Towards an Algebraic Theory of Recursion

YANNIS E. IOANNIDIS
University of Wisconsin, Madison, Wisconsin

AND

EUGENE WONG

University of California, Berkeley, California

Abstract. An algebraic framework for the study of recursion has been developed. For immediate linear
recursion, a Horn clause is represented by a relational algebra operator. It is shown that the set of all
such operators forms a closed semiring. In this formalism. query answering corresponds to solving a
linear equation. For the first time, the query answer is able to be expressed in an explicit algebraic
form within an algebraic structure. The manipulative power thus afforded has several implications on
the implementation of recursive query processing algorithms. Several possible decompositions of a
given operator are presented that improve the performance of the algorithms, as well as several
transformations that give the ability to take into account any selections or projections that are present in
a given query. In addition, it is shown that mutual tinear recursion can also be studied within a closed
semiring, by using relation vectors and operator matrices. Regarding nonlinear recursion, it is first
shown that Horn clauses always give rise to multilinear recursion, which can always be reduced to
bilinear recursion. Bilinear recursion is then shown to form a nonassociative closed semuring. Finally,
several sufficient and necessary-and-sufficient condittons for bilinear recursion to be equivalent to a

linear one of a specific form are given. One of the sufficient conditions is derived by embedding
bilinear recursion in an algebra.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language
Classifications —nonprocedural languages: F.3.2 [Logics and Meanings of Programs}: Semantics of
Programming Languages—algebraic approaches to semantics; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—/ogic programnung; H.2.3 [Database Management]:
Languages—query languages; 1.1.3 [Algebraic Manipulation]: Languages and Systems—nonproce-
dural languages; special-purpose algebraic systems; 1.2.3 [Artificial Intelligence]: Deduction and
Theorem Proving—logic programming

Some results of this work are contained in the paper, *‘An algebraic approach to recursive inference,”
which appears in the Proceedings of the Ist International Conference on Expert Database Systems
(Charleston. S.C.. Apr. 1-4, 1986). Benjamin/Cummings. Redwood City. Calif.. 1987, pp. 295-309.
and 1n the paper. ‘‘Transforming nonlinear recursion mto linear recursion,”” which appears in the
Proceedings of the 2nd International Conference on Expert Database Systems (Tysons Corner,
Va., Apr. 25-27, 1988). Benjamin/Cummings. Redwood City. Calif., 1989, pp. 401-421.

Y.E. Ioannidis was partially supported by the National Science Foundation under Grant IRT 87-03592.
Authors’ addresses' Y. E. Ioannidis, Computer Sciences Department., University of Wisconsin,
Madison, WI 53706; E. Wong, Department of Electrical Engineering and Computer Science., Univer-
sity of California, Berkeley, CA 94720.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its data appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and /or specific permussion.

© 1991 ACM 0004-5411/91 /04000329 $01.50

Journal of the Assouation tor Computing Machinery, Vol 38, No 2, April 1991, pp 329-2381

330 Y. E. IOANNIDIS AND E. WONG
General Terms: Languages, Theory

Additional Key Words and Phrases: Closed semirings, deductive databases, query optimization,
recursion

1. Introduction

Thus far, with few exceptions [13, 14], recursion in the database context has
been studied under the formalism of relational calculus, which is a subset of
first-order logic, rather than relational algebra. A possible explanation is that in
conventional database systems, where no recursion is allowed, relational alge-
bra has proved to be neither a good query language nor a useful representation
for optimizing database commands (although some optimization techniques are
expressed in the algebra more naturally). Recent results, however, indicate that,
with recursion, there are several cases where relational algebra offers advan-
tages over relational calculus. In particular, algebraic techniques have been
used to devise new efficient algorithms for recursive query processing [27], to
study several properties of recursive programs that allow transformations of
such programs into more efficient ones [29, 30], and to develop a firm
algebraic framework for query optimization by simulated annealing [31]. Most
of the aforementioned results are hard and unnatural to obtain in a nonalgebraic
setting, if possible at all. Of course, there are other results that can be obtained
more naturally in a logic-based setting. The two approaches are equivalent in
terms of expressive power, but each one is a better tool for the study of
different aspects of logic programs. The effectiveness of the algebraic approach
is based on the ability that it offers to express the query answer itself in an
explicit form within an algebraic structure, which is absent in the logic-based
approach. Algebraic manipulation of the query answer is thus affordable,
offering useful insights into specialized properties and efficient processing
strategies of recursive queries.

In this paper, we develop an algebraic theory for the study of recursion in
Horn clause programs. In order to put the results of this algebraic theory in
perspective, we first provide an abstraction of the query optimization process in
a database system. Given a recursive Horn clause program (or any program for
that matter) and a query on one of the relations defined by it, several execution
plans exist that can be employed to answer the query. In principle, all the
alternatives need to be considered, so that in conjunction with statistical
information about the database, the one with the best performance is chosen. An
abstraction of the process of generating and testing these alternatives is shown
in Figure 1. This process can be seen ag having three stages: rewriting,
ordering. and planning. For each alternative that is sent into some stage,
multiple alternatives are produced in that stage and sent to the next (lower) one.
Each stage can be seen as operating at a different level of representation of the
original program-query pair. Proceeding from the higher levels to the lower
ones, the representation becomes less abstract and more detailed. In real
systems, the stages do not have so clear-cut boundaries as in Figure 1. and even
if they do, the process of generating all the alternatives may involve significant
interaction between them. Nevertheless, for our purposes, Figure 1 is an
appropriate abstraction. The three stages are analyzed below:

Towards an Algebraic Theory of Recursion 331

Program-Query
pair
-

DECLARATIVE/LOGICAL 000 REWRITING

LEVEL STAGE

Rewnter N Rewnter N+1 000 Rewnter M
*I_J . _J ,: R

PROCEDURAL/FUNCTIONAL Order ORDERING

LEVEL Enumerator STAGE
STRUCTURAL/PHYSICAL Pl PLANNING

LEVEL anner STAGE

Execution
Plan

Fic. 1 Query optimizer architecture.

Rewriting. This stage produces other program-query pairs that give the
same answer as the original query on the original program. Some of the
transformations that produce the alternative program-query pairs are applicable
only if the original one has certain properties (modules 1 to N in Figure 1),
whereas others are always applicable (modules N + 1 to M in Figure 1). For a
transformation of the former type, the original program is first passed through a
decision module (‘‘Cond_Tester’” in Figure 1) that tests for the appropriate
properties, and if it qualifies, it is then passed through a rewriting module. For
a transformation of the latter type, the original program is simply passed
through a rewriting module. In both cases, the rewritten program is sent to the
next stage. If the transformation is known to always be beneficial, the original
program-query pair is discarded; otherwise, it is sent to the next stage as well.
Needless to say that some of the rewritten programs may qualify for further
rewriting based on other properties, so this process may repeat itself multiple
times. This stage works at the declarative level. Horn clause programs are
transformed into other ones, and the transformations depend only on declara-
tive, that is, static, characteristics of the programs. The objects manipulated at
this stage are formulas of logic, so it can also be characterized as working at the
logical level.

Ordering. This stage produces orders of execution of actions for each
program—query pair produced in the previous stage. All such series of actions
produce the same query answer, but their performance may very well be
different. If an ordering is known to always be suboptimal, it is discarded;
otherwise, it is sent to the next stage. This stage works at the procedural level.
It takes into account procedural characteristics of the programs, and produces
algorithms for answering the query. The objects manipulated at this stage are

332 Y. E. IDANNIDIS AND E. WONG

functions accepting data as input and producing data as output. so it can also be
characterized as working at the functional level.

Planning. This stage produces detailed execution plans for each ordered
series of actions produced in the previous stage. Each execution plan specifies
what indices are used, what supporting data structures are built on the fly,
if /when duplicates are eliminated, and other implementation characteristics of
this sort. This stage works at the structural level. It specifies the implementa-
tion of processing strategies at the level of data structures, and produces
complete access plans. The objects manipulated at this stage are physical
entities, so it can also be characterized as working at the physical level.

The algebraic theory developed in this paper is used to study several
properties of Horn clause program-query pairs that lead to the realization of
many alternative, often more efficient, query execution plans. Some of these
algebraic properties are useful in identifying alternatives at the rewriting stage
and some at the ordering stage (Figure 1). It should be noted that, in this paper,
we put the foundations of the algebra and only present the alternative execution
plans that these algebraic properties imply. We do not discuss any decision
algorithms for these properties, that is, any algorithms for the ‘*Cond_Tester™’
modules of Figure 1. Such algorithms for some of the discussed properties
appear elsewhere [29]. Also, we do not discuss in any detail the implications of
such properties on performance and whether it is always beneficial to alter a
program based on them. Partial results in that direction are also found else-
where [27]. Further investigation of these problems is part of our current and
future research.

This paper is organized as follows: Section 2 gives several definitions of
algebraic systems that are encountered later in the paper. In Section 3, we
define the set of relational algebra operators that we consider in the paper and
show that it forms a closed semiring. Section 4 formulates immediate linear
recursion as an algebraic problem and shows how solving an equation provides
a query answer expressed in an explicit form. In Section 5, mutual linear
recursion is formulated as an algebraic problem by embedding linear systems of
Horn clauses into the closed semiring of linear operator matrices. Section 6
provides several examples of cases where algebraic manipulation of the query
answer at the rewriting stage gives computationally advantageous results.
Section 7 does the same at the ordering stage. In Section 8, multilinear
recursion is studied within the nonassociative closed semiring of relation
vectors. Section 9 provides several conditions for bilinear recursion to be
equivalent to a linear one of a specific form, most of which require testing for
equivalence or containment of recursive programs. Section 10 embeds bilinear
recursion into a nonassociative algebra and describes the derivation of one more
sufficient condition for linearizability that only requires testing for equivalence
of nonrecursive programs. In Section 11, we compare the algebraic approach
with the logic-based approach and discuss the merits and limitations of the
former. Finally, in Section 12, we summarize our results.

2. Definitions of Algebraic Systems

Before investigating recursion from an algebraic viewpoint, we need some
definitions from algebra. In the following, any algebraic system with set S is
represented by FE. Also, for a system S on which a partial order =< is

Towards an Algebraic Theory of Recursion 333

defined, limits of sequences are defined as follows: If 7 is a subset of S, then
b is the least upper bound of T (denoted as sup T) if for all xe T, x < b,
and for any other c satisfying x < ¢ for all xe T, the inequality b < ¢ must
hold. The greatest lower bound of T (denoted by inf T), if it exists, is
defined similarly. For a sequence { x.}. x, € S. we define its /imit superior as
lim x, = inf, sup,., X,. Similarly, we define its limit inferior as lim
X, = sup, inf,_, x,. The sequence {x,} converges if and only if lim x,
= lim x,. In that case, the limit of {x,} is [=1lim x, = lim x,. This
definition is extended to convergence of a series. We say that a series { x,}

converges if the sequence { y, = ¥ | x,} converges. In this case, the limit of
the series is denoted by X7, x,.

Definition 2.1. A group is a system E¢= (S, +, 0), where S is a
nonempty set and + is a binary operator on S, such that for all @, b. ce S the
following hold:

(1) S is closed under +, thatis, @ + beS.

(2) The operator + is associative, that is, (¢ + by + c =a + (b + ¢).

(3) 0 is an identity element with respect to +, thatis, a + 0 =0+ a = a.

(4) For all elements in S, there is an inverse element in S, that is, there exists
b such that a + b = 0.

If (4) fails to hold (there is no inverse element), then Eg is a monoid. If (3)
and (4) fail to hold, then Eg = (S.+) is a semigroup. If the operator + is
also commutative, that is, ¢ + b = b + a for all a, b€ S, then the above
structures are called abelain groups, monoids, and semigroups respectively.

Definition 2.2. A field is a system Eg = (S,+,#.0,1). where S is a
nonempty set, and + and * are binary operators on S, such that the following
hold:

(1) (S,+,0) is an abelian group.
(2) (S, *, 1) is an abelian monoid, and (S-{0}, *, 1) is an abelian group.

In addition, for all a, b, ce S the following holds:

(3) The operation * distributes over +, that is, a*(b + ¢) = a*b + a*c and
(b + ¢)*a = b*a + c*a.

Example 2.1. The system E, = (R,+,*,0, 1), where R is the set of real
numbers, and + and * the traditional addition and multiplication is a field.

Definition 2.3. A vector space over a field F, is a system £E, =
(V.+.0, F), where V is a nonempty set and + is a binary operator on V', such
that the following holds:

(1) (V,+,0) is a abelian group.

In addition, for all ve V and o« e F, an element o v is defined in V/, such that
for all v, we V and «, 8 €F. the following hold:

2) a(v+w)=av+aw.
3) (a+ B)v=av+ Fv.
@) a(Bv) = (aB)v.

5) v =nv.

334 Y. E. IOANNIDIS AND E. WONG

In the last condition, 1 represents the identity element of F with respect to
multiplication.

Definition 2.4. An algebra over a field F is a system E, = (V,+, *, 0,
F), where V' is a nonempty set and + and * are binary operators on V. such
that the following hold:

() (V.+,0, F) is a vector space.
(2) (V, =) is a semigroup.

In addition, for all u, v, we V and « € F, the following hold:

(3) The operation * distributes over +, that is. u*(v + w) = u*v + u*w and
(v + w)su = v+u + w*u.
4) a(vew) = (av)sw = vk(aw).

If associativity of * fails to hold, then Eg is a nonassociative algebra.

Definition 2.5. A closed semiring is a system Eg = (S, 4+, %,0, 1), where
S is a nonempty set on which a partial order < is defined, and + and * are
binary operators on S, such that for all a, b, ¢ €8S, the following hold:

(1) (S,+,0) is a abelian monoid and the operation + is idempotent, that is,
a+a=a.

(2) (S.*,1)is a monoid and O is an annihilator, that is, then a*0 = O*a = 0.

(3) The operation * distributes over +, that is, a+(b + ¢) = a*b + a*c and
(b + o)*a = bxa + c*a.

(4) If a,€8, i =1, is a countably infinite set, the limit 277 | «a, of the series
Sk | a, exists, it is unique, and it is an element of S. Moreover,
associativity, commutativity, and idempotence apply to countably infinite
sums.

(5) The operation * distributes over countably infinite sums.

If associativity of * fails to hold, then E is a nonassociative closed semiring.
If 1 does not exist, then (S.+., *,0) is a closed semiring without identity.
Finally, if an additive inverse exists for all elements of S, that is, if (S,+,0) is
an abelian group, then Eg is a closed ring.

Example 2.2. The following system is a closed semiring: ({ false, true},
OR, AND, falise, true) [2]. U

Inductively, the powers of an element a of a closed semiring may be defined
as:

1

A =1,a"=a" "xa=ara" ", forall n=0.

Likewise, the transitive closure of a, denoted by a*. is defined as
a =Y a*.
=0

Note that property (4) of closed semirings guarantees the existence of a* in
S. Also note the similarity between the definition of a closed semiring and a
path algebra [12, 42]. The only difference is that a path algebra does not
necessarily satisfy properties (4) and (5).

Definitions 2.1 to 2.4 can be found in any standard text on algebra [26].
Closed semirings have been defined elsewhere as well [2. 20]. Our definition is

Towards an Algebraic Theory of Recursion 335

the one used by Aho et al. [2], but it is slightly different by being more precise
in the definition of the limit of a series. Finally, some researchers have given a
less general definition of closed semirings, which requires the existence of a
separate transitive closure operator instead of the existence of the limit of all
countable series [5, 34]. Although this less-general definition is adequate for
our work, we nevertheless decided to adopt the more general one.

3. Closed Semiring of Linear Relational Operators

Consider a fixed, possibly infinite set C. A database D is a vector D = (C, U
{ERROR},R,....,R))!, where C,, € C is a (possibly infinite) set, ERROR
¢ Cp, and for each 1 =i<n, R, S C} is a relation of arity a,. The
implications of allowing infinite relations in D will be discussed later. Each
element of R, is called a fuple. Without loss of generality, we assume that the
constants in the database are typeless, and so a relation scheme is defined as a
relation name together with a relation arity.

Relational algebra was introduced by Codd to formally describe the opera-
tions performed on relations in a database system [17]. This paper focuses on a
subset of the operators originally proposed. We are interested in the set
S=1{X, g, m,} of relational operators, where each operator is defined as
follows:

X: Cross product of relations.
0,: Selection of tuples in a relation satisfying some constraint g of the form
“columnl op column2’” or ‘‘column op ¢.”” ce Cp, with ope{= .=

D> L=, <}.
w,. Projection of a relation on a subset of its columns in some order specified
by p.

Several other interesting relational operators can be expressed using the ones
in S. Natural join, denoted by 1=, is equal to a cross product followed by an
equality selection and elimination of the joined columns of one of the relations
by projection. For relations of the same arity. intersection is equal to a cross
product also, followed by a series of equality selections that compare corre-
sponding columns of the two relations and cover all the columns of both
relations, followed by a projection of the columns of one of them. There are
only two relational operators from the original proposal that are not incorpo-
rated in this study, namely, division ard set-difference. The significance of the
exclusion of the latter from S will becomne clear shortly.

Consider a database D = (Cp., R,,....R,) and the set § of primitive
relational operators for D. Each element of S can be seen as a unary operator
applied on some relation. This is obvious for selection and projection. For cross
product, one of the operand relations is designated as a parameter of the
operator (i.e., it is considered as part of the operator). so that the operator is
applied on the other relation alone. In this sense, an operator A €S is a
mapping A:2P — 2€5. The set 2% is the domain and the set 2<% is the
range of A, that is, A takes relations of arity « as input and produces relations
of arity b as output. Operators with the same domain are called domain-
compatible and operators with the same range are called range-compatible.

'All relations appear in bold.

336 Y. E. IOANNIDIS AND E. WONG

Likewise, if the domain of the operator A is the same as the range of the
operator B, then A is called dr-compatible to B (dr for domain-range).
Replacing every parameter relation in an operator by the corresponding relation
scheme produces an operator scheme. Clearly, the mapping from operators to
operator schemes is many-to-one. In the absence of a cross product, however,
an operator coincides with the corresponding operator scheme.

Consider S = { X, o,, =,}, the set of primitive relational operators for
database . The operator X in S is used to represent all possible cross
products, that is, having as a parameter any possible relation in D. Likewise,
the operators o,. 7, in S are used to represent all possible selections and
projections, that is, having as subscripts all possible g’s and p’s, respectively.
In addition, because of the existence of operators in S that are not all
appropriately compatible, we introduce a new operator w:| ;- 20 — 2{ERROR},
The operator w can be thought of as the error operator. Applied on any
nonempty relation, it returns the relation { ERROR} . Applied on (, it returns
. that is, o = . Note that « is domain compatible with all other
operators, but it is range compatible with no other operator. With S as the basis
set together with w, the algebraic system E, = (R,+.*,0,1) is defined as
follows:

R The set of elements is defined as follows:

—If AeSU{0,1.,w}.then 4A€R.

—If A, BeR, then (A + B)eR.

—If A, BeR, then (A*B)eR.

—R is minimal with respect to these conditions.

+ For A, B domain- and range-compatible operators in R, addition is defined
as follows: for all P in the domain of 4 and B, (A + B)P = AP U BP.
Otherwise, (A + B) = w.

* For A, B operators in R with A dr-compatible to B, multiplication is
defined as follows: for all P in the domain of B, (A*B)P = A(BP).
Otherwise, (A *B) = w.

0 The operator 0:|J; 2P U {{ ERROR}} — {(} can be applied on any
relation and always returns the empty relation: OP = (.

1 The operator 1:\J~,2? U {{ ERROR}} — (U~ ,2°? U {{ ERROR}} can
be applied on any relation and leaves the relation unchanged: 1P = P,

Note that wl = lw = @ and w0 = Ow = 0. For notational convenience the
multiplication symbol * is omitted. Whenever (AB)P is used, with A Be R
and P a relation. it actually represents (.4 *x R)P. Since + and * are associa-
tive, we often omit the parentheses around them. In that case, we assume right
associativity for them. Equality of relational operators (even outside of R) is
naturally defined through set equality as

A=Be forall P, AP = BP.

Moreover. since + is associative, idempotent, and commutative, system E,
may be enriched in structure by a partial order defined on R using set
inclusion:

A=Bs forall P, AP < BP.

Towards an Algebraic Theory of Recursion 337

Evidently, with respect to this ordering, O is the greatest lower bound of R. To
the contrary there is no least upper bound of R. For the purpose of having a
well-defined notion of limit, we define a new operator u:|J;- 27U
{{ ERROR}} = {U;_,C;, U { ERROR}}, which satisties 4 < u, for all A
€ R. The operator u can be thought of as the universal operator. Applied on
any relation, it returns the set of all tuples of all arities on C,,, including the
element ERROR. Note that u is not a member of R, whereas 0 is.

Before proceeding in investigating the structure of E,. some characteristic
properties of the relational operators in R are identified.

Definition 3.1. A relational operator A € R is linear if

(a) for all relations PP, Q in its domain, AP U Q) = AP U AQ, and
(by AD = .

Prorosition 3.1. If A€ R, then A is linear.

Proor. Consider an operator A € R. The claim is proved by induction on
k, which represents the number of times that addition and multiplication are
applied on operators in S U {0, 1, w} to form A.

Basis. For k=0, AeSU{0,1, w}. It is simple to show that all these
operators are linear.

Induction Step. Assume that the claim is true for all operators formed
using up to kK — 1 multiplications and additions. Let A be an operator that
needs & such operations. The last operation is either addition or multiplication.
Thus, A has one of the following forms:

(i) A=B+C=>APUQ) =(B+CyPUQ)
2APUQ) =BPUQUCPUAQ
Definition of +
AP U Q) = (BPUBQ)U (CPUCQ)
Induction hypothesis
=2 AP U Q) =(BPUCP)U(BQU CQ)
Associativity of U
=APUQ =(B+OPUB+ONQ
Definition of +
>APUQ) = AP U A4Q.
A=B + C=2A0 =(B+ O

=> Ay = By U O Definition of +

=2 A = (. Induction hypothesis
(ii) A=BC=2APUQ) = (BCYP U Q)

= AP U Q) = B(C(P U Q) Definition of *

=2 AP U Q) = B(CP U CQ) Induction hypothesis

= AP U Q) = BCP U BCQ Induction hypothesis

= AP U Q) = AP U AQ.
A =BC=Ap = (BC)D

=> AP = B(OD) Definiton of
= A = B Induction hypothesis
=2 A = . Induction hypothesis

In both cases, A4 is proved to be linear. [

338 Y. E. JOANNIDIS AND E. WONG

Hereafter, unless otherwise mentioned, the term "‘relational operator’’ refers
to a linear relational operator.

Definition 3.2. A relational operator is monotone if for all relations P, Q
in its domain P € Q = AP € AQ.

ProvositioN 3.2. If a relational operator is linear. then it is monofone.

Proor. PCQ=PUAQ=Q= AP U AQ) = AQ = AP U AAQ =
AQ = AP € 4Q. [

Proposition 3.1 and 3.2 ensure that all operators in R are both linear and
monotone. To the contrary, set-difference, which has been excluded from the
set of primitive relational operators S, is neither linear nor monotone.

Prorosimion 3.3. Let A, B, C. DeR be appropriately compatible
relational operators, that is the result of any addition or multiplication is
not w. The partial order defined on R enjoys the following properties:

(a) A< A+ B;

(b)) A<Be A+ B=B8B;

(¢c) A=sB=>A+C=<=B+ C;

(d) A< B.C=D, and A, B are monotone = AC < BD.,

Proor. The proofs of these properties are straightforward and are omitted.
For (d). Propositions 3.1 and 3.2 ensure that all relational operators under
consideration are monotone. []

Definition 3.3. A relational operator is product-only if it can be formed
by applying only multiplication to elements of S U {0, 1, w}.

With the exception of 1, 0, and w, any product-only operator 4 € R can be

brought into the following canonical form: A = w,0,,0,, *** 0,,(QX), tha
is. having no 0, 1, or « as factors. If we denote 4 by A =B -+
B, B.B,,, ‘- B,, this can be achieved as follows:
—Foralll=k<n,if B,=1,then A =B, - B,_ B, - B,.

—Foralll = k=n,if B, =0, then A =0.
—Foralll = k<n,if B, =w,andforall 1 =j < n, BjiO, then 4 = w,
otherwise A = 0.

Hence, with the exceptions of A4 being equal to 1, 0, or w, A can be written
as a product of projections, selections, and cross products. Moreover, associa-
tivity and commutativity between such operators allow the projections and
selections in A to be moved to the left and cross products to be multiplied
together to produce a single cross product with a larger relation, bringing A4
into the canonical form A = 7,0,,0,, *** 0,(QX). (For some operators. the
projection, or the selections, or the cross product may be missing.) In the
sequel, we assume that all such operators (and operator schemes) are expressed
in this canonical form.

Before proceeding with the theorem that algebraicly characterizes E,, we
need to prove the following two lemmas.

Lemma 3.1. There exists a finite set of canonical operator schemes, such
that any product-only operator A is equal to an operator corresponding to
a scheme in that set.’

2These operator schemes may involve relation schemes that are not present in the original database.

Towards an Algebraic Theory of Recursion 339

Proor. Let A:25— 2% be in the canonical form A = m,0,,0,, """
0,(QX). Let Q € Cp,. The arity ¢ of Q and the number of selections & can
be arbitrarily large. We show that A is equal to an operator in canonical form
A = 7,0,,0,, " 0, (Q' X), with Q" € Cj,, such that both the arity ¢’ of
@’ and the number of selections k' are less than certain upper bounds (which
depend on @ and b only). The following series of steps in the given order
construct A’ from A. In every step, we show what happens to the set of
selections and what happens to Q.

(a) All selections between two columns of Q or a column of @ and a constant
are applied on Q, producing a new relation, and then are removed.

(b) For each column col of the domain of 4 and each operator op, consider
the following set of selections: {(col op col,): col, is a column of Q that
does not appear in p} U {(col op c,): c,e C,}. All the selections of this
set involve the same column of the domain of A. the same operator, and
columns of Q that do not contribute to the range of A or constants. Each
such set is treated differently depending on the specific op.

(bl) If op is = , equality selections among the columns of Q {col,} and
between these columns and the constants {c,} are applied on Q, the
columns of Q in the qualifying tuples are replaced by a single column
col’ containing the value of the original columns and constants (there is
only one), and the set of selections is replaced by a single selection of
the form (col = col’).

(b2) If op is < , the columns of Q are replaced by a single column col’
containing the minimum value of the original columns and the con-
stants {c,}, and the set of selections is replaced by a single selection of
the form (col < col’). (The same applies if op is < .)

(b3) If op is > , the columns of Q are replaced by a single column col’
containing the maximum value of the original columns and the con-
stants {¢,}, and the set of selections is replaced by a single selection of
the form (col > col’). (The same applies if op is = .)

(¢) All columns of the original relation @ that do not contribute to the range of
A are removed.

The rest of A remains unchanged. It is straightforward to verify that A’
constructed as above is equal to 4. An upper bound on the number of columns
of ’ can be derived as follows. Because of (¢), the only columns of Q that are
kept in Q’ are those that contribute to the range of A. In addition. columns in
@’ are created only in (b), one for each possible column in the domain of A4
and each possible op. Thus, there are at most b columns of Q kept in Q” and
there are at most 5¢ new columns created in (b) (5 operators and @ columns in
the domain of A). Hence, the arity ¢’ of Q' is at most 54 + b. An upper bound
on the arity of Q' implies an upper bound on the number of selections that can
be applied on the cross product of Q" and the operand relation, because no
selection with a constant has remained in A4’. With 6a + b total number of
columns and 5 ops, there are at most (6a + b)? pairs of columns and at most
5(6a + b)* possible selections.

We have shown that A’ has a bounded arity for Q’, a bounded number of
selections, and a bounded number of projected columns (b to be exact). Hence,

340 Y. E. IOANNIDIS AND E. WONG

we may conclude that there is a finite number of possible schemes for A’. This
implies that any product-only operator can be reduced to one from a fixed,
finite collection of schemes. [

In the proof of Lemma 3.1. note that if C,, is finite, there is only a finite
number of relations that correspond to the scheme of Q’, and therefore, there is
only a finite number of operators that correspond to the same operator scheme.
Hence, there is a finite number of operators with finite relations from a given
domain to a given range.

Lemva 3.2. A countable sum of operators of the same scheme in
canonical form is equal to a single operator of that scheme, whose
parameter relation is the union of the relations of the individual operators.

Proor. The truth of the lemma can be seen by exchanging the roles of the
domain of the operators and their parameter relations in the cross product.
From A = X7 _, A,. with Q, the parameter relation in the cross product of
Ay, this exchange produces B (|J,_,Q,). The operator scheme B has the
domain of the operators { A,} as the parameter relation scheme of its cross
product. It is known that | J,_,Q, is well defined, so suppose it is equal to Q.
Reversing again the roles of the domain and the parameter relation yields a
single operator, which is equal to A, it has the same scheme as
all the operators { A,}, and it has Q as the parameter relation of its cross
product. [

We now proceed to the following theorem, which characterizes the algebraic
structure of the system of linear relational operators E,.

Tueorem 3.1. The system Ey = (R, +,*,0, 1) of linear relational opera-
tors is a closed semiring.

Proor. The proofs of properties 1, 2, and 3 of Definition 2.5 follow directly
from the definitions of + and *. For points 4 and 5, let { A } be a countably
infinite set of operators in R. If some A,, A , are not domain-compatible or
they are not range-compatible, or if some A, is equal to w, then
lim,, %", A, = w. The proof is straightforward given the definition of
limit. It makes use of the fact that u is the least upper bound of R and 0 is the
greatest lower bound of R. For this pathological case, points 4 and 5 of
Definition 2.5 clearly hold..

Assume that all the operators {4,} are domain- and range-compatible
(without any being equal to) and in canonical form. By Lemma 3.1, we
conclude that all those operators are equal to ones whose schemes belong to a
finite set R ;. By Lemma 3.2, we conclude that the sum of all operators of th
same scheme is equal to a single operator. Hence. A = lim,_, =", A4, is
equal to the sum of a finite set of operators, whose schemes belong to R o5
Therefore, A is well defined and it is a member of R. Since A4 is equal to a
finite sum of operators, points 4 and 5 of Definition 2.5 are easy consequences
of the definitions of + and *. [

Note that multiplication with the set-difference operator does not always
distribute over addition; if d is set-difference and A, B two other operators
then the equality d(A + B) = dA + dB does not always hold. Including d in
R would make Ej not to be a closed semiring.

Towards an Algebraic Theory of Recursion 341

Since E, is a closed semiring, the definitions for the nth power and the
transitive closure of a relational operator A that is dr-compatible to itself follow
directly:

A" = AxAx -+ - % A (n times).
with A% = 1 and

An interesting question is whether E, is a richer system than a closed
semiring. Specificly, it would be computationally advantageous if E, were a
closed ring. Unfortunately. the answer is negative.

Prorosition 3.4. The system E, = (R.+,*,0,1) defined above on the
relational operators R is not a closed ring.

Proor. In order for E, to be a closed ring, every relational operator must
have an additive inverse, that is, for every A € R another operator B € R must
exist such that A + B = 0. If suffices to find one operator in R that lacks an
additive inverse. The multiplicative identity I serves this purpose. Assume that
there exists an operator —1 such that 1 + (—1) = 0. Then, for any nonempty
relation P,

(I+(-))P=@=PU(-1)P =,

which is a contradiction, since P was taken to be nonempty. [

4. Immediate Linear Recursion

Consider a range-restricted linear recursive Horn clause of the form
P(gc‘o’) /\Ql(zc(”) A-ee /\Qk(zf'k’) — p(zfﬂh), (4,1)

where P is a derived relation, and for each i, Q, is a relation stored in the
database and x'” is a vector of variables. It is range-restricted because we
require that every variable in x‘**" appears among the variables of x**.
0 < i< k. It is recursive because P appears in both the antecedent and the
consequent. It is linear because P appears only once in the antecedent. (The
dual use of ‘*linear’” for a recursive Horn clause and for a relational operator in
R will be justified in Proposition 4.1.) Note that we make no assumptions about
the relations being finite. This allows a non-range-restricted Horn clause to be
represented by a range-restricted one of the form in (4.1). by introducing
infinite relations in the antecedent. It also allows arithmetic functions (e.g.,
addition) to be represented by infinite relations. (Clearly, such functions are
directly evaluable and they are not explicitly stored.) In addition, constants can
be represented by introducing singleton relations in the antecedent. Thus, the
form of (4.1) is general, and every linear recursive Horn clause can be
expressed in it.

Such a Horn clause can be expressed in relational terms as follows. Let P,
{Q;} be relations, P € C},. and f Q. (P) be a function on P, fQ 126 > 26h,
(The set of relations {Q,} is part of the function.) Then, (4.1) takes on the form

342 Y. E. IOANNIDIS AND E. WONG

f{Q} (P) € P. or equivalently P Uf{QI} (P) = P. In addition to (4.1), con-
sider a nonrecursive Horn clause of the form

Q(x) — P(x).
The problem of recursive inference can be stated in relational form as follows.
Given fixed relations Q. Q,, ..., Q, and function f{Q/}, find P such that
(1) f{Q} P)cP
(i) Q<P
(iit) P is minimal with respect to (i) and (ii), that is, if P’ satisfies (a) and (b)
then P < P’.

Conditions (i), (ii), and (iii) are equivalent to the following ones:

(A) QU fiq, (P
(B) P is mlmmal w1th respect to (A). that is, if P’ satisfies (A) then P < P’.

Our goal is to find P that satisfies (A) and (B).

Proposirion 4.1. Consider a function f , (P) on P, where f Q) b —
20 g = 1. The function f,Ql represents a lmear recursive Horn clause of

the form (4.1) if and only if it corresponds to a linear relational operator in
R.

Proor. For every recursive Horn clause of the form (4.1), there is a unique
underlying nonrecursive one that corresponds to it, which is a conjunctive
query [15]. Every conjunctive query can be expressed as a composition of
projections, selections, and cross products and vice versa [15]. Therefore, a
function f{Q}, having {Q,} as parameters and P as input, corresponds to
a linear recursive Horn clause of the form (4.1) if and only if it corresponds to a
linear operator in R. [

By Proposition 4.1, the established algebraic framework can be used to define
the problem of recursive inference. Consider a linear recursive Horn clause that
corresponds to a linear operator A, so that

AP S P.

Consider some constant relation Q that is either stored or produced by some
other nonrecursive Horn clause, so that

QcP.
The relation defined by the Horn clause is the minimal solution to the equation
P=AP U Q. (4.2)

Presumably. the solution is a function of Q. Moreover, we are interested in
solutions that can be computed by applications of selections, projections, cross
products, and their sums or compositions. Thus, we restrict our attention to
functions that correspond to operators in R, that is. P is written as P = BQ,
B e R. The problem becomes one of finding the operator B. Manipulation of
(4.2) results in the elimination of Q, so that the equation contains operators
only. In this pure operator form, the recursion problem can be restated as

Towards an Algebraic Theory of Recursion 343
follows: Given operator A, find B satisfying:

(a) 1l + AB=B

(b) B is minimal with respect to (a), thatis, | + AC = C= B =< C. (4.3)

Tueorem 4.1. Consider eq. (4.3a) with restriction (4.3b). Its solution is
A*,

Proor. It has already been mentioned that A € R, so it is linear and
monotone. The system Ej is a closed semiring (Theorem 3.1). Thus, A* exists
and is unique for any A. First, 4* is a solution of (4.3a):

1+ AA* =1+ A1+ A+)=14+A+ 4>+ =A%

The second equality is due to the property that multiplication distributes over
countable sums (Definition 2.5). Second, A* is indeed the minimal solution
(least fixpoint) of 1 + AB = B. That is, for all operators B that satisfy (4.3a),
A* < B. This is shown by induction on the number of terms in 4™ = %_, A*.

Basis. For n =0, 2}_, A* =1, and from (4.3a) and Proposition 3.3a,
1 < B.

Induction Step. Assume that 37 _, A¥ < B for some n = 0. Then,

n h

> Af¥<B=A> Af< AB Proposition 3.3d
k=0 k=0
n
=1+A4 > Af<1+ AB Proposition 3.3¢
k=0

n+1
= Y A*<1+ AB Closed Semiring Properties

k=0

n+1
= A< B. From (4.3a)

k=0

So, forall n = 0, Z}_, A¥ < B. Since the sequence (of the partial sums) is
upwards bounded by B and is monotone, its limit A* is also bounded by B.
Hence, for any B satisfying B =1+ AB, A* < B, and A* is the least
fixpoint of (4.3a). []

Theorem 4.1, originally due to Tarski [51], has been used in the study of the
semantics of logic programs extensively [4, 54]. In the database context, it was
first examined by Aho and Ullman |3]. It is the first time though that the
solution of (4.3) is expressed in an explicit algebraic form within an algebraic
structure like the closed semiring Ej. One can now algebraicly manipulate the
query answer, which is represented by A* possibly multiplied with other
operators also, for example, selections and projections, and study its behavior.
Some of the implications of the manipulative power thus afforded are discussed
in Sections 6 and 7.

5. Mutual Linear Recursion

Until this point, we have concentrated on immediate recursion. However, the
above algebraic framework can be extended so that it can be applied to the cases
where mutual recursion exists as well. Without loss of generality, we assume

344 Y. E. IOANNIDIS AND E. WONG

that all relations that are not derived recursively are stored in the database, that
is, they are not produced by some nonrecursive Horn clause.

Definition 5.1. Consider a set of Horn clauses, and let {P,, P,,... P}
be the relations in the consequents of its elements. The set of Horn clauses is
called /inear if each Horn clause has at most one of {P, P,,....P } in its
antecedent.

Example 5.1. The following system of mutually recursive Horn clauses is
linear:

Q(x, z)AT(z.») = P(x, y),
P(y.x) = P(x,).

P(z, x)AS(z, 2. ») > Q(x, »),
R(x.») ~ Q(x, y).

To the contrary, the next one is not, because of the presence of both P and Q in
the antecedent of the first Horn clause.

P(w, 2)AQ(x, z)AT(z, y) = P(x, »),
P(y.x)—>P(x.y),
P(z, x)AS(z, z, ») ~ Q(x, »).

R(x, y) > Q(x.). O

Note that this definition of linear is different (more restrictive) from the one
given by Bancilhon and Ramakrishnan [8]. That definition includes systems that
are not linear. In particular, it includes systems that can be decomposed into
component linear systems. These can be solved in such an order that the
relations produced by one component become parameters to the next one. We
believe that a more precise term for such a system is piecewise linear [18] and
we use the term linear according to Definition 5.1.

Consider a linear system of mutually recursive Horn clauses defining rela-

tions P, P,,...,P,. Each Horn clause is represented algebraicly using a
linear operator in R. Thus, a system of n equations is generated with »
unknown variables P, P,, ... P, and is solved as an ordinary linear system.

The interaction between the Horn clauses can be arbitrarily complex as long as
the resulting system is linear. The possibility of immediate recursion is not
excluded either. The system produced is sufficiently general to give the solution
for the relations concerned.

Example 5.2. Consider the most general case for two relations P, and P,,
that are defined by both immediately recursive and mutually recursive Horn
clauses in a linear way. With A. B. C, and D being the appropriate lincar
operators in R, the situation is represented by the following linear system:

P, = AP, U BP,UQ,.
P,=CP,UDP,UQ,. L]
Define M, (R) as the set of n X n matrices, n = 1, whose entries belong to

the set of linear relational operators R. Note that for any such matrix, all the
operators in a column are domain-compatible and all the operators in a row are

Towards an Algebraic Theory of Recursion 345

range-compatible. With M (R) as its set of elements, the system Ey () =

(M, (R),~+. %.0, 1) is defined as follows:

+ If A=[A,], B=[B,] are two matrices in M,(R), then addition is
definedby A + B=[A4,, + B,].

* If A=1[A,], B=[B,] are two matrices in M,(R), then multiplication

is defined by 4*B = [Z7_, A By 1.

The matrix 0 has all its elements equal to 0.

The matrix 1 has all its elements equal to 0, except the ones on the principle

diagonal, which are equal to 1.

=1

Similarly to the situation for simple operators, the multiplication symbol * is
omitted.

Tueorem 5.1. The system Ey gy = (M (R),+,%,0,1) is a closed
semiring.

Proor. It is known that matrices over a closed semiring form a closed

semiring [2]. Since Ej is a closed semiring, one can conclude that E,, (r) 18
also a closed semiring. [

Powers of matrices are defined as
A" = AxA* - %A (m times),

with A° = 1, and the transitive closure of a matrix is defined as
(=)
A% = > A"
k=0

Consider a linear system of equations like the one of Example 5.2. Using
elements of M,(R), we can write it in a matrix form as

P=APoQ, (5-1)

where P is the vector of unknown relations, Q is the vector of stored relations.
and addition @ for relation vectors is defined as

PeP =(P,UP,,P,UP,,P,UP).

Since both Ej and E,, ., are closed semirings, the minimal solution to (5.1)
can be found in exactly the same way as that of (4.2) and is P = 4*Q.

Example 5.3. Consider the linear system of Example 5.2. Written in

matrix form, it is equal to
PI ® QI
PZ QZ .

e
i

Solving the system yields

| e |

o

| S—
i

346 Y. E. IOANNIDIS AND E. WONG
The individual solutions for P, and P, are:

P, = (A + BD*C)*(BD*Q, U Q)).

P, = (D + CA*B)*(CA*Q, U Q,). O

The importance of the algebraic formulation of the problem should be
emphasized at this point. Until now, few people have dealt with mutual
recursion in its full generality. The methods proposed for processing queries on
relations defined by a complex recursive system of Horn clauses tend to be
complicated and in some cases incomplete [25]. The power of the algebraic
tools lies with the fact that the solution for arbitrarily complex linear systems
can be expressed in a concise way. Algebraic manipulations of this solution
generate multiple equivalent expressions, some of which may be more efficient
than the straightforward implementation of the original solution. Such optimiza-
tion is virtually impossible in the absence of an explicit representation of the
solution, due to the complexity of the corresponding processing algorithms. The
level of complexity that one faces should become more clear with the following
example.

Example 5.4. Consider the case of three mutually recursive relations, with
no immediate recursion for any of them. The linear system representing the
situation is

P, 0 Ap Ay || P Q
P, | =14, 0 Ay ||Pe|Q,
P, Az Az 0] Py Q,

Solving for P,. for example, yields the solution
Pl = [(Alz + A13A32)(A23A32)*A21
+(A13 + A12A23)(A32A23)*A31]*Q
where the relation Q is equal to
Q= Q1 U (All + A13A32)(A23A32)*Q3
U(A13 + A12A23)(A32A23)*Q3'

The expression is long. Nevertheless, it represents a complete solution of the
linear system for P,. This was hard to express before, if at all possible. [

>

6. Algebraic Transformations of Linear Recursion at the Rewriting Stage

In this section, we give several examples of cases where algebraic manipulation
of an explicit representation of the query answer yields computationally advan-
tageous results. The results presented here affect the rewriting stage of query
optimization (Figure 1). The first subsection presents decompositions that are
applicable to A™ for a linear operator A € R that has the form A4 = B + C.
The second subsection presents decompositions that are applicable to .4* when
A has the form 4 = BC. The third subsection presents replacements of A*
with transitive closures of other operators. The final subsection presents
transformations of the product of A* with other operators, primarily selection
and projection.

All the optimization results presented in this section depend solely on the
algebraic properties of closed semirings. Hence, the results can be generalized

Towards an Algebraic Theory of Recursion 347

to mutual linear recursion as well, by simply using linear operator matrices in
place of linear operators. Moreover, unless explicitly restricted to operator
schemes, all results in this section hold for both operators and operator
schemes. With one exception, however, all examples involve operator schemes.

6.1. DecomposiTiONs OF (B + C)™
Tueorem 6.1. Let A = B + C. If there exist k and [such that
CB < B*C’, (6.1)
and either k€ {0,1} or l€{0,1}°, then A* = (B + C)* = B*C™.
Proor. Clearly, A* = (B + C)* = £, (B + C)’. This means that

A =) BUCHB:C% -+ B'nCIn. (6.2)

Consider an arbitrary term D = B"C/'B>C’ ... B'C’/n. Assume that CB <
B*C!, with ke {0, 1} (the case of /€ {0, 1} is handled similarly). We prove
by induction on n =i, + * -+ +i,, that D =< BIC’, J =0, where I =i, if
k=0,or I=n=1i 4+ - +i,if k=1

Basis. For n=0, D= C/C» -+ C/m= C/*2t 7"+ which is al-
ready in the desired form, with [= 0.

Induction Step. Assume that the claim is true for some n = 0. We prove it
for n + 1. We distinguish two cases, Kk = 0 and k£ = 1.

k=01If j,+/j+ " +j,, =0, then D is already in the desired form.
Otherwise, D can be written as D = (B"C” -+ B'»~"YBC’». By the
induction hypothesis, we have that D < B"C’BC’», with J # 0.
Applying (6.1) with k = 0 yields D < B"C’~'C'C’», which proves
our claim.

k =1 Again, if j, +j, + -+ +j,_, =0, then D is already in the desired
form. Otherwise, D can again be written as D = (B"C” ---
B'»~'YBC’=. By the induction hypothesis, we have D < B"C’BC’»,
with J # 0. The result of applying (6.1) on the above formula J times
is D < B"*1C"/C/», which again proves our claim.

Hence, every term of the sum in (6.2) is < to a term of the form B'C’. For all
I and J, the term B!C" exists in (6.2) already. Thus, (6.2) can be modified
into A* =37, , 0 Bic’ = B*Cc*. [

CoroLLaRY 6.1. If B and C commute, that is, BC = CB, then (B +
C)* = B*C* = C*B*.

Note that Corollary 6.1 states that if B and C commute, then the separable
algorithm is applicable [36]. A similar observation has been made indepen-
dently by Ramakrishnan et al. [41]. Further elaboration on the relationship
between commutativity and separability appears elsewhere [29].

The condition of Theorem 6.1 can be easily tightened to CB < (1 + B)C or CB < B*(1 + C) For
operator schemes, the two conditions are equivalent [46], whereas for operators, the tighter condition 1s
strictly more general. Similar comments apply to Theorems 6.2 and 6.3. We have chosen to describe
the less general condition for ease of presentation.

348 Y. E. IOANNIDIS AND E. WONG

Example 6.1. As an application of Theorem 6.1 (and Corollary 6.1),
consider the following program:

P(x,z)AQ(z,¥) = P(x,y).
R(x.2)AP(z.5) > P(x,).
S(x.») > P(x, y).

The two recursive Horn clauses correspond to the backward and forward
computation of the transitive closure of the binary relations Q and R, respec-
tively. It is easy to verify that the underlying conjunctive queries commute,

since composing the two in both possible ways yields one that underlies the
following Horn clause:

R(x,z) AP(z.2)AQ(2,y) 2 P(x.).

Theorem 6.1 guarantees that the fixpoint of the first Horn clause can be
computed independently of the fixpoint of the second one, as long as in the end
the two are combined by an additional nonrecursive operation between them.
This is captured by rewriting the original program as follows:

P:(x*y)_’P(x y).
R0 AF2) =B

k]

»)
P (P,(x.),
P (x, Z)/\Q(z ») *P(x »),
S(x.y) > Pi(x,). O
Thueorem 6.2. Let A = B + C. If there exist k and [such that
CB < B*C', (6.3)

and there exzstsp such that either B” = 0 or C? = 0, then A* = (B + C)*

Proor. If k <2 or I < 2, Theorem 6.1 ensures the truth of the statement
of this theorem as well. Assume that £ > 2 and /> 2. In (6.2), consider an
arbitrary term D = B"C/'B2C’* --- B'»C’/n. Assume that there exists p
such that C” = 0 (the case of B? = 0 is handled similarly). If m = 1, then D
is in the desired form. If not, this means that both j, = 1 and i, = 1. If
Ji=1,i,=1,and m = 2, that is, if D is of the form D = B CBC">. then
applying (6.3) yields D < B"B*C'C”:, which is in the desired form. Other-
wise, either j, = 2 or i, = 2 or /m > 2. In the first case, D is of the form
D=D.C* BDz, where D, and D, are some product-only operators. In the
second case, D is of the form D= D CB?D, . In the third case, applylng (6.3)
ylelds either D < D,C*BD, or D = D, CB? D,. We show that in all cases

= 0. Equation (6. 3) yields

D,C’BD, = D,CB*C'D, and
D,CB°D, < D,B*C'BD, < D, B*C'"'B*C'D, .

Replacing D, B“C'~ by D, in the latter expression yields D,CB*C'D,.
Hence, if j, 2 2o0r i, =2o0r m>2, we have shown that D < D CB C[D

Towards an Algebraic Theory of Recursion 349
Our goal is to prove that D,CB*C'D, = 0. We achieve this by showing that

e | g
CB*C' = ((B*C'=")" "B C'"?) CB*C**M for all g. (6.4)

The formula to the right of < is well defined, since both & = 2 and / = 2. We
prove (6.4) by induction on g.

Basis. For g = 0, (6.4) yields CB*C' < CB*C', which clearly holds.

Induction Step. Assume that the claim is true for some g = 0. We prove it
for g + 1 by repeated applications of (6.3).

CBC' < ((B*C! 1) Brci=2) cpr o

Induction hypothesis
< ((Bkcl~l)k‘szClﬁz)gBkCIBk‘IC(g—H)I

Applying (6.3) once
< ((B*C')* 7 B¥C!2) B! BRCIB Rl

Applying (6.3) twice
< ((Bkcl—l)k_szCl~2)gBkCl—lBkC1~IBkC/Bk—3C(g+l)1

Applying (6.3) three times

h—1

Bkclkahc(g+l)l
Applying (6.3) & times

' _ g
< ((Bkcl—l)k 2Bkcl~2) (Bkcl——l)

k—

]Bkclc(g+l)l
Applying (6.3) k times
< ((Bkcl—l)k_szclAZ)g(Bkcl~l)k72 Bkcllekc(g-FZ)/

. kv i—INK=2 pke ~1-2\ (ke vl 1
= ((B¥c'"")" "B C'?) (B*C')

< ((Bkcl—l)k_szcl72)g+1CBkC(g+2)I'

By taking an arbitrarily large g, we can construct arbitrarily high powers of C
in C¢*» For a value of g that satisfies (g + 2)/ = p, since C? = 0, (6.4)
yields that CB¥C’ = 0, which in turn implies that D = 0. Thus, considering
all cases, either D < BC”, for some I, J, or D = 0. Hence, we conclude
that 4* = (B + C)* = B*C*. [

Theorem 6.2 is vacuously true for operator schemes, since for an operator
scheme B, B? = 0 can only be true when B = 0. Thus, this theorem is only
interesting for operators, in which case the meaning of B? = 0 (C? = 0) is
that the data in the parameter relations of B (C) is acyclic. The intuition behind
the proof is that, in order for the conditions of the theorem to hold, the data in
the parameter relations of B and C must not interleave in any nontrivial ways,
that is, CB*C’ with k = 2 and / = 2 is equal to 0.

350 Y. E. IOANNIDIS AND E. WONG

Theorems 6.1 and 6.2 give sufficient conditions for (B + C)* = B*C*. The
next theorem gives sufficient conditions for (B + C)* = B* + C*.

THeoREM 6.3. Let A = B + C. If there exist k and [such that
CB < B* or CB < C* (6.5a)
and
BC=B'" o BC=<C(C, (6.5b)
then A* = (B + C)* = B* + C*.

Proor. Condition (6.5a) implies that the conditions of Theorem 6.1 hold.
Thus, A* = (B + C)* = B*C* = B¥ + C* + B*BCC*. Assume that in
(6.5b) it is BC < B' that holds (the other case is treated similarly). Consider an
arbitrary term of B*BCC¥, that is, D = B'C’, i, j = 1. We distinguish two
cases:

[=z1: Clearly, (6.5b) implies that
BICJS Bt~l+/c]~1 < Bz—z+:/cj—2s . SB1+(1—1U.
/=0: Similarly to the previous case. if i> j, then B'C/< B'"/,
otherwise, if i< j, then B'C/'<(C’/~'.

In both cases, B'C’ is < to a term of B* or C*. Thus, we may conclude
that A* = (B+ O)* = B* + C*. I

Example 6.2. This example of the applicability of Theorem 6.3 involves
operators to demonstrate that the results in this section are useful not only with
operator schemes. Let S be a binary relation corresponding to a directed graph.
The following logic program computes the transitive closure of S:

P(x, z)AS(z, y) = P(x.),
S(x,y) > P(x,).

Assume that the underlying undirected graph of S consists of two connected
components, which correspond to the relations Q and R, that is, Q UR = S.
Clearly, the above program is equivalent to the following one:

P(x.z)AQ(z.y) = P(x,y),
P(x,z)AR(z. y)—*P(x,y)
Q(x,)~ x,y)
R(x, y) ~).

Let B and C be the operators corresponding to the underlying nonrecursive
Horn clauses of the two recursive ones in the above program, for the specific
instances of Q and R. It is easy to verify that BC = CB = 0. Thus, by
Theorem 6.3, independent computation of the transitive closure of each con-
nected component and a union of the two results is enough to compute the
transitive closure of the whole graph. This can be captured by rewriting the

Towards an Algebraic Theory of Recursion 351

original program into the following one:

Py(x.y) = P(x,),
P.(x,y) = P(x,),
Po(x,) AQ(z, y) = Py(x, »)
Q(X,J’)‘*PQ(X’)’)
Po(x, 2) AR(z,) = P(x, y)
R(x. y) = Pp(x, »). o

The results of Theorems 6.1, 6.2, and 6.3 can be extended to sums of an
arbitrary number of terms in straightforward ways. Their importance lies with
the fact that computing B* and C* separately, and then either multiplying them
or adding them, has the potential of being significantly cheaper than computing
(B + C)*. The main reason for this is that the latter computation produces at
least as many duplicates as the former, and often many more. The proof of this
fact is given elsewhere [29].

All three Theorems 6.1, 6.2, and 6.3 provide sufficient conditions for the
corresponding decompositions to hold. Clearly, the theorems hold for both A,
B, C being operators and A, B, C being operator schemes. Alternatively, the
theorems hold both when taking into account the database and when not.
Nontrivial and practical necessary conditions for (B + C)* = B*C™* or (B +
C)* = B* + C™ are hard to derive if B and C are operators. The following
theorems give necessary conditions for decompositions of operator schemes.
Moreover, the condition of Theorem 6.3 for the second type of decomposition,
that is, (B + C)* = B* + C™, is shown to be necessary and sufficient.

THeorReM 6.4. Consider operator schemes A, B, and C, such that

A=B+ C. IfA* = (B + C)* = B*C*, then there exist k and I such that
CB < B*C'.

Proor. Assume that A* = (B + C)* = B*C*. This implies that (B +
C)* = B*C*. Since we are dealing with operator schemes, we can use the
theorem of Sagiv and Yannakakis that every term of the sum (B + C)* must
be < to a term of B*C™ [46].* The operator CB is a term in (B + C)*. This
yields that there exist k& and / such that CB < B*C!. [J

Tueorem 6.5. Consider operator schemes A, B, and C., such that
A =B+ C. Then, A* = (B + C)* = B* + C* if an only if there exist k
and | such that

CB<BY or CB=Ck
and

BC = B’ or BC = C.

Proor. The sufficiency of the condition for the decomposition is implied by
Theorem 6.3. For the other direction, assume that A* = (B + C)* = B* +
C*. Again, we may apply the theorem of Sagiv and Yannakakis for the terms

4Actually, the result of Sagiv and Yannakakis deals with finite sums only, but it can easily be
generalized to countably infinite sums. In the sequel, we refer to their result in the more general form.

352 Y. E. IDANNIDIS AND E. WONG
CB and BC of (B + C)* [46]. This yields that there exist & and / such that
CB<B“orCB=<CF and BC<B'or BC<C' O
6.2. DecomposiTions of (BO)™
TreEOREM 6.6. Let A = BC. If there exists k such that
CB = B*C (6.6)
then

A* = (BC)* = Y. BNokIom,

m=0

Proor. Clearly, A* = (BC)* = % _,(BC)"™. Consider an arbitrary term
of the sum, D = (BC)". We show by induction on m that

D= B(E,’”:T,lk’; rolil
Basis. For m = 0, (BC)® = B®=%) C% = BOC? = 1.
Induction Step. Assume that the claim is true for some m = 0. We prove
it for m + 1 by an application of (6.6).

(BC)" = BNk cm Induction hypothesis

= (BC)""' = BCB®S K

= (BC)""'= BB**3' kh cm*+1 Repeated applications of (6.6)

= (BC)""'= Bk 1,

By the above induction, the claim is true for all terms of the sum of A4, which
is therefore equal to

A* = (BC)* = Y. BUE A Cm, O
m=0
CoroLLARY 6.2. If B and C commute, that is, BC = CB, then A* =
(BO)* =32 _, B"C™.
Proor. Replacing k = 1 in Theorem 6.6 yields the desired result. [
Note that Corollary 6.2 states that if B and C commute, the powers of B and
C can be computed independently and then the corresponding ones can be
multiplied for the final result. The expectation is that computing the powers of
B and C separately will often improve performance, because B and C are
likely to be operators that involve ‘‘smaller’’ relations than BC, both in terms
of the number of tuples and in terms of the arity. Investigation of the precise
implications of such decompositions on performance is part of our future plans.

Example 6.3. The classical example of the applicability of Theorem 6.6,
and more specifically of Corollary 6.2, is the ‘‘same generation’ program:

up(x, z) Asg(z, w) Adewn(w, y) — sg(x, y),
flat(x, y) — sg(x, »).

SSimilar results are obtained if CB = BC*.

Towards an Algebraic Theory of Recursion 353

The recursive clause in this program is a product of the following two clauses:

up(x, z) Asg(z. y) —~ sg(x, »),
sg(x. w) Adown(w, y) — sg(x, y).

We have shown in Example 6.1 that the above clauses commute with each
other. Hence, by Theorem 6.6, sg can be computed by processing the two
clauses independently of each other, and then combining the results accord-
ingly. This can be achieved by rewriting the original program in several ways.
The most straightforward (but not necessarily the most efficient) one is the
following:

down_sg(x, y,0) > sg(x, y),

down_sg(x,w.i+ 1) Adown(w, y) > down_sg(x, v, i),

up_sg(x, y, i) > down_sg(x, y, i),

up(x. z) Aup_sg(z, y,i) > up_sg(x, y,i+ 1),
flat(x, y) - up_sg(x, »,0). O
For the next theorem, we need the following definitions. An operator B € R
is uniformly bounded, if there exist K and N, K < N. such that BY < BX.
An operator Be R is torsion, if there exist K and N, K < N, such that
BY = B, The former definition is inspired by the uniform boundedness

property of linear recursive Horn clauses [28, 38]. Clearly, every torsion is
uniformly bounded, but the opposite is not true in general.

Tueorem 6.7. Let A = BC. If CB = BC and B is torsion, with N being
the lowest number such that, for some K < N, the equaltty BX = BN
holds, then

K—1 N—-1
A* = (BC)* = ZO B™C™ + (CN‘K)*(ZK B’"C'").
m= m=

Proor. Since BX = B, it takes an easy induction to show that
B™ = BmtUN-K) for al K=m< Nandalliz=0. (6.7)

The theorem is the result of the following transformations, which make use of
(6.7):

K-1 e
A*=(BC)* = > B™C™+ Y B™C"™ Corollary 6.2

m=0 m=K
K1 N—-1 o

= > B"C"+ Y B’”(Z C’”“”V‘K)) From (6.7)
m=0 m=K 1=0
K1 N-1

— Z Bmcm_i_(c(N~K))* Z Bmcm)‘ D
m=0 m=K /

Example 6.4 [37]. Consider the following logic program:

knows(x, z) Abuys(z, y) A cheap(y) — buys(x, y),
definitely_buys(x, y) — buys(x. y).

354 Y. E. IOANNIDIS AND E. WONG

The recursive clause can be written as a product of the following two Horn
clauses:

knows(x, z) Abuys(z. y) = buys(x. »),

buys(x, y) A cheap(y) — buys(x, y).
The above two clauses commute with each other, since composing them in both
ways yields the original recursive clause. Let the second clause correspond to

the operator scheme B in the statement of Theorem 6.7. Composing that clause
with itself to compute B? yields the clause below:

buys(x, y) A cheap(y) A cheap(y) — buys(x, y).

Clearly, the equality B* = B holds. Since all the premises of Theorem 6.7
hold, we conclude that B can be ignored from the processing of the original
clause beyond its first power, that is, the original program can be replaced by
the following one:

knows(x. z) Abuys(z. y) — buys(x, y),
knows(x, z) A definitely_buys(z. y) A cheap(y) — buys(x, y),
x, y).

definitely_buys(x. y) — buys(x, y) O

With respect to operator schemes, Theorem 6.7 identifies cases in which the
powers of B and C can be computed separately, and for B, only a finite
number of them is necessary, as in the case of computing B*. This result is
related to the work of Naughton on recursively redundant predicates [37].
which was the source for the program of Example 6.4. The relationship
between commutativity, uniform boundedness, and recursively redundant predi-
cates 1s examined in detail elsewhere [29].

6.3. ReprLacing A* with TransITIVE CLOSURES OF OTHER OPERATORS

THeoreEM 6.8. Let A, B. C be linear operators. If AB = BA and
AC = BC, then A*C = B*C.

Proor. We prove by induction on m = 0 that A”C = B"'C,
Basis. For m = 0, the claim holds trivially.

Induction Step. Assume that the claim is true for #m = 0. We prove it for
m 4+ 1. We have the following:

ATHIC = A(A"C) = A(B”C) = B"(AC) = B™*'C.

The second equality is by the induction hypothesis. the third equality is by
commutativity of A4 and B, and the fourth equality is by the premise that
AC = BC. From the above, we have that

(A"C) = >, (B"C) = B*C. O
m=0

Example 6.5. Theorem 6.8 allows the interchange of the two linear forms
of transitive closure. More precisely. there are two equivalent sets of linear

Towards an Algebraic Theory of Recursion 355

Horn clauses that express the calculation of the transitive closure of a binary
relation Q:

P(x.z)AQ(z.y) > P(x,),
Q(x, y) = P(x, y), (6-8)

and

Q(x. z)AP(z.5) > P(x,),

Q(x, y) = P(x,).

Clearly, the two programs are equivalent. Note, however, that they would not

be equivalent if the nonrecursive Horn clauses in them did not have Q in their

antecedent. To take into account that fact, we introduce a Horn clause that

corresponds to an operator whose output is always Q for any nonempty input:

Hu) AQ(x,y) = P(x, »).

Using the above, and assuming that [is nonempty, (6.8) and (6.9) are
equivalent to the following two programs:

P(x, 2) AQ(z. y) = P(x.»),

L(u) AQ(x,) = P(x,),

(6.9)

(6.10)

and

Q(x,2)AP(z,y) > P(x.,y)

Hu)AQ(x,y) > P(x,).

If A and B are the corresponding operator schemes for the recursive clauses of
(6.10) and (6.11) respectively, then AB = BA (Example 6.1). In addition, if
C is the corresponding operator scheme for the nonrecursive clause of both

(6.10) and (6.11), it is easy to see that AC = BC, since both products
correspond to the same Horn clause:

I(u) AQ(x, 2) AQ(z, ¥) ~ P(x, y).

Hence, the conditions of Theorem 6.8 hold. and the two programs can be
interchanged. [

THEOREM 6.9. Let A = BC. Then,
A* = (BC)* =1+ B(CB)*C. (6.12)

(6.11)

Proor. The following series of equations proves the theorem:

A*=(BC)* = f; (BC)" =1+ i (BC)"

1+ B(> (CB)”Z)C=1+B(CB)*C. O

m=0

Expression (6.12) corresponds to a program that is equivalent to the original
one corresponding to A™. The significant difference of the two programs is in
the operator whose transitive closure is computed, namely (CB)* instead of
(BC)*. Depending on what B and C are, the second algorithm may be more
efficient.

356 Y. E. IOANNIDIS AND E. WONG

Example 6.6. As an example of how Theorem 6.9 may be applied,
consider the following set of Horn clauses:

Plu,v.,w)AR(u,v.w)AS(w, x, y.2) > P(x, ¥, 2).
Q(x.y,z) > P(x,»,2).
The recursive Horn clause is a product of the following two ones:
Plu,v,t)AR(u,v,t) > P(1),
P (w)AS(w, x,y,2) > P(x.y,z).

The product of these two clauses in the opposite direction corresponds to the
following clause:

P(w)AS(w,r, s, t)AR(r, s, t) = P(1).

Given the above, rewriting (6.13) according to Theorem 6.9 yields the follow-
ing program:

(6.13)

Q(u,v.,w)AR(u,v,w)— P(w)

P(w)AS(w,r,s, t)AR(r,s, t) = P(1)
P’(Z)/\S(t,x,y,z)ﬂP(x y.2),
Q(x.y.2) > P(x.y.2).

Note that the above program is equivalent to the original one. but has a great
potential of being more efficient, primarily because its recursive Horn clause is
monadic, that is, has arity one. where the one of the original program had arity
three. Such reductions in the arity of recursive predicates are known to
significantly affect performance [9, 39]. [J

6.4. PuUSHING SELECTIONS aND ProrecTions Taroucn A*

TueoreM 6.10. Let A, p be linear operators. If there exists another
linear operator B such that

pA < Bp, (6.14)
then pA* < B*p. If (6.14) holds with equality. then p A* = B*

Proor. Assume that p A < Bp. We first show by induction on m = 0 that
pA™ < B"p.

Basis. For m = 0, the above formula is satisfied trivially.

Induction Step. Assume that the claim is true for some m = 0. We prove
it for m + 1.

pAT" ! = (pAT™)A=<(B"p) A Induction Hypothesis
= B"(pA)<B"(Bp)=B""'p From (6.14).

Having established the above, we can proceed in proving the theorem.
pA*=p > A" = (> B’")p=B*p.
m=40 m=0

The case where (6.14) holds with equality is easily seen to be true as well. [

Towards an Algebraic Theory of Recursion 357

An interesting case arises when (6.14) holds with equality and B = A. Then,
the above theorem states that if A and p commute, then p can be pushed
through the transitive closure of A. The most common such case is expected to
be for p being a selection. Such transformations on selection pushing were
among the first proposed for recursive programs in database systems [3, 32].
Another interesting case is when (6. 14) holds with equality, p is a projection .
and B = A _, which is the same operator as A but operating only on some of
the columns of its input (the ones indicated by the projection 7). Again, in
some sense, applying the above theorem results in the projection being pushed
through the transitive closure of A. Usually, such transformations cause
significant improvements in performance.

Example 6.7. As an application example of Theorem 6.10, consider the
transitive closure program (6.8) with the query

P(c, »y)?.

where ¢ is a constant. Assuming that ¢ is the selection and = is the projection
expressed in the above query, and that A is the operator scheme that corre-
sponds to the recursive clause of (6.8), the answer of the above query can be
expressed algebraicly as woA™. Clearly, 04 = Ao, since both products are
equal to the following clause:

P(x,z2)AQ(z,y)Ax=c—P(x,).

Also, mA = A 7 (again, A _ is the same operator scheme as A but accepting
as input and operating only on the columns specified by), since both products
are equal to the following clause:

P(x,2)AQ(z,¥) = P/(y).

Thus, the conditions of Theorem 6.10 are satisfied, and = gA* can be replaced
by (A,)*r o, which corresponds to the following linear program:

P(z)AQ(z,y) > P/(y),
Q(c,y) ~ P'(y).
Note that (6.15) is more efficient than (6.8), since the arity of the recursive

predicate has been reduced and the query selection is taken into account right
from the beginning. [

(6.15)

CoroLLaRY 6.3. Let A be a linear operator and w© be a projection. If
7A < 7, then T A* = 7.

Proor. Assume that 74 < 7. From Theorem 6.10, with B = 1, we have
that 7A* < 7. By Proposition 3.3d, however, since 1 < A*, we have that
7 < wA*. Hence, we can conclude that 7 A* = =. [

Corollary 6.3 allows for the elimination of recursion when its premises hold.
The projection w« is pushed through A in a way that the latter disappears.
Similar work on projection pushing in a logic-based setting has been conducted
by Ramakrishnan et al. [40], who derived several syntactic characterizations to
capture the conditions of Theorem 6.10 for pushing projections and Corollary
6.3 for elimination of (recursive) clauses. We present two examples that are

358 Y. E. IOANNIDIS AND E. WONG

essentially taken from the above work and show that applying Corollary 6.3
produces the same results.

Example 6.8. Consider the following program-query pair:

P(x,u)AQ,(u,w,z) > P (x u,z),
P(x,u)AQy(u,w,z)>P(x.u,z),
P,(x,u, z>A04(z,y,v>~»P<x »).
Q(x,y)~P(x.y)
P(x._)?
If A, B, and C are the operator schemes that correspond to the first three

(recursive) clauses in the above program. then the whole program corresponds
to the following matrix equation:

Pl _ [o A+B} Pl} o [@}
P C 0 P Q,
Solving for P and incorporating the projection # specified in the query yields
7(C(A + B))* (see Section 5). It is easily verifiable, however, that 7.X < 7,
forall Xe{ A, B, C}. Thus, by Corollary 6.3, 7(C(A + B))* = =, and the
above program can be replaced by the nonrecursive
Q,(x,y) = P(x,),
P(x._)? 0

Example 6.9. As a second example, consider the following program-query
pair:

P(x.z.u)AQ(z.u.y) > P(x,).
P(x,w.w)AQ,(w,z.u)~>P(x,z, u),
P(x.v)ANQy(v,z,u) > P(x.z.u)
Q,(x,z.u)~>P(x.z,u),

P(x._)?

If A, B, and C are the operator schemes that correspond to the first three
clauses in the above program then the whole program corresponds to the
following matrix equation:

@ }

HEEA HEE

Solving for P and incorporating the projection 7 specified in the query yields
7(AB*CY*AB*. Again, it is easily verifiable that 7 X < 7, for all Xe{ A4,
B, C}. Thus, by Corollary 6.3, w(AB*C)*AB* = w AB*. The above opera-
tor corresponds to the following program. which can be obtained from

the original one by removing the third clause, that is, the one that corresponds
to C:

<]

Pl(x’ <, H)AQI(Z7 u,)’) - P(x, r)
Pi(x, w.w)AQy(w, 2, u) = P(x, 2. u),
Q,(x.z,u) = P(x.z.u),
P(x,_)? O

Towards an Algebraic Theory of Recursion 359

7. Algebraic Transformations of Linear Recursion at the Ordering Stage

In this section, we present algebraic transformations of the query answer that
affect the ordering stage of query optimization (Figure 1). We show how
several algorithms that have been proposed in the literature are expressed as
different parenthesizations of an algebraic representation of the query answer.
In the first subsection, we derive expressions that correspond to algorithms that
are applicable to any linear recursive program. Practically, there is no limit in
the number of expressions that are equal to A*. We only present a small
number of them that have been previously proposed in the literature. In the
second subsection, we derive expressions that correspond to algorithms that are
applicable only to recursive programs of a specific form.

As in the previous section, all the optimization results presented in this one
depend solely on the algebraic properties of closed semirings. Hence, the
results can be generalized to mutual linear recursion as well, by simply using
linear operator matrices in place of linear operators. Moreover, all results in
this section hold for both operators and operator schemes.

7.1 GENERAL TRANSFORMATIONS OF A%

7.1.1 Naive Evaluation {3, 6]. This is the original algorithm proposed for
the evaluation of a (not necessarily linear) recursive program. Its algebraic
expression in the linear case is based on the fact that X" | A™ = (1 + A)".
Hence, we have that

A* = lim (1 + A4)".
n—oe
(Recall that whenever explicit parenthesization is omitted, right associativity is
assumed for multiplication.) Moreover, each power is computed from the
previous one: (1 + A)""! = (1 + A)(1 + A)™.

7.1.2 Semi-Naive Evaluation [6]. This algorithm corresponds to the defi-
nition of A* as a series, that is, 4% = 3% _ A™ Again, each power is
computed from the previous one: A”+! = AA4™.

7.1.3 Smart | Logarithmic Evaluation [27, 52]. This algorithm corre-
sponds to the following form:

oo

A= T (1 4+ A4 = - (1 4+ AH(1 + A (1 + 4).

k=0

The number of multiplications in the expression of smart is much smaller than
that of semi-naive (for any finite expansion of A*, it is approximately equal to
2*log, N for smart vs. N for semi-naive), but they involve larger operators.

7.1.4 Minimal Evaluation 127]. This algorithm corresponds to the follow-
ing formula:

A¥ =TI (1 + 4% + 427
k=0
= - (14+A+ A% (1 + A4+ A1+ A4+ A4%).

This expression has approximately 3 log,/N multiplications (when semi-naive
has N). Clearly, algorithms can be created that need n log, N multiplications

360 Y. E. IODANNIDIS AND E. WONG

for arbitrary n. They correspond to the following family of formulas:

oo n—1

A*: H (Z Al*n"’).
k=0 \7=0

The formulas for smart and minimal are special cases of the above for n = 2

and n = 3, respectively. The expression n log, N, which gives the number of

multiplications of this formula, with # restricted to the integers, has a minimum

for n = 3, regardless of the value of N.

7.1.5 Query-Subquery (QSQ) Evaluation [55]. For the query that in-
volves a selection, the QSQ Evaluation has been proposed by Vieille. QSQ tries
to take into account the selection as much as possible. The corresponding
algebraic formula is shown below:

0A* =¢> A= (cA%) =0+ > (0A*")A.
k=0 k=0 k=1
Note that the selection ¢ is taken into account from the beginning, and that the

product of ¢ with each power of A is computed from the product of ¢ with
the previous one: 0 4% = (6 A*7 ") A.

7.1.6 Prolog [16]. The formula that corresponds to the execution plan of
Prolog is the same as QSQ. The difference is in the details of the planning
stage, that is, Prolog processes one tuple at a time, whereas QSQ processes one
relation at a time. This is an example of the fact that the algebra developed in
this paper is not a useful tool for the planning stage of a recursive query
optimizer: two different execution plans are represented by the same formula at
the ordering stage.

7.2. SpeciaLIZED TrANSFORMATIONS OF A*. Let A = BC = CB. By Corol-
lary 6.2, we have that A* = S2_, B”C™. This formula corresponds to a
rewritten program for A* that keeps track of the powers m in B and C and
then multiplies the corresponding ones (Example 6.3). There are several
different parenthesizations of the above formula, each one of which corresponds
to an algorithm that has been previously proposed in the literature. The
algorithms and their corresponding parenthesizations are presented below, for
the case where the product of a selection o with A* is desired, where
0B = Bo. In that case, we have that

cA* = Y B"eC™. (7.1)

m=0

7.2.1 Henschen-Nagvi [25]. According to the algorithm proposed by
Henschen and Naqvi, (7.1) is parenthesized as

ogA* = 3 B"(ocC") =0+), B"((¢C™" ")C).
m=0 m=1

Moreover, the product of ¢ with a power of C is computed from the same
product with the previous power: ¢C” = (¢ C" ")C.

7.2.2 Counting [7, 43, 44]. The Counting algorithm as proposed by
Bancilhon et al. [7] and by Sacca and Zaniolo [44] corresponds to the same

Towards an Algebraic Theory of Recursion 361

formula as Henschen-Naqvi. The two algorithms are different in implementa-
tion details that belong to the planning stage of the query optimizer, that is,
whether all the products ¢ C™ are computed first, before any multiplications
with B (Counting), or every product is immediately multiplied with the
corresponding number of B’s (Henschen-Naqvi). (Note that explicit parenthe-
sization of a formula only partially specifies the order of processing of each
operator.) This difference can be further enhanced by the form of duplicate
elimination performed by the two algorithms. (It has been noted elsewhere as
well that Counting can be thought of as an efficient implementation of
Henschen-Naqvi [7].)

We want to emphasize that, although Corollary 6.2 deals with the product of
two operators only, its results can be generalized to products of an arbitrary
number of operators, thus capturing algebraicly the results of previous work by
Sacca and Zaniolo [43, 44]. In particular, given a set of operators { A4},
1 <i<n, that are mutually commutative, and a set of selections {o,},
0 < i < n, such that o, commutes with all operators except A,, the following
holds:

oo
0,00, 0,(A Ay o AT = Zo (0,A47) (0, AT) - (0, A7)0,
m=
One can now apply the Counting algorithm computing the powers of each A,
separately and then multiplying the corresponding ones together. Usually, most
of the selections will not be present. In the presense of multiple selections, for
each i such that o; is present, it is an interesting optimization problem to decide
whether to compute ¢; A7+ from o, A" or not.

7.2.3 Shapiro-McKay [49]. Shapiro and McKay presented an algorithm
that corresponds to the following parenthesization of (7.1):

o
cA¥* =0+ 0, B(B"'C"')C.
m=1
Only two multiplications for each power of A are performed, but the selection
o is not taken into account in the evaluation of the transitive closure.

7.2.4 Han-Lu [24]. In a performance evaluation conducted by Han and
Lu, three algorithms were presented for (7.1). The first was Henschen-Nagqvi,
the second was Shapiro-McKay, and the third we call Han-Lu. The Han-Lu
algorithm corresponds to the following parenthesization of (7.1):

cA* =+ Y (B™'B)((eC™ 1)C).
m=1
Note that not only o C™*' is computed from ¢C™ (as in Henschen-Nagvi),
but also B™*! is computed from B™.

8. Multilinear Recursion

We now turn our attention to nonlinear recursion. In contrast to our approach to
linear recursion, where we first studied immediate recursion and then general-
ized to mutual recursion, we study mutual nonlinear recursion in its general
form directly.

362 Y. E. IOANNIDIS AND E. WONG

Recall that D is a database and C, is a fixed set of constants in D. Consider
a set of mutually recursive Horn clauses, and let P = (P,. P,, ..., P)) be the
vector of relations that appear in the consequents of its elements with arities
{a,, a,....,a,}. Again, we make no assumptions about the relations in the
Horn clauses being finite. Also consider a set of # nonrecursive Horn clauses
of the form Q,— P, i=1,2,...,n, and let Q be the vector Q= (Q,.
Q,,...,Q,). These two sets of Horn clauses can be expressed in relational
terms as follows. Consider the set of recursive Horn clauses having P, in their
consequent, for some 1 < i< n. Let f, be the function that represents the
operations on P that these Horn clauses express. (If there are multiple Horn
clauses in that set, then f, involves taking the union of relations.) Then, the
complete set of Horn clauses takes the following functional form:

-](;(B) gI)l’ l:1’277n3 (8 l)
Q[(;Pja i=1.2,..‘,n. ’

As in Section 4, the minimal solution of (8.1) is the minimal solution of the set
of equations

f®YUQ, =P, i=1.2,...,n (8.2)

Let P =2 x -+ x 2%, a,= 1. Clearly, P € P. Recall that addition &
in P is defined as

PoP =(P,UP P,UP,,P,UP).

In addition, if ¢ is the n-vector ((J, J,...,)), note that) & P =
P o = P. The system of equations (8.2) can now be written as a single
equation

P =/(P) e Q. (8.3)

The following definitions introduce some classes of functions on P that are of
specific interest to the algebraic formulation of Horn clause recursion.

Definition 8.1. A function f:P — P is linear if

(a) for all vectors P, P’ in its domain, f(P @ P’) = f(P) & f(P’), and
b (D) =D.

Definition 8.2. A function g:P X P — P is bilinear if for a given P,
g(P, P) is linear in P, and for a given P, g(P. P’) is linear in P’

Definition 8.3. A function g: P X P X -+ X P— P (the domain of g is
the product of P m times) is m-linear if for all /., given P,..... P_,,
P, ...,P,. the function g(P,..... P,....P,) is linear in P. When m is
not specified, such functions are called multilinear.

A system of recursive equations of the form (8.3) is linear, bilinear, or
m-linear, it f is linear, bilinear, or m-linear, respectively. Linear systems of
recursive equations can further be put into the form shown in Section 5 and
analyzed using the properties of closed semirings. Unfortunately, this is not
possible for nonlinear systems. The importance of m-linear functions in the
study of Horn clause recursion is demonstrated in the following proposition.

Towards an Algebraic Theory of Recursion 363

Prorosition 8.1. If P=f(P, P,...,P) & Q is the equation represent-

ing a set of mutually recursive Horn clauses, where f:(P)" — P, then f is
m-linear.

Proor. Clearly. the m-linearity of f depends on the k-linearity, k < m,
of the individual recursive Horn clauses. Let g be the function corresponding
to one such clause, and assume that k& < m elements of P appear in it.
Given fixed Q, .. Q, - Q1+19-- Qk consider g(Q Q Q,\)
as a function of Q Clearly, g can be expressed as a Compos1t10n of pro-
jections, selections, and cross products of Q,..... Q[- Ql T QA
Thus. in general, g corresponds to an operator in R, which is a set of linear
relational operators. By Proposition 3.1, g is linear in Q,. This is true for all
i, so by Definition 8.3, g is k—linear. Since g was chosen arbitrarily

among the functions of the individual Horn clauses, we can conclude that f
is m-linear. [

Having established the multilinearity of all recursive Horn clause systems,
we proceed by showing the universality of bilinear recursion in the vector form
as we have defined it. This is achieved by the following propositions.

ProrosiTioN 8.2. A recursion consisting of only linear and bilinear terms
is equivalent to one with only bilinear terms.

Proor. Consider the following equation, consisting of only linear and
bilinear terms:

P=AP o g(P.P) ¢ Q.

The linear term, which involves the operator matrix A, can always be
eliminated by treating the bilinear term as constant and solving the above
equation using the techniques of Sections 4 and 5:

P=A%(P.P) ® A*"Q=¢'(P.P) o Q.

Given a fixed P’, the linearity of A™ and the bilinearity of g establishes the
linearity of g’(P, P’) in P:

g'(PeQ.P)=4'PeQP)=A"g(P.P)og(Q,P))
= A%g(P.P) e A*2(Q.P)=¢'(P.P)e g'(Q.P),
g(D.P) = A% (D, P) = A*T = .

Linearity of g’(P, P") on P’ is established similarly. Hence, the function
g’ = A¥*g is bilinear. [

ProrosiTioN 8.3. Any multilinear recursion can be reduced to a bilinear
recursion.

Proor. Consider the m-linear recursive equation.

P=fP,P.P)eQ. (8.4)

364 Y. E. JOANNIDIS AND E. WONG

Define mn — 1 bilinear functions g, ..., g,,_,, whose composition is equal to
S, and m — 2 new vectors P, ..., P, _, such that
P =g (P.P)
P, = gQ(E’El)
Em~2 = gm~2(£?£m~3)
B = gmfl(.l_)’l)mfz) 659'

Clearly, the above system is equivalent to (8.4) and it is bilinear. []

Because of the universal character of bilinearity expressed in Propositions 8.2
and 8.3, we can confine our consideration to bilinear recursion only of the form

P=¢(P,P)eQ. (8.5)

All Horn-clause derived recursions can be treated in this way. The minimal
solution to (8.5) is provided by Tarski’s Theorem [51]. For its proof, a partial
order on P is needed, which is definedasP S P’ « (P, S P{....,P, S P)).

Theorem 8.1. The minimal solution of eq. (8.5) is the limit of the
sequence

Bm—kl = g(gm’l)m) EBQ’
Bo = @
Proor. Because g is bilinear, g is also monotone on both arguments of it

(by Definition 8.2 and Proposition 3.2). The following induction on m proves
that {P,} is an increasing sequence, with respect to the partial order in P.

Basis. Form=0,itisP, = (< Q=P,.

(8.6)

Induction Step. Assume that, for some m =0, itis P, <P, .
together with the monotonicity of g, yields

Einggfn+1:>g(£m’£nl)gg(£ P)=>P CP

m+12=m+1 —_—m+1 = =—m+2-

This,

If follows that {P,} monotonically converges, and its limit, which is the
solution of (8.5), is equal to P = lim P =U._,P. [J

m-—o0 m m=0—m
Note that straightforward adoption of (8.6) as an iterative procedure to
compute the limit of the sequence is equivalent to the naive evaluation [3, 6],
which was described in Section 7.1 in its special form for linear recursion.
For the rest of the paper, g is viewed as multiplication, that is, g(P.Q) =
P - Q. Note that - is not necessarily associative. Define the system B

Efz (_1_)’ ® "*@),
As follows:

P The set of n-vectors of relations from C,, with arities {a,, a,, ..., a,}.
& Addition of vectors as defined above.

Multiplication of vectors defined as P - Q= g(P, Q).
(&) The additive identity, that is, the n-vector of empty relations.

The following theorem characterizes the algebraic structure of E,.

Towards an Algebraic Theory of Recursion 365

TueoreM 8.2. The system Ep is a nonassociative closed semiring without
identity. B

Proor. The proof is straightforward and is omitted. It depends on well-
known properties of sets and unions of sets and on the bilinearity of -. [J

In Ep, power is defined as
P'=pP.P"=P-P"!, for alln=1.

Note that, since ° is nonassociative, it is not necessarily true that P" =
P! P

With the above, we have established the appropriate algebraic framework to
study multilinear recursion, namely the system E,. We have shown that any
such recursion is equivalent to a purely bilinear one. In the next two sections,
we investigate various conditions under which a bilinear recursion is equivalent
to a linear one.

9. Equivalence of Bilinear to Linear Recursion

In the sequel, since g has been represented syntactically as multiplication, the
following equation is used instead of (8.5):

P-P-PoQ. 9.1)

Moreover, none of the forthcoming results is of any value when - is parameter-
ized with actual relations, so we shall always be concerned with - being
parameterized by relation schemes (i.e.. the database will not be taken into
account). If a bilinear recursion (9.1) is equivalent to a linear one, it is called
linearizable. Linearizability is not known to be decidable [21]. We restrict our
attention to a specific type of linearizability. In particular, we want to derive
conditions that ensure the equivalence of (9.1) to a linear equation of the form

P=-P:-QeQ
or of the form

P-Q-PoQ 9.2)

In the former case, (9.1) is called right-linearizable, whereas in the latter case
it is called left-linearizable. The two cases are completely symmetrical, so we
are moiﬂy concerned with left-linearizability. Note that the solution of (9.2) is
B, Q.

Lemma 9.1. Let P* denote the solution of (9.1). Then, the following
holds:

P*2 » Q.
- k=1—"

Proor. Using (8.6), we prove by induction on m, m = 0, that

m+1

_13m+12 E Qk'
k=1 —"

GE denotes a series with respect of &.

366 Y. E. IOANNIDIS AND E. WONG

Basis. For m = 0, the above yields P, 2 Q, which is a consequence of
(8.6) with P, = (7. a

Induction Step. Assume that the claim is true for some m = 0. We prove
it for m + 1. From (8.6) we have that

Bm+2 =]_‘)m+l .Bm+l 639
m+1 m+1
> > 9" 12 gkée Q Induction hypothesis and
=1 k=1 monotonicity of -

m+1 m+2
2Q-Y» Q@Q=Y» Q. Monotonicity of -
~ k=1 — k=1

Taking the limits of the two sequences, P, and Z|_, Qk, we concluded that
& co K =
P* 23, Q" U

As we prove later, associativity of - is a simple, albeit strong. condition to
ensure linearizability. The latter, however, is ensured by a range of conditions
that are weaker than associativity. They are all variants of the notions of
power-associativity and alternativeness. We have borrowed both terms from the
study of nonassociative algebras, where they are in common use [48]. We
proceed from the strongest (least general) to the weakest (most general)
condition.

Definition 9.1. The bilinear multiplication - is called leff-subalternative
it, for all P, Qe P, there exists # = 1 such that

and it is called right-subalternative if, for all P, Qe P, there exists n = 1
such that B

-~ 5

It is subalternative if it is both left- and right-subalternative. If #» = 2 and the
above equations hold with equality, -« is left-alternative, right-alternative,
and alternative, respectively.

Tueorem 9.1. If - is left-subalternative, then (9.1) is left-linearizable.

Proor. Using (8.6), we first prove by induction on m = 0 that, if - is
left-subalternative, then P, satisfies the following two formulas:

Em+l = E Qk’ (94)

and

P -xc) Q'(Q'(";'(Q'x)-“)), for all x. (9.5)

Towards an Algebraic Theory of Recursion 367

Basis. For m = 0, (9.4) is derived from P, © Q, which is a consequence
of (8.6) with P, = (/. Similarly, (9.5) follows immediately from (8.6):
P, -xcQ-x o

Induction Step. Assume that the claim is true for some m = 0. We prove
it for m + 1. From (8.6), we have that

(—l—:-'m+2) * X
= (Berl '_13m+1@9) *X
= (Bpyy " Brii) "xeQ-x Bilinearity of -

C;tl)”l+1 : ((Bm+] .(Tl)rrm-l -x))-")@g'x

n

Left-subalternativeness of °

%"’L—(_ (? s (;Q_(SCRRE | R REAY

I

Repeated applications of induction hypothesis (9.5) and
monotonicity of

gglgtg(k—gx)))

Similarly, we have that

.I_’m+2 = Em+1 'Berl ® Q

ro(E oo o]
L A N S R |
Induction hypothesis (9.4) and monotonicity of

(59; (..1.(9.3_)...))‘)...>

Induction hypohtesis (9.5)

:gg'(Q-(---(Q-Q)---)). Bilinearity of -

1

&8
NV
&
©
=

® 9 ° X Bilinearity of -

N
K
1=

This concludes the induction step, which proves (9.4) and (9. 5) Equation (9.4)
implies that the solution P™ of (9.1) satisfies P* < E,\,,Q Together w1th
Lemma 9.1, this implies that the solution of (9.1) is given by P* = E;_ 1Q
that is, it is equal to the solution of (9.2). Hence, because of the left- subalter-
nativeness of -, the bilinear (9.1) is left-linearizable. [J

368 Y. E. IOANNIDIS AND E. WONG

CoroLLARY 9.1. If « is right-subalternative, then (9.1) is right-lineariz-
able.

Proor. This is the symmetric case of Theorem 9.1 and can be proved
similarly. L[]

CoroLrary 9.2, If ¢ is subalternative or alternative, then (9.1) is both
left- and right-linearizable.

Proor. This is a straightforward consequence of Theorem 9.1, Corollary
9.1, and Definition 9.1. [

The following is an example of a bilinear Horn clause that is right-alternative
but not left-alternative.

Example 9.1. Consider the bilinear Horn clause
P(x,z)AP(y,v) = P(x,).

Let - represent the function of the Horn clause. We show that (Q - P) - P =
Q- (P -P). whereas (P - P) - Q # P - (P - Q). The Horn clauses that cor-
respond to the above algebraic equations are

Q(x. 2)AP(z, V) AP(y,v) > P(x, »), (9.6)
Q(x.) AP(y, 2") AP(v, V") = P(Xx, y), (9.7
Pix, z2)ANP(z.VIAQ(y.v) = P(x. ¥). (9.8)
Plx. 2)AP(y, 2")AQ(v,v")y = P(x, y). 9.9

Clearly, (9.6) and (9.7) are equivalent, whereas (9.8) and (9.9) are not. This
implies that the original Horn clause corresponds to a function that is right-
alternative but not left-alternative. Nevertheless, Corollary 9.1 guarantees that
it is equivalent to a linear recursion. [

CoroLLarY 9.3. If - is associative, then (9.1) is both left- and right-
linearizable.

Proor. We show that associativity implies alternativeness, whence by
Corollary 9.2, the claim follows a fortiori. Associativity implies that for all P,
Q, ReP, P-(Q-R)=(P-Q) - R. Leftalternativeness is obtained by
taking P = Q in the above formula, whereas right-alternativeness is obtained
by taking Q= R. [

In addition to the various conditions related to alternativeness, linearizability
is also ensured by properties related to the notion of power-associativity.

Definition 9.2. The bilinear multiplication - is power-subassociative if.
for all P € P, and for all m, n = 1, there exists & = 1 such that

P" - P"c Pt (9.10)
It is power-associative if k = m + n and (9.10) holds with equality.

Tueorem 9.2. (9.1) is left-linearizable if and only if - is power-subas-
sociative.

Towards an Algebraic Theory of Recursion 369

Proor. Assume that - is power-subassociative. Using (8.6), we prove by
induction on m, m = 0, that the following holds:

P éj: (9.11)

Basis. For m = 0, (9.11) is derived from P, € Q, which is a consequence
of (8.6) with P, = (. o

Induction Step. Assume that the claim is true for some m = 0. We prove
it for m + 1. From (8.6), we have that

l)m+2 = Berl ._l_)m+l @9

N
<] ¢
1=}
=
|

Induction hypothesis and
monotonicity of -

= » 9" -Q'eQ Bilinearity of -
c le Qc » Qk. Power-subassociativity of -

In the next to last expression, K denotes some subset of the natural numbers.
Formula (9.11) implies that the solution P* of (9.1) satisfies P* € &, _ 1Q .
Together with Lemma 9.1, this implies that the solution of (9.1) is given by |

= él Q. (9.12)

The right-hand side of (9.12) represents the solution of (9.2). Hence, because of
the power-subassociativity of - , the bilinear (9 1) is left-linearizable.

For the other direction, assume that (9, 1) 1s left-linearizable, which implies
that (9.12) holds. Clearly, for all k, 1, Q Q < P*. Hence, from (9.12), we

m

have that for all k&, [, Q Q cE_ 1Q The left-hand side of the above
formula is a conJunctlve query [15] and the right-hand side is a set of
conjunctive queries. Applying the theorem of Sagw and Yannakakls [46] yields
that for all &, /, there exists some m such that Q Q c Q that is, that - is
power-subassociative. [

CoroLLARY 9.4. If ¢ is power-associative, then (9.1) is both left- and
right-linearizable.

Proor. Power-associativity implies power-subassociativity. Hence, by The-
orem 9.2, (9.1 1s left hnearlzable In addition, power-associativity 1mphes that
Q - Q=Q - Q Q . Thus, when - is power-associative, (9.1) is right-

{inearizable as well. T[]

Example 9.2. Consider the following bilinear recursive Horn clause:

P(x,z) AP(z,w) AR(y) = P(x, y).

370 Y. E. IOANNIDIS AND E. WONG

Let - represent the function of the Horn clause. We show that, for all P, Q. S,
(P - Q) -S <P - Q. The Horn clauses that correspond to the above algebraic
formulas are

P(x,2)AQ(z, w)AR(z)AS(z, w)AR(y) > P(x,y) (9.13)
P(x.z)AQ(z.w)AR(y) = P(x,y). (9.14)

Clearly, viewed as conjunctive queries, (9.13) is contained in (9.14). Replacing
Q and S with arbitrary powers of P yields (P - P*) - P/ P - P¥, or
Pt . P/ P*T! that is. - is power-subassociative. Theorem 9.2 guaran-
tees that the given bilinear recursion is left-linearizable. It is easy to verify that
+ is not associative, so the above example establishes the usefulness of the
condition of power-subassociativity over associativity. [

By Corollary 9.4, power-associativity implies that (9.1) is both left- and
right-linearizable. To the contrary, power-subassociativity implies that (9.1)
is left-linearizable only. Naturally, there is a condition similar to power-
subassociativity that implies that (9.1) is right-linearizable. The condition is
called reverse power-subassociativity and it is defined as follows: The multi-
plication - is reverse power-subassociative if, for all P € P, and for all m,
n = 1, there exists k& = 1, such that

Enl,—l?ng ((EE).E). .B.
i T

It is straightforward to see that reverse power-subassociativity is implied by
power-associativity.

Recently. the result of Theorem 9.2 has been made tighter by Ramakrishnan
et al. [41]. Before their result can be presented, some definitions and a lemma
are necessary.

Definition 9.3. The bilinear multiplication - is power-left-subalternative
if, for all P € P, and for all / = 1, there exists m = 1 such that

P’ -Pcp” (9.15)

Note that the form of (9.15) is a special case of both (9.10) and (9.3), which
define power-subassociativity and left-subalternativeness respectively. The name
of the property expressed in (9.15) is due to this observation.

Lemma 9.2, If - is power-left-subalternative, then for all P € P and for
allnz=1,(P e P <5 _P"

Proor. The proof is by induction on 7.

Basis. For n = 1, the lemma is satisfied trivially, since P ® P~ is a finite
sum of powers of P.

Towards an Algebraic Theory of Recursion 371

Induction Step. Assume that the lemma is true for some # = 1. We prove
itfor m + 1.

PeP)" = (Pop):(Por)
< (_I_’ & Ez) N 2 Induction hypothesis
m=1 and monotonicity of -

fes] o)
=» P""'e » P?-P™ Bilinearity of -
o0
c » P"e p” Power-left-subalterna-
m=1 mek tiveness of -
m—

<

In the above, K is some set of natural numbers. This concludes the proof of the
lemma. [J

We now proceed in proving the theorem of Ramakrishnan et al. [41] in the
algebraic framework of this paper. Although the two proofs are different, they
essentially use the same techniques.

Tueorem 9.3 [41]. The bilinear multiplication - is power-left-subaliter-
native if and only if it is power-subassociative.

Proor. Clearly, if - is power-subassociative, then it is power-left-subalter-
native as well. For the other direction, assume that - is power-left-subalterna-
tive. We prove that, for all P € P and for all &, / = 1, there exists m = | such
that P* - P/ < P™. The proof is by induction on k.

Buasis. For k = 1, the above claim is satisfied trivially, since P - P/ =
E I+1 .

Induction Step. Assume that the claim is true for some k£ = 1. We prove it
for k + 1. Let Q be defined as Q= P @ P*. Clearly, for all £ > 1, the
following hold: ~— o

Ed

P‘c(Pe

in
)
=
_/>
Il

=

53]

< 12

Ek+1

n
]
I~
\-/>~

il

Hence, we have that
P+l plc QF-Q Monotonicity of -

c 9" =(Po Ez)n, for some n = 1 Induction hypothesis

c » P”. Lemma 9.2
m=1

Thus, we have cshown that P% - P/ B> | P, Since the left-hand side of the
above formula is a conjunctive query and its right-hand side is a set of
conjunctive queries, we can again use the result of Sagiv and Yannakakis [46]
to yield P¥ - P/ < P™, for some m = 1. This concludes the induction step,
and the proof of the theorem is complete. []

372 Y. E. IOANNIDIS AND E. WONG

ASS TIVE
ALTERNATIVE POWER-ASSOCIATIVE
LEFT-ALTERNATIVE SUBALTERNATIVE RIGHT-ALTERNATIVE /
I'4
LEFT-SUBALTERNATIVE RIGHT-SUBALTERNATIVE POWER-SUBASSOCIATIVE REVERSE POWER-SUBASSOCIATIVE
POWER-LEFT-SUBALTERNATIVE POWER-RIGHT-SUBALTERNATIVE
*
|
LEFT-LINEARIZABLE RIGHT-LINEARIZABLE

Fic. 2. Relationship of properties of - implying linearizability

Power-right-subalternativeness is defined symmetrically to Definition 9.3,
and results similar to those of Lemma 9.2 and Theorem 9.3 can be derived.

The sufficient and necessary-and-sufficient conditions for linearizability that
have been presented in this section are summarized in Figure 2. There, an
arrow from property x to property y indicates that property x implies property
y. Some properties are linked with bidirectional arrows, signifying that they are
equivalent. An interesting by-product of this study is that, in £, left-subalter-
nativeness implies power-subassociativity. We do not expect this to hold in
general, that is, for all nonassociative closed semirings. In that respect,
nonassociative algebras are different: for all such structures. alternativeness
always implies power-associativity [48].

10. Embedding Ep in an Algebra

Unfortunately, all properties that are equivalent to left-linearizability, that is,
power-subassociativity and power-left-subalternativeness, require testing for
containment of recursive programs, which is in general undecidable [50]. One
could consider uniform containment [45] of the programs involved in these
conditions and obtain decidable sufficient conditions for linearizability [41], but
the required tests are still expensive. In fact, among the conditions in Figure 2.
only those that are at least as strong as left-alternativeness can be easily tested,
in the sense of only requiring testing for equivalence of conjunctive queries. In
this section, we derive another sufficient condition for left-linearizability, which
is related to power-associativity and requires testing for equivalence of nonre-
cursive programs as well. This is done by embedding £, in an algebra.

In general, given a system E of a given algebraic structure A, one can
embed it in a richer algebraic structure B by extending the set of properties of
its elements and /or its operations, so that the requirements of B are satisfied.
By appropriate mappings of the properties of B to the properties of A,
theorems that are derived within B can be used to derive additional ones that
hold within A. Schematically, this is shown in Figure 3, where 7, and Tj
denote theorems that hold within A4 and B, respectively. System FE is
embedded in B (in the opposite direction of the arc B = A), T is derived
within the embedded system, and 7, is derived by reversing the mappings used
in the embedding. The final result is a theorem within A.

Towards an Algebraic Theory of Recursion 373
B> T3

Property and Operation Mapping
A————— = — >Th — — — — Derivation

Fic. 3. Schematic representation of embedding.

In our specific case, the system of interest is E,, A is a closed semiring, B
is an algebra. T, is Theorem 10.2, and T is a known theorem in power-
associative algebras [48]. The main effect of embedding E, in an algebra is
that relations are treated as multisets instead of sets. Relations may contain
duplicate tuples, and each tuple is associated with a number that indicates the
number of occurrences of the tuple in the relation. In fact, the notion of
““occurrence of a tuple in a relation’ becomes fuzzy, since the number
associated with a tuple in a relation can be an arbitrary real number, although
allowing nonintegers is only a technicality so that the embedding is realized. If
one needed to evaluate programs within the algebra, duplicates would have to
be retained, and the processing cost would most likely be prohibitive. As we
shall see in this section, however, we only use the embedding to derive
conditions for left-linearizability. If a program does satisfy these conditions, its
equivalent linear form can be executed within the closed semiring of linear
operators with no need to retain duplicates.

We now proceed with the embedding. Recall that 2<%, a, > 1, | < i < n,
denotes the collection of all relations having arity ¢,, and that P is defined as

f:zcgj.x “ . chg,,‘
Also, define
Co=C4x - XC%.

Consider a relation Q & Cj;. As such, Q can be viewed as a function Q:
Cg — {0, 1}, defined by

Q1) = {1 if the tuple 7 is in Q,
0 otherwise '

Based on that, P corresponds to the set P = {all functions p:C,, = {0, 1}"}.
We extend P to the set P" of all functions mapping C,, into R"”, where R is
the set of real numbers. That is, P” = {all functions p: C,, = R"}.” which is
well known to be a vector space over the field of reals R [26]. Each member of
P’ is called an extended relation vector. Clearly, every member of P is also
a member of P”. The appropriate addition in P” is the ordinary addition of real
numbers: For all te C,. (P" 4+ Q)(¢) = P’(¢) + Q'(¢). (We use + with the
understanding that it is not to be confused with + as defined in Section 3 for
addition of linear relational operators.)

Consider a bilinear function g: P X P — P, which corresponds to the
multiplication ¢ . Define its extension g”; P” x P"— P’ which corresponds

"The superscript r is for reals. It will be used to tag elements. operations. and functions of P’.

374 Y. E. IOANNIDIS AND E. WONG

to the multiplication *”, as follows:

P rQ = 3 P(s)Q(2)(1, -1

s.1teCp

I
~——

where 1, is the indicator function

1,(s) =

Note that the summation is with respect to ordinary addition. that is, the
addition in P”. An intuitive meaning of the definition of *” is that it operates
on (extended) relations one tuple at a time and retains duplicates in the result. It
is easy to show that +” is bilinear. In fact, this is the case whether * is bilinear
or not.

For any member P’ of P’, define the function |P”| € P as follows:

I if s=1,
0 otherwise.

1 it P’(z) >0,

[P [(1) =)
0 otherwise.

Intuitively, when | | is applied on an extended relation vector, it removes the
duplicates. For the following, recall that any element of P is an element of P’
as well.

Lemma 10.1. If P. Qe P, then P -’ 9| =P -Q.
Proor. This is a direct consequence of the definitions of + and . [J

Treorem 10.1. The system (P",+, ", (J.R) is a nonassociative algebra
without identity over the field R. o

Proor. We have already mentioned that the system (P, +,), R) is a
vector space over the field of reals R. It is also straightforward to verify that
P’ is closed under multiplication, " distributes over + . and that multiplying
any product of two elements of P’ with a real number is equivalent to
multiplying one of the elements and then taking the product. Based on Defini-
tion 2.4, the above imply the theorem. [

The multiplications + and +” define powers on P and P’, respectively, as
follows:

P' =P Pl=p P Pep,
()" =P ()" =P (27)" "Prep".
The concept of power-associativity can now be extended to -".

Definition 10.1. The bilinear multiplication " on P" X P’ is power-
associative if

(l)r>(m) . (E,)(n) _ (Er)(men).

Lemma 10.2. The bilinear multiplication - on P X P is power-associa-
tive, if its extension -7 on P" x P’ is power-associative.

Proor. Suppose + is power-associative. Then, for P e P, it is
Bm ,Bn: Il)um’ . ‘E(H)‘:Hl)(m)t ,r{—l—)(n)H
— |P(m) r P(n)‘ - ‘P(ern)‘ :Pm+n'

Towards an Algebraic Theory of Recursion 375

The first, second, and fifth equalities are derived from Lemma 10.1. The third
one is a consequence of the fact that P € P, and the fourth one is due to the
power-associativity of ", []

Tueorem 10.2. If for all P e P’

(Er)(2) r Er _ (Er)(?‘) and (Er)(Z) . (_l:_.r)(2) _ (gr)(‘l). (104)
then - is left- and right-linearizable.

Proor. It is known that, within an algebra over a field with characteristic 0
(like R), (10.4) is a necessary and sufficient condition for a bilinear multiplica-
tion ‘" to be power-associative [48]. By Lemma 10.2, this further implies that
* is power-associative. Hence, by Corollary 9.4, (10.4) implies that - is both
left- and right-linearizable. [

Theorem 10.2 provides a sufficient condition for left-linearizability. The only
disadvantage is that the condition requires testing for equivalence of conjunctive
queries within the embedded system, that is, taking into account duplicate
retention. The classical theorem by Chandra and Merlin does not hold. because
it treats relations as sets and not multisets [15]. We are not aware of any
decision procedure for this type of equivalence. In general, there is almost no
theory on the properties of queries and programs that retain duplicates. The
development of such a theory is part of our future plans.

11. Comparison to the Logic-Based Approach

As we mentioned in the introduction, the great majority of the work on
recursion has been based on a first-order logic representation of recursive
programs, Horn clauses in particular. In this section, we give a brief compari-
son of the algebraic approach developed in this paper with the traditional
logic-based approach. Clearly, by Proposition 4.1, every linear Horn clause can
be represented by a linear operator in R and vice versa. Similarly, every
multilinear program can be expressed as a bilinear multiplication of two relation
vectors and vice versa. Thus. the two approaches are equivalent in terms of
expressive power. Their difference is in the ease with which certain properties
are expressed. We claim that certain properties are fundamentally algebraic in
nature and they can be studied more naturally in the algebraic framework,
whereas others are logic-based in nature and they can be studied more naturally
in the logic-based framework. We do not attempt here to define precisely which
properties are algebraic in nature and which are not, since this may enter the
realms of philosophy. Instead. we compare the results presented in this paper
with similar ones that have been derived within the logic-based framework. if
such results exist. We also describe some known results in the logic approach
that do not seem to lend themselves naturally in the algebraic approach.

11.1. StrenGTHS OF THE ALGEBRAIC ApPrOACH. The fundamental advantage
of the algebraic over the logic-based approach is the ability of the former to
explicitly represent query answers of recursive programs (especially in the
linear case), which can then be manipulated algebraicly. In the previous
sections, we have presented several theorems that can be derived by taking
advantage of this ability. Although some of these results have been derived
based on logic as well, we feel that their algebraic derivations are more natural.

376 Y. E. IOANNIDIS AND E. WONG

In Section 7, we have seen how the algebraic framework can be used to
express several algorithms for recursive query processing at the ordering stage
of query optimization (Figure 1). Some of the algorithms have been proposed
under the logic-based framework as well (e.g., Henschen-Naqvi), whereas
others have not (e.g.. Minimal). By the very nature of ordering stage, the
algebra seems to be the only appropriate tool to explore the complete variety of
processing algorithms. Thus, we do not discuss the ordering stage in any more
detail, but we concentrate on the rewriting stage, where the algebraic and
logic-based approaches seem to complement each other.

11.1.1. Linear Recursion. Section 6 describes several results that can be
used at the rewriting stage of an optimizer. Theorem 6.1 on the decomposition
of (B + C)™ has been observed by Ramakrishana et al. as well, who in essence
used the algebraic notation developed in this paper [41]. They actually used
regular expressions over rule names, but the equivalence to the algebra is
straightforward, since there is a one-to-one correspondence between rules and
operators, and regular expressions form a closed semiring [2]. Theorems 6.2
and 6.3 are new and similar in nature with Theorem 6.1. Other results of the
same nature have been obtained by Lassez and Maher [33, 35] and by Dong
[19]. Theorems 6.4 and 6.5 on necessary conditions for decompositions of
(B + C)* make use of the theorem of Sagiv-Yannakakis [46], which is
logic-based in nature.

Theorem 6.6 on the decomposition of (BC)* is new, but its corollary
(Corollary 6.2) has been used by many rescarchers, although not with any
explicit reference to the algebra behind it. An example of such a use is in the
performance study of Han and Lu [24], where the algorithms of
Henschen-Naqvi, Shapiro-McKay. and Han-Lu were expressed in the way
that was shown in Section 7. Theorem 6.7 is also new and captures part of the
essence of the study of Naughton on recursively redundant predicates [37].

Theorem 6.8 allows the interchange of the two linear forms of transitive
closure. This together with the fact that the bilinear version of the transitive
closure program is easily proven to be associative, and therefore linearizable
(Corollary 9.3), result in the ability to modify any form of the transitive closure
program-query pair into its most efticient form, thus capturing all possible such
transformations [10]. Theorem 6.9 can be used to reduce the arity of recursive
predicates, which often has significant effects on performance {9, 39].

Finally, Theorem 6.10 and Corollary 6.3 provide the foundation for selection
and projection pushing. Transformaticns like those of Theorem 6.10 on selec-
tion pushing were among the first proposed for recursive programs in database
systems {3, 32]. In the logic-based approach, projection pushing has been
studied by Ramakrishnan et al. [40]. who derived several syntactic characteriza-
tions to capture the conditions of Theorem 6.10 for applying projections early
and Corollary 6.3 for elimination of (recursive) clauses. We have presented
several examples that demonstrated the applicability of the algebraic approach
in such issues, by producing the same results as the logic-based approach.

As a final comment on the merits of the algebraic approach in the study of
linear recursion, we want to mention that several other researchers have
employed it in their work, although not explicitly. We have already mentioned
the work on commutativity by Ramakrishnan et al. [41}, and the performance

Towards an Algebraic Theory of Recursion 377
L]
/ \ / \ Fig. 4. Tree representation of Q- 0%
Q B / \
Q Q

evaluation by Han and Lu [24]. We would also like to mention the work on
magic functions by Gardarin and Maindreville [22] and Gardarin [23], where
Horn clauses are viewed as functions and manipulated appropriately (precisely
in the way operators are), and the work on parallel algorithms for transitive
closure by Valduriez and Khoshafian [53], where they develop algorithms based
on the fact that, for two linear operators 4, B # 0, if A* = A and B* = B,
then for all kK = 0, A¥ < A and B* < B. which further implies that (A +
BY* = (1 + AY(BA* + (1 + B)(AB)*.

11.1.2. Bilinear | Multilinear Recursion. The algebraic approach for bi-
linear recursion can have again several applications at the ordering stage of
query optimization. No such results have been reported in this paper, however,
since they are either obvious or straightforward extension of results for the
linear case.

For the rewriting stage, the algebraic approach has provided several results
on the problem of linearizability in Sections 9 and 10. The results in the latter
rely on embedding relation vectors in an algebra and on known algebraic
properties of such structures. The logic-based approach lacks the tools that
would enable similar discoveries. From the results in Section 9, Theorem 9.3 is
the most general of all and is part of the work by Ramakrishnan et al. [41].
Their effort was based on proof trees and their transformations, but essentially,
a proof tree is another representation of a product in a nonassociative closed
semiring (the only difference being that the leaves of a tree are individual
tuples, whereas the factors in an algebraic product are set of tuples, i.e.,
relations). An example of the correspondence is shown in Figure 4.

The earliest work that we are aware of on the problem of linearizability is
that by Zhang and Yu [56]. They focus their attention to a restricted class of
bilinear Horn clauses, that is, a restricted class of multiplications -, and for
that class they provide a necessary and sufficient syntactic condition for left
linearizability. It is rather straightforward to prove (and we do not do it in this
paper) that if a Horn clause satisfies their syntactic condition, then the corre-
sponding multiplication * is associative, so by Corollary 9.3 it is left- and
right-linearizable. Thus, for the restricted class of multiplications they exam-
ined, all conditions studied in Section 9 together with the condition by Zhang
and Yu are mutually equivalent. The algebraic approach provides tools to study
these conditions, whereas the logic-based approach, which was employed by
Zhang and Yu, provides syntactic characterizations of them. More recent
results on syntactic conditions for linearizability of restricted classes of bilinear

378 Y. E. IOANNIDIS AND E. WONG

Horn clauses have been given by Zhang et al. [57] and Saraiya [47]. Both these
conditions are generalized by Theorem 9.3 [41].

11.2. LiMITATION OF THE ALGEBRAIC ApPPROACH. The algebraic approach is
limited to only addressing problems at the rewriting and ordering stages of
query processing and optimization. The abstraction it offers is at a higher level
than is necessary for studying the details of the planning level. In addition, even
at the rewriting stage, certain transformations seem to have a nonalgebraic
flavor, for example, magic sets and generalized counting [7, 11], and factoring
[39] cannot be derived algebraicly. It is hard to identify exactly what makes a
property algebraic and what not. In that sense. we do not know which
characteristics of the above transformations make them unnatural to express
algebraicly. One problem seems to be notational, since the above transforma-
tions tend to produce multilinear programs from linear ones, and the appropri-
ate algebraic structures for the two are different. Another problem seems to be
that these transformations tend to modify the structure of the original
operators/clauses. Expressing such transformations algebraicly requires speci-
fying much detail about the operators, for example, their parameter relations
and the specific manipulations of their columns. Doing that would simply be a
change in notation from logic to algebra, which seems pointless, since the
latter, when expressing all the required details. offers no advantages over the
former.

Negation was excluded from the algebras developed in this paper, since we
only deal with Horn clauses. Hence. the current study has very little to offer in
the study of programs that include it. It is conceivable that more powerful
algebras will be able to capture negation and offer insights into its properties.
Embedding relation vectors in an algebra (Section 10) may be a good starting
point for developing such an algebraic structure, but this requires further
investigation.

Finally, as we have already mentioned, the algebra does not offer any tools
that can lead to deriving syntactic characterizations of interesting properties of
Horn clauses programs (even algebraic properties). To be more precise, the
algebra should take into account the details of the manipulations of the columns
of the relations in the operators in order to become a usable tool for such work.
This offers no advantage over the logic-based approach. Hence, syntactic
characterizations of such properties are likely to be based on the logic form of
the operators. As examples of such work, we offer characterizations of the
properties of bounded recursion [28, 38], linearizability {47, 56, 57], commuta-
tivity of selections with arbitrary operators [1], and commutativity of arbitrary
operators [29].

12. Conclusions

A significant subset of all linear relational operators have been embedded into a
closed semiring. Within this algebraic structure, processing recursive Horn
clauses has been reduced to solving recursive equations. For a single linear
Horn clause, the solution to the corresponding operator equation is equal to the
transitive closure of the operator representing the Horn clause. This approach
can be extended to multiple Horn clauses that are linearly mutual recursive. In
that case, inference is reduced to solving linear systems of operator equations,
in the same manner that immediate recursion is reduced to solving a single such

Towards an Algebraic Theory of Recursion 379

equation. The ability to algebraicly manipulate an operator representing the
query answer has important implications. We have presented several specialized
transformations of the query answer at the rewriting stage of query optimiza-
tion, which when applicable, have the potential to speed up the process of
answering the query. We have also described several general and specialized
transformations of the query answer at the ordering stage.

Nonlinear recursion has also been treated similarly by embedding all bilinear
recursions into a nonassociative closed semiring. The universality of the
approach has been demonstrated by showing that any nonlinear recursion can be
reduced to a bilinear one. We have given several conditions for a bilinear
recursion to be left-linearizable. All conditions are variations of two properties,
namely, alternativeness and power-associativity. Most of these conditions re-
quire testing for equivalence or containment of recursive programs, which is
computationally undesirable. By embedding all bilinear recursions into an
algebra, we have been able to derive a simple sufficient condition for lineariz-
ability that requires testing for equivalence of nonrecursive programs only.

ACKNOWLEDGMENTS. We would like to thank Jeff Ullman for many useful
discussions, as well as the anonymous referees whose comments had a signifi-
cant impact on the readability of the paper.

REFERENCES

1. AcrawaL, R., anD DevanBU, P. Moving selections into linear least fixpoint queries. IEEE
Trans. Knowl. Data Eng 1, 4 (Dec. 1989), 424-432.

2. Auo, A., Hopcrorr, J., anp Uriman, J. D. The Design and Analysis of Computer
Algorithins. Addison-Wesley, Reading, Mass., 1974.

3. Ao, A., aNp UrLLman, J. Universality of data retrieval languages. In Proceeding of the 6th
ACM Symposium on Principles of Programming Languages (San Antonio, Tex., Jan.). ACM,
New York, 1979, pp. 110-117.

4. Art, K. R., aND VANEMDEN, M. H. Contributions to the theory of logic programmuing. JACM
29, 3 (July 1982), 841-862.

5. Backnouse, R. C., anD CARre, B. A. Regular algebra applied to path-finding problems. J.
Inst. Math. Appl. 15, 2 (Apr. 1975), 161-186.

6. Bancinon. F. Noise evaluation of recursively defined relations. In M. Brodie and J. Mylopou-
los. eds., On Knowledge Base Management: Integrated Artificial Intelligence and Database
Technologies. Springer-Verlag, New York, 1986.

7. BaNciLHoN, F.. Maler., D., Saaiv, Y., anp UrLuman, J. D, Magic sets and other strange ways
to implement logic programs. In Proceedings of the 5th ACM SIGMOD-SIGACT Symposium
on Principles of Database System (Cambridge, Mass., Mar.). ACM., New York. 1986, pp.
1-15.

8. BANCILHON, F.. AND RAMAKRISHNAN, R. An amateur’s introduction to recursive query process-
ing strategies. In Proceedings of the 1986 ACM-SIGMOD Conference on the Management of
Data (Washington, D.C., May). ACM. New York, 1986, pp. 16-52.

9. BanciLHON, F. AND RamakrisHNAN, R. Performance evaluation of data intensive logic pro-
grams. In J. Minker, ed., Foundations of Deductive Databases and Logic Programming,
Morgan-Kaufmann, San Mateo. Calif., 1988, pp. 439-517.

10. Beer1, C., KaNELLAKIS P.. BANCILHON, F., aND RAMAKRISHNAN, R. Bounds on the propagation
of selection in logic programs. In Proceedings of the 6th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (San Diego, Calif., Mar.). ACM, New York,
1987, pp. 214-226.

11. Begrt, C., AND RaMakrISHNAN, R. On the power of magic. In Proceedings of the 6th ACM
SIGMOD-SIGACT-SIGART Symposium on PBrinciples of Database Systems (San Diego,
Calif., Mar.). ACM, New York, 1987, pp. 269-283.

12. CARrRrE, B.. Graphs and Networks, Oxford Umversity Press, Oxford. England. 1979.

13. Cer1, S., GorrLos, G., AND Lavazza, L. Translation and optimization of logic queries: The
algebraic approach. In Proceedings of the 12th International VLDB Conference (Kyoto, Japan,
Aug.). Morgan Kaufmann. San Mateo. Calit., 1986, pp. 395-402.

380 Y. E. IOANNIDIS AND E. WONG

14.

15

17.

18.

19.

20.
21.

25

26.
27.

29

30

31.

34.

35.

36.

37.

Cert. S.. AND Tanca, L. Optimization of systems of algebraic equations for evaluating datalog
quertes. In Proceedings 13th International VLDB Conference (Brighton. England. Sept).
Morgan Kaufmann. San Mateo, Calif., 1987, pp. 31-41

CHANDRA. A. K., aND MEerLIN, P M. Optimal implementation of conjunctive queries
relational data bases. In Proceedings of the 9th Annual ACM Symposium of Theory of
Computing (Boulder, Colo , May). ACM, New York. 1977, pp. 77-90.

. CrocksiN, W. F., anp MEeLLisH, C. S, Programming in Prolog. Springer-Verlag, New York,

1981

Copp, E F. A relational model of data for large shared data banks. Commun. ACM 13. 6
(1970y. 377-387.

CosMADAKIS, S.. AND KaNeLLAKIS, P, Parallel evatuation of recursive rule queries. In Proceed-
ings of the 5th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems
(Cambridge, Mass, Mar.) ACM, New York, 1986, pp. 280-293

DonG, G. On the Composition of Datalog Program Mappings. Unpublished Manuscript,
Univ. Southern California, Nov., 1988

EiLenBerG, S. Automata, Languages, and Machines. Acedamic Press, New York, 1974.
GarpMaN, H , Mamrson, H, Sacrv, Y., anp Varpl, M Undecidable optimization problems for
database logic programs. In Proceedings of the 2nd ACM Symposium on Logic in Computer
Science (Ithaca. NY, June). ACM, New York, 1987, pp. 106-115

. GARDARIN, G . anD DE MaINDREVILLE, C. Evaluation of database recursive logic programs as

recurrent function series In Proceedings of the 1986 ACM-SIGMOD Conference of the
Management of Data (Washington, D.C.. May). ACM, New York, 1986, pp. 177-186.

. GarpariN, G. Magic functions: A technique to optimize extended datalog recursive programs. In

Proceedings of the 13th International VLDB Conference (Brighton. England, Sept.). Morgan
Kaufmann, San Mateo, Calif., 1987, pp. 21-30.

24. Han, J, anp Lu, H Some performance results on recursive query processing in relational

database systems In Proceedings of the 2nd International Conference on Datu Engineering
(Los Angeles, Calif., Jan.). IEEE Computer Society Press, Washmgton, D C , 1986. pp.
533-539

HenscHEN, L., aND NaQvi, S. On compiling queries in recursive first-order databases JACM
31, 1 Jan. 1984), 47-85

HersteIN, I N. Topics in Algebra. Wiley, New York, N Y., 1975,

Ioannipis, Y. E. On the computation of the transitive closure of relational operators. In
Proceedings of the 12th International VLDB Conference (Kyoto, Japan. Aug). Morgan
Kaufmann, San Mateo, Calit., 1986, pp. 403-411

. loannmois, Y. E. A time bound on the materialization of some recursively defined views.

Algorithimica 1, 4 (Oct. 1986)., 361-385.

loannipis, Y.E. Commutativity and its role in the processing of hnear recursion. J. Logic
Prog.. to appear.

Ioannmors, Y. E . anp WonG, E An algebraic approach to recursive inference. In Proceedings
of the Ist International Conference on Expert Database Systems (Charleston, S.C.. Apr.).
Benjamin/Cummings, Redwood City, Calif.. 1987, pp. 295-309.

Ioanniprs, Y. E., anp WonG, E. Query optimization by simulated annealing. In Proceedings of
the 1987 ACM-SIGMOD Conference on the Management of Data (San Francisco. Calif..
May). ACM, New York, 1987, pp. 9-22

2. Kirer. M., anD Lozinskn, E. On compile time query optimization in deductive databases by

means of static filtering ACM Trans. Datab. Syst. 15, 3 (Sept. 1990), 385-426.

. Lassez, J L. anp MaHER, M. J. Closures and fairness in the semantics of programming logic

Theoret. Comput. Sci. 29 (1984), 167-184.

Lenamann, D J Algebraic structures for transitive closure. Theoret. Comput. Sci. 4 (1977),
59-76.

MaHER, M. J Semantics of Logic Program. Ph D dissertation. Dep. Comput. Sci.. Univ
Melbourne, Parkville, Austraha (also available as Tech. Rep No. M85/14), 1985.

NaucHTON, J. Compiling separable recursions. In Proceedings of the 1988 ACM-SIGMOD
Conference on the Management of Data (Chicago, Iil , June). ACM, New York, 1988, PP
312-319.

NaucHTOoN, J. Minimizing function-free recursive inference rules. JACM 36. 1 (Jan. 1989),
69-91

Towards an Algebraic Theory of Recursion 381

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

NAauGHTON. J. Data independent recursion in deductive databases. J. Comput. Syst. Sci. 38, 2
(Apr. 1989), 259-289.

NAUGHTON, J. F., RAMAKRISHNAN, R.. Sacrv, Y., anp UnLiMman, J. D. Factoring can reduce
arguments. In Proceedings of the 15th International VLDB Conference (Amsterdam, The
Netherlands, Aug.). Morgan Kaufmann, San Mateo, Calif., 1989, pp. 173-182

RamakrisHnan, R., Beeri, C., AND KrisHNAMURTHY, R, Optimizing existential datalog queries.
In Proceedings of the 7th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (Austin, Tex., Mar.). ACM, New York. 1988, pp. 89-102.

RAMAKRISHNAN, R.. SaGv, Y, ULLmaN, J. D., AND VArDI, M. Proof tree transformation
theorems and their applications Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (Philadelphia, Pa., Mar.). ACM. New York,
1989, pp. 172-181.

RosenTHAL. A.. Hener, S., Davar, U., aAND ManoLa, F. Traversal recursion: A practical
approach to supporting recursive applications. In Proceedings of the 1986 ACM-SIGMOD
Conference on the Management of Data (Washington, DC, May). ACM. New York. 1986, pp.
166-176.

Sacca, D., anp Zanoro, C. On the implementation of a simple class of logic queries for
databases. In Proceedings of the 5th ACM SIGMOD-SIGACT Symposium on Principles of
Database Systems (Cambridge, Mass., Mar.) ACM, New York, 1986, pp. 16-23.

Sacca, D., anp ZanioLo, C. The generalized counting method for recursive logic queries. In
Proceedings of the International Conference on Database Theory (Rome, Italy, Oct.).
Springer-Verlag, Berlin, 1986. pp. 31-53.

Sagly, Y Optimizing datalog programs. In Proceedings of the 6th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database System (San Diego, Calif., Mar.).
ACM, New York. 1987, pp. 349-362.

Sagtv, Y., aND YANNAKAKIS, M. Equivalences among relational expressions with the union and
difference operator. JACM 27. 4 (Oct. 1980). pp. 633-655.

Saraiva, Y. P. Linearizing nonlinear recursions in polynomial time In Proceedings of the 8th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Databuse Systems (Phila-
delphia, Pa., Mar.). ACM. New York, 1989, pp. 182-189.

ScHaFerR, R. D. An Introduction to Nonassociative Algebras. Academic Press, Orlando,
Fla.. 1966.

SHAPIRO, S.. AND McKay. D. Inference with recursive rules. In Proceedings of the Ist Annual
National Conference on Artificial Intelligence (Palo Alto, Calif., Aug.). 1980, pp. 151-153.
SumueLt, O. Decidability and expressiveness aspects of logic queries. In Proceedings of the
6th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (San
Diego. Calif., Mar). ACM, New York, 1987, pp. 237-249.

Tarskr, A. A lattice theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955),
pp. 285-309.

VALDURIEZ, P. AND BoraL, H. Evaluation of recursive queries using join indices. In Proceed-
ings of the Ist International Conference on Expert Database Systems (Charleston, S.C.., Apr.).
Benjamin/Cummings. Redwood City, Calif., 1987, pp. 271-293.

VaLDURIEZ, P.. anD KHOSHAFIAN, S. Transitive closure of transitively closed relations. In
Proceedings of the 2nd International Conference on Expert Database Systems (Tysons
Corner, Va., Apr.). Benjamin/Cummings, Redwood City, Calif., 1989, pp. 377-400.

M. H. VANEmMDEN, aND KowaLski, R. A, The sematics of predicate logic as a programming
language. JACM 23, 4 (Oct. 1976). 733-742.

VIEILLE, L. Recursive axtoms in deductive databases: The query/subquery approach. In Pro-
ceedings of the Ist International Conference on Expert Database Systems (Charleston, S.C.,
Apr.) Benjamin/Cummings. Redwood City, Calif.. 1987, pp. 253-267.

ZuanG, W., anp Yu, C. T. A necessary condition for a doubly recursive rule to be equivalent to
a linear recursive rule. In Proceedings of the 1987 ACM-SIGMOD Conference on the
Management of Data (San Francisco., Calif.. May). ACM, New York, 1987, pp. 345-356.
ZuanG, W., Yu, C. T., anp Troy, D. A necessary and sufficient condition to linearize doubly
recursive programs in logic databases. ACM Trans. Datab. Syst. 15, 3 (Sept. 1990), 459-482.

RECEIVED NOVEMBER [988; REVISED JULY 1989 AND FEBRUARY [1990; ACCEPTED MARCH 1990

Journal of the Association for Computing Machincry, Vol 38, No 2, April 1991

