
CONCEPTUAL SCHEMAS: MULTI-FACETED TOOLSFOR DESKTOP SCIENTIFIC EXPERIMENT MANAGEMENTYANNIS E. IOANNIDIS�MIRON LIVNYComputer Sciences Department, University of WisconsinMadison, WI 53706, USAReceived September 1, 1992Revised November 1, 1992ABSTRACTIn this paper, we identify some of the fundamental issues that must be ad-dressed in designing a desktop Experiment Management System (EMS). Wedevelop an abstraction of the set of activities performed by scientists through-out the course of an experimental study, and based on that abstraction wepropose an EMS architecture that can support all such activities. The pro-posed EMS architecture is centered around the extensive use of conceptualschemas, which express the structure of information in experimental studies.Schemas are called to play new roles that are not usually found in traditionaldatabase systems. We provide a detailed exposition of these new roles anddescribe certain characteristics that the data model of the EMS must havein order for schemas expressed in it to successfully play these roles. Finally,we present the speci�cs of our own e�ort to develop an EMS, focusing onthe main features of the data model of the system, which we have developedbased on the needs of experiment management.Keywords: Scienti�c databases, experiment management, conceptual model-ing, graphical user interfaces, object-oriented data models1. IntroductionIn the past few years, several scienti�c communities have initiated very ambitiousand broad-ranged projects whose goals are to signi�cantly advance the frontiers ofknowledge in their disciplines by solving very hard problems that until recently wereconsidered unapproachable. Such e�orts are expected to last for many years andwill play the role of umbrella projects under which several scienti�c questions willbe investigated. The NASA Eos project and the NIH Human Genome project aretwo examples of national and international scienti�c endeavors that belong to thiscategory. The goal of Eos is to collect data about the earth and its atmosphere thatwill be used by earth scientists for global-change research, while the goal of the Hu-man Genome project is to sequence the human DNA and from that understand the�Partially supported by the National Science Foundation under Grant IRI-9157368 (PYIAward) and by grants from DEC, HP, and AT&T.1



nature of genetic diseases. In this paper, we use the term global project to refer to alarge-scale scienti�c e�ort like the ones above. A major component of such projectsis the collection of measurements on complex phenomena. Such activities will gener-ate huge amounts of data (sometimes measured in petabytes|one petabyte is equalto 1015 bytes), which will then be studied by thousands of researchers. Managingthis surge of scienti�c data poses many challenges, with which current databasetechnology is unable to deal. Several technical problems need to be solved beforeScienti�c Database Systems can become a reality. An excellent account of theseproblems together with an overall picture of the major scienti�c projects that arecurrently under way is given in the summary of the NSF Workshop on Scienti�cDatabase Management [FJP90].The widespread availability of the unprecedented collections of data gatheredas part of the above projects will generate much scienti�c activity at the level ofindividual scientists or small teams of scientists. Smaller projects will be initiatedto study a variety of phenomena related to the global projects, using small fractionsof the available data. In this paper, we use the term local study to refer to suchsmaller-scale research e�orts1. Given the scale of such studies, it is desirable that theexperiments and the data generated from them be managed directly by the scientiststhemselves, who will not be experts in database systems. There are no adequatemanagement tools, however, that are natural and intuitive to the non-expert ando�er the desired functionality. Thus, similarly to the large-scale projects, thesesmaller studies will also su�er from the lack of appropriate technical support.The above is perceived as a major problem for experimental studies in mostscienti�c disciplines even today. Based on our own experience with experimentalcomputer science [Liv87] and from joint work that we have undertaken with scien-tists from a wide range of experimental disciplines (biotechnology, genetics, earthand space sciences, soil sciences, and high-energy physics), experiment and datamanagement have become the bottleneck in such studies. In many cases, the lackof adequate management solutions signi�cantly limits the scale and scope of theexperiments. While some scientists store data in hundreds of 
at �les or, in thebest case, under a simple relational database system, most of them still use papernotebooks, which are clearly inadequate tools for extensive experimentation.There are some technical challenges that are unique to each of the two typesof activities mentioned above, i.e., managing the collection and distribution of theprimary data for a global project and managing a local experimental study (whichmay or may not use data collected within a global project). For example, dealingwith large amounts of data is primarily an issue in global projects. On the otherhand, supporting scientists who are not experts in databases so that they managethe execution of experiments themselves is only an issue in local studies. Neverthe-less, many problems are common to both types of activities. Examples include thetypes of data, the size and complexity of the structure (schema) of the data collec-tion process and/or experiments, and the need to provide interfaces for non-expertscientists to browse through and retrieve data. Solutions to these challenges shouldbe applicable to systems that support either type of activity.1The term `local' is only used as an indicator of scale, with no connotations about the proximityof the scientists involved in the study or the location of the data used in the study.2



The general theme of this paper is managing local experimental studies. Weintroduce the term `desktop Experiment Management System' (EMS), to describea system that supports such activities. Such a system, which includes a DatabaseManagement System (DBMS) as one of its components, will be the only tool that ascientist uses to manage his/her experimental studies. It will support the scientist inthe design of the study, communicate with the appropriate environments from whichthe data for the study is collected, and store and manage that data. The operationalenvironment of experimental studies has the following unique characteristics thatplace certain demands on what the desired functionality of an EMS is:(i) Each experimental study goes through several stages that are quite di�erentfrom each other. To avoid overburdening the scientists, who should not haveto be experts in database management, the EMS should provide a uniforminterface that can be used in the diverse activities related to all these stages.(ii) In today's scienti�c laboratories, where experimental studies are conductedwithout much computerized technical support, communication among collab-orating scientists is quite interactive. To facilitate the same mode of com-munication when computer technology is used, the EMS should provide ane�cient and natural user interface that resembles, to the extent possible, theway scientists interact among themselves.(iii) Many experimental studies are in need of generating data in multiple diverseways and using existing data from multiple sources. The EMS should becapable of communicating with all these heterogeneous information sourcesand integrating the data that they provide without requiring much detailedknowledge from the scientists.Providing the above functionality presents many problems to today's technology.These problems are further exasperated by the complexity of the structure of thedata and experiments manipulated by the EMS.In this paper, we identify some of the fundamental issues that must be addressedin designing an EMS so that its goals may be achieved. An important aspect ofthis work is a proposed EMS architecture that is centered around the extensive useof conceptual schemas, which express the structure of information in experimentalstudies. Schemas are called to play new roles that are not usually found in tradi-tional database systems. We provide a detailed exposition of these new roles andelaborate on the implications of such schema use. Speci�cally, we describe certaincharacteristics that the data model of the EMS must have in order for schemasexpressed in it to successfully play these roles. An interesting side result of theabove e�ort is the development of an abstraction of the set of activities performedby experimental scientists throughout the course of a study, on which the details ofthe proposed EMS architecture are based. Following the above general principleson how to support the management of experiments, we have undertaken an e�ort todevelop a desktop EMS that achieves the desired goals. We present the speci�cs ofour approach in the later part of this paper. In particular, we describe the salientfeatures of the data model that we have developed for the EMS justifying theirinclusion in the model by the needs of experiment management. We also discuss3



a case study where schemas expressed in that model played some of the new rolesmentioned above in the context of some scienti�c experiments.As a reference point that can be later used to illustrate the various issues raisedin the paper, we describe a very simple experimental study. Simulation is being usedto model the e�ect of weather on plant communities. Its input consists of weatherparameters, which are humidity and wind speed and direction, and characteristics ofa plant community, which are the locations of all plants and the number of leaves,height, and type (e.g., corn, wheat) of each plant. Its output is the vegetationtemperature, one temperature value for each plant. The simulation itself takes intoaccount the relative placement of the plants and all the physical laws on how eachtype of plant reacts to the weather conditions based on its environment. An EMSused for this study will allow scientists to design the input and output structure ofthe experiments, invoke executions of the simulator, store the collected data, andsubmit queries on the experiment results.Among all types of schemas, we only deal with conceptual/logical schemas inthis paper. Hence, we often use the plain term `schema' instead of the full term`conceptual schema'. Also, we imagine that most users of an EMS will be scientists,researchers, or technicians working in a laboratory. For the purposes of this paper,we make no distinctions among the above types of experimentalists, so we use allthe above terms (including the term `user') indistinguishably to refer to the genericuser of an EMS. Finally, databases containing the data associated with experimentalstudies are called `experiment databases'.This paper is organized as follows. Section 2 describes a common life-cycle thatunderlies most experimental studies. Section 3 outlines the functionality that anEMS should provide to its users and proposes an architecture that we have adoptedfor such a system that we are currently developing. Section 4 identi�es some newroles that conceptual schemas are called to play in the context of an EMS. Thecharacteristics that the data model should possess in order for its schemas to playthese roles are also identi�ed in this section. Section 5 discusses the salient featuresof the Moose data model that we have developed for experiment management.Section 6 contains a brief description of a case study where some of the tools thatwe have developed for manipulating Moose schemas were used in an experimentalstudy. Finally, Section 7 summarizes our approach for experiment management anddiscusses the future directions of our work.2. Life-Cycle of Experimental StudiesTo achieve its goals, an EMS will use conceptual schemas for various activities thatare important throughout the course of an experimental study. From discussionswith scientists from di�erent disciplines, we have concluded that these activities arecommonto most experimental studies. We use the term life-cycle of an experimentalstudy (or simply experiment life-cycle) to denote the entire set of these activitiestogether with the way scientists iterate over them during such a study. In thissection, we describe the di�erent stages of that cycle, so that the details of thedi�erent roles of schemas throughout the cycle can be explained later. We shouldemphasize at this point that the experiment life-cycle that we describe only captures4



the activities involved in conducting the experiments and not those involved insetting up the appropriate experimentation environments. For example, in the caseof simulation studies, it does not capture the programming task of developing thesimulator, but it does capture the task of executing the simulator with a speci�cset of input parameters.
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Figure 1: Life cycle of an experimental study.A pictorial abstraction of the experiment life-cycle is shown in Figure 1. Itessentially consists of multiple loops traversed by the researcher multiple times inthe course of a study. In the �gure, the following stages can be identi�ed:Experiment Design: In this stage, the experimental frame of a study is laid out[Zei76], that is, the structure of each experiment is de�ned. The experimental framedetermines the variables that will be controlled in the experiments and de�nes whatwill be measured as output. For the example of the plants experiment of Section 1,this stage consists of identifying the input and output parameters of the simulatorand their relationships based on their semantics. Properly designing the experi-ments is the most crucial aspect of an experimental study. A satisfactory design israrely achieved in a single attempt. This process undergoes many iterations, usu-ally interleaved with the execution of some experiments and analysis of the obtaineddata, before the design reaches its �nal form.Data Collection: In this stage, experiments are actually conducted. The re-searcher speci�es the experiment set-up and the precise values of all the inputparameters to the experiment, and the relevant output data is then collected. Thedata can either be distributed to some or all of the scientists involved in the studyor it can simply be stored for later use. Simulating a speci�c plant community givencertain values for its characteristics and the weather conditions is an example of anaction in this stage for the plants experiment.Data Exploration: In this stage, the researcher studies the collected data todraw conclusions about the subject of the experiment. As shown in Figure 1, thereare three types of actions that the scientist may perform on the data, which aredescribed separately.� Initialization requests: Whenever scientists start to explore a new vain ofthought in an experimental study, their �rst request on the collected data5



is very similar to a conventional query in traditional database systems. Itreferences all properties of the phenomenon or system under study that areexpected to remain unchanged throughout the exploration of the new idea. Inprinciple, such a request needs to deal with the full experimental frame of thestudy and must include speci�cations of the values of many parameters, therelationships between several others, and some indication of what should beretrieved. A conceivable initialization request for the plants experiment maybe for the �nal temperatures in corn communities with given plant charac-teristics and weather conditions when the distance between any two plants isless than 1 meter. In most cases, due to the amount of information that mustbe speci�ed, posing such queries is a time consuming process.� Data Analysis: After receiving the requested data, scientists analyze it basedon domain-speci�c knowledge that is relevant to the studied phenomenon.Occasionally, the analysis is not based on the data retrieved by the scientists'requests, but on the output of some further processing on it. Such processingis invoked by applying domain speci�c operators to the data, e.g., measuringthe intensity of an image, extracting the statistical properties of a time series,or obtaining the di�erence between two functions.� Follow-up Requests: Based on the results of the analysis of some obtained data,quite often scientists pose new requests that are very similar to the previousones, having the answers of the latter as a reference point. This is due tothe predominantly exploratory nature of experimental science, which forcesscientists to navigate through a multi-dimensional space of parameters thatcaptures the behavior of the observed phenomenon. As an example of a follow-up request, after the above initialization request in the plants experiment,scientists may ask for the same but for distances less than 2 meters. Thedi�erence between the two requests is only the value in the selection clause ondistances. Follow-up requests represent the most common form of interactionin the course of a study. It is therefore extremely important that such requestsbe e�ciently and conveniently expressed.If Figure 1 is seen as a directed graph, then it is clear that all graph nodes exceptfor data analysis have outdegree 1, i.e., the successors of the corresponding stagesare predetermined. On the other hand, after data analysis the study may moveto any of the other stages. Each one of the corresponding arcs closes one of theloops of the life-cycle mentioned earlier. These loops can be totally ordered basedon their frequency in the life-cycle, i.e., based on how often the scientist follows thecorresponding arc after data analysis. That ordering is indicated in Figure 1 by thenumbers labeling those arcs, where 1 indicates most frequent and 4 indicates lessfrequent. For example, it is more likely that a scientist will pose a follow-up requestafter analyzing some data than that he/she will redesign the experiment.It is worth noting at this point that the separating line between the data collec-tion and data exploration stages is rather hazy, in the sense that data explorationmay involve hidden and not explicitly requested data collection. When a scientistis studying a phenomenon, whether a speci�c piece of information has already beencollected or needs to be collected via an experiment is irrelevant. Thus, some re-6



quests in the data exploration stage may generate orders for data collection. Forexample, consider the initialization request on the plants experiment mentionedabove. If corn communities have never been simulated with the given plant charac-teristics, then simulation may be automatically initiated as a result of this requestto obtain some relevant data.We should also mention that the above life-cycle represents experimental stud-ies that are conducted either by individual scientists or by teams of scientists. Inthe latter case, most stages of the life-cycle involve communication among the col-laborating scientists. This communication can be in the form of actual real-timeinteractions for decision making (mostly in experiment design and data analysis)or in the form of concurrent actions of multiple scientists, the results of which arelater integrated together (mostly in data collection and initialization and follow-uprequests).Having presented the general structure of the life-cycle of an experimental study,we would like to use that cycle to clarify the distinction between the two types ofactivities mentioned in Section 1, i.e., managing and distributing the primary datafor a global project and managing a local experimental study. The primary focusof the former activity is in the �rst two stages of the life-cycle, i.e., experimentdesign and data collection, with minimal or no interleaving between them. Forexample, after the initial design stage of measurements of the Eos project, satelliteswill be launched to start collecting the prescribed data without much interference.Requests for the collected data by interested scientists will be mostly for smallsubsets of data that are related to a small geographic region, period of time, orspeci�c phenomenon. Although it is possible for a scientist to submit multiple suchrequests in a given session, especially in a browsing mode, the complex iterationsthat the full data exploration stage implies will not be required in general. Afterthe data is identi�ed and distributed, the scientist(s) involved will perform theirstudy without any further interaction with the central repository. This study ofthe obtained data will be an activity of the second type mentioned above, involvingthe full life-cycle of Figure 1. Note that in a global project, experiment design anddata collection are performed by a carefully chosen team of domain scientists anddatabase administrators, whereas data exploration (in the form of simple browsingand retrieval) is performed by any scientist in the �eld. On the contrary, in alocal study, the full life-cycle is performed by the same scientist(s). Clearly, theabove distinctions between the two types of activities are not absolute. We believe,however, that in general there are some characteristic di�erences between them,which we hope have been exposed by the above comparison in the overall frameworkof the experiment life-cycle.In the rest of the paper, we focus entirely on the second type of activity, i.e., onmanaging experimental studies conducted by individual researchers or small teamsof them. Based on the above discussion and the structure of the experiment life-cycle, we examine some of the technical challenges faced by attempts to developEMSs to support such activities. We then propose some solutions that we haveadopted in our own e�orts, which are centered around the versatility of conceptualschemas and their usefulness in a wide variety of tasks.7



3. Functionality and Architecture of Experiment Manage-ment SystemsCurrent database technology provides very primitive tools in the hands of scientistsinvolved in experimental studies. All stages in the experiment life-cycle are viewedas distinct from each other with no or minimal communication among them. Thetransfer of data and the transition from one stage to the next are to a large extent`manual'. Thus, many scientists end up using 
at �les to store the data of theirexperiments. For example, the following senario is quite common. Collected datais stored in �les with cryptic names like `out.1.100.13.7', which usually encode thevalues of the input parameters to the experiment. At data analysis time, applicationprograms in conventional languages are written for every type of desired output.These programs have to look into the mass of �les containing the relevant data,extract the useful information, and format it so that it is presented to the scientistin a meaningful way. Moreover, searching for the relevant data each time cannotbe performed associatively (by the desired values of some parameters) but only byname, i.e., the given names of the �les. Clearly, this process is very unnatural,tedious, error-prone, and requires constant exposure of the scientist to the speci�cset of data, because the meaning of the various parameters is easily forgotten.The role of an Experiment Management System (EMS) should be that of anagent between a scientist and a phenomenon under study. An EMS should providethe desired functionality for managing and analyzing data produced in experimentalstudies and overcome the inadequacies of today's technology. Such a system shouldbe a single, integrated, tool that scientists can use throughout the life-cycle of anexperimental study to e�ectively control and manage all aspects of the experimentalprocess and the generated data, i.e., it should satisfy requirements (i)-(iii) of Section1. In order to achieve the above functionality, an EMS must be capable of bothmanaging stored data and communicating with one or more experimentation envi-ronments (where experiments can be run) and other EMSs and DBMSs to obtainnew data. Much like in a heterogeneous database system, given a scientist's request,the EMS will �rst identify the experimentation environments and/or systems thatare related to the request. It will then divide the request into pieces, translate eachpiece into the language of its target environment or system, and submit it for pro-cessing. In the end, the EMS will collect all the responses, generate one integratedresult out of them, translate that into the appropriate user-level representation, andreturn it to the scientist who posed the request.An EMS should be able to communicate with other EMSs and DBMSs thatmanage data of interest already collected as part of other studies, so that duplica-tion of e�ort is avoided. It should also be networked with several experimentationenvironments due to the very nature of experimental studies. In many cases, inorder to investigate a phenomenon, or develop a new system, experiments undervarious control levels are performed. At one end of the spectrum are fully controlledexperiments in which the system is simulated on a computer. In contrast to this, inthe laboratory, where the environment can be controlled but the system has a lifeof its own, the observer has only partial control over the experiment. Finally, nocontrol can be exercised when the real world is observed. An EMS that provides8



a cohesive interface to a range of experimental environments, which have been in-dependently developed, possibly to solve problems of diverse scienti�c �elds, hasmany advantages: a) transitions are smooth from one environment to the other, b)experimental data from di�erent sources are analyzed in a single framework, andc) the EMS serves as a bridge between di�erent experimental disciplines. An EMSwith all the above capabilities will provide the richest possible support to scientistswho will be able to 
exibly use unlimited amounts of information to further theirown research.Another important feature that an EMS must have to achieve the desired func-tionality is that it must be capable of blurring the distinction between data collectionand data exploration (data requests in particular) if the scientist so desires. Thiswould conform to the natural vagueness of the separation between these two stagesin the experiment life-cycle (Section 2). In particular, the scientist should be giventhe freedom to request data without any knowledge of whether it has already beenmeasured and recorded or not. Depending on the situation, the EMS should de-cide whether to simply retrieve the data from its database, or initiate some actionoutside of the system.Driven by the need for a tool to provide the kind of support described above inour own experimental studies, we have initiated an e�ort to develop an EMS at theUniversity of Wisconsin. Figure 2 presents the architecture of that system, whichwe believe re
ects the needs of a wide range of experimental studies. In addition toa component for the traditional query and storage services provided by a databasesystem (Core DBMS), the EMS under development has an active component, whichcoordinates the interaction between the user and the experimentation environments(Experimentation Manager), and an analysis component for the stored data (OutputAnalyzer). The user interacts with the database system via intuitive languageand graphical interfaces (User Interfaces). Finally, a variety of experimentationenvironments are coupled to the EMS via a component that translates data fromits representation in the experimentation environments to its representation in theEMS and vice versa (Data Translator).We believe that a system developed based on the above architecture will haveachieved its most important goals. It will provide an integrated environment toscientists that, unlike current practice, will feature a uniform interface that may beused for managing the entire life-cycle of an experimental study. Moreover, it willallow the design and execution of experiments and the access to scienti�c data to bedone in ways that resemble as much as possible the way scientists interact amongthemselves using pencil and paper.A fundamental premise of our e�ort has been that the above cannot be achievedunless the EMS provides a uniform and natural interface for all stages of the exper-iment life-cycle (item (ii) in Section 1). The most important piece of informationthat is necessary in all these stages is the conceptual schema of the database relatedto an experimental study. Thus, it is only natural that our approach is `schema-centric', where schemas are used in many roles (some of which are quite unique)throughout the experiment life-cycle, providing a common foundation for all typesof interactions between the scientists and the EMS. This importance of schemas hasalso been the reason why our �rst priority has been to obtain a better understandingof schemas and their use, and to develop the schema support of the EMS, on top9



No Control

REAL WORLD

Other EMSs and DBMSs

DBMS

EMS

Experiment

Scientist

Environments
Experimentation

Database

Experiment Management System

Analyzer
Output

DBMS

Core

Manager
Experimentation

Full Control

SIMULATION

Partial Control

LABORATORY

Data

Trans-

lator

User

Inter-

faces

Figure 2: Architecture of an Experiment Management System.
10



of which the rest of the system will be built. The results of this �rst phase of ourwork are described in the following sections.In addition to our own e�ort to develop an EMS, some research laboratories havealso been engaged in similar work trying to provide database support for scienti�cdata. Examples include the `Laboratory Notebook' project in the Los AlamosNational Laboratory [Nel90] and the e�ort to develop data management tools forscienti�c applications in the Lawrence Berkeley Laboratory [MF91, SM91, MS92].Several aspects of our e�ort are found in at least some of these projects: schemasplay several important roles, and intuitive (usually graphical) user interfaces aredeveloped so that scientists may use them without much database expertise. Onthere other hand, several di�erences exist as well. The most important of themis that, to the best of our knowledge, our e�ort is the only one that attempts toprovide a single tool for all stages of the experiment life-cycle. The other projectsfocus primarily on experiment design and initialization requests, which are similarto activities in traditional database management. Supporting data collection or thecomplex iterations of data exploration is not part of the functionality of the systemsdeveloped in these projects. Less signi�cant are di�erences in the choice of datamodel (they are based on the relational or the extended entity-relationship model,whereas we have developed our own object-oriented data model), and in severalother system aspects, on which we do not elaborate.4. Roles of Conceptual SchemasIn this section, we describe the roles that the schema plays in an EMS for each stageof the experiment life-cycle. In addition, we outline the features that a data modelshould have in order for schemas expressed in that model to play those roles.4.1. Conceptual Schemas in the Experiment Life-CycleBy de�nition, schemas capture the structure and constraints of the data that isrecorded in a database so that only valid data is accepted for storage. In mostcurrent database systems, schemas are used primarily for the above purpose. Theyare de�ned and altered by the database administrators, but cannot be manipulatedor updated by end-users. Such users may only consult the database system forinformation describing details of schemas, which is provided by help facilities. Thus,it is the user who initiates the 
ow of schema-related information out of the system.The DBMS itself is passive and only responds to user requests. The above stateof a�airs is considered adequate given the current roles played by schemas. Infact, the schemas of many databases are relatively small, so with frequent use, evenmemorization of the relevant parts of the schema by the user is common.Although in traditional settings the above use of conceptual schemas is consid-ered satisfactory, in an EMS it is not. For an EMS, the schema is a useful toolfor many more activities than in traditional DBMSs. In addition, by the nature ofscienti�c studies, most user interactions with the system are in the form of ad-hocqueries, whereas in traditional settings, running prepackaged application programsis much more common. In combination with the complexity and size of typicalschemas of experimental studies, this makes the fact that the EMS has accurate11



knowledge of the schema much more valuable than it is in a conventional DBMS.Thus, the schema is called to play new roles in the context of an EMS. Accordingly,the EMS is forced to provide enhanced functionality compared to a traditionalDBMS with respect to manipulating the schema and become active by taking theinitiative in presenting the schema to the scientist.Whereas in a conventional database the schema captures the structure of thedata in the database, in experiment databases, the schema also captures the struc-ture of the experiment itself. This is a side-e�ect of the e�ort to describe thestructure of the data: in order to organize the data in a meaningful way, the designof the experiment is essentially represented as well. For example, the schema ofthe plants experiment contains the various input and output parameters and theirrelationships to plant communities, which is precisely the information required tocapture the design of the entire experiment. Based on this interpretation of itscontents, the schema is called to play two new major roles in an EMS, in additionto its traditional roles:(R1) In its �rst new role, the schema becomes the formal document describ-ing the experiment. This is important for both individual and col-laborative studies. Designing experiments, modifying earlier designs,describing experiments to others, integrating pieces of experiments intolarger studies, and other activities that are usually based on arbitrary,and quite often free-form, descriptions of experiments are now basedon the conceptual schemas of the corresponding databases. In fact, inthe �rst stage of the experiment life-cycle (Figure 1), the old notionof database design can now be seen in the new light of generalizedexperiment design.(R2) In its second new role, the schema serves as the template for spec-ifying data and experiments. Such speci�cations are useful both ininteractions between scientists and in interactions between a scientistand the EMS. (Specifying data is not a new idea; although it hasnot been extensively used in commercial systems, it has been pro-posed and studied in the context of many research prototypes, e.g.,[AGS90, BH86, Fog84, GGKZ85, KM89, P+92, RC87, WK82, Zlo77].)The ability of the schema to play this role is important in the datacollection and data exploration stages (Figure 1). The system itselfprompts the user with the schema, who then manipulates it appropri-ately for specifying query restrictions or for displaying query answers.From the above description of the two roles, it becomes clear that the use ofthe schema spans all stages of the experiment life-cycle, which is fundamental toproviding an integrated tool with a uniform interface to scientists. It also becomesclear that the conceptual schema undertakes these two roles not only within theEMS, but also in interactions between collaborating scientists as well. This canprove extremely important in the future, where multidisciplinary studies with largenumbers of scientists participating will become more common [HL92].12



4.2. Necessary Data Model CharacteristicsIn order for schemas to play the above two roles successfully, they have to be ex-pressed in a data model that has the following three characteristics. First, for R1,the data model needs to be of high expressive power. Scienti�c experiments havequite complex structures, so the data relationships that must be captured in ex-periment databases are quite complex as well. The relational model is in generalinadequate due to its simplicity. Its unique semantic primitive, the relation, isnot powerful enough to express every aspect of an experiment design. The muchricher object-oriented and semantic data models [CM90, ZM89] are the only seri-ous candidates for such databases. Among other features, such data models o�erprimitives that can be used to represent complex objects (parts-subparts), collec-tion objects (sets), and class hierarchies with inheritance, which are very commonin experiments.Second, for both R1 and R2, the semantic primitives of the data model mustbe closely related to notions that scientists are currently using in their approach toexperimental studies. A data model that is developed based on database expertisewhile ignoring the status quo in today's scienti�c laboratories is doomed to fail.Scientists must feel comfortable with the primitives of the data model so that theydo not have to establish complicated mental mappings from their current way ofthinking to that enforced by the model. As mentioned above, it is desirable for thedata model to have high expressive power, but this should not be achieved at theexpense of natural expression. The primitives of the data model should re
ect theexperience of scientists so that the complex data relationships found in experimentdesigns can be captured in a natural way.Third, for both R1 and R2, schemas in the data model must have a succinctrepresentation so that they are easily understood by scientists. Traditional text-based data de�nition languages may not be the most appropriate tools for scientiststo use for schema speci�cation. SQL has quite a long and slow learning curve, andeven for experienced users, writing very complex queries is not straightforward. It isdoubtful that learning how to use a similar, but more complex, text-based languagefor a very expressive data model is the best use of scientists' time. Intuitive graphicalrepresentations of schemas, supported by user-friendly interfaces, will be of muchmore use to the scienti�c community.From the above arguments, one may conclude that an EMS should have a graph-ical user interface that can deal with large and complex object-oriented/semanticschemas in a natural way, allowing the user to manipulate the schemas for multi-ple purposes. Clearly, the demand for the �rst characteristic in a data model isnot unique to scienti�c experiments. Many other applications have similar needs,which have driven the numerous research and commercial e�orts to develop systemsbased on semantic and object-oriented data models. The demand for the secondand third characteristics, however, is not so common. In most DBMSs, schemasare manipulated only by database administrators and complex queries are pack-aged in easy-to-invoke applications written by professional programmers, who arevery experienced specialists in their respective �elds. In an EMS, on the otherhand, we want the scientists themselves to be able to interact with the systemas both database administrators and sophisticated end-users. Otherwise, much of13



the promised power of EMSs will be jeopardized. Thus, the need for data modelprimitives that are natural to scientists and for intuitive representation of schemasmanipulated by easy-to-use tools is much more pressing in EMSs than, perhaps,other types of DBMSs and has received more focussed attention in our work.In the following sections, we describe the data model that we have developed aspart of our EMS e�ort together with some key features of the graphical interfacethat supports schemas in the model.5. Moose: A Data Model for Scienti�c ExperimentsThe EMS that we are developing is based on the Moose (Modeling Objects OfScienti�c Experiments) object-oriented data model [IL89]. Although Moose is tar-geted for experimental data management, it is applicable in much more generalsettings as well. The salient features of Moose are described below.5.1. Semantic Primitives of MooseWe �rst present the semantic primitives of Moose that de�ne its expressive power.In the description, we put more emphasis on features that are not common amongthe already existing semantic and object-oriented data models, justifying their in-clusion in Moose by the needs of experiment management. Thus, we illustratewhy we believe Moose satis�es both the �rst and the second desirable data modelcharacteristic mentioned in Section 4.2.Moose supports the notion of an object, which is quite intuitive to scientistsbecause most often objects are used to represent physical entities that are relevantto experiments, e.g., the planet Jupiter or the part of the E. coli genome knownas K-12 strain MG1655. Every object is assigned a unique object identi�er andbelongs to possibly multiple classes, inheriting properties from all of them. A classrepresents a set of objects having the same structure and the same properties.There are four system supported object classes, called base classes: integers, 
oats,character strings, and booleans.The extent of a non-base class, i.e., the objects that are known members of theclass, is explicitly stored in the database. This allows objects that are currently notpart of any experiment design, i.e., that are not associated with other, higher level,objects, to still be stored and manipulated by the user. For example, in a simulationstudy of plant growth, one may want to introduce into the system a new varietyof corn. Although, there are no experiments that have been run with this type ofcorn, nevertheless it is important that information about it is stored in the system,so that it is available later when the scientist decides to run experiments with it.In addition, `inventory queries' of the form `What types of corn do I have at mydisposal?' are possible. The above needs are so common in experimental studiesthat having the scientist explicitly request the maintenance of the class extent foreach class would require a signi�cant e�ort, since it would have to be done for mostclasses in the schema.In many experimental studies, object collections are often reused several timesduring the course of the study, e.g., a speci�c plant community. In addition, theyare often associated with other pieces of information, which may or may not depend14



on the objects in the collection, e.g., the number of objects in the collection or somename given to the collection, respectively. To serve the above needs, collections ofobjects are individual objects themselves in Moose, carrying all the characteristicsmentioned above. This uniform treatment of atomic and collection objects resultsin an economy of scale and makes sharing of collections and expressing propertiesof collections very natural. Otherwise, additional object classes would have to bede�ned, cluttering the schema and moving it further away from the usual intuitionof scientists. There are four kinds of collection objects supported in Moose: sets,multisets (bags), indexed-sets (a generalized form of arrays), and sequenced-sets (ageneralized form of lists).Each class in a Moose schema may be associated with many other classes, cap-turing a variety of relationships that may exist between the objects of the cor-responding classes. Similarly to most semantic and object-oriented data models,Moose supports two major types of relationships: is-a relationships and part-of re-lationships. The former capture semantic relationships whereas the latter capturestructural relationships between objects of the participating classes. Speci�cally,is-a relationships relate classes to their subclasses (specializations) and vice versa,whereas part-of relationships relate objects to their parts and vice versa. Everypart-of relationship is associated with a label, which serves the same purpose as anattribute name in relational DBMSs. For this reason, we occasionally use the term`attribute' to indicate part-of relationships. The direction of a part-of relationshipis from a class of objects to the class of their parts. Every part-of relationship,however, essentially captures a function and its inverse and can be explored in bothdirections. Therefore, it is associated with two labels. Quite often, one or both ofthese labels is equal to the name of the range class of the relationship traversed in thedirection corresponding to the label, e.g., the utilization of a `cpu' is a `utilization'.Whenever this is the case, we omit the label from the relationship declaration.Two more types of relationships are supported by Moose to capture specializedassociations of collection objects. A set-to-elements relationship connects a collec-tion class to the class of elements in the collection, e.g., from the class of plantcommunities (sets of plants) to the class of plants. Exactly one such relationshipmust exist for each collection class. The need for this relationship is an immediateconsequence of the need to support collections as �rst-class objects. An indexingrelationship connects an indexed-set class to the collection class indexing it, whichis the key-set class of the relationship. Its semantics is that, each member of akey-set is associated with exactly one member of the indexed-set. Exactly one suchrelationship must exist for each indexed-set, except for those that are indexed bythe natural numbers (i.e., those that are arrays in the traditional sense), for whichsuch a relationship is implicit. Scientists need this relationship to express functionaldependencies from the members of the key-set class to those of the indexed-set class.Such dependencies arise very often when the same parameter of the input or out-put of an experiment takes on a di�erent value for each member of some collectionrelated to the studied phenomenon or system, e.g., every distinct plant in a com-munity has a di�erent temperature. The parameter values (e.g., the temperatures)form the indexed-set and the collection (i.e., the plants) forms the key-set of thisrelationship. Through that, the parameter value associated with an object fromthe indexed-set is directly available. In the absence of this type of relationship, for15



the same semantics to be captured, either auxiliary object classes would need to bede�ned, or the scientist would have to assign an integer number to each elementin the key-set so that regular arrays could be used, which are supported by mostsystems. In the �rst case, again the size of the schema would increase with classesthat play no substantial role in the scientist's experiment design. In the latter case,the scientist would have to constantly use some unintuitive numbering to be ableto indirectly associate elements to parameter values.Finally, in Moose, part-of relationships (and less often other relationships as well)can be declared as context-dependent [WTM+92]. A relationship of this type maybe used to capture an association between a pair of object classes that dependson a third class as well. For example, in a study evaluating the performance ofnetworks, a network site may be associated with a di�erent job arrival rate in eachexperiment. This may be captured by a context-dependent relationship betweenthe class of sites and the class of arrival rates, with the class of experiments servingas the context. By de�nition, many relationships between objects in experimentalstudies are context-dependent on experiments. By having the ability to directlyrepresent such relationships, scientists are able to design their experiments morenaturally than otherwise.Moose allows objects that are parts of a given object or instances of a givenclass to be de�ned either intentionally or extensionally. Speci�cally, the parts of anobject do not have to be explicitly speci�ed by the user. Moose supports the notionof a virtual attribute whose contents can be derived by the system through somecomputation associated with the attribute. Such computations are expressed in theform of rules that are based on the query language of Moose (whenever possible) orin some general computationally complete language among those supported by thesystem (whenever necessary). Virtual attributes are especially useful to scientistsfor specifying aggregate computations over the members of collection objects. Forexample, every set of plants may be associated with a virtual attribute whose valueis always calculated by counting the number of plants in the set. Given that thetask of almost all experimentalists is the statistical study of some phenomenon orsystem, the implicit computation of aggregates as virtual attributes is an importanttool. Moreover, the power of this feature goes beyond aggregate values and can beused for other purposes as well. For example, the entire output of an experimentcan be considered as a virtual attribute that depends on the experiment input andthe contents of which are computed by conducting an experiment.Similarly, the membership of a class does not have to be explicitly speci�ed bythe user. Moose supports the notion of a virtual class whose membership can bederived by the system through rules associated with the is-a relationship betweenthe class and some superclass of it. The importance of virtual classes can be real-ized by examining the experiment life-cycle (Figure 1). As a scientist explores theresults of the conducted experiments, important characteristics of objects used inthe experiments are identi�ed. For example, a special behavior may be observedwhen the arrival rates in all sites of a network are the same. Upon such a discovery,it is common for scientists to give a special tag to such networks, e.g., call them`homogeneous networks', and put some further emphasis on investigating their be-havior. In the context of an EMS, the equivalent steps are for scientists to de�ne thevirtual class of homogeneous networks as a subclass of networks and to associate the16



appropriate rule de�ning the members of the subclass with the corresponding is-arelationship. A nice side-e�ect of this action is that any networks that happened tobe homogeneous and were used before the scientist realized the importance of thatsubclass implicitly become its members, without any additional work.Both types of implicit de�nitions remove signi�cant work from scientists andenhance their ability to express complex relationships among classes. In addition,for all de�nitions expressed in the rule language of the system, inferences are madewithout explicit instructions from the users.Finally, Moose supports many types of user-de�ned structural constraints thatmay be used to control sharing among objects. A relationship may be one to one(referred to as single-valued, non-shared), one to many (multivalued, non-shared),many to one (single-valued, shared), or many to many (shared, multivalued). Moosealso has a constraint language, which may be used to express more complex struc-tural constraints than the above. Such constraints express important aspects of thesemantics captured by schemas. They are necessary in both general DBMSs andEMSs, which may use them to ensure the integrity of the stored data.5.2. Graphical Representation of Moose SchemasAs mentioned in Section 4.2, the third important characteristic that a data modelshould possess in order to be useful in an EMS is that its schemas should havea succinct and intuitive representation, so that scientists who are non-experts indatabase management can manipulate them without much e�ort. This has beenone of the major concerns throughout the development of Moose.The result of our work in this direction is that Moose schemas can be de�nedgraphically and manipulated by appropriate actions directly on the iconic represen-tations of their primitives. Speci�cally, every Moose schema has a straightforwarddirected graph representation. Every node in the graph represents a class of objectsand is labeled by the class name. Base classes are represented as ellipses, to be easilydistinguishable from the rest, while all other classes are represented as rectangles.In addition to the corresponding class name, nodes representing collection classesare also annotated with a special symbol identifying the type of the collection, e.g.,for sets, for multisets, [] for indexed-sets, and () for sequenced-sets.Arcs in the graph capture the various types of relationships supported by Moose.Part-of relationships are denoted by solid arcs, is-a relationships are denoted bydotted arcs, set-to-elements relationships are denoted by double solid arcs, andindexing relationships are denoted by zig-zag arcs. Part-of arcs are labeled with thename of the associated relationship, unless the label is the same as the name of theclass at the head of the arc, in which case it is omitted from the graph. Context-dependent arcs are annotated with the name of the context class as well. Finally,the structural constraints mentioned above that control sharing among objects canalso be represented graphically. All four combinations of such constraints are shownin Figure 3 for part-of arcs; the same constraints are captured similarly for the otherappropriate arcs.As an example of the graphical representation of Moose schemas, Figure 4 showssome possible schema for the plants experiment of Section 1. In addition to the orig-inal features, we also include the notion of homogeneous plant communities, which17
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Figure 3: Graphical representation of structural constraints.form a subclass of plant communities. The rule r associated with the correspond-ing is-a arc captures the precise de�nition of homogeneous plant communities, e.g.,those where all plants are of the same type. Also, administrative information likethe date of the experiment and the amount of time consumed by the simulator (itscost) are shown as attributes of the experiment. (We should emphasize that alter-native schemas do exist for the plants experiment, some of which would possiblybe more 
exible than the one presented but also more complex. The above waschosen as a good trade-o� between simplicity and 
exibility.) In Section 6, anothercomplete Moose schema is shown graphically, in the form of a screen-dump of aprototype that we have developed for part of the user interface of the system.
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Figure 4: Graphical representation of schema for the plants experiment.5.3. Moose Query LanguageThe query language of Moose is very similar to SQL and also has the 
avor of otherdeclarative object-oriented languages [ASL89, BCD89, CDV88, KKS92, KL89]. Since18



the query language is not the focus of this work, we are not describing it in anydetail. We only want to point out that the fundamental construct in the languagefor traversing objects is the path expression. Path expressions connect objects insome class to other objects that are directly or indirectly related to them. A noveland powerful aspect of path expressions in the Moose language compared to othersuch languages is that they can include relationships of all types, and not onlypart-of ones. Path expressions are closely associated with the graph representationof a Moose schema, since they essentially indicate paths in that graph. Based onthis characteristic, a graphical query language that is closely related to the textualone is also under development. Given the focus of our e�ort, we expect that thegraphical language will be the primary means of interaction of scientists with thesystem.5.4. SummaryBased on the above brief description of the features of Moose, we believe that it sat-is�es the three necessary characteristics described in Section 4.2. First, it supportsa rich set of data types and semantic relationships between data that can be usedin arbitrary combinations to capture the complex structures of experimental data.The various kinds of constraints can be used to ensure the integrity of the data,while the ability to de�ne virtual attributes and classes (quite often through the useof rules) removes much burden from the user. Second, the semantic primitives ofMoose have been chosen based on the needs of scientists. Especially the primitivesthat are not usually seen in other object-oriented or semantic data models capturespeci�c notions that are very intuitive to most scientists. The ability to use thesesame notions in the scientists' interactions with an EMS should make the systema much better and friendlier tool, better serving the needs of its users. Third, thegraph corresponding to a Moose schema is a much more compact and intuitive rep-resentation of the schema than any other form, o�ering to scientists a better meansto express their experiment designs. In addition, the development of a graphicaluser interface becomes possible, enhancing the usability of the system even further.6. Using Moose for Experiment ManagementDue to our �rm belief in early prototyping, our study of experiment managementhas proceeded in parallel with the development of a prototype EMS, where the�ndings of our work are implemented so that they can be tested and validated.The goal of our e�ort is for the EMS to provide the appropriate technical supportthat will take advantage of the rich set of semantic primitives of Moose and its nicegraph representation to become a versatile tool for scientists. In this section, wefocus on a piece of the user interface of the system that has already been built, anddescribe its use in the context of an experimental study. In particular, we describethe graph editor of the system, which can be used to manipulate arbitrary types ofgraphs, and most importantly Moose schema graphs. The graph editor is a key partof the whole user interface of the EMS. This is due to the graph representation ofMoose schemas, which transforms any schema manipulation to graph manipulationindependent of the role played by the schema (Section 4).19



The main di�culties in graph editing arise from the fact that Moose schemasfor scienti�c experiments tend to be very large and can form an inscrutable maze ofboxes and lines on the screen. Therefore, the key features that have been includedin the graph editor deal with making large schemas more manageable. These arethe following: (a) allowing parts of the schema to be made invisible; (b) collapsingsubgraphs into single nodes; and (c) using `reference' nodes to eliminate very longarcs [ILH92]. The above features are expected to prove very useful in supportingall aspects of schema use mentioned in Section 4. This expectation is justi�ed bythe results of our exposing the graph editor developed to `real' users, i.e., domainscientists, for experiment design (�rst stage in Figure 1). In all such collaborations,scientists from other disciplines have used the schema in its �rst new role, i.e., as aformal document describing experiments (Section 4) and the feedback obtained hasbeen very encouraging.Our work with John Norman from the Soil Sciences Department at the Uni-versity of Wisconsin is one example of such collaborations. The main emphasis ofhis research is on simulating the growth of plants based on various environmental,soil, and ecological parameters. The primary tool in his studies is the Cupid model[ILH92], a Fortran program that simulates the necessary plant growth processes.The Cupid group has been using the graph editor that we have developed to docu-ment the structure of the input and output parameters of his model in the form ofa Moose schema.Cupid has been an excellent testbed for the capabilities of Moose and the grapheditor because it has a complex structure and generates very large schema graphs. Itsimulates numerous processes that are parameterized, and therefore a large numberof parameters need to be speci�ed to characterize its input and output. Typically,about a hundred parameters are input to the model for any speci�c application,whereas the output variables number in the several hundreds. Our collaborationwith the Cupid group has shown that the graph editor we have developed can serveas a tool to organize the large amounts of data that Cupid manipulates. The schemafor the input part of the Cupid model has been completed and contains more thana hundred object classes. It is shown in Figure 5 as a screen dump of the grapheditor developed.The feedback received from the Cupid group, which used Moose and the grapheditor to design the schema of Figure 5 has been very encouraging [ILH92]. Themain bene�ts expressed follow quite closely the analysis of desirable features of thedata model and the system described in earlier sections. Casting the Cupid datain an object-oriented structure captured the complex array of data combinationsthat were part of the model in a natural way and made further modi�cations andenhancements of it easier. The graphical representation of the Moose schema wasinstrumental in allowing the members of the Cupid group to understand Mooserelatively quickly and then use it for the experiment design. Finally, the resultingMoose schema played its R1 role well: it served as a clear documentation of theinput structure of the Cupid model and proved very useful in communicating itsdetails to other scientists outside of the main group.20



Figure 5: Moose schema for the Cupid input.21



7. SummaryOne of the major problems faced by experimental sciences today is the lack of ad-equate tools for the management of experiments and data. We have undertakenthe e�ort to develop a desktop Experiment Management System that will provideadequate support for scientists involved in experimental studies. In this paper, wehave identi�ed some of the fundamental issues that must be addressed in designingsuch an EMS. We have developed an abstraction of the set of activities performedby scientists throughout the course of an experimental study, and based on thatabstraction we have proposed an EMS architecture that can support all such ac-tivities. The proposed EMS architecture is centered around the extensive use ofconceptual schemas, which express the structure of information in experimentalstudies. Schemas are called to play new roles that are not usually found in tradi-tional database systems. We have provided a detailed exposition of these new rolesand have described certain characteristics that the data model of the EMS musthave in order for schemas expressed in it to successfully play these roles. Finally, wehave presented the speci�cs of our own e�ort to develop an EMS, focusing on themain features of the data model of the system. The feedback that we have receivedfrom domain scientists that have used the data model to design their experimentshave been encouraging and have strengthened our belief that our approach will beable to serve the needs of experiment management.Our e�ort to develop an e�ective EMS is far from complete. There are severalissues that we are currently investigating and many others on which we plan towork in the future. Those currently under way include architectural issues on howthe User Interface and the Core DBMS should communicate, e�cient support forinitialization and follow-up requests, graphical representation of objects, storagestructures and query optimization in the Core DBMS, and formal issues on dataand query translation. Additional issues left for the future include work on theExperimentation Manager, developing an internal interface layer so that a varietyof output analysis tools can be connected to the system, e.g., visualization tools,and developing a data-translator generator, which will be an easy-to-use toolkitfor building data translators. In parallel to the above e�orts, we will continue ourcollaborations with various domain scientists from di�erent disciplines, so that theapplicability of our �ndings to experiment management can be continuously testedand validated.References[AGS90] R. Agrawal, N. H. Gehani, and J. Srinivasan. OdeView: The graphicalinterface to ode. In Proc. of the 1990 ACM-SIGMOD Conference onthe Management of Data, pages 34{43, Atlantic City, NJ, May 1990.[ASL89] A. M. Alashqur, S. Y. W. Su, and H. Lam. OQL: A query languagefor manipulating object-oriented databases. In Proc. 15th InternationalVLDB Conference, pages 433{442, Amsterdam, The Netherlands, Au-gust 1989. 22
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