
Journal of Intelligent Information Systems, 1,243-270 (1992)
@ Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Supporting Inconsistent Rules in Database
Systems*

YANNIS E. IOANNIDIS t
Computer Sciences Department, University of Wisconsin, Madison, WI 53706

TIMOS K. SELLIS$
Computer Science Department and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD 20742

Ab$lract. When a set of rules generates (conflicting) values for a virtual attribute of some tuple,
the system must resolve the inconsistency and decide on a unique value that is assigned to that
attribute. In most current systems, the conflict is resolved based on criteria that choose one of
the rules in the conflicting set and use the value that it generated. There are several applications,
however, where inconsistencies of the above form arise, whose semantics demand a different form
of resolution. We propose a general framework for the study of the conflict resolution problem, and
suggest a variety of resolution criteria, which collectively subsume all previously known solutions.
With several new criteria being introduced, the semantics of several applications are captured more
accurately than in the past. We discuss how conflict resolution criteria can be specified at the
schema or the rule-module level. Finally, we suggest some implementation techniques based on rule
indexing, which allow conflicts to be resolved efficiently at compile time, so that at run time only a
single rule is processed.

Keywords: deductive database systems, inconsistent rules, rule compilation, rule indexing, virtual

attributes

1. Introduction

Any organization or enterprise has its own unique structure and policies that
determine its daily function. Consider one such organization and let the following
express its policy with respect to the dress code of its employees:

rl " All employees who work on the first floor wear red shirts.
r2 " All employees who work on the second floor wear green shirts.

* An earlier version of this work appeared under the title "Conflict Resolution of Rules Assigning
Values to Virtual Attributes" in Proceedings of the I989 ACM-Sigmod Conference, Portland, OR, June
1989, pp. 205-214.

t Partially supported by the National Science Foundation under Grant IRI-9157368 (PYI Award)
and by grants from DEC, HP, and AT&T.

-+ Partially supported by the National Science Foundation under Grant IRI-9057573 (PYI Award),
IBM, DEC, and the University of Maryland Institute for Advanced Computer Studies (UMIACS).

244 IOANNIDIS AND SELLIS

r3 : The Red-Pants department is located on the first floor.
~4 : The Green-Pants department is located on the second floor.

Each one of ra to r4 is a rule that captures some aspect of the overall dressing
policy of the company. Arguably, the use of rules for such purposes is very natural
and intuitive. Such rules (although probably not those of dress code) are as
important to an organization as the data that it has collected and maintains, and
any decision made is usually based on both types of information. Thus, it is very
important to be able to integrate rules and data into one knowledge base consisting
of a rulebase and a database managed by a single system. Mathematical logic,
and primarily first order logic, is commonly used as a language to express such
rules. Systems that support such languages and also manage large disk-oriented
databases are called deductive database systems.

One of the main advantages of using rules in the above capacity is that
knowledge evolution is rather straightforward and does not require any major
reorganization of the knowledge base. Rules can be added or deleted without
much further action by the rulebase designer. The unfortunate consequence of
this, however, is that the rulebase may soon become inconsistent, i.e., it may
become possible to infer contradictory facts from the rules. The rules in the
above example happened to be consistent. For example, assuming that John
Red works in the Red-Pants department, when the query "What is the color of
the shirt that John Red wears?" is posed, there is only one answer that can be
inferred: "red." Consider the addition of the following rule to the above set:

r5 " All supervisors wear blue shirts.

Clearly, the new rule set in inconsistent, since it cannot uniquely infer the color
of the shirt of Jane Blue who is the supervisor of the Red-Pants department.

Assuming a large rulebase, it is impossible for the rulebase designer to guarantee
the consistency of the rules. In fact, the rules of most organizations do contain
inconsistencies, which whenever revealed are handled by meta-rules established
for that purpose. It is desirable that deductive database systems follow the
same approach as well. The rulebase designer should specify meta-rules to
resolve inconsistencies which the system invokes whenever needed to produce
only consistent results. How this can be done in a deductive database system is
the general theme of this work.

In this paper, we are interested in a
inconsistent inferences, rules that assign
attributes, whose values are not explicitly
by rules, are called virtual attributes.
"shirt_color" might be a virtual attribute

special case of rules that can lead to
values to attributes of relations. Such
stored in the database, but are inferred
For example, in the above database,
of the employee relation. Whenever a

virtual attribute of some tuple is referenced in a query, the system should return
a unique value for it. If the rules that define the values for the attribute are
inconsistent, they may collectively generated multiple values. The problem of

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 245

deciding on a unique value, taking into account all those generated, is the focus
of this paper.

Based on the semantics of the virtual attributes in the above examples, it
is clear that eventually one of the generated values should be selected as the
true value of the attribute. Inconsistencies, however, arise in other types of
applications as well, where the semantics of the virtual attributes require that
the generated values are all combined in some way to derive a possibly new
value for the attribute. For example, consider a rulebase that contains rules
that determine whether the Space Shuttle should be launched or not, based on
a variety of conditions. It is conceivable that different rules may give different
answers in any specific situation. The desired semantics for resolving the conflict
may be that the decision suggested by the majority of rules be adopted, or most
likely that only if all rules decide positively for a launch, the Shuttle will indeed
depart. In the latter case, the function that combines all generated values is,
in some sense, the logical AND operation. This work addresses inconsistency
resolution for both types of attribute semantics.

The paper is organized as follows. Section 2 formally defines the rule incon-
sistency problem and describes current solutions. Section 3 introduces a general
framework in which several classes of conflict resolution criteria can be expressed.
Section 4 presents several application examples paired up with conflict resolution
schemes that capture the semantics of the corresponding application. Section 5
discusses how conflict resolution criteria can be specified at the schema or the
rule-module level. Section 6 studies some implementation techniques based on
rule indexing, which allow conflicts to be resolved efficiently at compile time.
Finally, Section 7 summarizes the basic contributions of this work and discusses
some directions for future work.

2. Problem formulation

In this section, we elaborate on the problem of inconsistencies in rules stored in
a database system. We define the types of rules considered and we analyze the
situations where inconsistencies arise. Finally, we give a brief summary of the
solutions used in existing systems.

2.1. Rule model

Consider a fixed, possibly infinite, set C. A database D is a vector D =
(Co,Q1, . . . ,Q,,)I , where CD C_ C is a (possibly infinite) set, and for each
t < i < n, Qi c C~ is a relation of arity ai. We allow infinite relations in D so
that primitive relations (e.g., =, >) and functions (e.g., addition) can be included
in our model. Clearly, such relations and functions are directly evaluable and
are not explicitly stored, Each element of Qi, is called a tuple. Elements of

246 IOANNIDIS AND SELLIS

relations constructed by combination of database relations are called tuples as
well. Without loss of generality, we assume for simplicity that the constants in the
database are typeless. Extending our ideas to a typed system is straightforward.
In what follows, we use lowercase x and y to denote tuple variables in rules
and uppercase X and Y to denote specific tuples that can be bound to x and y,
respectively. The tuple formed by concatenating X and Y is denoted by (X, Y).
(Similarly for concatenating two tuple variables x and y.) For any function g
defined on tuples of the same arity as (X, Y), g(x, y) denotes the function itself,
whereas g(X, Y) denotes the value returned by the function when applied on X
and Y.

We consider rules that are equivalent to Horn clauses, i.e., they are of the
form

QI(x (')) A . . . A Qk(x (k)) ~ Q0(x(~ (1)

where for each i, x (~) is a vector of variables, constants, and functions of such. We
assume that the Horn clauses are range-restricted, i.e., every variable that appears
in the consequent appears in the antecedent also, under some nonprimitive (i.e.,
explicitly stored, finite) relation. The following are two examples of Horn clauses:

EMP(name, sal, age, dept, num_kids) A sal > 50K A age < 30

WELL PAI D (n a me, sa l).
(2)

EMP(name, sal, age, dept, num kids)/x dept = "toy" ~ num kids = 0. (3)

The relation in the consequent of (2.3) is "=" . Formally, we should have written
"=(numkids,O)," but we use the infix notation for convenience. The same
convention is used for the primitive literals in the antecedents.

There are several semantics that can be used for a set of rules {rl} with respect
to the relations of a database D. One such semantics, which is our starting point,
assumes that the contents of all nonprimitive relations are explicitly stored in the
database. Primitive relations are directly available, so their full extent is known
to the database system as well. With this semantics, rules are treated as integrity
constraints, i.e., the database contents have to satisfy them at all times. This
implies that assigning constants to the variables of a rule should either make the
antecedent false or make the consequent true.

The above is not a very useful semantics in deductive database systems.
Explicitly storing the contents of all nonprimitive relations in the database is
undesirable. A better semantics treats some of the rules as derivation rules.
The contents of database relations, called intentional (virtual) relations, can be
implicitly derived by rules having those relations in their consequents. In this
case, the so called least fixpoint semantics (VanEmden and Kowalski, 1976; Aho
and Ullman, 1979) is used, i.e., the derived contents of each relation constitute
the minimum set (minimum with respect to c_) that satisfies all the rules. The

SUPPORTING INCONSISTENT RULES 1N DATABASE SYSTEMS 247

existence of such a minimum is guaranteed by the fact that only Horn clauses
are considered (Tarski, 1955; Aho and Ullman, 1979).

Treating a rule as an integrity constraint or a derivation rule is not an inherent
property of the rule. Some general guidelines on what the natural role of a rule
is, state that rules with a user-defined (nonprimitive) relation in their consequent
serve better as derivation rules, whereas those with a primitive relation in their
consequent serve better as integrity constraints (Nicolas and Gallaire, 1978).
According to those guidelines, (2) should be used as a derivation rule and (3)
should be used as an integrity constraint. This, however, is more restrictive than
necessary, since storing the contents of all attributes in a nonprimitive relation is
often undesirable. By treating a rule whose consequent is of the form "variable
= expression" as a derivation rule (like (3)), we are able to implicitly assign
values to the attribute of the relation whose position is occupied by "variable"
in the antecedent of rule. (If "variable" appears in multiple relations, the rule
assigns values to the corresponding attributes of all of them.) As mentioned in
the introduction, such attributes are called intentional (virtual) attributes.

The least fixpoint semantics are applicable in this case as well, although in a
degenerate way. Since rules are assumed to be range-restricted, for every tuple
in the relation where "variable" appears, the bindings in the antecedent of the
rule determine the value of "expression." For equality (=) to be satisfied, the
fixpoint semantics dictate that this is the value of the appropriate attribute of the
given tuple in the relation. If a tuple in the relation where "variable" appears
is associated with multiple bindings in the antecedent of the rule generating
different values for "variable," then inconsistency arises and must be resolved.

2.2 Inconsistent sets of rules

Consider a set of derivation rules {ri}. We say that {r~} is inconsistent, if there
exists a database D such that for some fact a, one can derive both a and not (a)
from D and {rl}. We investigate the situations that produce inconsistencies. As
long as no negative information is contained in the database, i.e., there is no
tuple known not to exist in a relation, inconsistency cannot arise: only positive
information is stored explicitly, and only positive information can be derived by
Horn clauses. This may lead to the false conclusion that, by only defining Horn
clauses as derivation rules, no inconsistency can arise. The following classical
example by Stonebraker and Rowe (1986) shows two Horn clauses that are clearly
inconsistent, thus proving that the above does not hold:

EMP(name, title, type_of_desk) ~ type_of_desk = "steel",

EMP(name, "chairman" type_of_desk) --~ type_of_desk = "wood".

The two rules offer two contradicting types for the desk of the chairman of the
company. Our previous reasoning about when inconsistencies arise is still correct

248 IOANNIDIS AND SELLIS

though. The inconsistency arises because of the implicit negative information in
the database that not("steel"="wood"). Negative facts on primitive relations are
always implicitly part of the database, and inconsistencies are possible among
derivation rules with such relations in their consequent. To the contrary, assuming
that no explicit negative information is stored in the database,

no inconsistency can arise among derivation rules

with user-defined relations in their consequent.

Equivalently, the two types of rules (with primitive and nonprimitive relations in
their consequents) can be distinguished as follows. Let x and y be appropriately
defined tuple variables, q(D) be the set of tuples constructed from constants in
D that have the same arity as (x,y) (the tuple formed by the concatenation of
x and y) and satisfy some qualification q, Q be a user-defined relation, x.att be
the attribute art of x, and g be a function from the set of tuples with the same
arity as (x,y) (domain) to the set of legal values for attribute att (range). A
derivation rule with a user-defined relation in its consequent defines elements of
that relation and has the general form

(x ,y) C q(D) ~ x e Q. (4)

Since the database contains only positive facts, multiple rules that declare mem-
bers of Q can never present a problem. To the contrary, a derivation rule with
equality (=) in its consequent defines elements of a function i.e., values of the
function on specific members of its domain, and has the general form 2

(x, y) e q(D) ~ x.att = 9(x, y). (5)

A function is constrained to return a unique value for every member of its
domain. When multiple rules give values to x.att in their consequents, they
effectively define a function in a piecewise fashion. Inconsistency arises when a
tuple X satisfies the antecedents of multiple rules, and the g functions used by
the rules give different values on X. It can also arise within a single rule when
a tuple X satisfies the rule's antecedent in association with multiple Y's, and the
g function used by the rule gives different values for different Y's. For every
such tuple X, the system must assign a value to X.att based on those returned
by all qualifying rules and for all qualifying Y tuples.

There a re several criteria that can be used in determining attribute values
when inconsistencies arise. In the next subsection, we give a brief overview of
the criteria used by some existing systems and other related work. In the section
after that, we develop a framework that subsumes all currently used criteria and
also introduces some new ones that capture the rule semantics in cases where
the known solutions fail.

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 249

2.3. Related work

To the best of our knowledge, the specific problem of resolving conflicts between
rules deriving values for a virtual attribute has not been directly addressed in
the context of deductive database systems. Similar problems, however, arise in
systems supporting production rules, in handling inconsistent logic programs, and
in handling multiple inheritance in generalization hierarchies.

Much of the work on resolving rule inconsistencies has been done in the
context of expert systems that use production rules, i.e., condition-action pairs. In
such systems, inconsistency arises when from a set of qualifying rules, precisely
one has to fire. Then, conflict resolution of the form discussed in this paper is
needed. Production rules can be used to imitate functional derivation rules: the
action part of the rule can be an assignment of a value to a virtual attribute.
Hence, conflict resolution is a common problem to both types of rules, and
solutions to one of them are often applicable to the other one as well.

We are aware of two solutions currently in use for production rules, one
that is best exemplified by the OPS5 system (Forgy, 1979) and another that is
best exemplified by the Postgres system (Stonebraker, et al., 1988). OPS5 uses
an elaborate criterion to resolve conflicts, which takes into account structural
properties of the rules and other properties of the data involved. These include
the complexity of the antecedents of the rules, the recency of the rules in
conflict, and the recency of the tuples satisfying the rules. If the conflict cannot
be resolved based on any of these properties, a rule is chosen arbitrarily, so that
it is guaranteed that a single rule will fire.

Postgres, which is an extended relational database system supporting production
rules, uses a very simple criterion at the expense of making the rulebase design
more complicated. Each rule is assigned a priority. When rules are in conflict,
the one with the highest priority is chosen. The main disadvantage of this method
is that it puts the burden of assigning rule priorities to the rulebase designer.
This approach is also taken by other recent extended relational database systems
supporting production rules, such as Starburst (Widom, et al., 1991) and Ariel
(Hanson, 1992). Further details on the techniques used in both OPS5 and
Postgres are presented in Section 4.

The work on inconsistent logic programs is also related to the theme of this
paper. The primary goal of such work is to present nontraditional logics that
handle inconsistent beliefs. The essence of much work in that area is to define
a multivalued logic and provide enhanced semantics so that resolution can be
performed in such logics. Prominent examples of such investigations are those
by Kifer and Lozinskii (1989) and Blair and Subrahmanian (1989). These offer
insights on what the semantics of inconsistent programs should be, but are
more applicable to logic programs where query answers can be disjunctive. For
example, considering the enhanced, inconsistent, set of rules of Section 1, the
answer to the question on the color of the shirt of Jane Blue could be "red or
blue." In a traditional database context, which is the environment of interest in

250 I O A N N I D I S A N D S E L L I S

this work, attribute values must be atomic, so the above approaches are not very
helpful.

Finally, similar problems arise in resolving multiple inheritance in generalization
hierarchies. Borgida addresses the issue in the form of exception handling, and
defines semantics for a language that explicitly captures contradictions in an
inheritance hierarchy (Borgida, 1985, 1988).

3. A general framework for resolving conflicts

3.1. Notation and resolution algorithm

For the remainder of this paper, we use the general form of (5) for functional
derivation rules. Consider the following set of functional derivation rules assigning
values to the same attribute of a tuple (relation):

r l :

7"2 :

(x, yl) e ql(D) ---* x.att = fl(x, yl),

(x, y2) e q2(D) --~ x.att = f2(x, y2),

rm: (x, ym) e qm(D) ~ x.att = fm(x, ym).

In each rule, x is a tuple variable ranging over the relation whose virtual attribute
is defined by the rule, whereas each y~ is a tuple variable representing the
combination of the remaining nonjgrimitive relations that appear in q/. Without
loss of generality, we assume that the attributes of x and y~ that appear in the
antecedent of r~: are not virtual, i.e., they are not defined by another set of rules.
Otherwise, the relevant rules can be appropriately composed so that a rule set
with the above property be obtained.

Every attribute of a relation can be thought of as a function from the tuples
in the relation (domain) to the legal values of the attribute (range). Given a
tuple as input, the function returns the value of the attribute as output. Assume
that the function corresponding to attribute art is f. Let SAT(X) be the set of
rules generating values for att whose qualifications are satisfied by tuple X, i.e.,

SAT(X) = {ri I3Y such that (X ,Y) E qi(D)}.

Given a tuple X , f (X) is calculated based on the values in { f i (X , Y) I r i c
SAT(X)} . This calculation is represented by a function u (u for unique), which
is associated with the virtual attribute att and determines its value based on all
the generated values. Specifically, given a tuple X and a query on f (X) (that
is on X.att), if conflict arises, the necessary information is given as input to u,
which then computes the value of f (X) and returns it as the answer to the
query. In general, u is a user-defined function and depends on the semantics

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 251

of art. Section 5 contains some proposals on how u can be specified by the
rulebase designer. The system can have a default function u, which is applied
when nothing has been specified.

Based on the above formulation, u may be an arbitrary function. We expect,
however, that in most cases, the semantics of the data will be such that it will
be quite simple. In addition, the information considered by u may be dynamic
or static, i.e., it may or may not depend on the current database state. In the
former case, u may have to access the database or some statistics about the
database kept in the catalogs. In the latter case, conflicts can be resolved during
a preprocessing phase, so that no access to the data is needed at query time.

3.2. Classification of resolution criteria

Assigning a unique value to a virtual attribute using the values returned by all
qualifying rules may be done according to many criteria. These can be broadly
classified based on two aspects of them. First they are divided into choice criteria
and combination criteria. When a choice criterion is applied, the value assigned
to the virtual attribute is one of those returned by the qualifying rules. When a
combination criterion is applied, the value assigned may be an arbitrary function
that potentially takes into account all the values returned. Intuitively, the above
distinction may be seen as one rule firing in choice criteria versus all rules firing
in combination criteria.

Second, criteria are also divided into value-based, rule-based, and mixed criteria
(where mixed criteria are combinations of the other two types). When a
value-based criterion is applied, the value assigned to the virtual attribute is
determined based on properties of the generated values themselves. When a
rule-based criterion is applied, the value assigned is chosen based on properties
of the rule that generates the value. Rule-based criteria are further divided into
user-specified and intrinsic criteria. In the former, a rule is chosen based on
information that the user associates with the rule. In the latter, a rule is chosen
based on the form of the rule itself, particularly its antecedent and the set of
tuples that satisfy it.

An interesting question that arises from the above is how the two classifications
are related. Clearly, value-based criteria can be either choice or combination
criteria. However, rule-based criteria can only be choice criteria. Since the rule
alone determines the assigned value, that must be the value generated by the
rule. All the above classes of criteria and their relationships are captured in an
inheritance-style hierarchy in Figure 1.

In general, there exist applications requiring the use of any combination of
the above types of conflict resolution criteria. Although the appropriateness
of a criterion depends on the specific semantics of the virtual attribute, there
are certain differences among the various categories mentioned above that are

252 IOANNIDIS AND SELLIS

ARBITRARY

CHOICE

CHOICE
RULE-BASED VALUE-BASED

USER-DEFINED INTRINSIC

COMBINATION

I
COMBINATION
VALUE-BASED

Figure I. Classification of conflict resolution criteria.

helpful in identifying the type of criterion required. One such issue is difficulty
of rulebase design. By definition, user-specified rule-based criteria leave much of
the responsibility of resolving conflicts to the rule designer. Each rule must be
associated with the appropriate information so that at conflict resolution time,
the appropriate rule is chosen. When dealing with large rule-bases, this processes
is quite sensitive and leaves the door open for errors to enter the system. In
addition, when rules are composed, a special theory has to be developed for the
calculation of the information that will be associated with the composite based
on the information available for the base rules. As experience has shown, this
is a nontrivial task, and most likely the results are ad-hoc (Shortliffe, 1976).
Intrinsic and value-based criteria do not use any information supplied by the
rule designer, and are therefore more robust and do not present the composition
problem.

Another and more important issue is resolution granularity. In rule-based
criteria, the smallest granule of resolution is the rule: rules are compared and
one is chosen independent of the individual tuple X whose virtual attribute is
being filled. In value-based criteria, the smallest granule of resolution is the tuple
(X, Y): the result is based on the final values produced for the virtual attribute,
which in turn depend on the specific tuples X and Y. Hence, value-based criteria
provide a much finer distinction among conflicting values. Based on the above
property, one can prove the following statement, which characterizes the cases
where rule-based criteria can be used.

PROPOSITION. Consider a set of rules that defines the function f(x), whose
consequents correspond to the set of functions {fi(x, y) I 1 < i < m}. Rule-based
criteria may be used for the computation of f(x) if and only if (a) there is a
functional dependency x --, y from x to y, or (b) for each rule ri, either fi is
not a function of y or q~ can only be satisfied by a single instance of y.

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 253

Proof Assume that there is a functional dependency x ~ y. Then, for all
1 < i < m and any tuple X, there is a unique tuple Y such that (X, Y) satisfies
the antecedent of ri. This further implies that, for each tuple X, there is a
unique value generated by r; and the rule-based resolution is adequate. Similarly,
assume that for each rule ri, either fi is not a function of y or qi can only be
satisfied by a single instance of y. In the former case, for each X, there is a
unique value that fi generates independent of Y. In the latter case, there is only
one Y that can be used in association with any X, so again only one value is
generated by rl. Therefore, in all cases, rule-based resolution is again adequate.
For the only-if part of the statement, one can follow the proof above in reverse
order.

Based on the above discussion, we believe that value-based criteria are the
most desirable. There are several examples of applications in the rest of the
paper where the desirability of such criteria is demonstrated. Strangely enough,
to the best of our knowledge, our work (Ioannidis and Sellis, 1989) has been the
only study that considers resolving conflicts based on the candidate values for the
virtual attribute. All other works have concentrated on various forms of rule-
based criteria. Part of the reason may be that, in principle, value-based criteria
require extensive interaction with the database at run time to resolve conflicts
and are therefore computationally more expensive than rule-based. Specifically,
value-based criteria require that all applicable rules are processed and then a
value is computed, whereas rule-based criteria first choose a rule among those
applicable and then process that rule alone. We do show, however, in Section 6.1
several cases of value-based criteria that can be managed at compile time, thus
making them computationally attractive as well.

3.3. Resolution criteria

In this subsection, we examine several types of criteria, giving some insights
into how u may operate in each case, together with some examples intuitively
falling into the specific case. For ease of presentation, we always assume that
precisely two rules are inconsistent. Generalizing the discussion to more than
two conflicting rules is straightforward.

3.3.1. User-specified rule-based criteria. Such criteria are already being used
by existing systems (Stonebraker, et al. 1988), and in our opinion, are the least
desirable. The reason has been discussed in Section 2.3: in addition to specifying
a function u for every virtual attribute, the rulebase designer has to deal with
properties of each rule individually, which with few exceptions would otherwise
be unnecessary. Moreover, this criterion requires a good knowledge of the
results of the rules in advance, at rule design time, so that their properties can
be specified accordingly.

254 IOANNIDIS AND SELLIS

Figure 2. Qualification inclusion.

The most straightforward example is assigning priorities to rules, which is
the hard-wired conflict resolution scheme in Postgres (Stonebraker, et al. 1988).
Among the qualifying rules, the one with the highest priority is chosen by u. If
x is the tuple variable ranging over the relation of the virtual attribute, then the
rule of choice rj must satisfy

rj C S A T (x) and priority(rj) = max({priority(ri) lri C SAT(x)}) . (6)

Another rule property that might sometimes be useful in resolving conflicts is
certainty factor. Several expert systems, e.g., MYCIN (Shortliffe, 1976), do not
trust all rules alike and assign certainty factor to them. A reasonable way
to resolve conflicts is to use the value returned by the most trustworthy rule.
Systems that do assign certainty factors to rules and want to use the one with
the highest certainty factor in case of conflict, essentially use formula (6) as their
choice criterion with certainty factor replacing priority.

3.3.2. Intrinsic rule-based criteria. In this case, rules are distinguished based
on their antecedents. Function u takes as input the sets of tuples that qualify
under each rule, and based on some properties of the sets, chooses to apply one
of the rules. Some intuitive functions that could play the role of u are discussed
below.

Antecedent inclusion. Suppose that for all databases D, q2(D) C_ ql(D), i.e., the
antecedent of r2 is strictly less general than that of rl. This inclusion holds at the
expression level, and it does not depend on the database contents. We believe
that the intuition behind the two rules is that the more general one applies only
when the less general one does not. Schematically, rt actually applies in the
region between the borders of qz and ql, i.e., in the region of ql - q2 (Figure 2).

One could define the two rules in a nonconflicting way by using "ql A not(q~)"
as the antecedent of rl. In the case of a chain of rules, each one of which is less
general than the other, the size of the antecedent of each rule increases by a
factor of 2. In addition to the task of the rule designer becoming more tedious,
the possibility of errors increases as well. For all these reasons, it is preferable
to define the rules in a conflicting way and resolve the conflicts at a higher level.
Using the x tuple variable again, the least general rule rj is identified based on
the condition

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 255

Figure 3. Size minimization.

qj(D) = min({qi(D) lri E SAT(x)}) , (7)

where rain is with respect to _C in (7).
Alternatively, one can approach this criterion by interpreting the less general

rules as exceptions to the more general ones. Normally, f l is used, with an
exception when q2 holds, in which case f2 is used. As an example, consider a rule
that specifies that "all professors teach 3 semester courses per year" and another
one that specifies that "the chairman teaches 1 course per year." Intuitively,
the second rule is interpreted as an implicit exception to the first one, so that
the chairman, who is also a professor, only teaches one course. This exception
mechanism is captured by f if it is defined by (7). In general, the antecedent
inclusion criterion is not always applicable, since conflicts may arise between
rules whose antecedents are incommensurate. Whenever applicable, however, it
seems to be the right choice.

Size minimization. A similar criterion, based on the same intuition about excep-
tions, uses the sizes of the qualifying sets of the two rules. The less restrictive
rule, i.e., the one satisfied by more tuples in the database, applies only when the
more restrictive one does not. As in the antecedent inclusion case, schematically,
rl applies in the region of ql - q2 (Figure 3).

Again the main reason to define rules so that they conflict is convenience.
The more restrictive rule is interpreted as an exception to the less restrictive
one, and it is used whenever it is applicable. If rj is the rule of choice, then it
satisfies

rj E SAT(x) and size(qj(D)) = min({size(qi(D)) lrl E SAT(x)}) , (8)

where rain is with respect to integer inequality _< in (8).
As an example, taken from the Greek military conscription law, consider a rule

that specifies that "all married males with one child serve in the army for 1 year"
and another one that specifies that "all males who are Jehovah's witnesses serve
for 4 years" (without ever carrying a gun). There are many more people with
one child than there are Jehovah's witnesses in Greece. Intuitively, the second
rule is interpreted as an implicit exception to the first one, so that a Jehovah's
witness that has one child is required to serve for four years. This exception
mechanism is captured by f if it is defined by (8).

256 IOANNIDIS AND SELLIS

Clearly, if antecedent inclusion is satisfied, then size minimization is as well.
The former is a stronger requirement than the latter. In some sense, size
minimization is more desirable, since it is more likely to produce a resolution
to the conflict, and simultaneously less desirable, since it may fail to capture the
intuition behind the rules, if the two sizes are about the same. This may be
avoided if one requires that there is a substantial difference between the two
sizes, by defining u appropriately.

3.3.3. Choice value-based criteria. In current systems, conflicts are never resolved
according to the values given to the virtual attribute by the rules. There are
several applications, however, where the values returned by the rules are the
decisive factor on which rule to apply. For example, optimization problems can
be formulated as a function f (the value of the virtual attribute) being optimized
according to some criterion, e.g., minimized, maximized. The rule to be used
should be the one that achieves the optimal value for f . No other resolution
scheme can achieve the same semantics.

As a concrete example, consider a car dealership that uses a rule that specifies
that "all cars under 1 year old are 100% warranted" and another rule the specifies
that "all cars that have been driven more than 5000 miles are 50% warranted."
For a car that is less than one year old but has been driven 8000 miles, the dealer
uses clause like "whichever comes first," which can be translated to "whichever
produces the least coverage." That is, conflicts are resolved based on the value
of coverage percentage, and in particular by using the rule that provides the least
coverage. For this example, u is rain, and the criterion can be represented as

coverage(x) = rnin(.[coverage~(x)]ri e SAT(x))) ,

where again x is the tuple variable ranging over the relation with the coverage
attribute. Note, that a customer-chosen conflict resolution scheme would choose
the rule providing the maximum coverage! This further supports our claim
that only the semantics of the virtual attribute determines the correct conflict
resolution scheme.

3.3.4. Combination value-based criteria. There are several applications whose
semantics require that the value of a virtual attribute is not chosen from the values
generated by the qualifying rules, but that it is determined by some computation
that takes into account all these values. Such cases can be handled by combination
criteria, which allow arbitrary computations for the virtual attribute value. As
mentioned above, such criteria are always value-based or mixed.

As a concrete example, consider a distributed consensus problem, where many
different sources offer a value for a certain parameter. This process can be
formulated with several rules, each representing one of the different sources,
assigning a value to an attribute representing the parameter. The final value of
the attribute may be determined from the proposed values according to some

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 257

arbitrary criterion, e.g., taking the average of all values except the greatest and
the smallest.

3.4. C o m m e n t s

The moral one can draw from the above discussion is that there is no universal
criterion that can be assumed as the default, which systems can apply without any
user-provided knowledge about the semantics of the data. Moreover, the various
types of criteria specified are independent of each other. For example, a system
that assigns priorities to rules and uses (6) to resolve conflicts cannot always
capture the semantics of resolving conflicts by choosing the rule that produces
the minimum value. In the car dealership example used in Section 3.3.3, one
may argue that if one assigns higher priority to the rule that provides only 50%
coverage than to the one that provides 100% coverage, conflicts are resolved by
choosing the first rule as desired. If, however, the rules were of the form "all
cars lose 10% of their warranty per year as they age" and "all cars lose 10%
of their warranty per 5000 miles they make," it would be impossible to achieve
the same conflict resolution by using priorities, simply because the rule results
depend on the specific values of age and mileage of the car.

4. Case studies

In this section, we present several inconsistent rule sets and show how they are
handled by previous proposals as well as our approach.

Example I (Stonebraker, et al. 1988). Suppose that a relation E M P (n a m e , age, sal)
is given, where sal is an attribute whose value may be stored explicitly or may be
virtually defined. Assume that the following two rules, rl and r2, derive Mike's
salary:

rl : E M P (n a m e , age, sal) A E M P (n a m e l , a g e l , s a l l) A n a m e = "Mike" A
n a m e l = "Bill" ~ sal = s a l l ,

r2 : EMP(name , age, sal) A E M P (n a m e l , a g e l , s a l l) A name = "Mike" A
n a m e l = "Fred" ~ sal = s a l l .

We look first at the solution Postgres offers for these two conflicting rules. Rules
are associated with priorities, and in the case of a conflict, the rule with the
highest priority is chosen to fire. To avoid inconsistencies, rj is given a priority
of 5, while r2 is given a priority of 7 (Stonebraker, et al. 1988). Asking for
Mike's salary returns Fred's salary.

Under our framework, both rules represent distinct points in the EMP x EMP
data space, and any intrinsic conflict resolution scheme is useless. Assuming

258 IOANNIDIS AND SELLIS

name

hotshot

bigshot

Figure 4. Qualifications of rules r3-r6.

r 3 r4

40 age

r5

r6

also that the salaries produced by the rules do not affect the decision on the
final value, a user-defined rule-based criterion based on priorities is reasonable.
Hence, if x ranges over EMP, x. sal is set by the rule rj that satisfies the following:

rj C S A T (x) and priority(rj) = max({pn'or/ty(r3 I r ~ ~ e S A T (x))) .

The effect of such an assignment is exactly the same as with the Postgres rules.

Example 2 (Stonebraker and Rowe, 1986). Suppose that a relation EMP(name,
age, salary, desk) is given, where desk is a virtual attribute defined as follows:

r3 : EMP(name, age, salary, desk) A age<40 ~ desk = "steel."
r4 : EMP(name, age, salary, desk) A age>40 ~ desk = "wood."
rs : EMP(name, age, satary, desk) A name = "hotshot" ~ desk = "wood."
r6 : EMP(name, age, salary, desk) A name = "bigshot" ---+ desk = "steel."

Assuming that "hotshot" is 32 years old, there is an inconsistency in the above
rules (r5 and r3).

For this example, Stonebraker et al. (1988) suggest to give priority 1 to r3 and
7"4, and priority 2 to ~'5 and r6 (Stonebraker and Rowe, 1986). Hence, "hotshot"
is assigned a wood desk, since r5 has higher priority than r3.

It is clear, however, that the information about "hotshot" corresponds to a
fact known to the rule designer. In the EMP data space, the qualifications of
the above rules are shown in Figure 4 (for simplicity, we only show the age and
name coordinates).

One can see that rule r5 corresponds to a line while rule r3 defines a much
larger area. Hence, use of priorities is unnecessary; the semantics of the rules

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 259

imply that conflicts can be resolved by size minimization of the qualifying sets
of tuples using formula (8).

Example 1 shows that the priority-based resolution scheme of Postgres can
be modeled under our framework, while Example 2 identifies cases where an
intrinsic rule-based criterion is much more appropriate than priorities. Next, we
present a more complicated example, where a combination of various conflict
resolution schemes is used.

Example 3 (Forgy, 1979). OPS5 is a production system and uses rules of the
following form:

x E q(D) --+ action(x).

Function action depends on the qualifying tuple that binds to x, and it can be
an insertion, deletion, modification, or execution of a general procedure. Tuple
insertions, deletions, and modifications make rules to fire (by satisfying their
antecedent), which in turn can create a cascade of rules becoming applicable to
fire. The problem of conflict resolution arises in OPS5 when multiple rules are
applicable to fire. The set of rules that is applicable to fire at any one time
is called the conflict set; a rule is in the conflict set, if there is some x in the
database that makes the antecedent of the rule true. Note that the problem
faced by OPS5 is not precisely one of choosing among multiple values for a
virtual attribute, which is the main problem addressed in this paper. Solutions
to the former problem, however, could very well serve as solutions to the latter.
Thus, it is important to show that those solutions can be expressed in the general
framework of Section 3 as well.

An abstraction of the conflict resolution scheme used in OPS5 uses the following
criteria in the order they are given below. The exact algorithm is not presented
here because it makes use of details of the system that are of no interest to this
paper (Forgy, 1979).

1. choose the rule with the most recent tuples in q(D); if several are equally
recent

2. choose the rule with the highest number of literals; if several have the same
3. choose the rule with the highest number of constants; if several have the same
4. choose the rule introduced in the conflict set most recently; if several are

equally recent
5. choose an arbitrary rule.

We see that OPS5 uses a mix of time-based and size-based criteria. Rules 1 and
4 depend on the time the tuples were produced and the time the rules were put
in the conflict set respectively. Rules 2 and 3 compare syntactic characteristics
of the rules to indirectly capture differences in the sizes of the qualifying sets.

260 IOANNIDIS AND SELLIS

Maximizing the number of literals or constants is an approximation of minimizing
the size of the sets qi(D).

Assume that tuples are assigned timestamps when they are inserted into the
database, while rules are assigned timestamps when they are put in the conflict
set. Let time be the function that returns the timestamp associated with its input.
The above criteria can then be modeled in our general framework as follows
(for brevity we give only the criterion function, not the whole u function):

1. max(time(qi(D)))
2 and 3. min(size(qi(D)))

4. max(time(rl))
5. random(ri)

Clearly, despite the complexity of the criteria used in OPS5, they can be easily
represented in the general framework that we have suggested, thus showing the
power of the mechanism.

Example 4 (Kung, et al., 1986). Last we present an example where a value-based
criterion is used for conflict resolution. Some implementations of heuristic search
of large graphs stored in a database have to rely on nonfunctional updates of
virtual attributes (Kung, et al., 1986). Suppose that a map is recorded in the form
of a directed graph in a relation MAP(source, dest, cost). Attribute cost represents
the cost of the arc (source ~ dest). The problem is to find the least expensive
path between two nodes "start" and "finish." This is done with the help of a
relation STATES(dest, cost), which records the least cost of going from "start"
to every node dest in the graph. The algorithm repeatedly updates the cost of
reaching a node dest with the cost of reaching a neighbor node sdest plus the
cost of going from sdest to dest. This is achieved by repeatedly using the single
rule.

r : STATES(sdest, scost) A MAP(msource, mdest, mcost)/x STATES(dest, cost)

Asdest = msource A rudest = dest --~ cost = scost + mcost.

Clearly, the basic step of the algorithm introduces nonfunctional updates. If the
node dest can be reached through multiple paths, rule r tries to assign conflicting
values to the cost of this node. The semantics of the update are such that the
minimum cost is chosen (Kung, et al., 1986). This semantics cannot be achieved
by any rule-based criterion, since all cost derivations are generated by a single
rule. Instead, a value-based criterion must be used, which is simply expressed
by associating with the virtual attribute cost of STATES the function

f (x) = min({fi(x, y)}),

where each f i (x , y) is in our case the value mcost+scost generated from one of
the various sdest nodes. The above method can be actually used in any kind of

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 261

search algorithm, such as A* and Branch & Bound, since it allows the user to
specify in a rigorous way what the choice criterion is.

5. Specifying conflict resolut ion criteria

In order for the above conflict resolution framework to be implemented in
a system, a language must be developed in which resolution criteria will be
expressed. Without proposing the syntax of a full language, in this section, we
focus on the problem of identifying the parts of a database with which such
criteria should be associated. In general, conflict resolution information can be
specified as a property of (a) the database schema or (b) the rules themselves.
In the former case, a resolution criterion is associated with the virtual attribute
in its schema definition, while in the latter case, it is associated with the rules
that try to assign values to it.

Note that the process of conflict resolution, as described in this paper, is very
similar to the process of inheriting values in object-oriented systems, and more
generally, handling generalization hierarchies. The two techniques mentioned
above, and detailed below, are related to the concept of static and dynamic
inheritance, as they try to resolve on conflicting values based on some static
(schema) or dynamic (rule modules or programs) information respectively.

5.1. Specifying resolution criteria in association with the schema

The first solution comes up naturally since we are limiting ourselves to rules
assigning values to virtual attributes; these attributes are specified in the schema
of the relations that contain them. As with integrity constraints, one can specify
in the schema the way conflicting values are to be used in order to derive a
single value for an attribute. For example, given the relation

EMP(name, age, sal, years_employed) ,

where sal is a virtual attribute, one can specify together with the type of the
attribute, one or more of the following

resolve on (
rule based on rain of antecedent size;
value based on min }.

The meaning of the first line is that rule-based resolution should be employed,
choosing the qualifying rule that has the fewest tuples satisfying its antecedent.
The second line indicates that value-based resolution should be employed, picking
the minimum among all generated values (i.e., salary values). The order in
which the above criteria are specified indictates the order in which they should

262 IOANNIDIS AND SELLIS

be applied. In the above example, if all applicable rules have qualifying sets of
the same size and the first criterion is ineffective, resolution should be made by
picking the minimum value.

A significant advantage of specifying resolution information with the schema, is
that rule compilation can take advantage of this information to produce efficient
code, in the same sense that integrity constraints can be used when compiling
programs to avoid illegal updates. In the case where rules are used in programs
to assign values to virtual attributes of relations (as has been the case with all our
examples), these programs can be compiled taking into account the information
available about conflict resolution. The idea is that all rules relevant to setting
the value of a particular attribute will be examined, and a "case" statement will
be built. Such a statement will examine the qualifications of all the rules that
may be applicable and among them enforce the conflict resolution criterion to
pick a single value (rule-based resolution), or combine the values (value-based
resolution). This certainly results to more efficient code, compared to compiling
each rule individually, since the conflict resolution code is included in the program
code and does not need to be applied every time a conflict arises. A question of
interest that also arises is how efficiently qualifications of rules can be checked;
we address this issue in the next section.

5.2. Specifying resolution criteria in association with the rules

The above way of specifying conflict resolution strategies is useful when all
applications written on the same database are to follow the same criteria for
selecting among conflicting values. This, however, may not always be true.
For example, consider two applications that use two different sets of rules to
assign salaries to employees. The semantics of one of them may require that
the minimum value among those generated by all qualifying rules should be
assigned each time, whereas the semantics of the other may require that the
maximum value should be assigned. Clearly, in such a case, different resolution
criteria must be associated with each rule set; associating them with the schema
is inappropriate.

We assume that rules are organized into rule modules. Modules define sections
of a rule program that contain rules referring to the same entities, or attempt
to solve the same problem. This implies that only rules within one module
should be considered when conflict resolution takes place. Hence, a user may
limit the scope of a conflict resolution criterion to a particular rule module that
is appropriate for a specific application. Obviously, by putting all rules into a
single module we have the same effect as having no modules at all. Deciding
the granularity of rule modules clearly depends on the application.

Given a rule module, resolution criteria may be declared and associated with
the module as in the previous subsection. In addition to what was given earlier,
the user has to specify which attribute is to be resolved using these criteria. As

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 263

an example, the following two modules are associated with different criteria to
resolve conflicts.

RULEMODULE RMI

rl : EMP(name, age, sal, years employed) A 15<_years_employed<_40 --~
sal = 3K,age +20K.

r2 : EMP(name, age, sal, years_employed) A 10<_years_employed~_25
sal = 4K,age -20K.

r3 : EMP(name, age, sal, years_employed) A 5 ~years_employed <_20 -~
sal = 5K,age -40K.

resolve sal on
rule based on rain of antecedent size;
rule based on max of priority;
value based on rain}

e n d m o d u l e

RULEMODULE RM2

7" 4 : EMP(name, age, sal, years_employed) A 20<age<30
sal = 3 K ,years_employed +20K.

rs : EMP(name, age, sal, years_employed) A 25<<_age<40
sal = 4 K ,years_employed - 20K.

1" 6 " EMP(name, age, sal, years..employed) A 35<age<50
sal = 3.5K,years_employed - 25K.

resolve sal on {
rule based on min of antecedent size;
value based on avg)

e n d m o d u l e

When a program uses one of these modules, conflict resolution will be made
according to the criteria associated with the module used. In addition, the
same compilation techniques with the ones described at the end of the previous
subsection apply here as welt.

In summary, conflict resolution criteria can be associated either with the
database schema or with rule modules, depending on the semantics of the
database and its applications. The design of languages for specifying resolution
criteria and the level of detail in which such specifications need to be made are
interesting issues of future research.

264 IOANNIDIS AND SELLIS

6. Rule indexing for efficient conflict resolution

In this section, we address the issue of efficiency in identifying the applicable
rules producing values for a virtual attribute of a given tuple. Moreover, we
address the issue of eff• in resolving conflicts among multiple such rules.
Given a large set of rules and a query asking for the value of a virtual attribute,
identifying the relevant rules is time consuming. Several proposals have been
suggested that speed up this process; some are based on putting special types
of locks on the relevant attributes, tuples, and/or relations and using the locking
mechanism to avoid looking at irrelevant rules (Stonebraker, et al., 1988); others
are based on indexing the antecedents of rules using multidimensional data
structures (Stonebraker, et al., 1987; Sellis and Lin, 1992). For the discussion
in this section, we assume that some form of multidimensional index is used to
index the antecedents of the rules, like an R+-tree (Sellis, et al., 1987).

6. I. Application of geometric indexing of rule regions to conflict resolution

Consider a set of rules assigning values to the same virtual attribute. The
antecedents of the rules define a multidimensional space whose dimensions are
the various relation attributes that participate in some restriction in at least one
of the antecedents. In this space, each antecedent specifies a region, within which
the corresponding rule is applicable, like in Figures 2 and 3. Conflicts arise
when two such regions from different rules overlap. If the space is indexed with
an R+-tree, it is divided into nonoverlapping regions which are in one-to-one
correspondence with the leaves of the index. Each leaf contains pointers to the
rules that are applicable in the corresponding region. When at run time the
value of the virtual attribute defined by the rules is requested for some tuple,
the index is probed, the set of rules satisfied by the tuple is identified, and
conflict resolution is applied on that set. For rule-based resolution criteria (both
user-defined and intrinsic), this will consist of identifying one rule from that set
and processing it. For value-based criteria, this will consist of processing all the
rules in the set and then identifying one value from the set of generated ones.
Clearly, it is desirable that the conflict resolution process is done at compile
time and that its result is incorporated into the index. Especially for value-based
criteria, which first process all applicable rules and then make a final choice for
the attribute value, tremendous savings can be realized if the index takes into
account the conflict resolution scheme, so that only one rule is processed.

Below, we attempt to characterize the conflict-resolution criteria that can
indeed be incorporated into an index so that at run time only the rule that will
generate the desired attribute value is processed. We examine each of the two
types of criteria (rule- and value-based) and discuss the run-time performance
savings in each case. In what follows, we assume that there are R rules defining
values for the attribute concerned and G regions in the space determined by the

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 265

antecedents such that in each region a different non-empty subset of the rules is
applicable. The above two parameters are related with the following inequality:
G < 2 R - 1 .

6.1.1. Rule-based criteria. This is a rather straightforward case, because the
complete information used for resolution at run time is available at compile time
as well. Moreover, no additional dimensions need to be added to the index.
For each region formed in the index, using the relevant rule properties, the
resolution criterion is applied on all the rules that qualify in the region. The
index then associates with that region a pointer to the rule chosen by the above
process alone instead of associating with it pointers to all qualifying rules. At
run time, the index will lead directly to the appropriate rule for processing.

The above holds for both user-defined and intrinsic criteria. The only differ-
ence between the two cases is that the resolution criterion itself may be more
complicated and time consuming in intrinsic criteria than in user-defined ones.
For example, in the size minimization (intrinsic) criterion, after the sizes are
obtained, the process becomes equivalent to resolution based on user-defined
rule priorities (where size plays the role of inverse priority). However, obtaining
these sizes requires that the rules be processed against the database first, an
operation that can be arbitrarily costly. Even if only estimates of the sizes
are obtained by using some database statistics, the overall cost will probably be
significantly higher. For the priority-based criterion, incorporating the resolution
strategy into the index will require O(GR) time, whereas if resolution was left for
run time, it would cost O(R) time for each probe. Hence, for heavily accessed
attributes, resolving at compile time based on rule priorities is beneficial, while
for lightly accessed attributes it is not. A similar trade-off exists for the size
minimization criterion as well.

The antecedent inclusion (intrinsic) criterion is rather interesting with respect
to its cost. In general, antecedent inclusion is an NP-Complete problem (Chandra
and Merlin, 1977; Aho, et al., 1979), which would imply that the whole criterion
is rather costly. However, in order for this criterion to be adequate for resolving
conflicts between any pair of the available rules, the entire set of rules must form
a linear chain with respect to antecedent inclusion. In this case, there is only
a linear number of regions formed in the index, and resolution for all of them
can be achieved by sorting the rules based on their antecedents. Assuming an
exponential algorithm for antecedent inclusion, that would require o(2LRlog tzt)
time, where L is some metric of the size of the rules. Observe that the cost per
probe for run-time resolution would be O(2LR). Hence, in this case, it is almost
always beneficial to incorporate the resolution in the index at compile time.

6.1.2. Value-based criteria. This is a much more complex case than the previous
one, which on the other hand offers the opportunity for significantly higher savings
when certain conditions hold. The main difference from the previous case that
introduces the added complexity is that the information used for resolution at

266 IOANNIDIS AND SELLIS

run time is not readily available at compile time. That is, the candidate attribute
values generated by the rules are unknown. Moreover, there may be many
values generated by the same rule for a given tuple. Not only do the above
characteristics increase the time complexity of resolving conflicts at compile time
and incorporating the result into the index, but they also make such resolution
quite often impossible. Precisely characterizing when this is possible is a rather
hard problem on which no formal results have been obtained. The following
discussion provides some insight into the problem and we believe points to some
quite useful special cases.

With few exceptions, compile-time value-based resolution is possible only with
choice criteria. Otherwise, if u returns the result of some manipulation of several
of the generated values, then by definition, it is not one rule that should be
processed at run time, but many. The exceptions are quite rare and represent
cases where a new rule can be constructed that replaces the original ones, e.g., if
u returns the average value in its input set and all rules generated a single value
for each tuple. In the rest of the discussion, we only consider choice criteria.

A major difference between value-based and rule-based resolution is that, in
the former, there is no unique rule that is chosen for each of the regions in
the index defined by the antecedents of the rules. The rule of choice depends
on the input parameters of the fi functions, and these parameters should be
represented as additional dimensions in the index (if they are not already there).
Thus, compile-time resolution in this case consists of identifying regions in the
expanded space where a unique rule can be chosen to be processed at run
time. Abstractly, this process will be done separately for each of the original
regions of the index and will involve identifying nonoverlapping regions in the
corresponding subspace of the newly introduced dimensions. Since function u
and the fi functions may have arbitrary forms, this region identification (and
therefore for whole concept of value-based, compile-time resolution) is not always
possible.

Despite the above, there are many practical cases where u and the fi functions
are of simple enough form that compile-time resolution is achievable. In the
remainder of our discussion, we concentrate on a very common case, where
the virtual attribute is numeric and u returns a value based on the total order
of the real numbers, e.g., u is rain, max, or median. Even for this small
(but important) subclass of functions, there is no guarantee that the region
identification mentioned above can be done. For example, with u =rain, the
problem is reduced to solving the equations that equate each pair of the fi
functions and then using the roots as the region borders determining where each
function generates indeed the minimum. This is not doable, however, if these
equations cannot be solved, e.g., if some of the fi functions are polynomials of
degree higher than 4. Our belief is that, in most applications, the fi functions
will not be very complex, and that analytical ways will be available for region
identification. Below, we concentrate on one such example, where all the fi
functions are linear and have a single common input attribute.

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 267

For the special case mentioned above, we investigate the time complexity
of value-based, compile-time resolution. Because of the simple form of the
fi functions, the number of regions identified by pairwise comparisons of the
functions (intervals on the real line) is at most R (R - 1)/2. These regions
will be merged with the original regions in the index determined by the rule
antecedents. Therefore, the complexity of the process is O(GR2). When all
rules are applicable in the entire space defined in the original index (i.e., when
no rule has a nontrivial antecedent), the choice function is min or max, and the
fi functions are linear and have a single common input attribute, compile-time
resolution is quite efficient. Based on the algorithm and analysis above, the
overall complexity would be assumed to be O(R 2) since G = 1. However, one
can show that there are at most R regions that are of interest, which can in fact
be identified in expected time that is linear in the number of rules, so that the
overall expected complexity is brought down to O(R).

Hence, we see that value-based resolution is not always possible, and whenever
it is, it is more expensive than the other type of resolutions. However, the
savings realized by not having to process multiple rules at run time for each
probe to the virtual attribute, should more than offset the time spent in setting
up the index.

6.2. An example

To illustrate the process of compile-time conflict resolution, we present a simple
example where conflicts are resolved by choosing the minimum value among those
generated by the conflicting rules. We chose a value-based criterion, because
as mentioned above these are the most complex. Consider the following three
rules, which are similar to those used in Section 5.1:

r~ : EMP(name, age, sal, years._employed) A

r2 : EMP(name, age, sal, years_employed) A

r3 : EMP(name, age, sal, years employed) A

30 <_years..emplo yed < 60
sal=3K,age +20K.

20<_years_employed<50
sal =4 K ,age -20K.

O<_years_employed < 40
sal= 5K ,age -40K.

The antecedents define a 1-dimensional space (onyears..employed), and the regions
defined by them are shown in Figure 5. The three functions in the consequents
of the rules are plotted in Figure 6. The values of age where these functions
cross over each other are as follows: for f~,f2 it is age=40; for f l , f3 it is age=30;
and for f2, f3 it is age=20. Adding age as a dimension in the space of Figure
5, and taking into account the crossover points of the three functions, we have

268 IOANNIDIS AND SELLIS

r l
(

1"2
r)

r 3

I , ,

0 10 20 30 40 50 60 years

Figure 5. Regions of rules before conflict resolution.

salary.

0

Figure 6. Plots of functions.

r3

r2

r l

A

10 20 30 40 50 60 70
)

age

three new regions, which are now nonoverlapping. This is shown in Figure 7.

Given any tuple at run time, i.e., any specific values of years_employed and age,
there is a unique region that it falls in, i.e., there is a unique rule associated with
it. This rule can be identified very fast by using an index on the nonoverlapping
regions of Figure 7. This results in avoiding any extra work associated with
trying all applicable rules and applying the conflict resolution scheme.

7. Conclusions

In this paper, the problem of modeling conflict resolution schemes for inconsistent
sets of virtual attribute rules has been addressed. We have presented a general
framework that captures all previously suggested solutions as well as some new
ones that we have proposed, thus proving its usefulness in a database context.
We have also argued that simple solutions, such as hard-wired priorities, are not
always useful, and that often user-defined schemes must be specified for successful
conflict resolution according to the virtual attribute semantics. Finally, we have
studied the use of multidimensional indices in performing conflict resolution

SUPPORTING INCONSISTENT RULES IN DATABASE SYSTEMS 269

age

40

30

20

.................. t

r 2

T3

10 20 30

Figure 7. Regions of rules after conflict resolution.

I
40

r l

5o 60 years

at compile time, which when applicable may have significant implications on
run-time performance.

We believe that more work is needed in the direction of obtaining a better
understanding of the conflict resolution problem and devising better techniques
for it. As future interesting problems we view the following.

1. The comprehensive study of storage structures that speed up the process of
conflict resolution, based on the discussion of Section 6. The work of Sellis
and Lin (1992) is a first step in this direction.

2. The investigation of implementation techniques for user-defined conflict res-
olution schemes, specified on each virtual attribute at schema definition time
and triggered when needed.

3. The application of these ideas to the general conflict resolution problem. For
example, conflicting integrity constraints must not exist in the system. Based
on our framework, one could possibly define conflicting integrity constraints,
allowing only one of them to be enforced in case of conflicts.

Notes

1. All relations appear in bold.
2. We employ the convention that the virtual attribute is always on the left-hand

side of = in the consequent of functional derivation rules.

270 IOANNIDIS AND SELLIS

References

Aho, A., Sagiv, Y., and Ullman, J. (1979). Equivalences among Relations Expressions. SIAM
Journal on Computing, 8, 218-246.
Aho, A. and Ullman, J. (1979). Universality of data retrieval languages. Proc. 6th ACM Syrup.
Principles of Programming Languages (pp. 110-117). San Antonio, TX.
Blair, H.A. and Subrahmanian, V.S. (1989) Paraconsistent Logic Programming. Theoretical Com-
puter Science, 68, 135-154.
Borgida, A. (1985). Language Features for Flexible Handling of Exceptions in Information Systems.
ACM Transactions on Database Systems, 10, 107-131.
Borgida, A. (1988). Modeling class hierarchies with contradictions. Proc. 1988 ACM-SIGMOD
Conf. Management of Data (pp. 434-443). Chicago, IL.
Chandra, A.K. and Merlin, P.M. (1977). Optimal implementation of conjunctive queries in relational
data bases. Proc. 9th Ann. ACM Syrup. Theory of Computing (pp. 77-90). Boulder, CO.
Forgy, C.L. (1979). On the Efficient Implementation of Production Systems. Ph.D. dissertation,
Carnegie-Mellon University, Department of Computer Science.
Hanson, E. (1992). Rule testing and execution in Ariel. Proc. 1992 ACM-SIGMOD Conf. Manage-
ment of Data (pp. 49-58). San Diego, CA.
loannidis, Y. and Sellis, T (1989). Conflict resolution of rules assigning values to virtual attributes.
Proc. 1989 ACM-SIGMOD Conf. Management of Data (pp. 205-214). Portland, OR.
Kifer, M. and Lozinskii, E. (1989). RI: A logic for reasoning with inconsistency. Proc. 4th Syrup.
Logic in Computer Science (pp. 253-262). Cambridge, MA.
Kung, R-M., Hanson, E., Ioannidis, Y., Sellis, T., Shapiro, L., and Stonebraker, M. (1986). Heuristic
Search in Data Base Systems. In L. Kerschberg (Ed.), Expert Database Systems, Proceedings from
the First International Workshop. (pp. 537-548). Menlo Park, CA: Benjamin/Cummings.
Nicolas, J.M. and Gallaire, H. (1978). Data Base: Theory vs. Interpretation. tn H.Gallaire and J.
Minker (Eds.), Logic and Data Bases (pp. 33-54). New York: Plenum Press.
Sellis, T. and Lin, C-C. (1992). A Geometric Approach to Indexing Large Rule Bases. In A
Pirotte, C. Delobel, and G. Gottlob (Eds.), Advances in Database Technology-EDBT '92, (pp.
405-420). Berlin: Springer-Verlag.
Sellis, T., Roussopoulos, N., and Faloutsos, C. (1987). The R+-tree: A dynamic index for multi-
dimensional objects. Proc. 13th Int. VLDB Conf. (pp. 507-518). Brighton, England.
Shortliffe, E.H. (1976). Computer-Based Medical Consultations: MYCIN. New York: Elsevier.
Stonebraker, M., Hanson, E., and Potamianos, S. (1988). The Postgres Rule Manager. IEEE
Transactions on Software Engineering, 14, 897-907.
Stonebraker, M. and Rowe, L. (1986). The design of Postgres. Proc. 1986 ACM-SIGMOD Conf.
Management of Data, (pp. 340-355). Washington, DC.
Stonebraker, M., Sellis, T., and Hanson, E. (1987). An Analysis of Rule Indexing Implementations
in Data Base Systems. In L. Kerschberg (Ed.), Expert Database Systems, Proc. from the First
International Conference, (pp. 465-476). Menlo Park, CA: Benjamin/Cummings.
Tarski, A (1955). A Lattice Theoretical Fixpoint Theorem and Its Applications. Pacific Journal of
Mathematics, 5, 285-309.
VanEmden, M.H. and Kowalski, R.A. (1976). The Semantics of Predicate Logic as a Programming
Language. Journal of the ACM 23, 733-742.
Widom, J., Cochrane R.J., and Lindsay, B.G. (1991). Implementing set-oriented production rules
as an extension to Starburst. Proc. 17th VLDB Conf., (pp. 275-285). Barcelona, Spain.

