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Multimedia applications require a guaranteed level of service for accessing
continuous-media data. To obtain such guarantees, the database server where
the data are residing must employ an admission control scheme to limit the
number of clients that can be served concurrently. We investigate the
problem of on-line admission control, where the decision of whether to accept
or reject a request must be made without any knowledge about future
requests. Employing competitive analysis techniques, we address the problem
in its most general form with the following key contributions: (1) We prove a
tight upper bound on the competitive ratio of the conventional Work-Con-
serving (WC) policy, showing that it is within a factor 1+D

1−r of the optimal
clairvoyant strategy, where D is the ratio of the maximum to minimum
request length (i.e., time duration), and r is the maximum fraction of the
server’s bandwidth that a request can demand; (2) we prove a lower bound of
W( log D1−r ) on the competitive ratio of any deterministic or randomized admission
control scheme, demonstrating an exponential gap between greedy and
optimal on-line solutions; (3) we propose simple deterministic schemes based
on the idea of bandwidth prepartitioning that guarantee competitive ratios



within a small constant factor of log D (i.e., they are provably near-optimal) if
r < 1/Klog DL; and (4) we introduce a novel admission control policy that
partitions the server bandwidth based on the expected popularities of differ-
ent request lengths and experimentally demonstrate its benefits compared to
WC. © 2002 Elsevier Science (USA)

Key Words: multimedia databases; resource scheduling; admission control;
on-line algorithms; competitive analysis.

1. INTRODUCTION

Next generation database systems will need to provide support for various forms
of multimedia data such as images, video, and audio. These new data types differ
from conventional alphanumeric data in their characteristics, and hence require
different techniques for their organization and management. A fundamental issue is
that digital video and audio streams consist of a sequence of media quanta (video
frames or audio samples) which convey meaning only when presented continuously
in time. Hence, a multimedia database server needs to provide a guaranteed level of
service for accessing such continuous media (CM) streams in order to satisfy their
pre-specified real-time delivery rates. Given the limited amount of resources (e.g.,
memory, disk bandwidth, disk storage), it is a challenging problem to design effec-
tive resource management algorithms that can provide on-demand support for a
large number of concurrent continuous media clients.

Typically, clients issue requests for the playback of specific CM clips (i.e., con-
tiguous portions of audio or video) residing at the database server. A crucial com-
ponent of CM service is the admission control mechanism, which is invoked when-
ever a new request arrives to decide whether to accept or reject the request. By
accepting a request, the server commits to satisfy the resource requirements (e.g.,
disk bandwidth, memory) of the corresponding playback stream throughout its
execution, whereas rejected requests must pursue a different course of action
(depending on the application).4 The effectiveness of the admission control com-

4 Our model corresponds to the Full-VOD service model [1, 8, 21]. Other service models have also
been explored in the literature [16].

ponent is of vital importance for the following reasons. First, the resource require-
ments of CM applications are high. Second, they require fractions of the server’s
resources to be reserved to meet their stringent performance requirements. Third,
these applications tend to last for relatively long periods of time. Reserving large
portions of the resources for long durations can result in drastic degradation of
server utilization if the server makes wrong decisions whom to admit.

An important characteristic of admission control is the introduction of an on-line
decision making element—the decision of whether to accept or reject a request has
to be made without any knowledge of future requests, with the understanding that
once a request is accepted, it is guaranteed a level of service throughout its duration
(i.e., the schedule is non-preemptive). In this paper, we study the implications of the
on-line nature of the admission control problem for CM streams. Our performance
metric for admission control strategies is the total server throughput over a sequence
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of requests and our methodology is based on the competitive analysis framework
for on-line algorithms [29]. The basic quality metric in this framework is the com-
petitive ratio of an on-line algorithm, which is defined to be the maximum (over all
possible request sequences) value of the ratio of the performance of the optimal off-
line algorithm for a request sequence to the performance of the on-line algorithm
for the same request sequence. Note that, by definition, competitive analysis is tan-
tamount to a worst-case analysis in the off-line case. An algorithm with a low
competitive ratio is one that performs close to optimal in all situations. Since no
assumptions are made about the sequence of requests offered to the server, the
competitive ratio provides a very robust measure of performance.

We assume a centralized database server where incoming playback requests
require some fraction of the server’s bandwidth for some period of time. For
example, a request to view a half-hour MPEG-1 video clip requires 1.5 Megabits
per second (Mbps) of the server’s bandwidth for the 30 minutes of playback. We
consider two different cases of the problem. In the first case, we assume that all
requests require the same fraction of the server’s bandwidth (e.g., all clips are
MPEG-1 encoded videos). thus, the server can be viewed as a of collection of
available playback channels. In the second, more general case, different fractions of
the server’s bandwidth can be reserved. We show that the conventional Work-Con-
serving (WC) policy, where an incoming request is always admitted if there is suf-
ficient bandwidth to accommodate it, can behave poorly in an on-line setting. More
specifically, we show that the competitive ratio of WC is 1+D for the case of iden-
tical bandwidth requests and 1+D

1−r for the case of variable bandwidth requests, where
D is the ratio of maximum to minimum request length and r is the maximum frac-
tion of the server’s bandwidth that a request can demand. We introduce novel
admission control strategies based on the idea of prepartitioning the bandwidth
capacity of the server among requests of different length and prove that, for suffi-
ciently large server bandwidth, these strategies are O(log D)-competitive. We also
show an W(log D) (resp. W( log D1−r )) lower bound on the competitive ratio of any
deterministic or randomized algorithm for the identical (resp. variable) bandwidth
case, thereby establishing the near-optimality of our on-line algorithms. Based on
the above results, we propose a bandwidth prepartitioning scheme that makes use
of clip popularities to ensure good average-case as well as worst-case performance.
The results of our preliminary experimental study verify the benefits of our scheme
as compared to WC. More specifically, both algorithms are shown to perform
adequately well when the server is underutilized or persistently overloaded.
However, we expect that a well designed system has undergone effective capacity
planning and, therefore, will not be overloaded persistently but only at short time
intervals. We capture such short term overloads in our experiments and demon-
strate that our admission control scheme outperforms WC substantially under
these workloads.

The remainder of this paper is organized as follows. Section 2 reviews related
work in the area of multimedia databases and on-line algorithms. In Section 3, we
provide the necessary definitions and formulate the on-line admission control
problem. Section 4 introduces our Bandwidth Prepartitioning strategies and pre-
sents our competitive analysis results for both identical bandwidth and variable
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bandwidth requests. In Section 5 we discuss the findings of a preliminary experi-
mental study with the admission control schemes described in this paper. Finally,
Section 6 concludes the paper with a discussion on the implications of our results in
the context of data placement in distributed CM databases.

2. RELATED WORK

Resource scheduling issues in CM databases have attracted a lot of interest from
researchers in recent years [10, 11, 16, 21, 24, 26, 28, 34]. However, little attention
has been paid in the multimedia literature to the on-line nature of the admission
control problem for CM database servers. Long and Thakur [22] present simple
adversary arguments to show that no on-line algorithm can achieve a constant
competitive ratio in the context of the Swift distributed I/0 architecture. Aggarwal
et al. [1, 8] present a competitiveness analysis for a different service model, termed
Shared Video-On-Demand. Requests are notified of acceptance or rejection within a
server-specified time interval (termed notification interval) from their arrival.
Admitted requests waiting for the same clip can be batched onto a single stream.
They show that allowing for sufficiently large notification intervals (linear in the
length of the clips) can guarantee constant competitive ratios for simple scheduling
algorithms [1, 8]. The Shared Video-On-Demand model is different from our
model of CM service in the sense that it tries to capture the effects of wait tolerance
and hatching on the number of clients served. Therefore, their results can be viewed
as orthogonal to ours. Furthermore, the corresponding analysis assumes that (a) all
CM clips have the same length (i.e., time duration) and require the same amount of
bandwidth; and (b) any two requests by the same client must be separated by at
least the duration of a clip. These assumptions severely limit the applicability of
their results to general CM servers.

There is also a significant body of related work in the field of on-line algorithms
for bandwidth allocation and circuit routing in communication networks. Lipton
and Tomkins [20] study the competitiveness of randomized strategies for the non-
preemptive On-line Interval Scheduling (OIS) problem, which essentially corre-
sponds to on-line admission control in a server that can support a single playback
stream. Under the assumption that the ratio D of longest to shortest interval is not
known a priori, they present an O((log D)1+e)-competitive randomized algorithm
and show that no O(log D)-competitive algorithm can exist. Extensions to their
randomized scheme are presented by Faigle et al. [13]. Awerbuch et al. [4]
examine the more general problem of non-preemptive circuit routing on tree-
structured networks and propose a general randomized technique termed ‘‘Classify
and Randomly Select.’’ The main idea is to classify on-line events in disjoint classes
and then consider only the events that are assigned to a randomly selected class. By
averaging over all possible random choices, ‘‘Classify and Randomly Select’’
achieves logarithmic competitive ratios (in an expected sense). However, the idea of
an admission control scheme that considers only one randomly selected class of
user requests and simply ignores all others is obviously not very appealing for CM
database servers, since it ignores fundamental requirements such as fairness. Our
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proposed schemes also employ the idea of on-line classification, but they also are
completely deterministic without compromising near-optimal competitiveness (for
sufficiently large server bandwidth). Awerbuch et al. [3] consider non-preemptive
circuit routing on general networks. They present a deterministic scheme (called
Route_or_Block) which, assuming that the bandwidth requested by a single
circuit never exceeds an O(1/log nTmax) fraction of edge capacity, achieves a com-
petitive ratio of O(log nTmax), where n is the number of nodes in the network and
Tmax is the maximum duration of a call. They also prove that their scheme is near-
optimal for deterministic on-line routing. The Route_or_Block algorithm is based
on ideas developed for multicommodity network flow problems. Roughly speaking,
the main idea is to assign each edge a ‘‘length’’ that is exponential in its current
load and route an incoming circuit only if the length of the shortest routing path is
less than the ‘‘benefit’’ associated with the circuit. However, as reported by Plotkin
[27] and Gawlick [17], Route_or_Block exhibited consistently poor performance
in an actual implementation. Ad hoc changes in the algorithm’s parameters were
necessary to improve its behavior. Furthermore, the Route_or_Block scheme
itself is rather complex and unintuitive and it is not clear how it can benefit from
the knowledge of statistical information, such as request popularities.

Finally, we should note that allowing preemption of requests can lead to better
competitive ratios for on-line scheduling and admission control problems [7, 9, 14,
15, 19, 33]. However, the assumption of preemptability is unrealistic in the context
of CM applications.

3. PROBLEM FORMULATION

We view a CM database server as a ‘‘black box’’ capable of offering a sustained
bandwidth capacity of B. The input sequence consists of a collection of requests
s̄=s1, s2, ..., sN. The ith request is represented by the tuple si=(ti, li, ri), where
li, ri denote the length and bandwidth requirement (respectively) of the requested
CM clip and ti is the arrival time of si. Given a collection of different requests that
are handled by a server (based, for example, on the clips available at the server or
the server’s usage patterns), we use lmax (lmin) to denote the length of the longest
(shortest) request. (rmax and rmin are defined similarly.) Finally, we define
D=lmax/lmin and r=rmax/B.

We use competitive analysis [29] to measure the performance of different admis-
sion control strategies. Our optimization metric is the total throughput, that is, the
bandwidth-time product over a given sequence of requests. Specifically, given an on-
line scheduling policy A and an input sequence s̄, we define the benefit of A on s̄ as
VA(s̄)=;S1 li · ri, where SA ı s̄ is the set of requests scheduled by A. The competi-
tive ratio of an on-line algorithm A is defined as the maximum value o(A) over all
possible request sequences of the ratio of the throughput achieved by the optimal
off-line algorithm for a request sequence to the throughput achieved by A for the
same sequence. If A is a randomized algorithm, then the throughput achieved by A
for a request sequence is averaged over all possible ‘‘coin flips’’ of A [23]. More
formally,
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o(A)=˛ sup
A*, s̄

VA*(s̄)
VA(s̄)

, if A is deterministic

sup
A*, s̄

VA*(s̄)
EA[VA(s̄)]

, if A is randomized,

where s̄ ranges over all possible request sequences, Ag ranges over all off-line (i.e.,
clairvoyant) algorithms, and the expectation EA[ · ] is taken over the random
choices of A. Thus, an algorithm with a small competitive ratio is guaranteed to
perform close to optimal in all situations. We say that algorithm A is k-competitive
if o(A) [ k.

It is conventional in the analysis of on-line methods to describe things in terms of
a game between a player (the on-line algorithm) and an adversary (the off-line
algorithm), whose goal is to produce a request sequence that would force the player
to perform poorly. For randomized algorithms, different models of adversaries
have been proposed depending on the adversary’s knowledge of the player’s
random choices [23]. The lower bounds presented in this paper assume the
‘‘weakest’’ model of an oblivious adversary; that is, an adversary that is oblivious to
the random choices made by the on-line algorithm.

4. COMPETITIVE ANALYSIS OF ADMISSION CONTROL

4.1. The Greedy/Work- Conserving Policy

The scheduling strategy used as a starting point in our study is the basic Work-
Conserving (WC) scheme traditionally used for admission control in CM servers.
WC is based on the following greedy rule: schedule request si immediately if the
server has at least ri bandwidth available at time ti; otherwise, reject si. As our results
show, WC offers rather poor performance guarantees in an on-line setting.

First, consider a restricted version of the admission control problem in which all
requests require a constant fraction of the server’s bandwidth B. That is, ri=r for
all i. Let c=NBrM \ 1 denote the number of playback channels available at the ser-
ver.5 The following theorem establishes the competitiveness of WC in this setting.

5 Note that, in this case, maximizing throughput is equivalent to maximizing total scheduled request
length [20].

Theorem 4.1 (Competitiveness of WC, Identical Bandwidth Case). WC is
(1+D)-competitive for scheduling requests with identical bandwidth requirements on-
line; that is, o(WC) [ 1+D. Furthermore, this bound is tight.

Proof. Let VWC(s̄) and VOPT(s̄) denote the total throughput achieved over a
sequence of requests s̄ by the Work-Conserving policy and the optimal off-line
scheduler, respectively. Let AWC denote the set of requests in s̄ that are accepted by
WC.

Observe that by the operation of the WC policy, a request (ti, li) ¥ AWC can
cause a later request (tj, lj) to be rejected only if the time interval [ti, ti+li) con-
tains the starting point of lj (i.e., tj). (This condition is not sufficient since there

224 GAROFALAKIS ET AL.



may be a free channel to accommodate the later request.) This implies that the
maximum possible total length that was rejected because of the selection of
(ti, li) ¥ AWC is li+lmax (that is, when scheduling (li, ti) causes the rejection
(li− e, ti+

e
2) and (lmax, ti+li−

e
2), e > 0). This is obviously an upper bound, since

scheduling such a total length could conflict with other scheduled intervals. Thus,
an upper bound on the maximum total scheduled length for any (off-line) algorithm
that does not violate the server’s bandwidth constraint is given by the expression

C
(ti, li) ¥ AWC

(li+lmax)= C
(ti, li) ¥ AWC

li+|AWC | · lmax.

So, we have

VOPT(s̄)
VWC(s̄)

[
; (ti, li) ¥ AWC

li+|AWC | · lmax
; (ti, li) ¥ AWC

li
[ 1+

|AWC | · lmax
|AWC | · lmin

=1+D.

We now describe a problem instance to show that this (1+D) competitive factor
is tight for WC. Consider a single-channel system (i.e., c=1) and assume the
sequence of requests: (0, lmin+e), (

e
2 , lmin), and (lmin+

e
2 , lmax). It is then easy to see

that the competitive ratio of WC for this instance will be

lmin+lmax
lmin+e

|0

eQ 0 1+D.

This completes the proof. L

In general, a playback request requires an arbitrary portion of the server’s
bandwidth B. This bandwidth requirement depends, for example, on the data
encoding method used (e.g., MPEG-1, MPEG-2) or the Quality of Service (QoS)
specified by the client [30]. The following theorem shows the effect of this more
general model on the competitive factor of the WC policy.

Theorem 4.2 (Competitiveness of WC Variable Bandwidth Case). WC is
(B · (1+D)/max{B−rmax, rmin})-competitive for scheduling requests with different
bandwidth requirements on-line.

Proof. Consider a sequence of requests s1, ..., sN arriving at the server, where
si=(ti, li, ri) for each i. (ti is the time of arrival of si.) We visualize the actions of
the WC policy using a bipartite, rejection graph G=(V, E), V=A 2 R where A
(resp., R) is the set of requests accepted (resp., rejected) by WC, and the edge set E
is defined by connecting each rejected request si to the set of accepted requests that
caused si to be rejected (i.e., the requests executing at time ti).

For each si ¥ R let A(si) denote the set of (accepted) neighbor nodes of si.
Define the acceptance region of Ri ı R as A(Ri)=1si ¥ Ri A(si). Our proof con-
siders two different cases for such regions.

• Fully overlapped Acceptance Regions. In this case we assume that a set of
arriving requests Ri is rejected by a set of running requests A (or a subset of A) with
no new request(s) accepted between rejections. This situation is depicted in Fig. 1a.
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FIG. 1. (a) Fully overlapped case. (b) Partially overlapped case.

Let t1 and tk denote the arrival times of the (chronologically) first and last
request in Ri, respectively. Also let AŒ ı A be the subset of requests in A executing
at time tk. By the operation of WC we know that ;AŒ ri >max{B−rmax, rmin}
(otherwise WC would have scheduled the request arriving at tk. Furthermore, our
assumptions imply that all requests in AŒ start before t1 and complete after tk. Thus,
tk−t1 <minAŒ{li}. Consequently, the benefit obtained by WC from A is

VWC=C
A
liri \C

AŒ
liri >min

AŒ
{li} ·max{B−rmax, rmin},

whereas the loss incurred because of the rejections can be upper-bounded as

LWC [ (tk−t1) ·min{rmax, B−rmin}z
max. loss in [t1, tk)

+ B· lmaxz
max. loss due to rejections at tk

<min
AŒ
{li} ·min{rmax, B−rmin}+B· lmax.

Thus, if VOPT is the benefit obtained by the optimal off-line scheduler, then

VOPT
VWC

[
VWC+LWC

VWC

< 1+
minAŒ{li} ·min{rmax, B−rmin}+B· lmax

minAŒ{li} ·max{B−rmax, rmin}

[ 1+
min{rmax, B−rmin}
max{B−rmax, rmin}

+
B· lmax

max{B−rmax, rmin} · lmin
,

And, using the identity max{a, b}+min{−a, −b}=0, we obtain VOPT/VWC <
(1+lmax/lmin)(B/max{B−rmax, rmin}).

• Partially overlapped Acceptance Regions. In this case we assume that the
acceptance region for a set of rejections can be broken into a collection of n \ 2
consecutive acceptance sub-regions A(R1), ..., A(Rn) where each sub-region rejects
some requests with no intermediate arrivals, but requests scheduled in a sub-region
can also extend to future sub-region(s). That is, we are allowing new requests to be
accepted between the last rejection in Ri and the first rejection of Ri+1, and requests
in A(Ri) can also ‘‘participate’’ in A(Ri+k), k \ 1 (i.e., the acceptance regions are
allowed to partially overlap). This situation is depicted in Fig. 1b. Note that if no
such overlapping occurs then we would have multiple independent instances of the
fully overlapped case.
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We will first prove the competitiveness bound for the case n=2 and then extend
our proof to cover larger n. Let X ı A(R1) denote the requests in A(R1) that extend
into A(R2). Let lX=minX{li} (the length of the shortest request in X) and let
rX=;X ri (the total bandwidth requirement of X). Note that the length covered by
all requests in X is at most lX and the benefit of X is at least lX · rX. Also,
lmin [ lX [ lmax and rX \ rmin. Finally, let y1, y2 be the length of X’s overlap with the
rejection regions R1 and R2, respectively. (See Fig. 1b.)

Using Fig. 1b it is easy to see that the benefit obtained by WC is

VWC > (lmin−y1) ·max{B−rmax−rX, rmin}+(lmin−y2) ·max{B−rmax−rX, rmin}

+(y1+y2) ·max{B−rmax, rmin}+(lX−y1−y2) · rX,

or, after some arithmetic,

VWC > 2 · lmin ·max{B−rmax−rX, rmin}+lX · rX

\ 2 · lmin ·max{B−rmax, 2rmin}+(lX−2lmin) · rX. (1)

Similarly, the loss incurred by the rejections of WC can be upper-bounded as

LWC < y1 ·min{rmax, b−rmin−rX}+y2 ·min{rmax, B−rmin−rX}z
max. loss during y1, y2

+(lX−y1−y2) · (B−rX)z
max. loss between y1 and y2

+ B· lmaxz
max. loss after y2

−(lmin−y2) ·max{B−rmax−rX, rmin}z
min. benefit of requests in A(R2)−X outside y2

which after some arithmetic manipulation gives

LWC < B· (lX+lmax)− lX · rX−lmin ·max{B−rmax−rX, rmin}

[ B· (lX+lmax)−(lX−lmin) · rX−lmin ·max{B−rmax, 2rmin}. (2)

We now consider the following two cases for lX:

(1) lX > 2 · lmin. In this case, Inequalities (1) and (2) give

VWC > 2 · lmin ·max{B−rmax, 2rmin} and LWC < 2 ·Blmax.

Thus VOPT/VWC < 1+(B/max{B−rmax, 2rmin}) · (lmax/lmin), and the bound clearly
holds.

(2) 2 · lmin \ lX \ lmin. In this case, let lX=a, where a ¥ [1, 2]. Using Inequal-
ity (1) we have

VWC > a · lmin ·max{B−rmax−rX, rmin}+a · lmin · rX+(2−a) ·max{B−rmax−rX, rmin}

\ a · lmin ·max{B−rmax, 2rmin}.
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And, combining this with Inequality (2),

VOPT
VWC

< 1+
B

max{B−rmax, 2rmin}
+
B· lmax−(a−1) lmin · rmin−lmin ·max{B−rmax, 2rmin}

a · lmin ·max{B−rmax, 2rmin}z
f(a)

Differentiating f(a), it is easy to see that df(a)da < 0. Thus, f(a) is monotonically
decreasing in a ¥ [1, 2], which implies that

VOPT
VWC

< 1+
B

max{B−rmax, 2rmin}
+f(1)

=1+
B

max{B−rmax, 2rmin}
+

B
max{B−rmax, 2rmin}

·
lmax
lmin
−1

[
B

max{B−rmax, rmin}
·11+lmax

lmin
2 .

This completes the proof for the case of n=2 partially overlapped acceptance
regions. Now consider the case n > 2. Let Xi denote the overlap of A(Ri) and
A(Ri+1), for i=1, ..., n−1. Similar to our previous notation, let rXi=;Xi rj and
lXi=minXi{lj}=ai · lmin, where 1 [ ai [ lmax/lmin. It is not hard to see that Inequali-
ty (1) can be extended as

VWC > lmin · C
n−1

i=1
max{B−rmax−rXi , rmin}+lmin · C

n−1

i=1
ai · rXi

+lmin ·max{B−rmax−rXn−1 , rmin},

where the last term in the sum captures the (minimum possible) contribution of the
last sub-region. After some manipulation the above inequality gives

VWC > n · lmin max{B−rmax, 2rmin}+lmin · C
n−1

i=1
(ai−1) · rXi −lmin · rXn−1 . (3)

And, using a method similar to that used for the case n=2, we can derive the
following inequality for the loss incurred by WC (extension of Inequality (2)):

LWC < B· lmax+B· lmin · C
n−1

i=1
ai−rmin · lmin · C

n−1

i=1
(ai−1)

−(n−1) · lmin max{B−rmax, 2rmin}. (4)

Again, we consider two cases depending on the value of an−1 (i.e., the length
lXn−1 ).

(1) an−1 > 2. Then, Inequalities (3) and (4) give

VWC > n · lmin ·max{B−rmax, 2rmin} and LWC < n ·Blmax.
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Thus VOPT/VWC < 1+(B/max{B−rmax, 2rmin}) · (lmax/lmin) and the bound clearly
holds.

(2) 2 \ an−1 \ 1. Then, Inequality (3) gives

VWC > (n−1) · lmin ·max{B−rmax, 2rmin}+lmin · rmin · C
n−1

i=1
(ai−1).

Combining this with Inequality (4) gives

VOPT
VWC

<
B· lmax+B· lmin ·;n−1

i=1 ai

(n−1) · lmin ·max{B−rmax, 2rmin}+lmin · rmin ·;n−1
i=1 (ai−1)

[
(n−1) ·B · lmax+an−1 ·B · lmin
(n−1) · lmin ·max{B−rmax, 2rmin}

1 since a [
lmax
lmin
2

or, equivalently

VOPT
VWC

<
B

max{B−rmax, 2rmin}
·
lmax
lmin
+

B
max{B−rmax, 2rmin}

·
an−1

n−1

[
B

max{B−rmax, rmin}
·11+lmax

lmin
2 n

since n−1 \ 2 \ an−1 for each n > 2.

This completes the proof for the case of multiple partially overlapped acceptance
regions.

For the general bound, observe that the behavior of WC over any incoming
sequence of requests can be seen as a sequence of independent (i.e., non-overlap-
ping) execution segments, where each such segment consists of either fully
overlapped or partially overlapped acceptance regions. Thus, for each such execu-
tion segment s we have shown that the ratio of the maximum possible loss to the
benefit obtained by WC is LSWC/V

S
WC < (B/max{B−rmax, rmin}) · (1+lmax/lmin).

Thus, for the entire sequence of segments the ratio of loss to benefit is

LWC

VWC

[
; s L

S
WC

; s V
S
WC

[ max
s

3LSWC

VSWC

4 < B
max{B−rmax, rmin}

·11+lmax
lmin
2−1.

The result follows directly from this last inequality. This completes the proof. L

Thus, allowing variability along the second dimension (i.e., bandwidth) multiplies
the competitiveness of WC by a factor that depends on B, rmax, and rmin. Intuitively,
this term captures the effects of the worst-case bandwidth loss due to fragmenta-
tion. If B \ rmax+rmin, as will usually be the case for CM servers and requests, then
the following corollary applies.

Corollary 4.1. If B \ rmax+rmin thenWC is 1+D1−r-competitive, where r=rmax/B.
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Note that the competitiveness bound of 1+D1−r is, in fact, valid regardless of the
relative sizes of B and rmax+rmin. Theorem 4.2 just gives a tighter bound when
B < rmax+rmin. Also, note that for typical CM numbers the fraction r is much
smaller than unity. For example, even for the relatively high MPEG-2 rate
requirements of 6–8 Mbps, a CM server with a low-end RAID can sustain 40–60
concurrent streams [25, 31]. The denominator in our competitiveness bound agrees
with the bounds given by Bar-Noy et al. [7] for the preemptive version of the
problem. (They avoid dependence on D through clever use of the preemption
mechanism.)

4.2. Lower Bounds

In this section, we prove lower bounds on the competitive ratio of any determi-
nistic or randomized algorithm for on-line admission control. Our results demon-
strate the existence of an exponential gap between the competitive ratio of WC

and the lower bound on the competitive ratio of any deterministic or randomized
algorithm. This clearly suggests the possibility for improvement by using non-
greedy schemes. We propose such schemes with near-optimal competitiveness in
Section 4.3.

Once again, let us start with the identical bandwidth case (i.e., ri=r for all i). A
simple adversary argument shows that for the case of a single bandwidth channel
(i.e., the OIS problem [20]), there is a lower bound of 1+D on the competitiveness
of any deterministic scheduler. This argument fails when the number of channels is
increased. However, as the following theorem shows, no deterministic or ran-
domized admission control scheme can be better than W(log D) competitive.

Theorem 4.3 (Lower Bound, Identical Bandwidth Case). Any deterministic or
randomized on-line admission control algorithm for CM requests with identical
bandwidth requirements has a competitive ratio of W(log D).

Proof. (1) Deterministic Lower Bound. Let A be any (deterministic) scheduling
algorithm and let x denote the competitive ratio of A. We will prove that
x \ O(log D) using an adversary argument. The basic idea in the proof is that the
adversary presents A with a sequence of requests that forces A to fill up its channels
with ‘‘low profit’’ (i.e., small duration) requests in order to maintain its competitive
ratio.

More specifically, the adversary presents A with a sequence of D ‘‘request
batches’’ B1, ..., BD. (To simplify the presentation we assume that D is an integer.)
Batch Bi consists of c (=number of channels) requests of length i · lmin arriving at
time (i−1) · e, where e is some arbitrarily small interval of time. Note that, since all
these requests are pairwise overlapping, only c requests can be scheduled. Clearly
the optimal (off-line) strategy is to schedule the requests in BD, accumulating a total
profit of c ·D · lmin=c· lmax.

Consider the on-line operation of A. Let ni denote the number of requests in Bi
scheduled by A. In order to maintain its competitive ratio of x, A must schedule at
least cx requests from B1. (Otherwise, the adversary could stop the request sequence
after B1 and force A to have a competitive ratio worse than x.) Thus n1 \

c
x .
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Similarly, in order to maintain a competitiveness of x after B2, the following
inequality must be satisfied:

x · (n1 · lmin+n2 · 2 · lmin) \ c · 2 · lmin.

It is easy to see that for A to satisfy the above equation (subject to the constraint
n1 \

c
x) and, at the same time, minimize the total number of channels used n1+n2

(thus allowing more profit from future larger requests), n1 has to take its minimum
value, i.e., n1=

c
x . Substituting gives

c · lmin+x·n2 · 2 · lmin \ c · 2 · lmin,

or, equivalently: n2 \
c
2 ·x . A simple inductive argument along the same lines can

show the following claim.

Claim. In order to maintain a competitive ratio of x and maximize its total profit,
algorithm A must schedule ni=

c
i · x requests from batch Bi for each i=1, ..., D.

A can then use its remaining channels to schedule requests from the final (and,
most profitable) batch. Let Hn=1+

1
2+·· ·+

1
n (the nth-Harmonic number). Note

that if, at any point during this ‘‘game,’’ A exhausts its channels then VA <
;D
i=1

c
i · x · i · lmin=

c
x ·D · lmin, and thus

VOPT
VA
>
c ·D · lmin
c
x
·D · lmin

=x,

which is impossible since A has a competitive ratio of x. Thus, we must have

c
x
· C
D

i=1

1
i
[ c, or equivalently, x \HD=ln D+O(1)=O(log D).

This completes the proof for the deterministic lower bound.

(2) (Oblivious) Randomized Lower Bound. Our proof is based on the applica-
tion of Yao’s result to competitive analysis [17 23]. Briefly, this result states that
the lower bound on the oblivious competitive ratio for a given problem is greater
than the lower bound on the competitive ratio of deterministic on-line algorithms,
when the request sequences for the problem are restricted to a distribution.

Our methodology is as follows. We construct a probability distribution Ds̄ over
the request sequences s̄, and based on that randomized input sequence we provide:

1. A lower bound (L) for EDs̄[VOPT(s̄)], the expected benefit accepted by
the optimal off-line algorithm; and,

2. An upper bound (U) for EDs̄[VA(s̄)], the expected benefit accrued by
any deterministic on-line algorithm for the problem.

If ob denotes the oblivious competitive ratio of any randomized algorithm, then, by
Yao’s result [17, 23], ob \ L

U .
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First, we define the probability distribution Ds̄ over request sequences. Let c
denote the number of playback channels at the server and, without loss of general-
ity, assume log D is integer. We assume that requests arrive in log D+1 batches of c
requests B0, ..., Blog D with the time separating the arrivals being a very small e > 0.
Furthermore, all requests in batch Bi have length equal to 2 i · lmin and batches arrive
according to the following probabilities:

P[B0 arrives]=1 and P[Bi arrives | Bi−1 arrives]=1
2 .

Thus, for i ¥ {0, ..., log D}, the probability of the arrival sequence B0 · · ·Bi is 2−i.
Next, we provide a lower bound (L) for EDs̄[VOPT(s̄)]. Consider an off-line

strategy that always accepts the requests in the last arriving batch. The expected
benefit of that strategy is

C
log D

i=0
P[B0 · · ·Bi] · c · 2 i · lmin=c· lmin · (log D+1).

Thus EDs̄[VOPT(s̄)] \ c · lmin · (log D+1) — L.
Finally, we provide an upper bound (U) for EDs̄[VA(s̄)] for all deterministic on-

line algorithms A. Let B(i, k) denote the maximum expected benefit from batches
Bi, ..., Blog D, where the maximization is taken over all possible ways to accept
requests from B0, ..., Bi−1 so that at most k [ c channels are free. We can bound
B(i, k) with the following recurrence relation, where the first term in the max{ },
represents the benefit from requests in Bi (with l denoting the number of requests
accepted from batch Bi) and the second term represents the maximum expected
benefit from requests in batches Bi+1, ..., Blog D, given that k−l channels are avail-
able,

B(i, k) [ max
l [ k
{l · lmin · 2 i,

1
2 B(i+1, k−l)},

with the initial condition B(log D, k) [ k ·2 log D · lmin=k· lmax. Note that the factor 12
in front of the second max{ } term comes from the fact that the probability of Bi+1
arriving given that Bi has arrived is 12 .

A simple induction on j=log D−i shows that for each i ¥ {0, ..., log D},
B(i, k) [ k ·2 i · lmin. Thus, for any deterministic algorithm

EDs̄[VA(s̄)] [ B(0, c) [ c · lmin — U.

Consequently, by Yao’s result, the oblivious competitive ratio of any randomized
on-line algorithm is ob \ L

U=log D+1. This completes the proof for the randomized
lower bound. L

Similar lower bounds on the competitive ratio hold for the variable bandwidth
case. Again, the effect of bandwidth fragmentation introduces a multiplicative
factor of 1

1−r .
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Theorem 4.4 (Lower Bounds, Variable Bandwidth Case). Consider a sequence
of CM requests with variable bandwidth requirements. Then:

(1) Any deterministic on-line admission control algorithm has a competitive
ratio of (a) W(r · (1+D)1−r ), if r >

1
2; and (b) W( log D1−r ), otherwise.

(2) Any randomized on-line admission control algorithm has a competitive
ratio of, W( log D1−r ) if r [

1
2 log D .

Proof. (1) Deterministic Lower Bound. Case (a) can be shown by a simple
construction. For Case (b), assume that 1k \ r >

1
k+1 where k \ 2 is an integer. The

adversary constructs the sequence of requests in a manner that is very similar to the
proof of the deterministic lower bound in Theorem 4.3, but it also exploits the
bandwidth variability to ensure that the on-line algorithm will end up using only a
fraction k

k+1+d % 1−r of the available bandwidth B, where d > 0 is arbitrarily small.
Similar to the one-dimensional case, we can show that the on-line algorithm must
have a competitive ratio of at least HD within that portion of the server’s bandwidth,
i.e.,

VpartialOPT \HD ·VA.

But the optimal off-line scheduler can avoid this bandwidth fragmentation and
schedule the entire bandwidth B, thus VOPT \

k+1+d
k , and the competitive factor must

be at least HD ·
k+1+d
k % log D

1−r .

(2) (Oblivious) Randomized Lower Bound. We follow the same methodology
as in the proof of the randomized lower bound for Theorem 4.3 but taking into
account the worst-case bandwidth fragmentation due to variable bandwidth
requests. We assume that the bandwidth B of the server is B=k·(rmax−d), where
d > 0 is an arbitrarily small positive constant, and we consider the following request
batches, which (as in the proof of Theorem 4.3) arrive with very small separation in
time:

• For i ¥ {0, ..., log D}, batch Bi consists of k−1 requests with bandwidth
requirement rmax and length 2 i · lmin; and,

• Batch Blog D+1 consists of k requests with bandwidth requirement rmax−d
and length 2 log D · lmin=lmax.

Also, as in the proof of Theorem 4.3, P[B0 arrives]=1 and P[Bi arrives | Bi−1
arrives]=1

2 . Thus, for i ¥ {0, ..., log D+1}, the probability of the arrival sequence
B0 · · ·Bi is 2−i.

For the lower bound (L) on EDs̄[VOPT(s̄)], observe that the off-line strategy that
always accepts the last batch will have an expected benefit:

C
log D

i=0
P[B0 · · ·Bi] · (k−1) · rmax · lmin · 2 i+k·(rmax−d) · 2−log D−1 · lmin · 2 log D

=(k−1) · lmin · rmax · (log D+1)+12 · k · (rmax−d) · lmin — L.

We now provide an upper bound (U) on EDs̄[VA(s̄)] for all deterministic on-line
algorithms A. As in the proof of Theorem 4.3, let B(i, m) denote the maximum
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expected benefit from batches Bi, ..., Blog D+1 where m now denotes the number of
‘‘channels’’ of bandwidth rmax that are left in the server after batches B0, ..., Bi−1.
Note that m [ k−1 by our definitions. We can then bound B(i, m) using the
recurrence:

B(i, m) [ ˛
max
l [ m
{l · rmax · lmin · 2 i+

1
2 B(i+1, m−l)}, if i [ log D

m·(rmax−d) · lmin · 2 log D, if i=log D+1 and m < k−1

k · (rmax−d) · lmin · 2 log D, if i=log D+1 and m=k−1.

Note that the last two clauses in the above expression follow from the observation
that once a single request with bandwidth requirement rmax is scheduled, the total
number of requests that can be scheduled is at most k−1 (whereas the entire last
batch of k requests can be scheduled otherwise).

Using induction on j=log D+1−i, it is easy to show that B(i, m) [
m·rmax · lmin · 2 i for all i ¥ {0, ..., log D+1}. Thus, for any deterministic algorithm A,
EDs̄[VA(s̄)] [ B(0, k−1) [ (k−1) · rmax · lmin — U.

By Yao’s result, the oblivious competitive ratio of any randomized on-line algo-
rithm is

ob \
L
U
=
(k−1) · rmax · (log D+1)+12 B

(k−1) · rmax
.

By our assumption B > 2 · rmax · log D, so the above inequality gives

ob \
k
k−1

· log D %
log D
1−r

,

since k % 1
r by our choice of parameters. This completes the proof. L

We should note that Awerbuch et al. [3] also proved an W(log D) lower bound
for deterministic on-line circuit routing in the case of requests with identical
bandwidth requirements. However, our lower bounds for the more general variable
bandwidth case also demonstrate the effect of the maximum bandwidth demand (r)
which was not factored into their results. Furthermore, we have shown that the
logarithmic lower bounds cannot be improved upon through the use of randomiza-
tion.

4.3. Bandwidth Prepartitioning Policies

We now propose novel deterministic admission control policies that guarantee
near-optimal competitive ratios under the (mild) restriction that the maximum frac-
tion of server bandwidth demanded by a request does not exceed 1/Klog DL. Our
policies are based on prepartitioning the bandwidth capacity of a CM server among
requests of different length. Roughly speaking, the basic idea of the bandwidth
prepartitioning schemes is to isolate requests with large differences in length, thus
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FIG. 2. Algorithm SBP.

ensuring that short requests cannot ‘‘steal’ the entire server bandwidth from longer
(and, more profitable) requests.6

6 Note that if D=1 (i.e., all requests have identical lengths) then simple WC offers optimal competi-
tiveness. Thus, we will assume that D > 1 or, equivalently, log D > 0 in the remainder of this paper.

The first policy we introduce is termed Simple Bandwidth Prepartitioning (SBP)
and is depicted in Fig. 2.7 The SBP algorithm exploits the server’s knowledge of

7 We describe our policies in terms of the more general variable bandwidth case. The restriction to
identical bandwidth requests should be straightforward.

the D ratio by classifying requests to channel groups based on their length and then
using a WC policy within each group. The idea is that by classifying the requests
into different partitions according to their length range, we are ensuring that the
maximum to minimum length ratio is bounded by a constant within each partition.

The following theorem shows that this simple prepartitioning scheme results in a
significant improvement in the competitive ratio for CM servers with bandwidth B
larger than rmax · Klog DL. This requirement is typically satisfied by today’s servers,
even for large values of rmax and D. For example, if rmax=8 Mbps and
lmax=120 · lmin, then rmax · Klog DL=56 Mbps, i.e., less than the transfer rate of a
single high-end magnetic disk [26].

Theorem 4.5 (Competitiveness of SBP). Assume r=rmax/B < 1/Klog DL (or,
equivalently, c > Klog DL for the identical bandwidth case). Then, the SBP admission
control policy is:

(1) 3 · Klog DL-competitive for the identical bandwidth case; and,

(2) 3 · Klog DL
1−r · Klog DL-competitive for the variable bandwidth case.

Proof. (1) Identical Bandwidth Case. We first give a definition of strong com-
petitiveness as defined by Bar-Noy et al. [7]. Given an input s̄=s1, s2, ..., sN
where si=(ti, li, ri), it is easy to see that the bandwidth required by s̄ at time t is
Bs̄(t)=;si : t ¥ [ti, ti+li] ri. We say that s̄ is feasible if Bs̄(t) [ B for all times t. We
define the cover of a sequence s̄ as

V(s̄)=F
t

min{Bs̄(t), B} dt.
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Note that if s̄ is feasible then V(s̄) is exactly the total throughput (i.e., length-rate
product) in s̄. We say that an on-line algorithm A is strongly k-competitive if

sup
s̄

V(s̄)
VA(s̄)

[ k.

Clearly, any strongly k-competitive algorithm is also k-competitive (Section 3).
Observe that the analysis in the proof of Theorem 4.1 actually establishes that

WC is strongly (1+D)-competitive. Consider an input sequence s̄. Fix a particular
group of channels Ci (|Ci |=

B
Klog DL) and let s̄i denote the subsequence of s̄ with

lengths in the range 2 i−1 · lmin [ lj < 2 i · lmin, for any i ¥ {1, ..., Klog DL}. Since the
operation of SBP on s̄i is identical to WC using only the channels in Ci we have

11+1 lmax
lmin
2
s̄i

2 ·VSBP(s̄i) \ F
t

min 3Bs̄i (t),
B

Klog DL
4 dt.

Observe that for all requests in s̄i we have ( lmaxlmin )s̄i [ 2. Thus the above inequality
gives

3 · Klog DL ·VSBP(s̄i) \ F
t

min{Bs̄i (t), B} dt.

It is easy to see that the left-hand side of the above inequality is an upper bound on
the benefit that any scheduler can obtain from the requests in s̄i (even when using
all available bandwidth). Thus, we have shown that 3 · Klog DL ·VSBP(s̄i) \ VOPT(s̄i),
where OPT is the optimal clairvoyant scheduler using the entire server. Clearly,
VSBP(s̄)=; i VSBP(s̄i) and VOPT(s̄) [; i VOPT(s̄i). Thus, 3 · Klog DL ·VSBP(s̄) \
VOPT(s̄) for any sequence s̄. The result follows.

(2) Variable Bandwidth Case. Again, the proof for the case of variable
bandwidth requests is based on the observation that the proof procedure for
Theorem 4.2 actually establishes that WC is strongly 1+D

1−r-competitive, where
r=rmax/B. The proof then proceeds along the same lines as the proof for the iden-
tical bandwidth case. L

Thus, by merely isolating different length ranges, the SBP admission control
policy improves the competitiveness of WC from linear to logarithmic in D, at least
for the identical bandwidth case. The main idea behind SBP is that in order to be
competitive under a worst-case scenario, the scheduler should not allow short
duration requests to monopolize the server’s bandwidth. However, SBP can also
suffer from bandwidth fragmentation in the variable bandwidth case. In the worst
case, bandwidth approximately equal to rmax is lost in each partition, leading to a
total bandwidth loss of rmax · Klog DL in the server. Intuitively, we would like to be
able to ‘‘combine’’ these bandwidth. fragments to allow for incoming requests to be
scheduled across partitions, especially if these requests are long since this implies
more guaranteed profit.

The Down-shift Bandwidth Prepartitioning (DBP) policy depicted in Fig. 3 is
based exactly on these observations. As in SBP, the DBP algorithm also prohi-
bits short requests from monopolizing the server, but it also allows longer (and
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FIG. 3. Algorithm DBP.

thus, more profitable requests) to be ‘‘down-shifted’’ to lower groups and steal
unused bandwidth that would otherwise be dedicated to shorter requests.
Theorem 4.6 shows that incorporating this change does not compromise logarith-
mic competitiveness.

Theorem 4.6 (Competitiveness of DBP). Assume r=rmax/B < 1/Klog DL (or,
equivalently, c > Klog DL for the identical bandwidth case). Then, the DBP admission
control policy is:

(1) (1+8· Klog DL)-competitive for the identical bandwidth case; and,

(2) (1+ 8 · Klog DL
1−r · Klog DL)-competitive for the variable bandwidth case.

Proof. (1) Identical Bandwidth Case. We partition the schedule derived by
DBP along the time axis into consecutive intervals I1, ..., IM of length lmax (or,
more accurately 2 Klog DL · lmin) each. Let Aj denote the set of requests accepted by
DBP inside interval Ij (i.e., accepted requests whose starting point is in Ij), and let
Rj be the set of requests rejected by DBP and accepted by the optimal scheduler in
Ij. We use sj to denote the saturation level of Ij: the largest i such that for some
point in time t ¥ Ij all the channels in C1 2 · · ·Ci are busy at time t. Note that by
the operation of DBP, only requests of length less than 2 sj · lmin, will be rejected in
Ij. Finally, let V(S) denote the total benefit (i.e., rate-length product) of a set of
requests S.

Fix a specific interval Ij and let k=Klog DL. Partition the set Rj into
R1j 2 · · · 2 R

sj
j , where R ij is the set of requests in Rj with lengths in the range

[2 i−1 · lmin, 2 i · lmin). Fix a specific i ¥ {1, ..., sj} and slice the interval Ij into 2k−i sub-
intervals of length 2 i · lmin each. Consider the requests in R ij rejected in such a sub-
interval. Clearly, the maximum benefit that any scheduler could obtain from these
requests is c · 2 i · lmin, by allowing a ‘‘batch’’ of c requests of maximum length
(2 i · lmin). But, by the operation of DBP, since these requests were rejected DBP

must have already accepted a benefit of

c
Klog DL

· C
i

j=1
2 j−1 · lmin=

c
Klog DL

· (2 i−1) · lmin.
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Furthermore, by the operation of the algorithm, this benefit will be distinct for each
‘‘batch’’ of rejections within different sub-intervals. Thus, the maximum loss-to-
benefit ratio within each such sub-interval is

c · 2 i · lmin
c

Klog DL
· (2 i−1) · lmin

=Klog DL ·
2 i

2 i−1
[ 2 · Klog DL, independent of i.

Thus, if we let Lj denote the loss that the DBP scheme incurs within the interval Ij,
then

V(Aj)+V(Aj−1) \ max 3 c
Klog DL

· (2 sj−1) · lmin,
Lj

2 · Klog DL
4 ,

where the first term in the max{ } follows from the definition of the saturation level
of Ij. Also, it is easy to see that

V(Rj) [ Lj+c·2 sj · lmin,

where the second term captures the maximum possible loss due to rejections at the
end of Ij. Combining the last two inequalities, we have

V(Aj)+V(Aj−1) \ max 3 c
2 · Klog DL

· 2 sj · lmin,
Lj

2 · Klog DL
4

\
1

2 · Klog DL
·
c · 2 sj · lmin+Lj

2
\
V(Rj)
4 · Klog DL

.

Thus, summing over all intervals Ij we have VDBP(s̄) \;jV(Rj)/8 · Klog DL.
Observe that for the optimal clairvoyant scheduler Ag, VA*(s̄) [ VDBP(s̄)+

; j V(Rj), or, using the above inequality, VA*(s̄) [ VDBP · (1+8· Klog DL). This
completes the proof for the identical bandwidth case.

(2) Variable Bandwidth Requests. The proof proceeds along the same lines as
for the identical bandwidth case. We now define the saturation level sj of interval Ij
as the largest i such that for some point in time t ¥ Ij the total available bandwidth in
partitions B1 2 · · ·Bi is less than rmax. Note that by the operation of DBP, only
requests of length less than 2 sj · lmin can be rejected in Ij.

Fix a specific interval Ij and let k=Klog DL. Partition the set Rj into
R1j 2 · · · 2 R

sj
j , where R ij is the set of requests in Rj with lengths in the range

[2 i−1 · lmin, 2 i · lmin). Fix a specific i ¥ {1, ..., sj} and slice the interval Ij into 2k−i sub-
intervals of length 2 i · lmin each. Consider the requests in R ij rejected in such a sub-
interval. Clearly, the maximum benefit that any scheduler could obtain from these
requests is B·2 i · lmin. But, by the operation of DBP, since these requests were
rejected DBP must have already accepted a benefit of at least

B
Klog DL

· C
i−1

j=1
2 j−1 · lmin+1

B
Klog DL

−rmax 2 · 2 i−1 · lmin

=
c

Klog DL
· (2 i−1) · lmin−rmax · (2 i−1) · lmin.
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Furthermore, by the operation of the algorithm, this benefit will be distinct for each
‘‘batch’’ of rejections within different sub-intervals. Thus, the maximum loss-to-
benefit ratio within each such sub-interval is

B·2 i · lmin
B

Klog DL
· (2 i−1) · lmin−rmax · (2 i−1) · lmin

=Klog DL ·
2 i

(2 i−1)−r · 2 i−1 · Klog DL

[ Klog DL ·
2

1−r · Klog DL
, independent of i.

Thus, if we let Lj denote the loss that the DBP scheme incurs within the interval Ij,
then

V(Aj)+V(Aj−1)

\ max 3 B
Klog DL

· (2 sj−1) · lmin−rmax · (2 sj −1) · lmin,
Lj · (1−r · Klog DL)
2 · Klog DL

4 ,

where the first term in the max{ } follows from the definition of the saturation level
of Ij. Also

V(Rj) [ Lj+B·2 sj · lmin,

where the second term captures the maximum possible loss due to rejections at the
end of Ij. Combining the last two inequalities, we have

V(Aj)+V(Aj−1) \ max 3B· (1−r · Klog DL)
2 · Klog DL

· 2 sj · lmin,
Lj · (1−r · Klog DL)
2 · Klog DL

4

\
1−r · Klog DL
2 · Klog DL

·
B · 2 sj · lmin+Lj

2
\
V(Rj) · (1−r · Klog DL)

4 · Klog DL
.

And, summing over all intervals Ij, we have VDBP(s̄) \ (1−r · Klog DL) ·; j V(Rj)/
8 · Klog DL.

Observe that for the optimal clairvoyant scheduler OPT, VOPT(s̄) < VDBP(s̄)+
; j V(Rj), or, using the above inequality, VOPT(s̄) [ VDBP · (1+8· Klog DL/(1−r×
Klog DL)). This completes the proof for the variable bandwidth case. L

Corollary 4.2 follows directly from Theorems 4.5 and 4.6. Combined with the
lower bounds in Section 4.2, Corollary 4.2 establishes the near-optimality of the
SBP and DBP policies for the variable bandwidth case, assuming that the server
bandwidth B is larger than 2 · rmax · Klog DL. Again, this is a requirement that is typi-
cally satisfied by today’s CM servers and applications. (See the discussion before
Theorem 4.5.) Note that even smaller competitive ratios can be obtained if
B > k · rmax · Klog DL, where k > 2.
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Corollary 4.2 (Near-Optimality of SBP and DBP, Variable Bandwidth
Case). Assume r=rmax/B < 1/2 · Klog DL. Then:

(1) TheSBP admission control policy is 6 · Klog DL-competitive for the variable
bandwidth case; and,

(2) The DBP admission control policy is (1+16 · Klog DL)-competitive for the
variable bandwidth case.

Although the constants in the competitiveness bounds we have shown for DBP

are larger than those of SBP, we conjecture that they can be improved. To
support our conjecture, note that for the identical bandwidth case when a request of
length lj ¥ [2 i−1 · lmin, 2 i · lmin) is rejected in SBP, the scheduler can guarantee that
the benefit of running requests is at least c

Klog DL · 2
i−1 · lmin, whereas with DBP the

corresponding guaranteed benefit is at least

c
Klog DL

· C
i

k=1
2k−1 · lmin=

c
Klog DL

· (2 i−1) · lmin,

that is, nearly double the benefit for SBP. Of course, the main advantage of DBP

over SBP is that, by ‘‘down-shifting,’’ it can significantly reduce the effects of
bandwidth fragmentation in the variable bandwidth case. A formal proof of
improved competitive ratios for DBP is left as an open problem for future
research.

Even though SBP and DBP guarantee logarithmic competitiveness under a
worst-case scenario, they may also severely underutilize the server in average cases.
For example, when all the requests address the shortest group of clips residing on
the server, both schemes will end up utilizing only 1

Klog DL of the available bandwidth.
This is clearly undesirable. We now propose a novel on-line admission control
policy that employs the intuition of prepartitioning schemes (to avoid worst-case
scenarios for WC) within a framework that also allows for good average-case per-
formance. Roughly speaking, the idea is to use the methodology of DBP but define
the sizes of the bandwidth partitions Bi as a function of the popularities and/or the
lengths of all requests in the length range [2 i−1 · lmin, 2 i · lmin). The resulting admis-
sion control scheme, termed Popularity-based Bandwidth Prepartitioning (PBP), is
depicted in Fig. 4. Note that PBP is given in parameterized form with the param-
eter f being the specific function of popularities and lengths used to define the par-
tition sizes. In Section 5, we describe two specific choices for f used in our preli-
minary experimental study. The PBP admission control scheme relies on the
assumption that request (i.e., clip) popularities can be estimated with reasonable
accuracy (e.g., using a ‘‘moving window’’ prediction method [21]). Clearly, taking
popularities into account is necessary to avoid worst-case scenarios for DBP (i.e.,
when the most frequent requests are also the shortest). In fact, assuming that
requests are independent and the given popularities are accurate, we can construct
simple arguments based on Chernoff bounds [23] to show that the probability of a
worst-case ‘‘loss’’ for PBP (with specific choices for f) is exponentially small.
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FIG. 4. Algorithm PBP.

5. EXPERIMENTAL STUDY

In this section, we describe the results of a preliminary set of experiments we have
conducted with the WC and PBP strategies for on-line admission control. Since
our competitiveness results clearly demonstrate the superiority of prepartitioning
schemes with respect to worst-case scenarios, our goal was to ensure that the worst-
case guarantees did not impair average-case performance. We start by presenting
our experimental testbed and methodology.

5.1. Experimental Testbed

To, examine the average-case behavior of the WC and PBP schemes, we have
experimented with three distinct random arrival patterns:

• Poisson Arrivals. Requests of different lengths arrive at the server according
to a Poisson process model with an arrival rate of l. This is a plausible probabilistic
model for servers with a reasonably steady traffic flow (e.g., video servers in scien-
tific research labs serving clips of recorded experiments to scientists around the
globe).

• Bursty Arrivals. Requests of different lengths arrive at the server in bursts at
regular intervals of time (termed burst separation). Each such burst itself consists of
a sequence of request batches, where each batch consists of requests of identical
length arriving during a very short period of time. The batch arrivals are again
modeled as a Poisson process with an arrival rate of l. This workload is intended to
model ‘‘rush-hour traffic’’ situations in CM servers.
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• Poisson+Short Burst Arrivals. Long requests arrive at the server according to
a Poisson process model with an arrival rate of llong the same time, bursts of short
requests arrive based on a Poisson process with an arrival rate of lshort. This
workload model combines some features of the previous two models. It is intended
to represent situations where servers operating under a relatively steady flow of
long requests (e.g., movies or sports events), occasionally have to handle bursts of
short requests (e.g., the 6 o’clock news).

In most of our experiments, the request lengths were sampled from a discrete set
of values between 5 and 150 minutes, with sampling probabilities (i.e., popularities)
taken from a Zipfian distribution with skew parameter z [35]. We varied this skew
parameter from 0.0 (uniform) to 2.0 (very skewed). Results were obtained for three
different models of correlation between request lengths and popularities:

• Positive. Larger popularities are assigned to longer requests.

• Negative. Larger popularities are assigned to shorter requests.

• Random. No length/popularity correlation exists; that is, the values of the
Zipfian probability vector are assigned to the different request lengths in a random
manner.

We also experimented with two different choices for the f function parameter of
the PBP scheme. The first choice f1 captured the cumulative popularity of a
length range, that is, fl(PLi)=; (p, l) ¥ PLi p. The second choice f2 was the total
popularity-length product of a range, that is f2(PLi)=; (p, l) ¥ PLi p · l.

In our experiments for the identical bandwidth case, we assumed a server with
100 available channels. For the variable bandwidth case, we varied the server’s sus-
tained bandwidth capacity between 100 and 250 Megabits per second (Mbps) and
selected the rate requirement of a request randomly between 500 Kbps and 8 Mbps.
The parameter values are summarized in Table 1.

For each different combination of input parameters, we modeled the system
behavior under each scheduling policy for 20,000 minutes of simulated time and 10
randomly generated request sequences. The results presented here represent the
averages over these 10 runs of the system. In all cases, the comparison metric was
the fraction of the server capacity effectively utilized ; that is, the ratio VA(s̄)/(server
bandwidth)× (simulation time), for each scheduler A and request sequence s̄.

TABLE 1

Experiment Parameter Settings

System, parameter Value

Server, bandwidth capacity 100 channels/100–250 Mbps
Request, lengths 5–150 minutes
Request, rates (variable bandwidth case) 500 Kbps–8 Mbps
Zipfian popularity skew (z) 0.0–2.0
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5.2. Experimental Results

We present an overview of our experimental comparison of the WC and PBP

schemes for the (general) variable bandwidth case. Similar results were obtained for
identical bandwidth requests. For the numbers presented here, the request lengths
were sampled (based on z and the model of correlation) from the collection
{5, 10, 15, 90, 120, 150} (in minutes), the request rates were selected (uniformly)
from the set {0.5, 1.5, 3.0, 4.5, 6.0, 8.0} (in Mbps), and the server bandwidth capa-
city was 250 Mbps. The plots shown in this section are indicative of the results
obtained for other values of request and server parameters.

We focus our discussion on PBP[f2], that is, PBP using the ‘‘total
popularity× length’’ partitioning criterion, since it exhibited uniformly better per-
formance than PBP[f1] in our experiments. We should stress, however, that; even
with ‘‘cumulative popularity’’ partitioning, PBP outperformed WC by a signifi-
cant margin for our ‘‘bursty’’ workloads.

The first set of experiments studied the relative effectiveness of the WC and
PBP schemes under Poisson arrivals for different values of the Zipfian skew
parameter z and different length/popularity correlations. Figure 5a shows the per-
formance of the schemes as a function of the Poisson arrival rate l for z=0.6 and
random length/popularity correlation. Our basic finding is that, by exploiting its
knowledge of clip popularities, PBP is able to do at least as good as WC in all
cases. We should mention that we also experimented with different models of the
arrival process (e.g., using uniformly rather than exponentially distributed inter-
arrival times) that also led to the same conclusions regarding the relative perfor-
mance of the strategies under random arrivals.

The second set of experiments concentrated on the relative performance of the
algorithms under the Bursty Arrival model described in the previous section. We
studied the server utilization as a function of the length of the burst separation
interval as well as the size of a batch of arrivals for different values of the z and l
parameters, the size (i.e., number of batches) of a burst, and different modes of
correlation. Figure 5b shows the server utilization as a function of the burst
separation interval for batch size equal to 40, z=0.6, batch arrival rate l=0.8,
burst size equal to 10, and random length/popularity correlation. (We show burst

FIG. 5. (a) Server throughput under Poisson arrivals. (b) Server throughput under bursty arrivals
(random correlation).
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FIG. 6. (a) Server throughput under bursty arrivals (positive correlation). (b) Server throughput
under bursty arrivals (negative correlation).

separations decreasing from left to right as this reflects increasing load, as in
Fig. 5a.) Our results show that under such conditions, PBP outperforms WC by
an average margin of 15%–40%. Note that the ‘‘jump’’ observed in the curves as
the burst separation approaches 150 minutes is caused by our specific choice of
request lengths and our model of ‘‘bursty’’ arrivals. The numbers from the same
experiment but for positive length/popularity correlation (i.e., longer requests are
more popular) are depicted in Fig. 6a. WC clearly performs better under the posi-
tive correlation assumption, since it is able to allocate more of its channels to the
more popular (and, more profitable) long requests. Still, PBP continues to out-
perform WC by up to 25%. Figure 6b shows the results of the same experiment but
for negative length/popularity correlation (i.e., shorter requests are more popular).
Under such scenarios, our, results show that the relative improvement offered by
PBP over WC can reach 50%–60%. A different perspective is depicted in Fig. 7a,
where server utilization (for the same parameter values and negative correlation) is
given as a function of the batch, size for a fixed burst separation of 180 minutes.
Note that as the batch size increases, the Bursty Arrival model gives rise to worst-
case scenarios for WC, where a large batch of short requests can flood the server
leaving no capacity for a following batch of larger requests. On the other hand, our
PBP scheme is capable of maintaining a reasonable level of utilization under all
circumstances.

FIG. 7. (a) Server throughput under bursty arrivals as a function of batch size (negative correlation).
(b) Server throughput under Poisson+Short Bursts.
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The final set of experiments studied the behavior of the algorithms under the
combined Poisson+Short Bursts arrival process. We concentrated on a particular
scenario which, we believe, is common in Video-On-Demand environments. Speci-
fically, we assumed that the server is working close to capacity serving requests for
long (i.e., {90, 120, 150} minutes) movies but occasionally has to handle bursts of
short (i.e., {5, 10, 15} minutes) requests. That is, llong was selected large enough to
ensure high system utilization And’ we studied the server utilization as a function of
lshort. All length popularities were assumed uniform for this experiment. The results
depicted in Fig. 7b show that, under this scenario, PBP can offer a 10%–15% per-
formance improvement over WC, even at high levels of system utilization.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the Admission control problem associated with
CM database servers from a novel, on-line perspective. Using server throughput as
our optimization metric, we showed that the traditionally used Work-Conserving
policy has a competitive ratio of 1+D

1−r , where D is the ratio of the maximum to
minimum request length and r is the maximum fraction of the server’s bandwidth
that a request can demand. We developed novel admission control strategies based
on the simple idea of preprepartitioning the bandwidth capacity of the server
among requests of different length and proved that our strategies are
O(log D)-competitive for sufficiently large server bandwidth. We also showed an
W( log D1−r ) lower bound on the competitive ratio of any deterministic or randomized
algorithm for the problem, thus establishing that our bandwidth prepartitioning
algorithms are within a multiplicative constant of the optimal on-line strategy.
Based on the intuition gained from our competitiveness results, we proposed pre-
partitioning schemes that make use of request popularities to ensure good average-
case as well as robust worst-case performance, and experimentally verified their
effectiveness against the Work-Conserving policy.

We believe that the analytical and experimental results presented in this paper
offer new insights to other optimization problems that arise in CM data manage-
ment. For example, consider the problem of data placement and static load balanc-
ing in distributed CM servers. Briefly, the problem can be described as follows:
Given a collection of continuous media clips with lengths (li), rates (rj), and
expected popularity (or, probability of access, pi), determine a ‘‘good quality’’
mapping of these clips to a collection of servers, where each server is characterized
by a bandwidth capacity (Bj) and a storage capacity (Sj) and a clip can be mapped
to more than one server (i.e., replication of clips is allowed).

Traditionally, the goal of data placement schemes in this setting is to balance the
expected bandwidth load (according to the popularities {pi}) across the available
servers under the given server storage constraints [11, 21, 34]. This model of
‘‘popularity-based data placement’’ aims at achieving good system utilization and
balanced system load in an average sense. On the other hand, our competitiveness
results indicate that to ensure robust system performance, a placement strategy
should also try to achieve some secondary ‘‘goals.’’ One such goal, for example,
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would be to place clips with large bandwidth requirements on servers with large
bandwidth capacities to guarantee small r fractions for each server. As another
example, the placement policy should try to replicate short clips across many
servers, so that there are many possibilities of dynamically re-assigning (e.g., using a
baton passing primitive [34]) streams delivering these clips to different servers. This
obviously reduces the probability of a short request causing the rejection of a long
request from the system, which is the worst-case scenario in all our competitiveness
results. Achieving such secondary data placement goals is especially important in
order to ensure good system utilization under short-term fluctuations of the load
away from the averages {pi} or overload situations where some client requests
simply must be rejected. A detailed investigation of the problem is left for future
research.

The competitive analysis framework and results presented in this paper suggest
several directions for future work. First, this work has only considered the
bandwidth resource. Considering servers with multiple scarce resources poses an
interesting challenge. For example, a request may also need a given amount of
memory at the server in order to meet its performance requirements. This memory
requirement can be either specified by the request itself (e.g., leaky bucket regulated
traffic) or assigned by the server to meet the request’s performance goals. Given the
limited amount of server memory, the admission control mechanism needs to con-
sider both the memory and the bandwidth requirements of a request. Second, we
plan to use our results and methodology as a starting step towards a formal study
of dynamic on-line load balancing in multimedia storage servers. Prior work
[11, 34] has explored the use of techniques such as dynamic stream re-assignments
and dynamic replica creation/coalescing only within ad-hoc schemes, without pro-
viding any strong performance guarantees or exploiting the wealth of theoretical
results on on-line load balancing (see, for example, [2, 5, 6, 32]). Finally, incor-
porating the concept of equivalent bandwidth into our on-line analysis is another
interesting problem. Equivalent bandwidth is fundamental for providing sessions
with statistical performance guarantees. Since the equivalent bandwidth of a collec-
tion of sessions is typically a simple function of each session’s equivalent
bandwidth, this concept simplifies the admission control for applications with sta-
tistical performance guarantees [12, 18].
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