
Journal of Computer and System Sciences 58, 512�534 (1999)

Equivalence of Keyed Relational Schemas by
Conjunctive Queries*

Joseph Albert

Computer Science Department, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751

E-mail: jalbert�acm.org

Yannis Ioannidis- and Raghu Ramakrishnan

Computer Sciences Department, University of Wisconsin, 1210 W. Dayton Street,
Madison, Wisconsin 53706

Received November 25, 1997; revised November 2, 1998

The concept of two schemas being equivalent is fundamental to database
design, schema integration, and data model translation. An important notion
of schema equivalence, query equivalence, was introduced by Atzeni et al.,
and used to evaluate the correctness of schema transformations. The logically
equivalent notion of calculous equivalence, as well as three progressively more
general notions of schema equivalence were introduced in 1984 by Hull, who
showed that two schemas with no dependencies are equivalent (under all four
notions of equivalence) if and only if they are identical (up to renaming and
re-ordering of attributes and relations). Hull also conjectured that the same
result holds for schemas with primary keys. In this work, we resolve the
conjecture in the affirmative for the case of query equivalence based on
mappings using conjunctive relational queries with equality selections.
� 1999 Academic Press

1. INTRODUCTION

A fundamental concept in database theory is that of schema equivalence. Infor-
mally, two schemas are equivalent if each one can simulate the other in terms of
capacity to store database instances and support queries. A related notion is that
of schema isomorphism. Two schemas are isomorphic if they are identical, up to
renaming and re-ordering of attributes and relations. An understanding of schema
equivalence is important for schema integration in heterogeneous multidatabase
systems [4, 18], where two schemas with dependencies describing the semantics of

Article ID jcss.1999.1628, available online at http:��www.idealibrary.com on

5120022-0000�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* This is a Massive Digital Data Systems (MDDS) project sponsored by the Advanced Research and
Development Committee of the Community Management Staff. An extended abstract of the present
paper appeared in [1].

- Present address: Department of Informatics, University of Athens, Hellas, Greece.

the data are given, and one would like to integrate the schemas. Because the schemas
to be integrated may have semantic incompatibilities, it may be necessary to transform
one or both of the schemas to equivalent schemas in preparation for integration.

For example, consider the following two relational schemas with key dependen-
cies and referential integrity constraints, and suppose one wants to integrate them.
Key attributes are underlined, and referential integrity constraints are shown using
standard inclusion dependency notation.

student(ss , name, address) student(ssn, name)
student�record(ss, gpa, advisor) student�rec(ssn, gpa, address, advisor)

student[ss]�student�record[ss] student[ssn]�student�rec[ssn]
student�record[ss]�student[ss] student�rec[ssn]�student[ssn]

Schema 1 Schema 2

Suppose it is desirable to integrate the two schemas by integrating the student
relation in the first schema with the student relation in the second schema to form
a unified student relation, and to integrate the student�record relation from the
first schema with the student�rec relation in the second schema to form a unified
student�record relation. In this case, there is a structural incompatibility due to the
address attribute of a student being contained in the student relation in the first
schema, whereas it is in the student�rec relation in the second schema, so that a
fully general integration of the corresponding relations is not possible.

However, it is straightforward to show that the second schema can be trans-
formed into an equivalent schema in which the incompatibility is removed. Such a
schema, Schema 2$, in which the address attribute has been moved to the student
relation, is shown here with Schema 1.

student(ss, name, address) student(ssn, name, address)
student�record(ss, gpa, advisor) student�rec(ssn, gpa, advisor)

student[ss]�student�record[ss] student[ssn]�student�rec[ssn]
student�record[ss]�student[ss] student�rec[ssn]�student[ssn]

Schema 1 Schema 2$

Note that in the absence of the inclusion dependencies specified, Schema 2 and
Schema 2$ would not be equivalent. With the dependencies that hold on Schema 2,
however, the transformation is equivalence preserving, and the incompability has
been removed. The two student relations now can be integrated into a unified relation,
as can the student�record and student�rec relations.

We need syntactic characterizations of equivalence of relational schemas with
various families of dependencies, such as primary keys, referential integrity constraints,
and functional dependencies. In particular, one would like to have a set of transforma-
tions for which all schemas equivalent to a given schema can be generated by applying
some sequence of transformations from the set. These would form the set of transfor-
mations one would implement in an integration tool to provide a complete solution
to the problem of restructuring of schemas with the given family of dependencies.

513KEYED SCHEMA EQUIVALENCE

Schema equivalence also is important in database design [5, 8, 10, 19], where
given a schema proposed for some application, one may want to choose an equivalent
schema that satisfies some desirable normal forms. Indeed, schema equivalence was
proposed originally in this context by Codd [8], wherein two schemas are considered
equivalent if they support the same queries. Subsequently, a notion of schema equiv-
alence was proposed in which two schemas, both of which are decompositions of
the same universal relation, are equivalent if the set of instances of the universal
relation for which the decomposition is lossless is the same for both schemas
[6, 13]. That is, either schema can represent the same set of universal instances.
This notion of equivalence is useful for database design, but has the limitation that,
as defined, it only applies to pairs of schemas, both of which are projections of the
same universal relation scheme. In general, this universal relation assumption is not
feasible in multidatabase schema integration, since the schemas are designed and
controlled autonomously. Moreover, closed-form characterizations of this form of
equivalence are not available, although an algorithm to test for such equivalence is
given in [6]. Similar notions of equivalence were defined in [2, 15].

Another notion of equivalence that has been proposed considers two schemas to
be equivalent if there is a bijection between the set of database instances of one
schema and the set of instances of the other [14, 16, 17]. However, this simply
means that the set of instances of one schema has the same cardinality as the set
of instances of the other schema. Moreover, if the domain of values available to
store in a database is (countably) infinite, then all (nonempty) schemas are equiv-
alent under this notion of equivalence.

The limitations of the notions of equivalence described above are overcome by
the notion of query equivalence that was introduced in [3], and studied by Hull,
who, in addition, introduced three progressively more general notions of equiv-
alence, Z-generic equivalence, Z-internal equivalence, and absolute equivalence, and
provided a rich foundation of theoretical results on schema equivalence [9]. Hull
also showed that for relational schemas with no dependencies all four notions of
schema equivalence are logically equivalent and that two relational schemas with
no dependencies are equivalent if and only if they are isomorphic. Thus a charac-
terization of schema equivalence for relational schemas with no dependencies is
available.

Hull also conjectured that this result should generalize to relational schemas with
primary keys, that is, that they are equivalent if and only if they are isomorphic. In
the present work, we resolve this conjecture in the affirmative for conjunctive query
equivalence, where instance mappings are conjunctive relational algebra queries
with equality selections. (Query equivalence in [9] uses the full relational algebra
for such mappings.)

Such a result demonstrates that two schemas whose only dependencies are primary
keys support the same conjunctive queries if and only if they are isomorphic. The result
also is a negative result about the existence of nontrivial equivalence-preserving trans-
formations for schemas with only primary keys, suggesting that other dependencies
are important for transforming schemas in meaningful ways. Indeed, the earlier example
shows that when both primary key dependencies and referential integrity constraints are
available, there are nontrivial equivalence-preserving schema transformations.

514 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

A characterization of equivalence for schemas whose only dependencies are
primary keys, however, is critical to obtaining similar characterizations for schemas
with other dependencies. For instance, when schemas with primary keys and
referential integrity constraints are considered, a schema with only primary keys is
a degenerate case where it happens that no referential integrity constraints have
been specified. Thus, it would be impossible to characterize equivalence of schemas
with primary keys and referential integrity constraints without also characterizing
equivalence of schemas with only primary keys.

The remainder of this paper is organized in the following manner. Section 2
presents the formalism used for familiar concepts from the database literature.
Section 3 contains the theoretical results contributed by the present work, along
with definitions of new concepts presented as they are used. Concluding remarks
are made in Section 4.

2. FORMAL DEFINITIONS

2.1. Schemas

In this section, we formalize what is meant by a schema and define various
concepts and notation. We assume that the reader is familiar with the relational
model of data [7]. A domain is a countably infinite set of atomic elements. A collec-
tion of attribute types over some domain D is a finite collection of disjoint subsets
of D. Attribute types are also (countably) infinite. An attribute is a pair consisting
of a name (called the name of the attribute) and an attribute type (called the type
of the attribute). A relation scheme consists of a name (name of the relation) and
an ordered list of attributes, generally written R[A1 , A2 , ..., Ak]. R is the name of
the relation. Note that an attribute belongs only to a single relation.

For each i, if Ni is the type of attribute Ai , then each of the finite subsets of the
cross-product N1_N2_ } } } _Nk is called an instance of relation R. The tuple
(N1 , N2 , ..., Nk) is called the type of the relation R. A relational database schema
is a tuple of relation schemes. A database instance of the schema is a tuple of
instances of each relation scheme in the database schema. We write i(S) for the set
of all instances of schema S.

A key dependency on a relation is a declared subset of the attributes of the rela-
tion. The subset of attributes is called a key. A key dependency on some relation
is satisfied by an instance of the relation if every pair of distinct tuples in the
instance differ in value of at least one of the attributes in the key. A subset of the
attributes of some relation is called a superkey if it is a superset of a key. A keyed
schema is one where a single key is specified for each relation in the schema, and
no other dependencies are specified to hold in the schema. A schema for which no
dependencies are specified is called an unkeyed schema.

A functional dependency on a schema is a declaration of a pair of attribute sets.
If X and Y are the two sets of attributes, the dependency is usually written X � Y.
Sometimes the elements of one or both of the sets are listed explicitly as a string.
For instance, if Y=[A, B], then the dependency X � Y might be written X � AB.
If all of the attributes in both X and Y belong to the same relation, then an instance

515KEYED SCHEMA EQUIVALENCE

of that relation is said to satisfy the dependency if every pair of tuples of the rela-
tion instance that differ on some attribute in Y also differ on some attribute in X.
Otherwise, the dependency fails for the given relation instance. An instance of the
schema satisfies some functional dependency X � Y if all of the attributes in both
X and Y belong to the same relation, and the instance of this relation in the
database instance satisfies the dependency. If the attributes in X and Y fail to
belong to the same relation, then the functional dependency fails for any instance
of the schema. Note that allowing functional dependencies to be expressed in this
way differs from the usual formalization where a functional dependency is only
defined using attributes from a single relation, but this trivial extension allows for
a concise statement of some of the results below.

2.2. Queries and Query Mappings

A view over a schema S is a pair (V, q), where V is a relation scheme and
q: i(S) � i(V) maps each instance of S to an instance of V. The mapping q is called
a query. If q(d)=a for some database d, then a is called the answer to the query
q for database d. The type of the view and the type of the query are both defined
as the type of V. A query language consists of a syntax capable of specifying a set
of syntactic objects, and an assignment of each syntactic object in the set to a query.
The assignment is said to define the semantics of the language. The syntactic objects
in the language usually also are referred to as queries.

The notion of a query mapping from one schema to another is an important
concept and is defined as follows.

Definition. Given schemas S1=(R1
1 , R1

2 , ..., R1
n) and S2=(R2

1 , R2
2 , ..., R2

m) ,
and a query language, L, then :=(v1 , v2 , ..., vm) is a query mapping from S1 to
S2 if each vk is a view over S1 defined using queries in L, and the type of vk is the
same as the type of R2

k for each k.

For each instance of S1 , the query mapping defines an instance of S2 , since each
vk defines an instance of R2

k . We write :: i(S1) � i(S2). If : is a query mapping from
a keyed schema S1 to a keyed schema S2 , then we say that : is valid if it maps each
instance of S1 satisfying the key dependencies for S1 to an instance of S2 satisfying
the key dependencies for S2 . Query mappings between unkeyed schemas are always
valid.

The notion of a conjunctive query is well known in the database literature [12]
and can be defined in the following manner.

Definition. A conjunctive query is a relational algebra query that can be
expressed using only the operations of select, project, and join.

A conjunctive query view (V, q) is specified using a syntactic style borrowed from
Datalog [11]. However, the syntax used here is more restrictive than Datalog,
allowing only distinct variables as placeholders in columns of relations, with all
selection and join conditions occurring in a separate list of equality predicates
included in the conjunct. The general form of a query is shown in (1):

V(A1 , A2 , ..., An) :&R1(X 1
1 , ..., X 1

i1
), ..., Rk(X k

1 , ..., X k
ik

), equality-list. (1)

516 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

Each Ri is a relation, and each X j
i is a distinct variable serving as a placeholder.

The Ai 's are not necessarily distinct and are either constants or variables that occur
among the X j

i variables to signify that this constant or variable is in the result of
the query. Other variables might be dummy placeholders to signify attributes in
some Ri that are projected out of a relation or variables participating in joins or
selections whose columns subsequently are projected out of the final result.

As with Datalog, the comma-separated list of relations forms a cross-product to
which the conditions in the equality list are applied. The equality list is a list of
equality predicates with form either X=Y or X=a. In the first case, the two
variables X and Y are being equated. If both X and Y are used as placeholders in
the same relation, then this is a column selection, whereas if the two variables occur
in different relations, then this corresponds to a join condition. For the equality
predicate X=a, the column of the relation containing the variable X as a place-
holder in the query has a selection condition, selecting tuples with value for that
attribute equal to the constant a. Constants may occur explicitly among the Ai . All
variables occurring in equality predicates in the equality list must also occur as a
placeholder for some attribute in some relation occurring in the body of the query.
Note that all conjunctive relational algebra queries with equality selections can be
expressed with the syntax just described. For the remainder of this paper, ``conjunctive
query'' means ``conjunctive query with equality selections.''

Note that the equality of variables in the equality list of a conjunctive query
induces a natural equivalence relation on the variables. In particular, V1 is equiv-
alent to V2 if either V1=V2 appears in the equality-list, or can be inferred from the
equality list by reflexivity, symmetry, and transitivity. We call the equivalence
classes generated by this equivalence relation the equality classes of variables. In
other words, V1 and V2 belong to the same equality class if V1=V2 can be inferred
from the equality predicates in the equality-list. Each such variable is a placeholder
for an attribute in some relation, and for a given equality class of variables that
span multiple relations, we say that there is a join between the relations in which
the placeholder variables occur. In such a case, we also say that the attributes
corresponding to the placeholder variables in the equality class participate in the
join.

The notions of containment and equivalence of queries are well known [12] and
can be defined in the following manner.

Definition. Given two queries q: i(S) � i(V) and q$: i(S) � i(V) that have the
same type, we say that q is contained in q$, written qC=q$, if for every d # i(S),
q(d)�q$(d).

Definition. We say that q is equivalent to q$, written q$q$, if qC=q$ and q$C=q.

2.3. Dominance and Equivalence

In this section, we formalize the notions of schema dominance and schema equiv-
alence. Dominance is defined first.

Definition. Let S1 and S2 be two keyed schemas, and let L be a query
language. Then we say that S2 L-dominates S1 , written S1 PL S2 , if there are valid
query maps :: i(S1) � i(S2) and ;: i(S2) � i(S1) such that ; b : is the identity map

517KEYED SCHEMA EQUIVALENCE

on i(S1). To indicate the query mappings that establish the dominance we some-
times write S1 PL S2 by (:, ;).

Schema equivalence is now defined in terms of schema dominance.

Definition. If S1 PL S2 and S2PL S1 , then we say that the two schemas are
L-equivalent, written S1#L S2 .

These notions of L-dominance and L-equivalence were introduced in [3]. We
sometimes write S1PS2 , or S1#S2 , when the particular language L is clear from
the context. The following result is proved in [9].

Theorem (Hull [9]). If L is the relational algebra, and S1 and S2 are schemas
with no dependencies, then S1#L S2 , if and only if S1 and S2 are isomorphic.

Hull also conjectured that this result holds for keyed schemas, but this conjecture
remains open.

3. EQUIVALENCE RESULTS

3.1. Overview

The main result of the paper, that keyed schemas are equivalent under query
equivalence by conjunctive relational algebra queries with equality selections if and
only if they are isomorphic, is given as Theorem 13 in Section 3.5. The proof divides
into two phases. The first phase involves demonstrating that if some keyed schema
S1 is dominated by some other keyed schema S2 , then we can delete all of the nonkey
attributes from both schemas while preserving dominance. This result, the preservation
of dominance by reduction to keys, is given as Theorem 11 in Section 3.3. The
importance of this result is that unkeyed schemas result from deleting the nonkey
attributes from a keyed schema, enabling results about unkeyed schemas to be used
to reason about keyed schemas. In particular, it will be used later in the proof to
show that if S1 and S2 are equivalent, then there must be a one-to-one corre-
spondence of relations with isomorphic keys between the schemas. That is, the two
schemas must agree on the number of relations and the sets of keys, so that any
differences in the two schemas only can be in the nonkey attributes.

The second phase of the proof involves reasoning about the nonkey attributes.
The central result used for this purpose is Theorem 12 of Section 3.4, that ensures
the preservation of functional dependencies across mappings that establish dominance.
When some keyed schema S1 is dominated by another keyed schema S2 by query maps
: and ;, values for attributes in the instance of S1 are encoded in attribute values
in some instance of S2 by :, and these values are mapped back to the instance of
S1 by ;. If a functional dependency holds in S2 among attributes that are used in
such a way to encode information from some instance S1 , then the theorem asserts
that an analogous functional dependency must hold among the attributes of S1 that
are being encoded in these attributes in S2 . Because the only functional dependen-
cies that hold in a keyed schema are ones where the left-hand side is a superkey,
this result can be used to reason about correspondences in the nonkey attributes in
equivalent schemas.

518 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

For ease of presentation, we will drop the L for the remainder of the paper, and
write S1PS2 by (:, ;) to mean that S2 dominates S1 by the conjunctive query
mappings : and ;.

3.2. Basic Results

In this section, we present a number of technical lemmas that are used throughout
the proof. Definitions of new concepts, such as identity joins, ij-saturated (identity
join saturated) queries, and product queries, are given where they are first used. We
start with the definition of identity joins.

Definition. In a conjunctive query, a join condition is an identity join condition
if the variables being equated by the join condition are both placeholders for the
same attribute in (different occurrences of) the same relation.

For example, in the query, Q(X, Y, Z) :&R(X, Z), R(Y, T), Z=T. , the join
condition is an identity join condition.

Definition. In a conjunctive query, a join is an identity join if all of the join
conditions associated with the join are identity join conditions.

For example, in the query, Q(X, Y, Z) :&R(X, Y, Z), R(U, V, T), Y=V, Z=T. ,
the join is an identity join. This is because the join is of a relation with itself, and
the join conditions equate, respectively, the second and third attributes with
(another copy of) themselves. On the other hand, in the query, Q(X, Y, Z) :&
R(X, Y, Z), R(T, U, V), Y=T, Z=V. , there is a self-join that is not an identity
join. In this case, the join condition Y=T equates two different attributes of rela-
tion R. A cross-product of a relation with itself (some number of times) satisfies the
definition of an identity join vacuously and, thus, is considered to be a degenerate
identity join.

Next, we define the notions of ij-saturated relations and ij-saturated queries.

Definition. A relation R occurring in the body of a conjunctive query is
ij-saturated in the query if no occurrence of R in the query participates in a selec-
tion condition, all join conditions involving R are identity join conditions, and all
possible identity join conditions for R can be inferred from the equality conditions
specified.

Thus, R is ij-saturated in the query (2):

Q(X, Y) :&R(X, Y), R(A, B), R(C, D), X=A, X=C, Y=B, Y=D. (2)

The join conditions A=C and B=D are inferred by transitivity. But R is not
ij-saturated in the query (3):

Q(X, Y) :&R(X, Y), R(A, B), R(C, D), X=A, X=C, A=C, Y=B. (3)

This is because neither Y=D nor B=D can be inferred from the equality list.

Definition. A conjunctive query is ij-saturated if every relation that occurs in
its body is ij-saturated in the query.

519KEYED SCHEMA EQUIVALENCE

Note that, given any conjunctive query q that has no selection conditions and no
join conditions other than identity join conditions, we can construct an ij-saturated
query q̂ that has the same number of occurrences of relations in its body as the
original query q, but with extra identity join conditions added so each relation is
ij-saturated. For example, given the query (4), we can construct the ij-saturated
query (5):

Q(X, Y) :&R(X, Y), R(A, B), R(C, D), X=A, X=C, A=C, Y=B. (4)

Q$(X, Y) :&R(X, Y), R(A, B), R(C, D), X=A, X=C, A=C, Y=B, Y=D, B=D.

(5)

Note that q̂C=q always holds because q̂ is the result of adding extra join conditions
to q.

A conjunctive query is a product query if there are no selection or join conditions,
and every relation occurring in the body of the query occurs only once. That is, a
product query can consist of only a single relation or a cross-product of distinct
relations.

The first lemma demonstrates a basic property of ij-saturated queries and product
queries.

Lemma 1. Every ij-saturated query is equivalent to a product query having the
same relations in its body as the ij-saturated query.

Proof. Let q be an arbitrary ij-saturated query. Construct a query q$ as follows:

1. eliminate all (identity) join conditions from the body of q;

2. eliminate all duplicate occurrences of any relation in the body of q.

3. replace any variable X in the head of the query that no longer occurs in
the body with a variable Y that does still occur in the body, such that X=Y is an
identity join condition that can be inferred from the join conditions specified in the
ij-saturated query. Such a Y always exists because q is ij-saturated.

Clearly the resulting query q$ is a product query having the same relations in its
body as q. We claim that qq. By construction, q and q$ both have the same type
and are defined over the same schema. Let this schema be S and let d be an
arbitrary instance of S. To show that qC=q$, let { # q(d). Then there must be tuples
in each relation occurring in the body of q that are used in inferring {. But then,
since each relation in the product query q$ occurs in the body of q, and q$ has no
selections or joins, { must be a member of q$(d), as required. To show that q$C=q,
let {$ # q$(d). Then there must be tuples in each relation occurring in the body of
q$ that are used to infer {$. But since any tuple of a relation always satisifies an
identity join on that relation, these tuples will satisfy the identity join conditions.
Thus, {$ # q(d) as required, establishing the lemma. K

520 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

Lemma 1 can be used to show what properties can be preserved when identity
join conditions are removed from a query that has no selection or join conditions
other than identity join conditions. This is the subject of the next lemma.

Lemma 2. If q is a conjunctive query defined on some schema S and q has no
selection conditions nor any join conditions that are not identity join conditions, then
there exists a product query q̂ satisfying the conditions:

(a) q̂C=q;

(b) for every d # i(S), any functional dependency that holds on q(d) also holds
on q̂(d);

(c) for every d # i(S), if q(d) is nonempty, then q̂(d) is nonempty;

(d) all of the relations occurring in the body of q also occur in the body of q̂.

Proof. Let q be an arbitrary conjunctive query having no selection conditions
nor any join conditions that are not identity join conditions. Then let q$ be the
ij-saturated query that results from adding to q all the valid identity join conditions
missing from q. Clearly q$C=q, since q$ results from adding join conditions to q. If
we take q̂ to be the product query that Lemma 1 guarantees to be equivalent to q$,
then q̂ is a product query satisfying conditions (a) and (d) of the lemma. Condition
(b) follows immediately from the fact that q̂C=q, since if some functional dependency
fails on q̂(d) for some database state d, then there is a pair of tuples in q̂(d) that violate
the dependency, and these tuples are in q(d) also, whence the functional dependency
fails on q(d). For condition (c), let q̂ be empty when evaluated over some database
instance d. Then, since q̂ is a cross product of the relations occurring in q (along
with a projection to the attributes occurring in the head of q), it follows that one
of these relations is empty in the database instance d. But then, the query q is empty
when evaluated over d as well, establishing condition (c), and the lemma follows. K

Throughout many of the proofs below, it will be necessary to reason about the
manner in which specific data in one database instance is encoded in another
instance. We define the following syntactic concept for conjunctive queries to
capture an essential property of the encodings.

Definition. For any attribute A assigned from a column in the result of a
conjunctive query, we say that A receives attribute B from relation R if, in the
representation of the query, A is assigned from a variable that occurs at, or is
equated to a variable at, the location of attribute B in R. If an attribute A is
assigned by a constant symbol, then we say that attribute A receives the constant.

Thus, in the query, R(X, Y, Z) :&P(X, Y), Q(T, Z), Y=T. , the second attribute
of relation R receives from P the second attribute listed in the scheme of P, and it
also receives from Q the first attribute listed in the scheme of Q. Similarly, in the
query: R(a, Y, X) :&P(X, Y). , the first attribute of relation R receives the constant
a. An attribute can receive multiple, distinct attributes, as shown in the first example,
but an attribute never receives both an attribute and a constant.

A very useful notion, attribute-specificity, can be used to simplify various arguments
and is used in several of the proofs below. This is now defined.

521KEYED SCHEMA EQUIVALENCE

Definition. A database instance d of some schema is attribute-specific if for any
two distinct attributes A and B, ?A(d) & ?B(d)=<.

The notion of attribute-specific database instances will be used to derive various
properties of conjunctive query mappings. The following lemma can be used to
demonstrate the existence of attribute-specific database instances that satisfy certain
properties.

Lemma 3. Given some keyed schema S and some finite set of domain elements F,
then there exists a valid attribute-specific instance of S such that all relation instances
are both nonempty and contain no elements of F. Moreover, if there is some functional
dependency which fails on some valid instance of the schema, then there exists a valid
attribute-specific instance of S such that all relation instances are both nonempty and
contain no elements of F, and for which the functional dependency fails.

Proof. Let S be an arbitrary keyed schema and F be some finite set of domain
elements. For each attribute occurring in S, choose a unique element from the
domain of the attribute that does not occur in F. Since all attribute types are
infinite, this always will be possible. Let d be the database instance of S that has
one tuple in each relation instance with the value of each attribute being the unique
element that was chosen for the attribute. Then d is a valid attribute-specific
instance of S such that all relation instances are both nonempty and contain no
elements of F.

For the second part of the lemma, suppose there is some functional dependency
that fails on some valid instance of the schema. If the functional dependency
references attributes in more than one relation in the schema, then the functional
dependency fails for all instances of S and d is a an attribute-specific instance on
which the functional dependency fails, as required. On the other hand, if the func-
tional dependency only references attributes that occur in some relation R in S,
then because there is a valid instance of S for which the dependency fails, the left-hand
side of the dependency cannot be a superkey. For each attribute on the right-hand
side of the dependency that does not also occur on the left hand side, choose
another unique value from the type of the attribute that does not occur in the set
F or in the database instance d. Note that there always will be at least one such
attribute on the right-hand side of the dependency that does not occur on the left-
hand side, for otherwise, the dependency would be tautological, contradicting that
it fails on some valid database instance.

If { is the tuple in the instance of R in d, then construct another tuple {$ that has
the newly chosen value for the corresponding attribute type as the value of some
attribute that occurs on the right-hand side of the dependency, but that does not
occur on the left-hand side. Let the remaining attributes in {$ have the same value
that they have in {. Let d $ be the instance of S that has the same relation instance
as d for every relation other than R, but the instance of R in d $ contains exactly
two tuples, { and {$. Because the left-hand side of the functional dependency is not
a superkey for R, the database instance d $ is valid and is an attribute-specific
instance of S for which all relations are both nonempty and contain no elements of
F, and for which the functional dependency fails. K

522 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

Note that the existence of attribute-specific instances depends on the fact that
there are no inclusion dependencies, such as referential integrity constraints, allowed in
the schemas. If such dependencies were present in some schema, attribute-specific
instances of the schema generally would not exist.

The next five lemmas present some properties of attribute encodings in conjunctive
query maps that establish dominance. The first of these shows that if S1 PS2 then
all attributes in S1 are encoded somewhere in S2 .

Lemma 4. If S1 PS2 by (:, ;) then for every attribute A occurring in S1 there is
some attribute B in S2 such that A is received by B under :, and B is received by A
under ;.

Proof. Let S1 PS2 by (:, ;), and let A be an arbitrary attribute in schema S1 .
Let d be some attribute-specific instance of S1 that contains for attribute A some
value a that is not among any constants in any of the queries in the maps : or ;.
By Lemma 3, such a d always exists. Since ; b : is the identity map on i(S1),
;(:(d)) = d. Thus, the value a occurs as a value of attribute A in ;(:(d)), and since
a does not occur among any of the constants in the queries in : or ;, A must have
received some attribute B of S2 under ;. Moreover, B must contain the value a in
the instance :(d). Since d is an attribute-specific instance and a does not occur in
any query constants, B must receive A under :, establishing the lemma. K

The next lemma maintains that if S1 PS2 and some attribute in S2 is mapped
back to some attribute in S1 , then the attribute in S1 is encoded in this attribute
in S2 .

Lemma 5. If S1 PS2 by (:, ;) and B is an attribute in S2 , then if B is received
by some attribute A in S1 under ;, then A must be received by attribute B under :.

Proof. Suppose not. Then there is some attribute A in S1 that receives attribute
B under ;, but A is not received by B under :. Let d be an attribute-specific
database instance having some value a for attribute A that is not among any of the
query constants in : or ;, as Lemma 3 guarantees will always exist. Since A is not
received by B under :, the value a will not be among the values found for attribute
B in the database instance :(d). Thus, since A receives attribute B under ;, the
value a cannot be a value for attribute A in the database instance ;(:(d)). This is
because either A receives attribute B and no other attributes under ;, in which case
the absence of a from the values for B ensure that a is not a value for A, or A
receives attribute B as well as one or more other attributes under ;. In the latter
case, all the attributes received by A under ; have placeholder variables that are in
the same equality class, and the absence of a from the values for B ensures that a
is not a value for A in ;(:(d)). But since a is a value for A in d, this contradicts
that ; b : is the identity map on i(S1). K

The following lemma ensures that if S1 PS2 , then two different attributes in S1

cannot be encoded in the same attribute in S2 .

Lemma 6. Let S1 and S2 be keyed schemas such that S1 PS2 by (:, ;). Then
there cannot be two distinct attributes in S1 that receive the same attribute in S2

under ;.

523KEYED SCHEMA EQUIVALENCE

Proof. Let S1 and S2 be as in the statement of the lemma, and suppose to the
contrary that there is some attribute B in relation R in S2 that is received under ;
by two distinct attributes A and A$ in S1 . By Lemma 5, B receives both A and A$
under :. By Lemma 3, there exists an attribute-specific instance d of S1 such that
the relation(s) containing A and A$ is�are nonempty. Since A and A$ are distinct
attributes, they have no values in common in d. But B receives both A and A$ under
:, which means that there is a join condition between A and A$ in the query defin-
ing R. Because d is attribute-specific, the join condition will fail, so that R must be
empty, whence the relation containing A must be empty in the instance ;(:(d)),
since A receives B under ;. This is a contradiction, establishing the lemma. K

The next two lemmas demonstrate that if S1 PS2 and every attribute type occurs
in both schemas the same number of times, then every attribute in S2 is used to
encode something in S1 in an essential way and that there are no extraneous
encodings of attributes from S1 in S2 .

Lemma 7. Let S1 and S2 be keyed schemas such that S1 PS2 by (:, ;). If, for
every attribute type T, the number of attributes in S1 of type T is the same as the
number of attributes in S2 of type T, then every attribute in S2 is received by some
attribute in S1 under ;.

Proof. Suppose not. Then there is some attribute C in S2 which is not received
by any attribute in S1 under ;. By Lemma 4, for every attribute A in S1 , there is
some attribute B such that A is received by B under : and B is received by A under
;. Since, in a query mapping, any attribute of some type T that is received by
another attribute is always received by an attribute with the same type T, and since
both schemas have the same number of occurrences of each attribute type, it
follows that if TC is the type of attribute C, there must be fewer attributes of type
TC in S2 that are received by attributes of type TC in S1 than there are attributes
of type TC in S1 . It follows that there must be two distinct attributes A and A$ in
S1 such that the same attribute B is received by both A and A$ under ;, contradict-
ing Lemma 6. K

Lemma 8. Let S1 and S2 be keyed schemas such that S1 PS2 by (:, ;). If, for
every attribute type T, the number of attributes in S1 of type T is the same as the
number of attributes in S2 of type T, then there cannot be two distinct attributes in
S2 that are received by the same attribute in S1 under ;.

Proof. Let S1 and S2 be as in the statement of the lemma and suppose to the
contrary that some attribute A in S1 receives two distinct attributes from S2 under
;. Then, since Lemma 7 guarantees that every attribute in S2 is received by some
attribute in S1 and since the number of attributes of each type is the same in both
schemas, it follows by simple counting that there must be some other attribute in S2

that is received by two or more distinct attributes in S1 , contradicting Lemma 6. K

3.3. Preservation of Dominance by Reduction to Keys

In this section we prove a theorem that establishes an important property of
conjunctive query dominance. In particular, it shows that for one schema to be

524 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

dominated by a second schema, its key set must be dominated by the key set of the
second schema. That is, if we delete the nonkey attributes from both schemas, the
same dominance relationship will still hold. The following notation is useful for
describing the schemas and instances with nonkey attributes removed.

Definition. If S is a keyed schema, }(S) is the unkeyed schema that is obtained
by deleting all nonkey attributes from each relation scheme in S and dropping the
key dependencies. Thus, for each relation scheme R in S, there is a relation scheme
R$ in }(S) whose scheme consists only of the key attributes of R.

Definition. If S is a keyed schema and d is a database instance of S, then ?}(d)
is the database instance of }(S) that corresponds to projecting all of the nonkey
attributes out of the database instance d.

The theorem to be proved is important because, given some keyed schema S,
}(S) is an unkeyed schema, so this result allows results concerning unkeyed
schemas to be used in reasoning about keyed schemas. For instance, if one wanted
to show that some keyed schema S1 were not dominated by some other keyed
schema S2 , it would suffice to show that }(S1) was not dominated by }(S2), which
in turn might be demonstrated using techniques concerning unkeyed schemas.

The technique of the proof is to construct the query mappings that establish
dominance of some }(S1) by some }(S2). The idea is that, given an instance of
}(S1), arbitrary values can be created for the nonkey attributes of S1 to yield an
instance of S1 . Then the dominance mapping that encodes instances of S1 as instances
of S2 can be applied to get an instance of S2 , and the nonkey attributes can be
projected out to get an instance of }(S2).

To be able to construct a mapping from i(}(S2)) back to i(}(S1)) that recovers
the original instance, it is required that when S1 PS2 by (:, ;), all of the data
values for the key attributes in S1 are encoded in key attributes in S2 , even if they
also may be mapped to nonkey attributes by :, and recovered from these nonkey
attributes by ;. This is established by the following lemma.

Lemma 9. If S1 and S2 are keyed schemas and S1 PS2 by (:, ;), then if some
nonkey attribute B in some relation in S2 receives some key attribute K in some
relation in S1 under :, and either B is received by K under ;, or B is involved in a
join or selection condition in the body of some query in ;, then:

(a) K is received by some key attribute K$ in S2 under : with K$ in the same
relation as B; and

(b) for any database instance in the range of :, K$ and B have the same value
in each tuple of the relation containing them.

Proof. Let S1 PS2 by (:, ;) and let K and B be as in the statement of the
lemma. Let R1 be the relation in S1 containing K, and let R2 be the relation in S2

containing B. Let P be a relation in S1 that is defined by a query in ; in which B
is used either in a join or selection condition, or B is received by K (P will be the
same relation as R1 if B is received by K under ;). Let [k1 , k2]be a set of two
unique values belonging to the attribute type of attribute K such that neither k1 nor

525KEYED SCHEMA EQUIVALENCE

k2 occur as constants in the queries in : or ;. Also define a function g on the
domain of schema S1 so that g(k1)=k2 and g(k2)=k1 , but g(x)=x when x{k i for
i=1, 2.

Now let d be an attribute-specific instance of S1 such that all relations of the
schema are nonempty, none of the values in d occur as constants in any of the
queries in : or ;, each attribute other than K has only a single value stored in d,
but there are exactly two values, k1 and k2 stored for attribute K. Thus, the instance
of relation R1 in d has two tuples, and all other relation instances in d have a single
tuple. Such a database instance can be constructed just as was done in the proof
of Lemma 3, but an extra tuple is constructed and added into the instance of
relation R. Let r2 be the instance of R2 in :(d).

First we claim that r2 is nonempty. In proof, suppose not. Then, since the
relation P is defined by a query in ; in which B either is received by an attribute
in P or B is involved in a join or selection condition, it must be that the instance
of P in ;(:(d)) is empty. This is a contradiction because all relations in d are non-
empty and d=;(:(d)), establishing the claim.

Next note that the only selection or join conditions in the query in : that defines
R2 must equate an attribute with itself (possibly in a different occurrence of the
same relation in the body of the query). This is because d is an attribute-specific
instance containing no query constants, so if there were a selection condition equat-
ing an attribute to a constant or a selection or join condition equating two different
attributes in the query, r2 would be empty, a contradiction.

Since r2 is nonempty, there is some tuple { # r2 . Because the instance r2 is defined
by a query in :, there is a derivation of the tuple { by the query. Let V be the
variable in the position of attribute B in the head of the query, and suppose that
the body of the query has n relations in it (the occurrences of relations in the body
need not be distinct). Let these relations be called Qi for i=1, 2, ..., n. Note that R1

occurs one or more times among the Qi . Then for some n, there exist n tuples,
{1 , {2 , ..., {n , that are used to derive { in r2 , and for each i, {i # Qi . Now, define
tuples {$i for i=1, 2, ..., n as

{$i .A=g({i .A), if Qi is an occurrence of relation R1 and has in the position of
attribute K, a variable in the same equality class as V ;

{$i .A={i .A otherwise.

Thus, each {$i # Qi , and since the only join or selection conditions in the query are
ones that equate an attribute with itself, there must be a derivation of some tuple
{$ # r2 using the tuples {$i .

By construction, {$.B=g({ .B){{ .B, since K is received by B under :. Since B
is a nonkey attribute, and two tuples that disagree on a nonkey attribute must also
disagree on some key attribute, there must be at least one key attribute of R2 for
which { and {$ disagree. Let this key attribute be K$. Then it must be that {$.K$=
g({ .K$){{ .K$, and by construction, the head of the query that defines R2 has
either variable V, or some other variable in the same equality class as V in the
position of attribute K$. But this means that K$ receives attribute K under :, estab-
lishing part (a) of the lemma, and since the variables in the head of the query in

526 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

File: 571J 162816 . By:XX . Date:19:05:99 . Time:13:55 LOP8M. V8.B. Page 01:01
Codes: 3175 Signs: 2246 . Length: 52 pic 10 pts, 222 mm

FIG. 1. Schema mappings.

the positions for attributes K$ and B are in the same equality class, K$ and B must
have the same value in every tuple in any instance of R2 in the range of :, estab-
lishing part (b) of the lemma. K

Now we turn to the construction of query maps :} and ;} for which }(S1)P}(S2)
by (:} , ;}). If A is the collection of attribute types and D the domain of values for
the schema S1 , then let f : A � D be some fixed, arbitrary map such that f (T) # T
for each T # A. That is, the mapping f is a choice function that associates each
attribute type with a constant value belonging to that attribute type.

We will define mappings # and $ so that :} is given by ?} b : b #, and ;} is given
by ?} b ; b $. The mapping relationships are shown in the Fig. 1.

First we define the mapping #: i(}(S1)) � i(S1) as follows. The mapping # is a
conjunctive query mapping such that for any relation R in S1 having n key
attributes and m nonkey attributes, the instance of R in }(S1) is defined in # by the
query (6):

R(K1 , K2 , ..., Kn , c1 , c2 , ..., cm) :&R$(K1 , K2 , ..., Kn). (6)

Here R$ is the relation in }(S1) corresponding to R but with nonkey attributes
projected out. We are assuming without loss of generality that the key attributes of
relation R are ordered so that they correspond to the leftmost n variables of R, and
that the attributes of R$ obey the same order. A similar assumption will be made
in the definition of $ below. Each ci is a constant symbol and ci=f (T), where T
is the type of the attribute corresponding to the position of ci in R. Note that
?}(#(d}))=d} , for any database instance d} of }(S1).

Given an arbitrary database instance d of }(S1), define :}(d)=?}(:(#(d))). Note
that :} is a conjunctive query mapping from }(S1) to }(S2), since the conjunctive
rules for :} can be constructed by simple substitution of each (conjunctive) query
in # for the relations appearing in the body of :.

To define the mapping ;} , we first define the mapping $: i(}(S2)) � i(S2) in the
following manner. The mapping $ is a conjunctive query mapping such that for any
relation R in S2 having n key attributes and m nonkey attributes, the instance of
R in }(S2) is defined in $ by the query (7):

R(K1 , K2 , ..., Kn , t1 , t2 , ..., tm) :&R$(K1 , K2 , ..., Kn). (7)

527KEYED SCHEMA EQUIVALENCE

Here R$ is the relation in }(S2) corresponding to R but with nonkey attributes
projected out. Each ti either is a constant symbol or variable and is defined as
follows: For each i, let attribute Bi be the attribute of relation R whose placeholder
in the conjunctive query is ti , and suppose Bi has type Ti :

1. If attribute Bi receives some constant bi under :, then ti is just the constant bi .

2. If attribute Bi receives a key attribute K from S1 under :, and either Bi is
received by K under ;, or Bi is involved in a join or selection condition in the body
of some query in ;, then ti is just Kj , where Kj is the variable in the position of
some key attribute K$ in R that is guaranteed by Lemma 9 to receive attribute K
and have the same value as Bi in every tuple in R.

3. Otherwise, ti is just the constant f (Ti).

Given any database instance e of }(S2), the mapping ;} is defined by ;}(e)=
?}(;($(e))). Clearly ;} is a conjunctive query map since each (conjunctive) query
in $ can be substituted for the appropriate relations in the body of each query in ;.

The mapping ;} must map a database instance in the range of :} back to its
preimage under :} (recoverying the original database instance). Recall that :}

creates values for the nonkey attributes that are projected out of some instance of
}(S1), and applies the map : to the resulting instance of S1 . This results in an
instance of S2 for which the nonkey attributes are then projected out to form the
result of the map :} .

The map $ above recreates these nonkey attribute values that were projected out,
producing an instance of S2 . While there typically is not sufficient information in
the key attributes to recreate the missing nonkey attribute values precisely, the
following lemma shows that $ recreates the values accurately for any nonkey
attributes that can affect the result of applying the map ; to the resulting instance
with the values recreated.

Lemma 10. Let S1 and S2 be keyed schemas. If e is a database instance of S2

such that there is some database instance d} of }(S1) satisfying e=:(#(d})), then
;($(?}(e))=;(e).

Proof. First note that ?}($(?}(e)))=?}(e), because $ creates values for the non-
key attributes of e that are missing from ?}(e), and the outer application of ?} just
projects them back out again. Thus, $(?}(e)) and e have the same number of tuples
in each relation, with identical key values. We now claim that if there are tuples {
in e and {$ in $(?}(e)) in the corresponding instances of the same relation that agree
on key values, but disagree on nonkey attributes, then those tuples disagree on
nonkey attributes that are neither received by any attributes in S1 under ;, nor
participate in any selection or join conditions in any queries in ;.

Suppose to the contrary that a pair of tuples, { in e and {$ in $(?}(e)), exist in
the corresponding instances of the same relation in each database instance and
agree on their key values, but disagree on some arbitrary nonkey attribute B that
either is received by some attribute in S1 under ;, or participates in a join or selec-
tion condition in a query in ;. Let B have type T. By hypothesis there is some d}

such that e=:(#(d})). If attribute B receives some constant b under :, then

528 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

attribute B of { has value b from the query mapping and attribute B of {$ has value
b by construction of $, a contradiction. If attribute B receives a nonkey attribute
under :, then attribute B of { has value f (T) by construction of # and attribute B
of {$ has value f (T) by construction of $, again a contradiction. If attribute B
receives a key attribute K under :, then by Lemma 9 there is a key attribute K$ in
R such that K$ has the same value as attribute B in the tuple {. By the construction
of $, attribute B also has the same value as K$ in {$, again a contradiction, estab-
lishing the claim.

We have shown that $(?}(e)) and e have the same number of tuples in each
relation, with identical key values, and either the two instances in fact are equal, or
corresponding tuples that agree on key values may disagree only on nonkey
attributes that are not received by any attribute in S1 under ; and that do not
participate in any join or selection conditions in any queries in ;. But then,
;($(?}(e)))=;(e), and the lemma follows. K

With the previous lemma established, we are equipped to prove the theorem of
preservation of dominance by reduction to keys.

Theorem 11. If S1 and S2 are keyed schemas and S1 PS2 , then }(S1)P}(S2).

Proof. Let S1 PS2 by (:, ;). We show that }(S1)P}(S2) by (:} , ;}). It suffices
to show that ;} b :} is the identity map on i(}(S1)). Suppose not. Then there is
some database instance d} of }(S1) such that ;}(:}(d})){d} . Noting that d}=
?}(#(d})) by the definition of #, and substituting the definitions of ;} and :} , we
have that ?}(;($(?}(:(#(d})))))){?}(#(d})). Since two database instances that
disagree on their keys cannot be the same instance, we infer that ;($(?}(:(#(d})))))
{#(d}). Now, if we let d=#(d}), we have ;($(?}(:(d)))){d. But letting e=:(d),
Lemma 10 ensures that ;($(?}(e)))=;(e), that is ;($(?}(:(d))))=;(:(d)), whence
;(:(d)){d. This contradicts that ; b : is the identity map on i(S1), and the theorem
follows. K

3.4. Preservation of Functional Dependencies

In this section we show that if S1 PS2 , then it is not possible for a functional
dependency to fail on S1 while simultaneously holding among the corresponding
attributes in S2 , where the attributes of the dependency are encoded. The proof is
based on the idea that if a functional dependency fails on S1 , then it fails on a non-
empty attribute-specific database instance of S1 . Such an instance must be encoded
in a nonempty instance in S2 , and because the instance of S1 is attribute-specific,
we can infer that the query mapping that encodes the instance of S1 in an instance
of S2 must have a very restricted form from which the result is established in a
straightforward manner.

Theorem 12. Let S1 and S2 be keyed schemas such that S1 PS2 by (:, ;) for
conjunctive query mappings : and ;. Suppose that Y � B holds for some relation R
in schema S2 for attribute B and attribute set Y in all instances in the range of :.
Further suppose B is received by some attribute A under ; and every attribute in Y
is received under ; by an attribute in some set X of attributes in S1 . Then it follows
that the functional dependency X � A must hold in schema S1 .

529KEYED SCHEMA EQUIVALENCE

File: 571J 162819 . By:XX . Date:19:05:99 . Time:13:55 LOP8M. V8.B. Page 01:01
Codes: 3179 Signs: 2532 . Length: 52 pic 10 pts, 222 mm

Proof. Suppose not. Then there exist keyed schemas S1 and S2 such that S1 PS2

by (:, ;) for conjunctive query mappings : and ;, and a relation R in S2 with Y
a superkey of R and B an attribute of R. Further, there is a set X of attributes such
that every attribute in Y is received by some attribute in X under ; and an attribute
A that receives B, but the dependency X � A fails on S1 . These relationships are
shown in the Fig. 2.

By Lemma 5, every attribute in the set Y receives some attribute in X under :
and B receives attribute A under :. Let d be an attribute-specific database instance
of schema S1 such that none of the values in the database d appear as constants in
the queries in : or ;, all of the relation instances in d are nonempty, and the
dependency X � A fails in d. Lemma 3 guarantees that such a d always exists. Let
q be the query in : that defines the instance of relation R under :. First, we claim
that the instance of R in :(d) must be nonempty. If not, then the relations in S1

containing either attribute A or any attribute in X would be empty in ;(:(d))=d,
since each attribute in Y is received by an attribute in X under ;, and B is received
by A under ;. This is a contradiction, establishing the claim.

Since the dependency X � A fails, and all the attributes in X are received by an
attribute in Y, and B receives A, there must be some join or selection conditions
that filter out the necessary tuples so that Y � B holds in R. If there is a selection
of an attribute as a constant value, this selection will fail because no query constants
are in the database instance d, whence R will be empty in :(d), a contradiction.
There also can be no column selection (that is, a selection that selects tuples that
agree on two columns of the same relation) since R would again be empty in :(d)
on account of d being an attribute-specific instance. Similarly, any join condition
that is not an identity join condition will fail because d is an attribute-specific
instance, whence R would be empty in :(d), again a contradiction.

Thus, q has no selection conditions, and the only join conditions are identity join
conditions. By Lemma 2, there is a product query q̂C=q such that all of the rela-
tions that occur in the body of q also occur in the body of q̂, and the dependency
Y � B holds in the relation resulting from evaluating q̂ over database d. Since, q̂
can only contain cross-product and projection operations, this is a contradiction,

FIG. 2. Functional dependency relationships.

530 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

since a functional dependency that does not hold over any relation in a set of rela-
tions (in this case, the relations occurring in the body of q̂) cannot hold in their
cross product, and the theorem is established. K

3.5. Conjunctive Query Schema Equivalence Theorem

We now are ready to prove the central result of the paper, namely that keyed
schemas are equivalent by conjunctive query maps if and only if they are isomorphic.

Theorem 13. If S1 and S2 are keyed schemas, then S1 #S2 if and only if S1 and
S2 are isomorphic.

Proof. One direction is trivial; that is, if two schemas are isomorphic, then
clearly they are equivalent. For the other direction, let S1 and S2 be keyed schemas
with S1 #S2 . Then S1 PS2 and S2 PS1 , and by Theorem 11, }(S1)P}(S2) and
}(S2)P}(S1). Thus, }(S1)#}(S2). Note that all of the attributes of an unkeyed
schema (schema with no depenencies) always implicitly form a key, so that }(S1)
and }(S2) can be viewed as unkeyed schemas. The fact that the set of all the
attributes of any relation in either schema forms a key is implicit. Thus, from the
result of Hull [9] mentioned above, that states that equivalent unkeyed schemas
are isomorphic, we conclude that }(S1) and }(S2) must be isomorphic.

But this means that S1 has the same number of relations as S2 , and, for every
relation R1 in S1 , if R1 has key K, where K is a set of attributes, then there is a
corresponding relation R2 in S2 with the same key, up to renaming and re-ordering
of attributes. The same is true for S2 : corresponding to every relation in S2

there is a corresponding relation in S1 with the same key (up to renaming and
re-ordering of attributes).

It remains to be shown that the two schemas also agree on nonkey attributes.
First, we claim that the number of occurrences of any attribute type among the nonkey
attributes in one of the schemas must be the same as the number of occurrences of the
same attribute type among nonkey attributes in the other schema. Without loss of
generality, suppose to the contrary, that there is some attribute type A in S1 that
occurs a greater number of times among non-key attributes in S1 than in S2 . Let
(:, ;) be the pair of conjunctive query maps establishing S1 PS2 .

By Lemma 4, each nonkey attribute of type A in S1 must be received by some
attribute in S2 under :. Because there are more nonkey attributes of type A in S1

than in S2 , it must be that there is some (key or nonkey) attribute A0 with type
A in S2 that receives more than one attribute with type A in S1 , under the map :.
Call the relation in which A0 occurs R0 , and let A1 , ..., An be the attributes of type
A in S1 that are received by A0 under :. Note that n�2, and A1 , ..., An must all
participate in the same join in the conjunctive query in : that defines R0 .

Let d be an attribute-specific instance of S1 that includes some value a # ?A1
(d)

that is not among the constants used in any of the queries in : or ;. Such a d is
guaranteed to exist by Lemma 3. Then the join in which the Ai , i=1, 2,..., participate
must include a join condition that fails for the constant a, since the database state
is attribute-specific, whence a is not found in the instance :(d). However, ; must
map the instance :(d) back to d, since ; b : is the identity map on i(S1). But this

531KEYED SCHEMA EQUIVALENCE

implies that A1 must receive some attribute with type A in S2 under ;, and a must
be a value of that attribute in the instance :(d). This is a contradiction, which
establishes the claim.

We have established that the two schemas have the same number of relations,
with corresponding key sets, and the same number of occurrences of each nonkey
attribute type. It remains only to be shown that the nonkey attributes cannot be
rearranged so that the S1 and S2 are not isomorphic.

Let (:, ;) be the pair of conjunctive-query maps establishing S1 PS2 . Let
[R1 , R2 , ..., Rn] be the set of all relations in schema S2 . For each i, let Ki be the
set of attributes comprising the key of Ri , and let Ni be the remaining attributes of
Ri . The functional dependency, Ki � N i , which is just the key dependency for Ri ,
holds for each i.

Now, for each i, let K� i be the set of all attributes that receive some attribute in
Ki under ;, and let N� i be the set of all attributes that receive some attribute in Ni

under ;. The sets K� i , N� i must be pairwise disjoint, since otherwise there would an
attribute in S1 that receives two different attributes from S2 under ;, contradicting
Lemma 6.

By Lemma 7 every attribute of each Ri is received by some attribute in S1 under
;. Thus, by Theorem 12, the functional dependencies K� i � N� i must hold in schema
S1 for each i. Since the only nontrivial functional dependencies holding on S1 result
from key dependencies, it follows that each K� i is a superkey of some relation, Pi in
S1 , and that there are n such relations Pi .

For each i, and for every attribute type T, N� i must contain the same number of
attributes of type T as Ni . If not, for some i there either must be two attributes in
Ni that are received by the same attribute in N� i under ;, contradicting Lemma 8,
or there must be an attribute in Ni that is received by two different attributes in N� i ,
contradicting Lemma 6. The same argument can be used to show that K� i has the
same number of occurrences of any attribute type among its attributes as Ki , for
each i.

Thus, every nonkey attribute in S1 is an element of one of the N� i , since for every
attribute type T, there are the same number of nonkey attributes of type T in both
schemas. This also means that each K� i is in fact the key of Pi , since if some K� i were
a proper superkey, there would be additional nonkey attributes included in K� i .
Finally, because the only nontrivial functional dependencies holding on S1 result
from key dependencies, it follows that for each i, all of the attributes in N� i occur
as nonkey attributes in Pi , and the theorem follows. K

4. CONCLUSIONS

Schema equivalence is a fundamental property of relational database schemas
and is critical to the understanding of such problems as database design, data model
translation, and multidatabase schema integration. However, while the notion of
schema equivalence has been known for many years, there are surprisingly few
results known that characterize the equivalence of relational schemas.

For example, a thorough understanding of database design or multidatabase
schema integration would require, at a minimum, characterizations of schema

532 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

equivalence for various classes of dependencies, such as primary keys, or primary
keys plus referential integrity constraints, as well as other families of dependencies
of interest. However, these problems remain open.

In this work, we have provided a number of results concerned with conjunctive
query equivalence of relational schemas with primary keys, including having shown
that two relational schemas with primary keys are equivalent by conjunctive query
mappings if and only if they are isomorphic.

These results make substantial progress toward a characterization of the equiv-
alence of schemas with primary keys (where the full relational algebra is available
for schema mappings) and include the development of techniques that may be
applicable to the solution of other problems concerning schema equivalence.

ACKNOWLEDGMENTS

The authors thank Rick Hull, the PODS-97 program committee members, and the anonymous
referees for their insightful commentaries on earlier versions of this paper.

REFERENCES

1. J. Albert, Y. Ioannidis, and R. Ramakrishnan, Conjunctive query equivalence of keyed relational
schemas (extended abstract), in ``Proc. of the ACM Conf. on Principles of Database Systems,
Tucson, AZ, 1997.''

2. A. K. Arora and C. R. Carlson, The information preserving properties of relational database
transformations, in ``Proc. of the Int'l VLDB Conf., Rio de Janeiro, 1979.''

3. P. Atzeni, G. Aussiello, C. Batini, and M. Moscarini, Inclusion and equivalence between relational
database schemes, Theoret. Comput. Sci. 19 (1982), 267�285.

4. C. Batini, M. Lenzerini, and S. B. Navathe, A comparative analysis of methodologies for database
schema integration, ACM Computing Surveys 18 (1986), 323�364.

5. C. Beeri, P. A. Bernstein, and N. Goodman, A sophisticate's introduction to database normalization
theory, in ``Proc. of the Int'l VLDB Conf., West Berlin, 1978.''

6. C. Beeri, A. O. Mendelzon, Y. Sagiv, and J. D. Ullman, Equivalence of relational database schemes,
SIAM J. Comput. 10 (1981), 352�370.

7. E. F. Codd, A relational model of data for large shared data banks, Comm. ACM 13 (1970),
377�387.

8. E. F. Codd, Further normalization of the data base relational model, in ``Data Base Systems''
(R. Rustin, Ed.), Prentice�Hall, Englewood Cliffs, NJ, 1972.

9. R. Hull, Relative information capacity of simple relational database schemata, SIAM J. Comput. 15
(1986), 846�886.

10. T.-W. Ling, F. W. Tompa, and T. Kameda, An improved third normal form for relational databases,
ACM Trans. Database Systems 6 (1981), 329�346.

11. J. W. Lloyd, An introduction to deductive database systems, Austral. Comput. J. 15 (1983), 52�57.

12. D. Maier, ``The Theory of Relational Databases,'' Comput. Sci. Press, Rockville, MD, 1983.

13. D. Maier, A. O. Mendelzon, F. Sadri, and J. D. Ullman, Adequacy of decompositions of relational
databases, J. Comput. System Sci. 21 (1980), 368�379.

14. R. J. Miller, Y. Ioannidis, and R. Ramakrishnan, The use of information capacity in schema integra-
tion and translation, in ``Proc. of the Int'l VLDB Conf., Dublin, 1993.''

15. J. Rissanen, On equivalences of database schemes, in ``Proc of the ACM Conf. on Principles of
Database Systems, Los Angeles, CA, 1982.''

533KEYED SCHEMA EQUIVALENCE

16. A. Rosenthal and D. S. Reiner, Theoretically sound transformations for practical database design,
in ``Proc. of the Int'l Conf. on the Entity-Relationship Approach, New York, 1987.''

17. A. Rosenthal and D. S. Reiner, Tools and transformations��rigorous and otherwise��for practical
database design, ACM Trans. Database Systems 19 (1994), 167�211.

18. A. P. Sheth and J. A. Larson, Federated database systems for managing distributed, heterogeneous,
and autonomous databases, ACM Computing Surveys 22 (1990), 183�236.

19. C. Zaniolo, A new normal form for the design of relational database schemata, ACM Trans.
Database Systems 7 (1982), 489�499.

534 ALBERT, IOANNIDIS, AND RAMAKRISHNAN

	1. INTRODUCTION
	2. FORMAL DEFINITIONS
	3. EQUIVALENCE RESULTS
	FIG. 1
	FIG. 2

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

