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ABSTRACT

In this paper, we identify some of the fundamental issues that must be ad-
dressed in designing a desktop Frperiment Management System (EMS). We
develop an abstraction of the set of activities performed by scientists through-
out the course of an experimental study, and based on that abstraction we
propose an EMS architecture that can support all such activities. The pro-
posed EMS architecture is centered around the extensive use of conceptual
schemas, which express the structure of information in experimental studies.
Schemas are called to play new roles that are not usually found in traditional
database systems. We provide a detailed exposition of these new roles and
describe certain characteristics that the data model of the EMS must have
in order for schemas expressed in it to successfully play these roles. Finally,
we present the specifics of our own effort to develop an EMS, focusing on
the main features of the data model of the system, which we have developed
based on the needs of experiment management.

Keywords: Scientific databases, experiment management, conceptual model-
ing, graphical user interfaces, object-oriented data models

1. Introduction

In the past few years, several scientific communities have initiated very ambitious
and broad-ranged projects whose goals are to significantly advance the frontiers of
knowledge in their disciplines by solving very hard problems that until recently were
considered unapproachable. Such efforts are expected to last for many years and
will play the role of umbrella projects under which several scientific questions will
be investigated. The NASA Eos project and the NIH Human Genome project are
two examples of national and international scientific endeavors that belong to this
category. The goal of Eos 1s to collect data about the earth and its atmosphere that
will be used by earth scientists for global-change research, while the goal of the Hu-
man (Genome project is to sequence the human DNA and from that understand the
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nature of genetic diseases. In this paper, we use the term global project to refer to a
large-scale scientific effort like the ones above. A major component of such projects
is the collection of measurements on complex phenomena. Such activities will gener-
ate huge amounts of data (sometimes measured in petabytes—one petabyte is equal
to 105 bytes), which will then be studied by thousands of researchers. Managing
this surge of scientific data poses many challenges, with which current database
technology is unable to deal. Several technical problems need to be solved before
Scientific Database Systems can become a reality. An excellent account of these
problems together with an overall picture of the major scientific projects that are
currently under way is given in the summary of the NSF Workshop on Scientific
Database Management [FJP90].

The widespread availability of the unprecedented collections of data gathered
as part of the above projects will generate much scientific activity at the level of
individual scientists or small teams of scientists. Smaller projects will be initiated
to study a variety of phenomena related to the global projects, using small fractions
of the available data. In this paper, we use the term local study to refer to such
smaller-scale research efforts'. Given the scale of such studies, it is desirable that the
experiments and the data generated from them be managed directly by the scientists
themselves, who will not be experts in database systems. There are no adequate
management tools, however, that are natural and intuitive to the non-expert and
offer the desired functionality. Thus, similarly to the large-scale projects, these
smaller studies will also suffer from the lack of appropriate technical support.

The above is perceived as a major problem for experimental studies in most
scientific disciplines even today. Based on our own experience with experimental
computer science [Liv87] and from joint work that we have undertaken with scien-
tists from a wide range of experimental disciplines (biotechnology, genetics, earth
and space sciences, soil sciences, and high-energy physics), experiment and data
management have become the bottleneck in such studies. In many cases, the lack
of adequate management solutions significantly limits the scale and scope of the
experiments. While some scientists store data in hundreds of flat files or, in the
best case, under a simple relational database system, most of them still use paper
notebooks, which are clearly inadequate tools for extensive experimentation.

There are some technical challenges that are unique to each of the two types
of activities mentioned above, 1.e., managing the collection and distribution of the
primary data for a global project and managing a local experimental study (which
may or may not use data collected within a global project). For example, dealing
with large amounts of data is primarily an issue in global projects. On the other
hand, supporting scientists who are not experts in databases so that they manage
the execution of experiments themselves is only an issue in local studies. Neverthe-
less, many problems are common to both types of activities. Examples include the
types of data, the size and complexity of the structure (schema) of the data collec-
tion process and/or experiments, and the need to provide interfaces for non-expert
scientists to browse through and retrieve data. Solutions to these challenges should
be applicable to systems that support either type of activity.

LThe term ‘local’ is only used as an indicator of scale, with no connotations about the proximity
of the scientists involved in the study or the location of the data used in the study.



The general theme of this paper is managing local experimental studies. We
introduce the term ‘desktop Frperiment Management System’ (EMS), to describe
a system that supports such activities. Such a system, which includes a Database
Management System (DBMS) as one of its components, will be the only tool that a
scientist uses to manage his/her experimental studies. Tt will support the scientist in
the design of the study, communicate with the appropriate environments from which
the data for the study is collected, and store and manage that data. The operational
environment of experimental studies has the following unique characteristics that
place certain demands on what the desired functionality of an EMS is:

(i) Each experimental study goes through several stages that are quite different
from each other. To avoid overburdening the scientists, who should not have
to be experts in database management, the EMS should provide a uniform
interface that can be used in the diverse activities related to all these stages.

(i1) In today’s scientific laboratories, where experimental studies are conducted
without much computerized technical support, communication among collab-
orating scientists is quite interactive. To facilitate the same mode of com-
munication when computer technology is used, the EMS should provide an
efficient and natural user interface that resembles, to the extent possible, the
way scientists interact among themselves.

(iii) Many experimental studies are in need of generating data in multiple diverse
ways and using existing data from multiple sources. The EMS should be
capable of communicating with all these heterogeneous information sources
and integrating the data that they provide without requiring much detailed
knowledge from the scientists.

Providing the above functionality presents many problems to today’s technology.
These problems are further exasperated by the complexity of the structure of the
data and experiments manipulated by the EMS.

In this paper, we identify some of the fundamental issues that must be addressed
in designing an EMS so that its goals may be achieved. An important aspect of
this work is a proposed EMS architecture that is centered around the extensive use
of conceptual schemas, which express the structure of information in experimental
studies. Schemas are called to play new roles that are not usually found in tradi-
tional database systems. We provide a detailed exposition of these new roles and
elaborate on the implications of such schema use. Specifically, we describe certain
characteristics that the data model of the EMS must have in order for schemas
expressed in it to successfully play these roles. An interesting side result of the
above effort is the development of an abstraction of the set of activities performed
by experimental scientists throughout the course of a study, on which the details of
the proposed EMS architecture are based. Following the above general principles
on how to support the management of experiments, we have undertaken an effort to
develop a desktop EMS that achieves the desired goals. We present the specifics of
our approach in the later part of this paper. In particular, we describe the salient
features of the data model that we have developed for the EMS justifying their
inclusion in the model by the needs of experiment management. We also discuss



a case study where schemas expressed in that model played some of the new roles
mentioned above in the context of some scientific experiments.

As a reference point that can be later used to illustrate the various issues raised
in the paper, we describe a very simple experimental study. Simulation is being used
to model the effect of weather on plant communities. Its input consists of weather
parameters, which are humidity and wind speed and direction, and characteristics of
a plant community, which are the locations of all plants and the number of leaves,
height, and type (e.g., corn, wheat) of each plant. Its output is the vegetation
temperature, one temperature value for each plant. The simulation itself takes into
account the relative placement of the plants and all the physical laws on how each
type of plant reacts to the weather conditions based on its environment. An EMS
used for this study will allow scientists to design the input and output structure of
the experiments, invoke executions of the simulator, store the collected data, and
submit queries on the experiment results.

Among all types of schemas, we only deal with conceptual/logical schemas in
this paper. Hence, we often use the plain term ‘schema’ instead of the full term
‘conceptual schema’. Also, we imagine that most users of an EMS will be scientists,
researchers; or technicians working in a laboratory. For the purposes of this paper,
we make no distinctions among the above types of experimentalists, so we use all
the above terms (including the term ‘user’) indistinguishably to refer to the generic
user of an EMS. Finally, databases containing the data associated with experimental
studies are called ‘experiment databases’.

This paper is organized as follows. Section 2 describes a common life-cycle that
underlies most experimental studies. Section 3 outlines the functionality that an
EMS should provide to its users and proposes an architecture that we have adopted
for such a system that we are currently developing. Section 4 identifies some new
roles that conceptual schemas are called to play in the context of an EMS. The
characteristics that the data model should possess in order for its schemas to play
these roles are also identified in this section. Section 5 discusses the salient features
of the Moose data model that we have developed for experiment management.
Section 6 contains a brief description of a case study where some of the tools that
we have developed for manipulating Moose schemas were used in an experimental
study. Finally, Section 7 summarizes our approach for experiment management and
discusses the future directions of our work.

2. Life-Cycle of Experimental Studies

To achieve its goals, an EMS will use conceptual schemas for various activities that
are important throughout the course of an experimental study. From discussions
with scientists from different disciplines, we have concluded that these activities are
common to most experimental studies. We use the term life-cycle of an experimental
study (or simply experiment life-cycle) to denote the entire set of these activities
together with the way scientists iterate over them during such a study. In this
section, we describe the different stages of that cycle, so that the details of the
different roles of schemas throughout the cycle can be explained later. We should
emphasize at this point that the experiment life-cycle that we describe only captures



the activities involved in conducting the experiments and not those involved in
setting up the appropriate experimentation environments. For example, in the case
of simulation studies, it does not capture the programming task of developing the
simulator, but it does capture the task of executing the simulator with a specific
set of input parameters.
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Figure 1: Life cycle of an experimental study.

A pictorial abstraction of the experiment life-cycle is shown in Figure 1. It
essentially consists of multiple loops traversed by the researcher multiple times in
the course of a study. In the figure, the following stages can be identified:

Ezperiment Design: In this stage, the experimental frame of a study is laid out
[ZeiT6], that is, the structure of each experiment is defined. The experimental frame
determines the variables that will be controlled in the experiments and defines what
will be measured as output. For the example of the plants experiment of Section 1,
this stage consists of identifying the input and output parameters of the simulator
and their relationships based on their semantics. Properly designing the experi-
ments 1s the most crucial aspect of an experimental study. A satisfactory design is
rarely achieved in a single attempt. This process undergoes many iterations, usu-
ally interleaved with the execution of some experiments and analysis of the obtained
data, before the design reaches its final form.

Data Collection: In this stage, experiments are actually conducted. The re-
searcher specifies the experiment set-up and the precise values of all the input
parameters to the experiment, and the relevant output data is then collected. The
data can either be distributed to some or all of the scientists involved in the study
or it can simply be stored for later use. Simulating a specific plant community given
certain values for its characteristics and the weather conditions is an example of an
action in this stage for the plants experiment.

Data Ezploration: In this stage, the researcher studies the collected data to
draw conclusions about the subject of the experiment. As shown in Figure 1, there
are three types of actions that the scientist may perform on the data, which are
described separately.

o [nitialization requests: Whenever scientists start to explore a new vain of
thought in an experimental study, their first request on the collected data



is very similar to a conventional query in traditional database systems. It
references all properties of the phenomenon or system under study that are
expected to remain unchanged throughout the exploration of the new idea. In
principle, such a request needs to deal with the full experimental frame of the
study and must include specifications of the values of many parameters, the
relationships between several others, and some indication of what should be
retrieved. A conceivable initialization request for the plants experiment may
be for the final temperatures in corn communities with given plant charac-
teristics and weather conditions when the distance between any two plants is
less than 1 meter. In most cases, due to the amount of information that must
be specified, posing such queries 1s a time consuming process.

e Data Analysis: After receiving the requested data, scientists analyze 1t based
on domain-specific knowledge that is relevant to the studied phenomenon.
Occasionally, the analysis is not based on the data retrieved by the scientists’
requests, but on the output of some further processing on it. Such processing
is invoked by applying domain specific operators to the data, e.g., measuring
the intensity of an image, extracting the statistical properties of a time series,
or obtaining the difference between two functions.

e Follow-up Requests: Based on the results of the analysis of some obtained data,
quite often scientists pose new requests that are very similar to the previous
ones, having the answers of the latter as a reference point. This is due to
the predominantly exploratory nature of experimental science, which forces
scientists to navigate through a multi-dimensional space of parameters that
captures the behavior of the observed phenomenon. As an example of a follow-
up request, after the above initialization request in the plants experiment,
scientists may ask for the same but for distances less than 2 meters. The
difference between the two requests 1s only the value in the selection clause on
distances. Follow-up requests represent the most common form of interaction
in the course of a study. It is therefore extremely important that such requests
be efficiently and conveniently expressed.

If Figure 1 1s seen as a directed graph, then it is clear that all graph nodes except
for data analysis have outdegree 1, 1.e., the successors of the corresponding stages
are predetermined. On the other hand, after data analysis the study may move
to any of the other stages. Fach one of the corresponding arcs closes one of the
loops of the life-cycle mentioned earlier. These loops can be totally ordered based
on their frequency in the life-cycle, 1.e., based on how often the scientist follows the
corresponding arc after data analysis. That ordering is indicated in Figure 1 by the
numbers labeling those arcs, where 1 indicates most frequent and 4 indicates less
frequent. For example, it is more likely that a scientist will pose a follow-up request
after analyzing some data than that he/she will redesign the experiment.

It is worth noting at this point that the separating line between the data collec-
tion and data exploration stages is rather hazy, in the sense that data exploration
may involve hidden and not explicitly requested data collection. When a scientist
is studying a phenomenon, whether a specific piece of information has already been
collected or needs to be collected via an experiment is irrelevant. Thus, some re-



quests in the data exploration stage may generate orders for data collection. For
example, consider the initialization request on the plants experiment mentioned
above. If corn communities have never been simulated with the given plant charac-
teristics, then simulation may be automatically initiated as a result of this request
to obtain some relevant data.

We should also mention that the above life-cycle represents experimental stud-
ies that are conducted either by individual scientists or by teams of scientists. In
the latter case, most stages of the life-cycle involve communication among the col-
laborating scientists. This communication can be in the form of actual real-time
interactions for decision making (mostly in experiment design and data analysis)
or in the form of concurrent actions of multiple scientists, the results of which are
later integrated together (mostly in data collection and initialization and follow-up
requests).

Having presented the general structure of the life-cycle of an experimental study,
we would like to use that cycle to clarify the distinction between the two types of
activities mentioned in Section 1, i.e., managing and distributing the primary data
for a global project and managing a local experimental study. The primary focus
of the former activity is in the first two stages of the life-cycle, i.e., experiment
design and data collection, with minimal or no interleaving between them. For
example, after the initial design stage of measurements of the Eos project, satellites
will be launched to start collecting the prescribed data without much interference.
Requests for the collected data by interested scientists will be mostly for small
subsets of data that are related to a small geographic region, period of time, or
specific phenomenon. Although it is possible for a scientist to submit multiple such
requests in a given session, especially in a browsing mode, the complex iterations
that the full data exploration stage implies will not be required in general. After
the data is identified and distributed, the scientist(s) involved will perform their
study without any further interaction with the central repository. This study of
the obtained data will be an activity of the second type mentioned above, involving
the full life-cycle of Figure 1. Note that in a global project, experiment design and
data collection are performed by a carefully chosen team of domain scientists and
database administrators, whereas data exploration (in the form of simple browsing
and retrieval) is performed by any scientist in the field. On the contrary, in a
local study, the full life-cycle is performed by the same scientist(s). Clearly, the
above distinctions between the two types of activities are not absolute. We believe,
however, that in general there are some characteristic differences between them,
which we hope have been exposed by the above comparison in the overall framework
of the experiment life-cycle.

In the rest of the paper, we focus entirely on the second type of activity, i.e., on
managing experimental studies conducted by individual researchers or small teams
of them. Based on the above discussion and the structure of the experiment life-
cycle, we examine some of the technical challenges faced by attempts to develop
EMSs to support such activities. We then propose some solutions that we have
adopted in our own efforts, which are centered around the versatility of conceptual
schemas and their usefulness in a wide variety of tasks.



3. Functionality and Architecture of Experiment Manage-
ment Systems

Current database technology provides very primitive tools in the hands of scientists
involved in experimental studies. All stages in the experiment life-cycle are viewed
as distinct from each other with no or minimal communication among them. The
transfer of data and the transition from one stage to the next are to a large extent
‘manual’. Thus, many scientists end up using flat files to store the data of their
experiments. For example, the following senario is quite common. Collected data
is stored in files with cryptic names like ‘out.1.100.13.7’, which usually encode the
values of the input parameters to the experiment. At data analysis time, application
programs in conventional languages are written for every type of desired output.
These programs have to look into the mass of files containing the relevant data,
extract the useful information, and format it so that it is presented to the scientist
in a meaningful way. Moreover, searching for the relevant data each time cannot
be performed associatively (by the desired values of some parameters) but only by
name, 1.e., the given names of the files. Clearly, this process i1s very unnatural,
tedious, error-prone, and requires constant exposure of the scientist to the specific
set of data, because the meaning of the various parameters is easily forgotten.

The role of an Experiment Management System (EMS) should be that of an
agent between a scientist and a phenomenon under study. An EMS should provide
the desired functionality for managing and analyzing data produced in experimental
studies and overcome the inadequacies of today’s technology. Such a system should
be a single, integrated, tool that scientists can use throughout the life-cycle of an
experimental study to effectively control and manage all aspects of the experimental
process and the generated data, i.e., it should satisfy requirements (i)-(iii) of Section
1.

In order to achieve the above functionality, an EMS must be capable of both
managing stored data and communicating with one or more experimentation envi-
ronments (where experiments can be run) and other EMSs and DBMSs to obtain
new data. Much like in a heterogeneous database system, given a scientist’s request,
the EMS will first identify the experimentation environments and/or systems that
are related to the request. It will then divide the request into pieces, translate each
piece into the language of its target environment or system, and submit it for pro-
cessing. In the end, the EMS will collect all the responses, generate one integrated
result out of them, translate that into the appropriate user-level representation, and
return it to the scientist who posed the request.

An EMS should be able to communicate with other EMSs and DBMSs that
manage data of interest already collected as part of other studies, so that duplica-
tion of effort is avoided. It should also be networked with several experimentation
environments due to the very nature of experimental studies. In many cases, in
order to investigate a phenomenon, or develop a new system, experiments under
various control levels are performed. At one end of the spectrum are fully controlled
experiments in which the system is simulated on a computer. In contrast to this, in
the laboratory, where the environment can be controlled but the system has a life
of its own, the observer has only partial control over the experiment. Finally, no
control can be exercised when the real world is observed. An EMS that provides



a cohesive interface to a range of experimental environments, which have been in-
dependently developed, possibly to solve problems of diverse scientific fields, has
many advantages: a) transitions are smooth from one environment to the other, b)
experimental data from different sources are analyzed in a single framework, and
c) the EMS serves as a bridge between different experimental disciplines. An EMS
with all the above capabilities will provide the richest possible support to scientists
who will be able to flexibly use unlimited amounts of information to further their
own research.

Another important feature that an EMS must have to achieve the desired func-
tionality is that it must be capable of blurring the distinction between data collection
and data exploration (data requests in particular) if the scientist so desires. This
would conform to the natural vagueness of the separation between these two stages
in the experiment life-cycle (Section 2). In particular, the scientist should be given
the freedom to request data without any knowledge of whether it has already been
measured and recorded or not. Depending on the situation, the EMS should de-
cide whether to simply retrieve the data from its database, or initiate some action
outside of the system.

Driven by the need for a tool to provide the kind of support described above in
our own experimental studies, we have initiated an effort to develop an EMS at the
University of Wisconsin. Figure 2 presents the architecture of that system, which
we believe reflects the needs of a wide range of experimental studies. In addition to
a component for the traditional query and storage services provided by a database
system (Core DBMS), the EMS under development has an active component, which
coordinates the interaction between the user and the experimentation environments
(Erperimentation Manager), and an analysis component for the stored data ( OQutput
Analyzer). The user interacts with the database system via intuitive language
and graphical interfaces (User Interfaces). Finally, a variety of experimentation
environments are coupled to the EMS via a component that translates data from
its representation in the experimentation environments to its representation in the
EMS and vice versa (Data Translator).

We believe that a system developed based on the above architecture will have
achieved its most important goals. It will provide an integrated environment to
scientists that, unlike current practice, will feature a uniform interface that may be
used for managing the entire life-cycle of an experimental study. Moreover, it will
allow the design and execution of experiments and the access to scientific data to be
done in ways that resemble as much as possible the way scientists interact among
themselves using pencil and paper.

A fundamental premise of our effort has been that the above cannot be achieved
unless the EMS provides a uniform and natural interface for all stages of the exper-
iment life-cycle (item (ii) in Section 1). The most important piece of information
that is necessary in all these stages is the conceptual schema of the database related
to an experimental study. Thus, it is only natural that our approach is ‘schema-
centric’, where schemas are used in many roles (some of which are quite unique)
throughout the experiment life-cycle, providing a common foundation for all types
of interactions between the scientists and the EMS. This importance of schemas has
also been the reason why our first priority has been to obtain a better understanding
of schemas and their use, and to develop the schema support of the EMS, on top
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of which the rest of the system will be built. The results of this first phase of our
work are described in the following sections.

In addition to our own effort to develop an EMS, some research laboratories have
also been engaged in similar work trying to provide database support for scientific
data. Examples include the ‘Laboratory Notebook’ project in the Los Alamos
National Laboratory [Nel90] and the effort to develop data management tools for
scientific applications in the Lawrence Berkeley Laboratory [MF91, SM91, MS92].
Several aspects of our effort are found in at least some of these projects: schemas
play several important roles, and intuitive (usually graphical) user interfaces are
developed so that scientists may use them without much database expertise. On
there other hand, several differences exist as well. The most important of them
is that, to the best of our knowledge, our effort is the only one that attempts to
provide a single tool for all stages of the experiment life-cycle. The other projects
focus primarily on experiment design and initialization requests, which are similar
to activities in traditional database management. Supporting data collection or the
complex iterations of data exploration is not part of the functionality of the systems
developed in these projects. Less significant are differences in the choice of data
model (they are based on the relational or the extended entity-relationship model,
whereas we have developed our own object-oriented data model), and in several
other system aspects, on which we do not elaborate.

4. Roles of Conceptual Schemas

In this section, we describe the roles that the schema plays in an EMS for each stage
of the experiment life-cycle. In addition, we outline the features that a data model
should have in order for schemas expressed in that model to play those roles.

4.1.  Conceptual Schemas in the Experiment Life-Cycle

By definition, schemas capture the structure and constraints of the data that is
recorded in a database so that only valid data is accepted for storage. In most
current database systems, schemas are used primarily for the above purpose. They
are defined and altered by the database administrators, but cannot be manipulated
or updated by end-users. Such users may only consult the database system for
information describing details of schemas, which is provided by help facilities. Thus,
it is the user who initiates the flow of schema-related information out of the system.
The DBMS itself is passive and only responds to user requests. The above state
of affairs is considered adequate given the current roles played by schemas. In
fact, the schemas of many databases are relatively small, so with frequent use, even
memorization of the relevant parts of the schema by the user is common.
Although in traditional settings the above use of conceptual schemas is consid-
ered satisfactory, in an EMS it is not. For an EMS, the schema is a useful tool
for many more activities than in traditional DBMSs. In addition, by the nature of
scientific studies, most user interactions with the system are in the form of ad-hoc
queries, whereas in traditional settings, running prepackaged application programs
1s much more common. In combination with the complexity and size of typical
schemas of experimental studies, this makes the fact that the EMS has accurate
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knowledge of the schema much more valuable than it is in a conventional DBMS.
Thus, the schema is called to play new roles in the context of an EMS. Accordingly,
the EMS is forced to provide enhanced functionality compared to a traditional
DBMS with respect to manipulating the schema and become active by taking the
initiative in presenting the schema to the scientist.

Whereas in a conventional database the schema captures the structure of the
data in the database, in experiment databases, the schema also captures the struc-
ture of the experiment itself. This is a side-effect of the effort to describe the
structure of the data: in order to organize the data in a meaningful way, the design
of the experiment is essentially represented as well. For example, the schema of
the plants experiment contains the various input and output parameters and their
relationships to plant communities, which 1s precisely the information required to
capture the design of the entire experiment. Based on this interpretation of its
contents, the schema is called to play two new major roles in an EMS, in addition
to its traditional roles:

(R1) In its first new role, the schema becomes the formal document describ-
ing the experiment. This is important for both individual and col-
laborative studies. Designing experiments, modifying earlier designs,
describing experiments to others, integrating pieces of experiments into
larger studies, and other activities that are usually based on arbitrary,
and quite often free-form, descriptions of experiments are now based
on the conceptual schemas of the corresponding databases. In fact, in
the first stage of the experiment life-cycle (Figure 1), the old notion
of database design can now be seen in the new light of generalized
experiment design.

(R2) In 1ts second new role, the schema serves as the template for spec-
ifying data and experiments. Such specifications are useful both in
interactions between scientists and in interactions between a scientist
and the EMS. (Specifying data is not a new idea; although it has
not been extensively used in commercial systems, it has been pro-
posed and studied in the context of many research prototypes, e.g.,
[AGS90, BH86, Fog84, GGKZ85, KM&9, P92, RC87, WK82, Z1o77].)
The ability of the schema to play this role is important in the data
collection and data exploration stages (Figure 1). The system itself
prompts the user with the schema, who then manipulates it appropri-
ately for specifying query restrictions or for displaying query answers.

From the above description of the two roles, it becomes clear that the use of
the schema spans all stages of the experiment life-cycle, which i1s fundamental to
providing an integrated tool with a uniform interface to scientists. It also becomes
clear that the conceptual schema undertakes these two roles not only within the
EMS, but also in interactions between collaborating scientists as well. This can
prove extremely important in the future, where multidisciplinary studies with large
numbers of scientists participating will become more common [HL92].
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4.2.  Necessary Data Model Characteristics

In order for schemas to play the above two roles successfully, they have to be ex-
pressed in a data model that has the following three characteristics. First, for R1,
the data model needs to be of high expressive power. Scientific experiments have
quite complex structures, so the data relationships that must be captured in ex-
periment databases are quite complex as well. The relational model 1s in general
inadequate due to its simplicity. Its unique semantic primitive, the relation, 1is
not powerful enough to express every aspect of an experiment design. The much
richer object-oriented and semantic data models [CM90, ZM89] are the only seri-
ous candidates for such databases. Among other features, such data models offer
primitives that can be used to represent complex objects (parts-subparts), collec-
tion objects (sets), and class hierarchies with inheritance, which are very common
in experiments.

Second, for both R1 and R2, the semantic primitives of the data model must
be closely related to notions that scientists are currently using in their approach to
experimental studies. A data model that is developed based on database expertise
while ignoring the status quo in today’s scientific laboratories is doomed to fail.
Scientists must feel comfortable with the primitives of the data model so that they
do not have to establish complicated mental mappings from their current way of
thinking to that enforced by the model. As mentioned above, it is desirable for the
data model to have high expressive power, but this should not be achieved at the
expense of natural expression. The primitives of the data model should reflect the
experience of scientists so that the complex data relationships found in experiment
designs can be captured in a natural way.

Third, for both R1 and R2, schemas in the data model must have a succinct
representation so that they are easily understood by scientists. Traditional text-
based data definition languages may not be the most appropriate tools for scientists
to use for schema specification. SQL has quite a long and slow learning curve, and
even for experienced users, writing very complex queries is not straightforward. It is
doubtful that learning how to use a similar, but more complex, text-based language
for a very expressive data model is the best use of scientists’ time. Intuitive graphical
representations of schemas, supported by user-friendly interfaces, will be of much
more use to the scientific community.

From the above arguments, one may conclude that an EMS should have a graph-
ical user interface that can deal with large and complex object-oriented /semantic
schemas in a natural way, allowing the user to manipulate the schemas for multi-
ple purposes. Clearly, the demand for the first characteristic in a data model is
not unique to scientific experiments. Many other applications have similar needs,
which have driven the numerous research and commercial efforts to develop systems
based on semantic and object-oriented data models. The demand for the second
and third characteristics, however, is not so common. In most DBMSs, schemas
are manipulated only by database administrators and complex queries are pack-
aged in easy-to-invoke applications written by professional programmers, who are
very experienced specialists in their respective fields. In an EMS, on the other
hand, we want the scientists themselves to be able to interact with the system
as both database administrators and sophisticated end-users. Otherwise, much of
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the promised power of EMSs will be jeopardized. Thus, the need for data model
primitives that are natural to scientists and for intuitive representation of schemas
manipulated by easy-to-use tools is much more pressing in EMSs than, perhaps,
other types of DBMSs and has received more focussed attention in our work.

In the following sections, we describe the data model that we have developed as
part of our EMS effort together with some key features of the graphical interface
that supports schemas in the model.

5. Moose: A Data Model for Scientific Experiments

The EMS that we are developing is based on the Moose (Modeling Objects Of
Scientific Experiments) object-oriented data model [IL89]. Although Moose is tar-
geted for experimental data management, it is applicable in much more general
settings as well. The salient features of Moose are described below.

5.1.  Semantic Primitives of Moose

We first present the semantic primitives of Moose that define its expressive power.
In the description, we put more emphasis on features that are not common among
the already existing semantic and object-oriented data models, justifying their in-
clusion in Moose by the needs of experiment management. Thus, we illustrate
why we believe Moose satisfies both the first and the second desirable data model
characteristic mentioned in Section 4.2.

Moose supports the notion of an object, which is quite intuitive to scientists
because most often objects are used to represent physical entities that are relevant
to experiments, e.g., the planet Jupiter or the part of the E. coli genome known
as K-12 strain MG1655. Every object i1s assigned a unique object identifier and
belongs to possibly multiple classes, inheriting properties from all of them. A class
represents a set of objects having the same structure and the same properties.
There are four system supported object classes, called base classes: integers, floats,
character strings, and booleans.

The extent of a non-base class, i.e., the objects that are known members of the
class, 1s explicitly stored in the database. This allows objects that are currently not
part of any experiment design, i.e., that are not associated with other, higher level,
objects, to still be stored and manipulated by the user. For example, in a simulation
study of plant growth, one may want to introduce into the system a new variety
of corn. Although, there are no experiments that have been run with this type of
corn, nevertheless it is important that information about it is stored in the system,
so that it is available later when the scientist decides to run experiments with it.
In addition, ‘inventory queries’ of the form ‘What types of corn do I have at my
disposal?’ are possible. The above needs are so common in experimental studies
that having the scientist explicitly request the maintenance of the class extent for
each class would require a significant effort, since it would have to be done for most
classes in the schema.

In many experimental studies, object collections are often reused several times
during the course of the study, e.g., a specific plant community. In addition, they
are often associated with other pieces of information, which may or may not depend
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on the objects in the collection, e.g., the number of objects in the collection or some
name given to the collection, respectively. To serve the above needs, collections of
objects are individual objects themselves in Moose, carrying all the characteristics
mentioned above. This uniform treatment of atomic and collection objects results
in an economy of scale and makes sharing of collections and expressing properties
of collections very natural. Otherwise, additional object classes would have to be
defined, cluttering the schema and moving it further away from the usual intuition
of scientists. There are four kinds of collection objects supported in Moose: sets,
multisets (bags), indexed-sets (a generalized form of arrays), and sequenced-sets (a
generalized form of lists).

Each class in a Moose schema may be associated with many other classes, cap-
turing a variety of relationships that may exist between the objects of the cor-
responding classes. Similarly to most semantic and object-oriented data models,
Moose supports two major types of relationships: is-a relationships and part-of re-
lationships. The former capture semantic relationships whereas the latter capture
structural relationships between objects of the participating classes. Specifically,
is-a relationships relate classes to their subclasses (specializations) and vice versa,
whereas part-of relationships relate objects to their parts and vice versa. Every
part-of relationship is associated with a label, which serves the same purpose as an
attribute name in relational DBMSs. For this reason, we occasionally use the term
‘attribute’ to indicate part-of relationships. The direction of a part-of relationship
is from a class of objects to the class of their parts. Every part-of relationship,
however, essentially captures a function and its inverse and can be explored in both
directions. Therefore, it 1s associated with two labels. Quite often, one or both of
these labels is equal to the name of the range class of the relationship traversed in the
direction corresponding to the label, e.g., the utilization of a ‘cpu’ i1s a ‘utilization’.
Whenever this is the case, we omit the label from the relationship declaration.

Two more types of relationships are supported by Moose to capture specialized
associations of collection objects. A set-to-elements relationship connects a collec-
tion class to the class of elements in the collection, e.g., from the class of plant
communities (sets of plants) to the class of plants. Exactly one such relationship
must exist for each collection class. The need for this relationship is an immediate
consequence of the need to support collections as first-class objects. An indexing
relationship connects an indexed-set class to the collection class indexing it, which
1s the key-set class of the relationship. Its semantics is that, each member of a
key-set is associated with exactly one member of the indexed-set. Exactly one such
relationship must exist for each indexed-set, except for those that are indexed by
the natural numbers (i.e., those that are arrays in the traditional sense), for which
such a relationship is implicit. Scientists need this relationship to express functional
dependencies from the members of the key-set class to those of the indexed-set class.
Such dependencies arise very often when the same parameter of the input or out-
put of an experiment takes on a different value for each member of some collection
related to the studied phenomenon or system, e.g., every distinct plant in a com-
munity has a different temperature. The parameter values (e.g., the temperatures)
form the indexed-set and the collection (i.e., the plants) forms the key-set of this
relationship. Through that, the parameter value associated with an object from
the indexed-set is directly available. In the absence of this type of relationship, for
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the same semantics to be captured, either auxiliary object classes would need to be
defined, or the scientist would have to assign an integer number to each element
in the key-set so that regular arrays could be used, which are supported by most
systems. In the first case, again the size of the schema would increase with classes
that play no substantial role in the scientist’s experiment design. In the latter case,
the scientist would have to constantly use some unintuitive numbering to be able
to indirectly associate elements to parameter values.

Finally, in Moose, part-of relationships (and less often other relationships as well)
can be declared as contexi-dependent [WTMT92]. A relationship of this type may
be used to capture an association between a pair of object classes that depends
on a third class as well. For example, in a study evaluating the performance of
networks, a network site may be associated with a different job arrival rate in each
experiment. This may be captured by a context-dependent relationship between
the class of sites and the class of arrival rates, with the class of experiments serving
as the context. By definition, many relationships between objects in experimental
studies are context-dependent on experiments. By having the ability to directly
represent such relationships, scientists are able to design their experiments more
naturally than otherwise.

Moose allows objects that are parts of a given object or instances of a given
class to be defined either intentionally or extensionally. Specifically, the parts of an
object do not have to be explicitly specified by the user. Moose supports the notion
of a wirtual attribute whose contents can be derived by the system through some
computation associated with the attribute. Such computations are expressed in the
form of rules that are based on the query language of Moose (whenever possible) or
in some general computationally complete language among those supported by the
system (whenever necessary). Virtual attributes are especially useful to scientists
for specifying aggregate computations over the members of collection objects. For
example, every set of plants may be associated with a virtual attribute whose value
i1s always calculated by counting the number of plants in the set. Given that the
task of almost all experimentalists is the statistical study of some phenomenon or
system, the implicit computation of aggregates as virtual attributes is an important
tool. Moreover, the power of this feature goes beyond aggregate values and can be
used for other purposes as well. For example, the entire output of an experiment
can be considered as a virtual attribute that depends on the experiment input and
the contents of which are computed by conducting an experiment.

Similarly, the membership of a class does not have to be explicitly specified by
the user. Moose supports the notion of a wvirtual class whose membership can be
derived by the system through rules associated with the is-a relationship between
the class and some superclass of it. The importance of virtual classes can be real-
ized by examining the experiment life-cycle (Figure 1). As a scientist explores the
results of the conducted experiments, important characteristics of objects used in
the experiments are identified. For example, a special behavior may be observed
when the arrival rates in all sites of a network are the same. Upon such a discovery,
it is common for scientists to give a special tag to such networks, e.g., call them
‘homogeneous networks’, and put some further emphasis on investigating their be-
havior. In the context of an EMS, the equivalent steps are for scientists to define the
virtual class of homogeneous networks as a subclass of networks and to associate the
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appropriate rule defining the members of the subclass with the corresponding is-a
relationship. A nice side-effect of this action is that any networks that happened to
be homogeneous and were used before the scientist realized the importance of that
subclass implicitly become its members, without any additional work.

Both types of implicit definitions remove significant work from scientists and
enhance their ability to express complex relationships among classes. In addition,
for all definitions expressed in the rule language of the system, inferences are made
without explicit instructions from the users.

Finally, Moose supports many types of user-defined structural constraints that
may be used to control sharing among objects. A relationship may be one to one
(referred to as single-valued, non-shared), one to many (multivalued, non-shared),
many to one (single-valued, shared), or many to many (shared, multivalued). Moose
also has a constraint language, which may be used to express more complex struc-
tural constraints than the above. Such constraints express important aspects of the
semantics captured by schemas. They are necessary in both general DBMSs and
EMSs, which may use them to ensure the integrity of the stored data.

5.2.  Graphical Representation of Moose Schemas

As mentioned in Section 4.2, the third important characteristic that a data model
should possess in order to be useful in an EMS is that its schemas should have
a succinct and intuitive representation, so that scientists who are non-experts in
database management can manipulate them without much effort. This has been
one of the major concerns throughout the development of Moose.

The result of our work in this direction 1s that Moose schemas can be defined
graphically and manipulated by appropriate actions directly on the iconic represen-
tations of their primitives. Specifically, every Moose schema has a straightforward
directed graph representation. Every node in the graph represents a class of objects
and is labeled by the class name. Base classes are represented as ellipses, to be easily
distinguishable from the rest, while all other classes are represented as rectangles.
In addition to the corresponding class name, nodes representing collection classes
are also annotated with a special symbol identifying the type of the collection, e.g.,
for sets, for multisets, [] for indexed-sets, and () for sequenced-sets.

Arcs in the graph capture the various types of relationships supported by Moose.
Part-of relationships are denoted by solid arcs, is-a relationships are denoted by
dotted arcs, set-to-elements relationships are denoted by double solid arcs, and
indexing relationships are denoted by zig-zag arcs. Part-of arcs are labeled with the
name of the associated relationship, unless the label 1s the same as the name of the
class at the head of the arc, in which case it is omitted from the graph. Context-
dependent arcs are annotated with the name of the context class as well. Finally,
the structural constraints mentioned above that control sharing among objects can
also be represented graphically. All four combinations of such constraints are shown
in Figure 3 for part-of arcs; the same constraints are captured similarly for the other
appropriate arcs.

As an example of the graphical representation of Moose schemas, Figure 4 shows
some possible schema for the plants experiment of Section 1. In addition to the orig-
inal features, we also include the notion of homogeneous plant communities, which
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Figure 3: Graphical representation of structural constraints.

form a subclass of plant communities. The rule r associated with the correspond-
ing is-a arc captures the precise definition of homogeneous plant communities, e.g.,
those where all plants are of the same type. Also, administrative information like
the date of the experiment and the amount of time consumed by the simulator (its
cost) are shown as attributes of the experiment. (We should emphasize that alter-
native schemas do exist for the plants experiment, some of which would possibly
be more flexible than the one presented but also more complex. The above was
chosen as a good trade-off between simplicity and flexibility.) In Section 6, another
complete Moose schema 1s shown graphically, in the form of a screen-dump of a
prototype that we have developed for part of the user interface of the system.

date

experiment
cost
system input output
plant YAVAVAVAV vegetation
community temperature
{ i
r
homogeneous
plant plant weather temperature
community {}

wind
speed direction

value

Figure 4: Graphical representation of schema for the plants experiment.

5.8, Moose Query Language

The query language of Moose is very similar to SQL and also has the flavor of other
declarative object-oriented languages [ASL89, BCD89, CDV88, KKS92, KL89]. Since
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the query language is not the focus of this work, we are not describing it in any
detail. We only want to point out that the fundamental construct in the language
for traversing objects is the path expression. Path expressions connect objects in
some class to other objects that are directly or indirectly related to them. A novel
and powerful aspect of path expressions in the Moose language compared to other
such languages is that they can include relationships of all types, and not only
part-of ones. Path expressions are closely associated with the graph representation
of a Moose schema, since they essentially indicate paths in that graph. Based on
this characteristic, a graphical query language that is closely related to the textual
one is also under development. Given the focus of our effort, we expect that the
graphical language will be the primary means of interaction of scientists with the
system.

5.4. Summary

Based on the above brief description of the features of Moose, we believe that it sat-
isfies the three necessary characteristics described in Section 4.2. First, it supports
a rich set of data types and semantic relationships between data that can be used
in arbitrary combinations to capture the complex structures of experimental data.
The various kinds of constraints can be used to ensure the integrity of the data,
while the ability to define virtual attributes and classes (quite often through the use
of rules) removes much burden from the user. Second, the semantic primitives of
Moose have been chosen based on the needs of scientists. Especially the primitives
that are not usually seen in other object-oriented or semantic data models capture
specific notions that are very intuitive to most scientists. The ability to use these
same notions in the scientists’ interactions with an EMS should make the system
a much better and friendlier tool, better serving the needs of its users. Third, the
graph corresponding to a Moose schema is a much more compact and intuitive rep-
resentation of the schema than any other form, offering to scientists a better means
to express their experiment designs. In addition, the development of a graphical
user interface becomes possible, enhancing the usability of the system even further.

6. Using Moose for Experiment Management

Due to our firm belief in early prototyping, our study of experiment management
has proceeded in parallel with the development of a prototype EMS, where the
findings of our work are implemented so that they can be tested and validated.
The goal of our effort is for the EMS to provide the appropriate technical support
that will take advantage of the rich set of semantic primitives of Moose and its nice
graph representation to become a versatile tool for scientists. In this section, we
focus on a piece of the user interface of the system that has already been built, and
describe its use in the context of an experimental study. In particular, we describe
the graph editor of the system, which can be used to manipulate arbitrary types of
graphs, and most importantly Moose schema graphs. The graph editor is a key part
of the whole user interface of the EMS. This is due to the graph representation of
Moose schemas, which transforms any schema manipulation to graph manipulation
independent of the role played by the schema (Section 4).
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The main difficulties in graph editing arise from the fact that Moose schemas
for scientific experiments tend to be very large and can form an inscrutable maze of
boxes and lines on the screen. Therefore, the key features that have been included
in the graph editor deal with making large schemas more manageable. These are
the following: (a) allowing parts of the schema to be made invisible; (b) collapsing
subgraphs into single nodes; and (c) using ‘reference’ nodes to eliminate very long
arcs [ILH92]. The above features are expected to prove very useful in supporting
all aspects of schema use mentioned in Section 4. This expectation is justified by
the results of our exposing the graph editor developed to ‘real’ users, i.e., domain
scientists, for experiment design (first stage in Figure 1). In all such collaborations,
scientists from other disciplines have used the schema in its first new role, i.e., as a
formal document describing experiments (Section 4) and the feedback obtained has
been very encouraging.

Our work with John Norman from the Soil Sciences Department at the Uni-
versity of Wisconsin is one example of such collaborations. The main emphasis of
his research is on simulating the growth of plants based on various environmental,
soil, and ecological parameters. The primary tool in his studies is the Cupid model
[ILH92], a Fortran program that simulates the necessary plant growth processes.
The Cupid group has been using the graph editor that we have developed to docu-
ment the structure of the input and output parameters of his model in the form of
a Moose schema.

Cupid has been an excellent testbed for the capabilities of Moose and the graph
editor because it has a complex structure and generates very large schema graphs. It
simulates numerous processes that are parameterized, and therefore a large number
of parameters need to be specified to characterize its input and output. Typically,
about a hundred parameters are input to the model for any specific application,
whereas the output variables number in the several hundreds. Our collaboration
with the Cupid group has shown that the graph editor we have developed can serve
as a tool to organize the large amounts of data that Cupid manipulates. The schema
for the input part of the Cupid model has been completed and contains more than
a hundred object classes. It i1s shown in Figure 5 as a screen dump of the graph
editor developed.

The feedback received from the Cupid group, which used Moose and the graph
editor to design the schema of Figure 5 has been very encouraging [ILH92]. The
main benefits expressed follow quite closely the analysis of desirable features of the
data model and the system described in earlier sections. Casting the Cupid data
in an object-oriented structure captured the complex array of data combinations
that were part of the model in a natural way and made further modifications and
enhancements of it easier. The graphical representation of the Moose schema was
instrumental in allowing the members of the Cupid group to understand Moose
relatively quickly and then use it for the experiment design. Finally, the resulting
Moose schema played its R1 role well: it served as a clear documentation of the
input structure of the Cupid model and proved very useful in communicating its
details to other scientists outside of the main group.
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7. Summary

One of the major problems faced by experimental sciences today is the lack of ad-
equate tools for the management of experiments and data. We have undertaken
the effort to develop a desktop Experiment Management System that will provide
adequate support for scientists involved in experimental studies. In this paper, we
have identified some of the fundamental issues that must be addressed in designing
such an EMS. We have developed an abstraction of the set of activities performed
by scientists throughout the course of an experimental study, and based on that
abstraction we have proposed an EMS architecture that can support all such ac-
tivities. The proposed EMS architecture is centered around the extensive use of
conceptual schemas, which express the structure of information in experimental
studies. Schemas are called to play new roles that are not usually found in tradi-
tional database systems. We have provided a detailed exposition of these new roles
and have described certain characteristics that the data model of the EMS must
have in order for schemas expressed in it to successfully play these roles. Finally, we
have presented the specifics of our own effort to develop an EMS, focusing on the
main features of the data model of the system. The feedback that we have received
from domain scientists that have used the data model to design their experiments
have been encouraging and have strengthened our belief that our approach will be
able to serve the needs of experiment management.

Our effort to develop an effective EMS is far from complete. There are several
issues that we are currently investigating and many others on which we plan to
work in the future. Those currently under way include architectural issues on how
the User Interface and the Core DBMS should communicate, efficient support for
initialization and follow-up requests, graphical representation of objects, storage
structures and query optimization in the Core DBMS, and formal issues on data
and query translation. Additional issues left for the future include work on the
Experimentation Manager, developing an internal interface layer so that a variety
of output analysis tools can be connected to the system, e.g., visualization tools,
and developing a data-translator generator, which will be an easy-to-use toolkit
for building data translators. In parallel to the above efforts, we will continue our
collaborations with various domain scientists from different disciplines, so that the
applicability of our findings to experiment management can be continuously tested
and validated.
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