algebra, T~ is Theorem 10.2, and T~ is ‘a known theorem in power-

associative algebras [48]. The main effect of embedding EP in an algebra is

that relations are treated as multisets instead of sets. Relalions may contain

duplicate tuples, and each tuple is associated with a number that indicates the

number of occurrences of the tuple in the relation. In fact, the notion of

“occurrence of a tuple in a relation” becomes fuzzy, since the number

associated with a tuple in a relation can be an arbitrary real number, although

allowing nonintegers is only a technicality so that the embedding is realized. If

one needed to evaluate programs within the algebra, duplicates would have to

be retained, and the processing cost would most likely be prohibitive. As we

shall see in this section, however, we only use the embedding to derive

conditions for left-linearizability. If a program does satisfy these conditions, its

equivalent linear form can be executed within the closed semiring of linear

operators with no need to retain duplicates.

We now proceed with the embedding. Recall that 2 C3, al > 1, 1 s i s n,
denotes the collection of all relations having arity a,, and that & is defined as

Also, define

Consider a relation Q G C~. As such, Q can be viewed as a function Q:

Cjj - {O, 1}, defined by

Q(f) = {:
if the tuple t is in Q,

otherwise

Based on that, & corresponds to the set & = {all functions p: CD - {O, 1}”}.

We extend & to the set p’ of all functions mapping CD into ~”, where R is

the set of real numbers. That is, &r = {all functions p: ~~ ~ R”},7 which is

well known to be a vector space over the field of reals R [26]. Each member of

~‘ is called an extended relation vector. Clearly, every member of ~ is also

a member of &‘. The appropriate addition in &r is the ordinary addition of real

numbers: For all ~ c ~n, (~’ + Q’)(1) = P’(1) + Q’(z). (We use + with the

understanding that it is not to be—confused with -t ax defined in Section 3 for
addition of linear relational operators. )

Consider a bilinear function g: & x & ~ ~, which corresponds to the

multiplication “ . Define its extension g‘: ~‘ x &r + &‘, which corresponds

7The superscript r is for reals. It will be used to tag elements, operations. and functions of ~’
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to the multiplication sr, as follows:

P’ “’ Q’= ,;cDEr(s)Qr(I)(L < 1,).
–..—

where 1~ is the indicator function

{
1,(J) = :

if $=!,

otherwise.

Note that the summation is with respect to ordinary addition, that is, the

addition in &‘. An intuitive meaning of the definition of o‘ is that it operates

on (extended) relations one tuple at a time and retains duplicates in the result. It

is easy to show that . r is bilinear. In fact, this is the case whether “ is bilinear

or not.

For any member ~‘ of &‘, define the function I~‘ I e@ as follows:

Intuitively, when I I is applied on an extended relation vector, it removes the

duplicates. For the following, recall that any element of ~ is an element of ~”

as well.

LEMMA 10.1. l~P. Qe&, then 1P “r QI =P o Q.

PROOF. This k a direct consequence of the definitions of . and .‘. ❑

THEOREM 10.1. The system (~’, +, “r, @, R) is a nonassociative algebra
without identity over the field R.

PROOF. We have already mentioned that the system (~’, +, 0, R) is a

vector space over the field of reals R. It is also straightforward to verify that

~‘ is closed under multiplication, or distributes over +, and that multiplying

any product of two elements of ~ r with a real number is equivalent to

multiplying one of the elements and then taking the product. Based on Defini-

tion 2.4, the above imply the theorem. ❑

The multiplications o and or define powers on & and &‘, respectively, as

follows:

The concept of power-associativity can now be extended to or.

Definition 10.1. The bilinear multiplication “r on P’ x P’ is power-
associative if

(Er)(n) .r

LEMMA 10.2.

(~’)” = (~r)’~’+n)

The bilinear multiplication . on P x ~ is power-associa-
tive, if its extension “ r on P‘ ~ P r is power-associative.

PROOF. Suppose “ r k power-associative. Then, for P e ~, it is
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The first, second, and fifth equalities are derived from Lemma 10.1. The third

one is a consequence of the fact that ~ e ~, and the fourth one is due to the

power-associativity of “r. ❑

THEOREM 10.2. If for all ~ r ~~r

(E,)(2) .r~r= (p F)(3) and (P’)(2) . (~~)(’) = (g’)(4’. (10.4).

then . is left- and right-[inearizab le.

PROOF. It is known that, within an algebra over a field with characteristic O

(like R), (10.4) is a necessary and sufficient condition for a bilinear multiplica-

tion o‘ to be power-associative [48]. By Lemma 10.2, this further implies that

- is power-associative. Hence, by Corollary 9,4, (10.4) implies that “ is both

left- and right-linearizable. ❑

Theorem 10.2 provides a sufficient condition for left-linearizability. The only

disadvantage is that the condition requires testing for equivalence of conjunctive

queries within the embedded system, that is, taking into account duplicate

retention. The classical theorem by Chandra and Merlin does not hold, because

it treats relations as sets and not multisets [15]. We are not aware of any

decision procedure for this type of equivalence. In general, there is almost no

theory on the properties of queries and programs that retain duplicates. The

development of such a theory is part of our future plans.

11. Comparison to the Logic-Based Approach

As we mentioned in the introduction, the great majority of the work on

recursion has been based on a first-order logic representation of recursive

programs, Horn clauses in particular. In this section, we give a brief compari-

son of the algebraic approach developed in this paper with the traditional

logic-based approach. Clearly, by Proposition 4.1, every linear Horn clause can

be represented by a linear operator in R and vice versa. Similarly, every

multilineal program can be expressed as a bilinear multiplication of two relation

vectors and vice versa. Thus. the two approaches are equivalent in terms of

expressive power. Their difference is in the ease with which certain properties

are expressed. We claim that certain properties are fundamentally algebraic in

nature and they can be studied more naturally in the algebraic framework,

whereas others are logic-based in nature and they can be studied more naturally

in the logic-based framework. We do not attempt here to define precisely which

properties are algebraic in nature and which are not, since this may enter the

realms of philosophy. Instead. we compare the results presented in this paper

with similar ones that have been derived within the logic-based framework. if

such results exist. We also describe some known results in the logic approach

that do not seem to lend themselves naturally in the algebraic approach.

11.1. STRENGTHSOF THE ALGEBRAIC APPROACH. The fundamental advantage

of the algebraic over the logic-based approach is the ability of the former to
explicitly represent query answers of recursive programs (especially in the

linear case), which can then be manipulated algebraicly. In the previous

sections, we have presented several theorems that can be derived by taking

advantage of this ability. Although some of these results have been derived

based on logic as well, we feel that their algebraic derivations are more natural.
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In Section 7, we have seen how the algebraic framework can be used to

express several algorithms for recursive query processing at the ordering stage

of query optimization (Figure 1). Some of the algorithms have been proposed

under the logic-based framework as well (e. g., Henschen– Naqvi), whereas

others have not (e. g.. Minimal). By the very nature of ordering stage, the

algebra seems to be the only appropriate tool to explore the complete variety of

processing algorithms. Thus, we do not discuss the ordering stage in any more

detail, but we concentrate on the rewriting stage, where the algebraic and

logic-based approaches seem to complement each other.

11.1.1. Linear Recursion. Section 6 describes several results that can be

used at the rewriting stage of an optimizer. Theorem 6.1 on the decomposition

of ( B + C)* has been observed by Ramakrishana et al. as well, who in essence

used the algebraic notation developed in this paper [41]. They actually used

regular expressions over rule names, but the equivalence to the algebra is

straightforward, since there is a one-to-one correspondence between rules and

operators, and regular expressions form a closed semiring [2]. Theorems 6.2

and 6.3 are new and similar in nature with Theorem 6.1. Other results of the

same nature have been obtained by Lassez and Maher [33, 35] and by Dong

[19]. Theorems 6.4 and 6.5 on necessary conditions for decompositions of

( B + C)* make use of the theorem of Sagiv-Yannakakis [46], which is

logic-based in nature.
Theorem 6.6 on the decomposition of ( BC) * is new, but its corollary

(Corollary 6.2) has been used by many researchers, although not with any

explicit reference to the algebra behind it. An example of such a use is in the

performance study of Han and Lu [24], where the algorithms of

Henschen-Naqvi, Shapiro-McKay. and Han-Lu were expressed in the way

that was shown in Section 7. Theorem 6.7 is also new and captures part of the

essence of the study of Naughton on recursively redundant predicates [37].

Theorem 6.8 allows the interchange of the two linear forms of transitive

closure. This together with the fact that the bilinear version of the transitive

closure program is easily proven to be associative, and therefore linearizable

(Corollary 9.3), result in the ability to modify any form of the transitive closure

program-query pair into its most efficient form, thus capturing all possible such

transformations [10]. Theorem 6.9 can be used to reduce the arity of recursive

predicates, which often has significant effects on performance [9, 39].

Finally, Theorem 6.10 and Corollary 6.3 provide the foundation for selection

and projection pushing. Transformations like those of Theorem 6.10 on selec-

tion pushing were among the first proposed for recursive programs in database

systems [3, 32]. In the logic-based approach, projection pushing has been

studied by Ramakrishnan et al. [40], who derived several syntactic characteriza-

tions to capture the conditions of Theorem 6.10 for applying projections early

and Corollary 6.3 for elimination of (recursive) clauses. We have presented

several examples that demonstrated the applicability of the algebraic approach

in such issues, by producing the same results as the logic-based approach.

As a final comment on the merits of the algebraic approach in the study of

linear recursion, we want to mention that several other researchers have

employed it in their work, although not explicitly. We have already mentioned

the work on commutativity by Ramakrishnan et al. [41], and the performance
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evaluation by Han and Lu [24]. We would also like to mention the work on

magic functions by Gardarin and Maindreville [22] and Gardarin [23], where

Horn clauses are viewed as functions and manipulated appropriately (precisely

in the way operators are), and the work on parallel algorithms for transitive

closure by Valduriez and Khoshafian [53], where they develop algorithms based

on the fact that, for two linear operators A, 1? # O, if A* = A and B* = B,
then for all k >0, A ~ s A and Bk s B, which further implies that ( A +
B)* = (1 + A)(BA)* + (1 + B)(AB)*.

11.1.2. Bilinear /A4ultilinear Recursion. The algebraic approach for bi-

linear recursion can have again several applications at the ordering stage of

query optimization. No such results have been reported in this paper, however,

since they are either obvious or straightforward extension of results for the

linear case.

For the rewriting stage, the algebraic approach has provided several results

on the problem of linearizability in Sections 9 and 10. The results in the latter

rely on embedding relation vectors in an algebra and on known algebraic

properties of such structures. The logic-based approach lacks the tools that

would enable similar discoveries. From the results in Section 9, Theorem 9.3 is

the most general of all and is part of the work by Ramakrishnan et al. [41].

Their effort was based on proof trees and their transformations, but essentially,

a proof tree is another representation of a product in a nonassociative closed

semiring (the only difference being that the leaves of a tree are individual

tuples, whereas the factors in an algebraic product are set of tuples, i.e.,

relations). An example of the correspondence is shown in Figure 4.

The earliest work that we are aware of on the problem of linearizability is

that by Zhang and Yu [56]. They focus their attention to a restricted class of

bilinear Horn clauses, that is, a restricted class of multiplications “ , and for

that class they provide a necessary and sufficient syntactic condition for left

Iinearizability. It is rather straightforward to prove (and we do not do it in this

paper) that if a Horn clause satisfies their syntactic condition, then the corre-

sponding multiplication . is associative, so by Corollary 9.3 it is left- and

right-linearizable. Thus, for the restricted class of multiplications they exam-

ined, all conditions studied in Section 9 together with the condition by Zhang
and Yu are mutually equivalent. The algebraic approach provides tools to study

these conditions, whereas the logic-based approach, which was employed by

Zhang and Yu, provides syntactic characterizations of them. More recent

results on syntactic conditions for linearizability of restricted classes of bilinear
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Horn clauses have been given by Zhang et al. [57] and Saraiya [47]. Both these

conditions are generalized by Theorem 9.3 [41].

11.2. LIMITATION OF THE ALGEBRAIC APPROACH. The algebraic approach is

limited to only addressing problems at the rewriting and ordering stages of

query processing and optimization. The abstraction it offers is at a higher level

than is necessary for studying the details of the planning level. In addition, even

at the rewriting staoeb , certain transformations seem to have a nonalgebraic
flavor, for example, magic sets and generalized counting [7, 11], and factoring

[39] cannot be derived algebraicly. R is hard to identify exactly what makes a

property algebraic and what not. In that sense, we do not know which

characteristics of the above transformations make them unnatural to express

algebraicly. One problem seems to be notational, since the above transforma-

tions tend to produce multilineal programs from linear ones, and the appropri-

ate algebraic structures for the two are different. Another problem seems to be

that these transformations tend to modify the structure of the original

operators/clauses. Expressing such transformations algebraicly requires speci-

fying much detail about the operators, for example, their parameter relations

and the specific manipulations of their columns. Doing that would simply be a

change in notation from logic to algebra, which seems pointless, since the

latter, when expressing all the required details, offers no advantages over the
former.

Negation was excluded from the algebras developed in this paper, since we

only deal with Horn clauses. Hence. the current study has very little to offer in

the study of programs that include it. It is conceivable that more powerful

algebras will be able to capture negation and offer insights into its properties.

Embedding relation vectors in an algebra (Section 10) may be a good starting

point for developing such an algebraic structure, but this requires further

investigation.

Finally, as we have already mentioned, the algebra does not offer any tools

that can lead to deriving syntactic characterizations of interesting properties of

Horn clauses programs (even algebraic properties). To be more precise, the

algebra should take into account the details of the manipulations of the columns

of the relations in the operators in order to become a usable tool for such work.

This offers no advantage over the logic-based approach. Hence, syntactic

characterizations of such properties are likely to be based on the logic form of

the operators. As examples of such work, we offer characterizations of the

properties of bounded recursion [28, 38], linearizability [47, 56, 57], commuta-

tivity of selections with arbitrary operators [1], and commutativity of arbitrary

operators [29].

1~. c~~~l~[~i~~~

A significant subset of all linear relational operators have been embedded into a

closed semiring. Within this algebraic structure, processing recursive Horn

clauses has been reduced to solving recursive equations. For a single linear

Horn clause, the solution to the corresponding operator equation is equal to the

transitive closure of the operator representing the Horn clause. This approach

can be extended to multiple Horn clauses that are linearly mutual recursive. In

that case, inference is reduced to solving linear systems of operator equations,

in the same manner that immediate recursion is reduced to solving a single such
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equation. The ability to algebraicly manipulate an operator representing the

query answer has important implications. We have presented several specialized

transformations of the query answer at the rewriting stage of query optimiza-

tion, which when applicable, have the potential to speed up the process of

answering the query. We have also described several general and specialized

transformations of the query answer at the ordering stage.

Nonlinear recursion has also been treated similarly by embedding all bilinear

recursions into a nmassociative closed semiring. The universality of the

approach has been demonstrated by showing that any nonlinear recursion can be

reduced to a bilinear one. We have given several conditions for a bilinear

recursion to be left-linearizable. All conditions are variations of two properties,

namely, alternativeness and power-associativity. Most of these conditions re-

quire testing for equivalence or containment of recursive programs, which is

computationally undesirable. By embedding all bilinear recursions into an

algebra, we have been able to derive a simple sufficient condition for lineariz-

ability that requires testing for equivalence of nonrecursive programs only.
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