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Abstract. Many aspects of database systems have been improved by Graphical User Interfaces (GUIs). One 
area that has not received adequate attention in GUI research is the visual presentation of schemas, despite 
the increasingly important role that schemas play in database design and operation. Schema visualizations 
are valuable for viewing and manipulating both the schema and the information captured by it. In this 
paper, we describe a framework that formalizes the process of visualizing database schemas or any similar 
structured information. It is based on the concepts of  a data model capturing schemas, a visual model capturing 
visualizations, and a visual metaphor that defines a mapping between the two models. This formal description 
of the mapping between a schema and its visualization permits straightforward declaration of visual metaphors, 
and provides criteria to evaluate metaphors as to their ability to correctly visualize a schema. Given a visual 
metaphor, the framework divides visual information into that which has meaning relative to the data model, 
that which has meaning to the user but not to the data model, and that which is only aesthetic. This separation 
permits better use of aesthetic information, resulting in richer visualizations. As a whole, we believe that the 
formalism provides the foundations on which better schema visualization tools can be built. 
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1. Introduction 

Graphical User Interfaces (GUIs) are playing increasingly important roles in Database 
Management Systems (DBMSs): improving ease of use through more intuitive operation 
and increasing information bandwidth from computer to user through visual display of 
information. Research in this area has touched upon many aspects of DBMSs, includ- 
ing visual DBA tools (Benjamin and Lew, 1986), non-textual specification of queries 
(Batini, et al., 1991; Cruz, 1992), displaying and querying multimedia and visual infor- 
mation (Egenhofer and Frank, 1988; Gupta, Weymouth, and Jain, 1991; Leong, Sam, 
and Narasimhalu, 1989; Yoon, et al., 1987), creating visual representations of complex 
data (Flynn and Maier, 1992; King and Novak, 1992; Maier, Nordquist, and Grossman, 
1986; Mamou and Medeiros, 1991), browsing through databases (Agrawal, Gehani, and 
Srinivasan, 1990; Motro, 1986; Stonebraker and Kalash, 1982; Tsuda, et al., 1990), and 
form-based data entry (King and Novak, 1987). 

One area that has not received adequate attention is schema visualization. Many DBMS 
GUIs allow non-textual specification and browsing of schemas, but they focus on other 
aspects of DBMS operation and not schema visualization per se. The majority of these 
systems are limited to a single visual metaphor; they do not permit visualization flex- 
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ibility. Issues of efficient, flexible, and usable schema display are important, yet have 
received little attention in existing systems. 

A database schema describes the conceptual structure of data stored in a DBMS. Tra- 
ditionally, schemas have been visualized textually as expressions in a data definition 
language and have been used for database design. Schema visualization is crucial in 
the database design process, where an unintuitive display can result in misunderstand- 
ings and design errors. In some systems, schemas play a role beyond that in database 
design. Many DBMS GUIs also use the schema as a template for operations such as 
querying, browsing, data entry and display (e.g., GOOD (Paredaens and Van den Buss- 
che, 1992), GORDAS (Elmasri and Larson, 1985), GUIDE (Wong and Kou, 1982), QBE 
(Zloof, 1975), QDB* (Angelaccio, Catarci, and Santucci, 1990), VILD (Leong, Sam, and 
Narasimhalu, 1989), and many others). Our own work focuses on scientific databases 
and experiment management systems (in the context of the ZOO Experiment Manage- 
ment System (Ioannidis and Livny, 1992; Ioannidis, et al., 1993). In these systems, the 
schema describes the structure of experimental data, and as such can capture the interre- 
lationships between different parts of an experiment. A good visualization of a schema 
can aid users in better understanding the experiment and its significance, useful not only 
for human-computer interactions but also for collaborations among scientists. We are 
working to improve visualization of schemas to assist their use in these various roles. 

To better understand and support the process of schema visualization, we develop a 
formalism with the following main elements: 1) a data model that captures schemas, 2) 
a visual model that captures visualizations, and 3) a mapping between data and visual 
models, referred to as a visual metaphor. In the interface community, the term metaphor 
has been used in a variety of ways, generally describing a transformation between abstract 
and visual information (Batini, et al., 1991). i The abstract information of concern to us is 
the database schema. Examples of visual metaphors for schemas include directed graphs, 
E-R diagrams, and textual tables. Clearly, these metaphors have different characteristics, 
and would be useful in different circumstances. In general, there is no ideal metaphor, 
thus metaphor choice is important. Unfortunately, no general metaphor selection criteria 
exist. For the specific case of database schemas (and similar structured information), our 
formalism is intended to provide a framework for flexible use, definition, and evaluation 
of visual metaphors. This formalism permits the declarative definition of models and 
metaphors, provides criteria for the identification of incorrect metaphors, and presents 
some guidelines for metaphor comparison. It supports mixed metaphors, the use of 
different visual metaphors for different parts of a single schema, establishing when and 
how metaphors may be mixed. Finally, the formalism allows the richness of some visual 
models to be used to capture information that is meaningful to the user but is beyond 
the database schema. We have begun implementation of a schema visualization tool 
based on this formalism. The tool displays and allows users to manipulate schemas and 
subschemas using different metaphors, and in the future will allow users to define models 
and metaphors dynamically. While our work is oriented towards database schemas, the 
formalism is also applicable to the visualization of any structured data that conforms to 
our definition of data models (which is found in the next section). 
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The rest of this paper is organized as follows. Section 2 describes data and visual 
models. Section 3 defines visual metaphors. Section 4 discusses correctness and quality 
of visual metaphors. Section 5 discusses mixing of metaphors. Section 6 describes 
how the metaphor framework may be used to capture information that is conceptually 
meaningful or aesthetically pleasing to the user, but is unrelated to the database schema. 
Section 7 describes related work in the area. Section 8 outlines future work and offers 
conclusions. 

2. Data and Visual Models 

For completeness, before presenting the definition of data and visual models, we briefly 
review some basic definitions and notations of binary relations which will be used later 
in the definition of visual metaphors. A binary relation r from set A (its domain) to 
set B (its range) is denoted r : A ~ B. The relation r is called a function if for 
each a E A there is at most one b E B where (a, b) E r; it is called total if for each 
a C A there is at least one b E B where (a, b) E r; it is called injective if its inverse is 
a function; and it is called onto if its inverse is total. Injective functions are sometimes 
called 1-1 functions. Binary relations can be unioned, in which case, their domains, their 
ranges, and the sets of pairs in the relations are unioned, respectively. For a function r, 
we use r(a) = b instead of (a, b) E r. Functions may be applied to sets of values; if 
A' c_ A, then r(A')  is equal to {r(a) I a E A'}. We also use r -1 to denote the inverse 
of a function r, which may return a subset of A if r is not 1-1. Finally, for a function r, 
the notation r(a) is valid even if there is no b E B where r(a) = b. In that case, when 
applying a set-valued function on r(a) ,  the empty set is returned. 

2.1. Problem Formulation 

By definition, a schema describes the conceptual structure of some information in a 
database, specified using the primitives of some data model (for clarity, such a schema 
will henceforth be referred to as a data schema). We are interested in the process of 
creating a visualization of a data schema. For this, we introduce the notion of a visual 
model. Like a data model, it describes the structure of some information, though its 
primitives are visual. As with data schemas, any visual representation that conforms to 
a visual model will be called a visual schema. Visual schemas are used for two basic 
operations: presenting data schema information in a visual form, and allowing creation 
or manipulation of a data schema through changes to a visual schema. 

Using the above notions, the problem of visual representation of data schemas may be 
stated formally as follows. Given a data model 79, let S(79) denote the set of valid data 
schemas that can be constructed based on that model. Similarly, let S(~)  denote the set 
of visual schemas that can be constructed based on a visual model G. The sets S(D)  and 
S(G) are defined to be the information capacities (Miller, Ioannidis, and Ramakrishnan, 
1993) of the data model 79 and the visual model G, respectively. In order to create visual 
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schemas of data schemas, we require a binary relation between 5'(79) and 5'(G), whose 
specific properties depend on the intended use of the visual schemas. Specifically, 

. If a visual schema of ~ is used only to view any data schema of 79 in its entirety, 
then an onto function must exist of the form f : S(G) --+ S(79), so that every data 
schema can be represented visually. 

. If, in addition, a visual schema of ~ is also used to update a data schema of 79, then 
a total onto function must exist of the  form f : S(G) --4 S(79), so that every visual 
schema can be uniquely interpreted as a data schema. 

Clearly, not all such functions f that satisfy the above properties are useful. Many 
are arbitrary mappings, with no obvious correspondence between the data schema and 
the visual schema. Our goal is to establish a relationship between the members of S(79) 
and S(G) so that when users view a visual schema, they can infer the data schema to 
which it maps. Thus, f should be derived from a correspondence between the features 
of the data and visual models, which would enforce a structural similarity between data 
schemas and visual schemas. This correspondence is a visual metaphor and is formally 
introduced in Section 3. A formal description of the features of data and visual models 
is given in the next subsection. 

We should mention at this point that the above problem formulation has been motivated 
by the very similar problem of mapping schemas and data between different data models 
in a heterogeneous database system (Miller, Ioannidis, and Ramakrishnan, 1993). The 
specific similarities and differences between the two problems are beyond the scope of 
this paper. 

2.2. A Formalism for Data~Visual Models and Schemas 

In this subsection, we present a meta-model that can capture a large and interesting class 
of data and visual models. Using this meta-model, we can describe the features of any 
model in this class and discuss the relative information capacity of any pair of models. 
Example models described in this meta-model are given in the following subsection. 

DEFINITION 1 Every data or visual model AA can be seen as a sextuple AA = <  79, 
.A, )2, Q, ~ ,  C > defined as follows: 

79 is a finite set of identifiers for the types of primitives in .hd. Each such type P is 
associated with a (possibly infinite) set of globally unique ids Z (P )  that can be used 
to identify primitives of type P. 

A is a finite set of identifiers for property names of primitive types in .M. Each element 
of .A is of the form P.A, where P E 7 9 and A captures some attribute that all 
primitives of type P should have. 

12 is a (possibly infinite) set of identifiers for values of properties of primitive types in 
3,t. Each element of 12 is of the form P.A = =  v, where P.A E A and v captures 
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some value that the/9.A attribute may have. For certain attributes, the values v may 
be drawn from the sets 2- 0 of primitive ids. 

Q is a function Q : 7 9 --~ 2 A, indicating for each primitive type P E 79 the set of 
attribute identifiers in .,4 that correspond to 19. 

7~ is a function 7"r : .4 --+ 2 v, indicating for each attribute/9.A E .4 the set of value 
identifiers in 1) that can be assigned to it. To capture the set of actual values instead 
of their identifiers (e.g., v instead of P .A = =  v) the function ~* is used, where 
n * ( P . A )  = {v I P .A = =  v E n ( P . A ) }  

C is a finite set of constraints, i.e., rules that must be satisfied by any schema expressed 
in 2k4. These constraints are formulas in some prespecified language E. and use 
elements that refer to identifiers in 7 9, A, 12. 

Note that, by the way at and 12 were defined, if P r P '  then Q(P)  and Q(P ' )  are 
disjoint, and if 19.A r P ' .A '  then 7~(RA) and 7Z(PCA') are disjoint. Also note that 
primitives are essentially complex objects, since some of their attributes can take values 
that are primitives themselves. 

Most of the common data models fall naturally in this meta-model. For example, 
consider the relational model. It has relations and attributes as its primitive types, each 
relation has a name, and each attribute has a name, a type, and a relation with which 
it is associated. Fully specified examples of data and visual models may be found in 
Section 2.4. The meta-model may be enhanced with several additional characteristics of 
models in a straightforward way, e.g., with an identifier for the name of each instance 
of the model, but we avoid that for simplicity of presentation. 

As defined above, a data schema or visual schema may be considered as an instantiation 
of a data or visual model, respectively. This is formally defined as follows: 

DEFINITION 2 A schema S o f a  model Ad is defined as follows: 

| For every P E 79, there is afinite set [19] C Z(P)  ofprimitives of type P that appear 
in schema S. 

�9 For every P.A E ,4, there is a total function [P.A] : [/9] ~ [7~*(/9.A)], which 
determines the value of the P.A attribute for every primitive in [P]. The [T~*(/9.A)] 
set is defined such that, if T~*(P.A) = Z(P') ,  for some 19' E 7 9, then [~*(P.A)] = 
[/9']. Otherwise, [7~*(P.A)] = ~*(P.A) .  

�9 For every c E C, there is a constraint [c], constructed from e by replacing every 
P E 79 by [P], every P.A E A by [P.A], and every P.A = =  v by v. All these 
constraints are satisfied by the schema. 

In the following table, we summarize the notations introduced in Definitions 1 and 2: 
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Notation Explanation 

79 The set of primitive types 
P A primitive type 

77(P) The set of identifiers for primitives of type P 
[P] The set of primitives of type P in a schema 

.A The set of attributes for all primitive types in 79 
P.A The A attribute of primitives of type P 

[P.A] (p) The value of the P.A attribute of the primitive p 

V The set of values for all attributes in .4 
P.A = =  v The element v as a value of the attribute P.A 

Q(P) The set of attribute identifiers of primitives of type P 
TZ(P.A) The set of value identifiers of the P.A attribute 
7-4*(P.A) The set of values of the P.A attribute 

C The set of constraints of a model 
[c] The instantiation of a constraint c E C for the 

primitives in [P] and attribute values [P.A] in a schema 

2.3. Creating Visual Models 

Creation of data models is a classical database problem that is beyond the scope of this 
paper (Batini, Ceri, and Navathe, 1992). In this subsection, we concern ourselves with 
creating suitable visual models. There is an important difference between the two kinds 
of models. Data models capture abstract organization of information. Their primitive 
types, attributes, and values are determined by the information the model captures. Visual 
models, however, must reflect not only the information to be organized, but also the 
medium in which the models are expressed. Specifically, visual model primitive types 
reflect both the information to be shown and the medium, while the possible attributes and 
values of a primitive type are determined by the medium alone. For example, consider 
a visual model used to display directed graphs. Any such model would likely have 
primitive types corresponding to nodes and edges. If the model were oriented toward a 
monochrome ASCII terminal, these primitive types and their attributes and values would 
be very different from a similar model intended for a color bitmapped display system. 
The ability to use colors, shapes, lines, and patterns would vary widely between the two. 
In general, the number and semantics of visual model primitive types are determined 
by the information that must be displayed, but the precise composition of the primitive 
types is determined by the medium. 

Because data models are used to represent abstract information, their types of primi- 
tives may be chosen arbitrarily based on some conceptualization of the world. On the 
other hand, visual model primitives must be visualizable. Therefore, visual primitive 
types must be constructed using only certain visual building blocks. Motivated by our 
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involvement in developing a scientific Experiment Management System, we are con- 
cerned with visual models to be displayed on color bitmapped workstations as these 
are commonly available to scientists. To build visual models for this medium, we have 
chosen the basic visual constructs described in the following table. The choice of these 
constructs is somewhat arbitrary. They are not formally defined in this paper, but the 
interested reader may find a formal discussion of visual constructs elsewhere (Foley, et 
al., 1990). In the table below, location is a complex attribute consisting of the spatial 
coordinates of the system. For the region, text-display, and picture-display constructs, it 
is assumed to be the location of their center. 

Construct Attributes 

region 

line 
text-display 
picture-display 

shape, location, orientation, size, background-color, 
background-pattern, boundary-width, boundary-color, 
boundary-pattern 
source-location,dest-location, width, color, pattern 
text, font, location, orientation, size, and color 
picture, location, orientation, size, and color 

Visual primitive types are defined as compositions of the above primitive types or 
other, previously defined, visual primitive types. The attributes of a visual primitive are 
the attributes of all of its components, possibly renamed to avoid any naming conflicts. 
Since compositions often have a large number of attributes, in our examples we have 
omitted many visual attributes to make the examples more manageable. 

To make the appearance of a composition coherent, it will usually be necessary to 
include constraints relating the attributes of its different components. For example, if 
a box with a piece of text in the center were required, a composition of a region and 
a text-display would be defined as a primitive type, and a constraint would require the 
value of the location attribute of text-display to be the same as the value of the location 
attribute of region. These constraints regulate the appearance of visual primitives~ and 
are called composition constraints to distinguish them from other, more semantically 
focused constraints. 

2.4. Example Data and Visual Models 

Consider a very simple semantic data model, supporting entity-classes that may be mu- 
tually related with binary relationships. Each entity-class has a name and a kind. The 
two possible kinds are 'simple' (such as the class of integers or the class of character 
strings) or 'compound' (user-defined classes). Each relationship has a name, a card-ratio 
of ' 1:1', ' 1 :N', 'M: 1', or 'M:N', and two entity-classes with which it is associated. This 
data model is the sextuple 79 = < 7979,.Av,'~v, Qv,T~v ,gv  >, where Cv = 9, and 
the primitive types in 799, their attributes in .Av, and their corresponding value sets as 
determined by ~ are given in the following table? 
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Primitive Type (P) Attribute (P.A) Attribute Values (~* (P.A)) 

entity-class name text 
kind {simple, compound} 

relationship name text 
card-ratio {1:1, I:N, M:I, M:N} 
from-class 27(entity-class) 
to-class 27(entity-class) 

Note that the set of values of an attribute has several possibilities: an infinite predefined 
set (e.g., text), an enumerated set (e.g., {1:1 . . . . .  M:N}), or the set of all instances of a 
primitive type (e.g., 2-(entity-class)). 

Similarly, consider a very simple visual model that supports directed graphs. We define 
the primitive types to be nodes and edges, the former a combination of a region and a 
text-display, and the latter a combination of a line, a text-display, and two nodes. This 
visual model is the sextuple G = < ;o~, V~, .A~, Q~, 7 ~ ,  C~ >, where the primitive 
types in Pa,  their attributes in .A~, and their corresponding value sets as determined by 
~ are given in the following table. For simplicity, only a subset of the attributes is 
shown. 

Primitive Type (P) Attribute (P.A) Attribute Values (~* (P.A)) 

node shape {square,oval} 
location plane-points 
size { 100 pixels} 
color {blue, red} 
label-text text 
label-color {black} 

edge source-location plane-points 
dest-location plane-points 
color {black, blue, yellow, green, orange} 
from-node 27(node) 
to-node 7?(node) 
label-text text 
label-color {black} 

There are four constraints in set Cg that all schemas of ~ must satisfy. Two of them 
are composition constraints, related to the relative positioning of visual constructs within 
each primitive type. The remaining two are somewhat more interesting, determining 
the location of edge primitives in terms of the nodes they connect. Using simple Horn- 
clauses, we show these constraints, which indicate that the location of the source (resp. 
destination) of an edge is the same as the location of the from-node (resp. to-node) of 
the edge: 
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Ve E edge, source-location(e) = location(from-node(e)), and 
Ve E edge, dest-location(e) = location(to-node(e)). 

3. Visual Metaphors 

3.1. Definitions and Notation 

A visual metaphor is defined as a correspondence between some of the features of a data 
and a visual model, i.e., elements in P ,  "4, V. A metaphor induces a mapping between 
data schemas (instances of the data model) and visual schemas (instances of the visual 
model). Basing the schema mapping on the feature correspondence helps produce visual 
schemas that, when viewed, allow the user to deduce the underlying data schema (Section 
2.1). Consider a data model 79 = < 7979,.479,1279, Q79,7~79,C79 > and a visual model 
G = < 79~, "4~, V~, Q~, T@, C~ >. A metaphor will include correspondences between 
primitive types (7979 and 79~), between attributes ('479 and "4~), and between attribute 
values (1279 and Va). (The above define a correspondence between constraints as well, 
since constraints refer to elements of the 7 9, "4, and 12 sets.) These correspondences 
describe the meaning of visual model features with respect to the underlying data model. 
For example, given the data and visual models from Section 2.4, if a correspondence 
were defined between the primitive types entity-class and node, then every instance of a 
node in a visual schema would imply the existence of a entity-class in the data schema. 
To allow presentation flexibility, we permit correspondences to exist between multiple 
features in the visual model and a single feature in the data model (an example of this 
is given in the next section). This is possible only when the visual model has a greater 
information capacity than the data model (Section 2.1), which is almost always the case. 

DEFINITION 3 A metaphor T is an onto function from ~ to D (denoted by T : ~ ---+ 79), 
which is the union of the following three onto functions: 

Function Tp : 79~-* 7979. 
Function Ta : "4~ ~ "479, 

Function Tv : V~ ~ ]379, 

which is equal to UpE79g TPa , where for each 
primitive type P, TaP : Q~(P)  --~ QD(Tp(P)) 
is an onto function, a 
which is equal to UP.At.% T~ "a, where for each 
attribute P.A, TvP'A : ~g (P .A)  --+ Tg79(Ta(P.A)) 
is an onto function. 

As mentioned above, all constraints in C~ use elements that refer to identifiers in 79~, 
"4~, and Y~. We occasionally use the notation T(c), c E C~, for the constraint constructed 
from c by replacing each element referring to an identifier z of T'~ to "4G tO V~ by an 
element referring to the identifier T(x).  We also use the notation T(Zg(P))  to denote 
Z79(T(P)). 
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r i P A ]  ~,- v ......................... P .A  = =  v 

t T 

t ( [P .A] )  

t(p) . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ .  v'  �9 ...................... P ' . A ' = =  v' 

....................... V a l u e  t o  I d e n t i f i e r  E 'P' 

~.- M e t a p h o r  

. . . . . .  ~,- A t t  r i b u t e  F u n c t i o n  A p p l i c a t i o n  

Figure 1. Commuting diagram between metaphors and attribute functions. 

3.2. The Induced Schema Mapping 

Given a metaphor as defined above, a mapping between data and visual schemas can be 
induced. Using this induced mapping, any data schema of 73 can be transformed to a 
visual schema of ~ in a manner that remains faithful to the metaphor. 

DEFINITION 4 Given a metaphor T : ~ ~ 79 and a visual schema of G, T induces an 
onto function t from (UPETa 9 [P]) I.J {[P.A] I P.A E A~ } onto the corresponding features 
of some data schema of D with the following characteristics: 

�9 (VP c T'g)(Vp E [P]) i fTp(P)  is defined, then t(p) is aprimitive of type Tp(P). 

�9 (VP E T'9)(VP.A E Q(P))  i fTa(P.A)  is defined, then t([P.A]) is a function 
[Ta(P.A)] : [Tp(P)] --~ [7~9(Ta(P.A)) ] such that (Vp E [P]) the following holds: 

if [P.A](p) = v and T (P .A  = =  v) = (P' .A'  = = v ' )  

then t([P.A])(t(p)) = v'. 

The first clause above states that primitives of the visual schema in ~ represent prim- 
itives in some data schema in 79 based on the type correspondence specified by T. The 
second clause states that, for every visual model attribute mapped by Ta, there exists a 
data model attribute whose values are determined based on the value correspondence Tv. 
Essentially, this is a commutativity requirement that is best shown in Figure 1. Based 
on the two clauses above, the induced function t determines a mapping from any visual 
schema in G to some data schema in 73. As with the metaphor T, the induced function t 
can be extended to include in its domain instantiations of constraints, t([e]) for c E C~. 

3.3. An Example 

To illustrate the above definitions, we present a metaphor T. This metaphor maps from 
a visual model similar to that in Section 2.4 to the data model discussed in the same 
section. The visual model has been supplemented with an additional primitive type, 
called a blob, which consists of a region and two text-displays, referred to as label1 and 
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label2. Also, the from-node and to-node attributes of relationship have been extended 
to accept as values both nodes and blobs. This function T is defined in the table on the 
following page. 

3.4. Discussion 

A metaphor provides meaning to features of a visual model by establishing a correspon- 
dence between them and the features of a data model. The precise meaning is captured 
by the function T. For example, displaying a red oval node implies the existence of 
a compound entity-class in the data model. The use of the T function and its induced 
schema mapping t should produce visual schemas that users can correctly and unambigu- 
ously interpret. Depending on various properties of T, the visual schema may include 
features that do not carry any meaning and/or features that carry redundant meaning. 
Based on knowledge of T, users should be able to ignore the former and not be confused 
by the latter. 

We would like to comment on the various properties of metaphors as they relate to 
the relative information capacity of a data and a visual model. As a minimum require- 
ment, a metaphor has been defined as an onto function: if it were not onto, then some 
characteristics of a data model would not be captured visually; if it were not a function, 
then a single visual construct could have multiple meanings, and therefore could not be 
interpreted correctly. 4 

For a metaphor that is not total, some visual elements do not mean anything with 
respect to the data model. If a metaphor will be used only for retrieving a data schema, 
T does not have to be total. Under retrieval, only existing schemas will be visualized, so 
non-totality does not create any problem. Specifically, non-totality of Tp or T~ implies 
that some visual primitive types or some values of visual attributes respectively will 
never be used, while non-totality of Ta implies that the values of some attributes can be 
arbitrary. If a metaphor will be used for retrieving and updating a schema, Tp and Ta 
still do not have to be total. For Ta, the reasons are the same as above. A non-total 
T v is permissible because visual primitive types that are not mapped by Tp may be used 
for presentation purposes and can be ignored when mapping the visual schema to a data 
schema. For each P.A that is mapped by Ta, however, T~ "A must be total. Otherwise, 
one could draw a visual schema that would not be translatable to a data schema. 

To demonstrate the use of a non-total metaphor, consider a data model D capturing 
words in the English language as strings of letters from the Roman alphabet. A vi- 
sual model ~ is constructed to visually present these words based on a straightforward 
metaphor that maps each display of a word to the word itself. Because the strings are 
visually expressed, ~ must also include information about typeface, size, color, letter 
spacing, and other visual characteristics of letters that carry no particular meaning, i.e., 
Ta is not total. Because of this, G has a greater information capacity than 79: the number 
of its visual schemas is equal to the number of English words (about 600,000) multiplied 
many times by the possible typefaces, sizes, and the other characteristics. Yet regardless 
of font or size, a visualization of a word carries an unambiguous meaning in the context 
of the metaphor. 
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x T(x) 

node 
node.label-text 
node.label-text==x 
node.color 
node.shape 
node.color== 'blue' 
node.shape=='square' 
node.color=='red' 
node.shape=='oval' 

entity-class 
entity-class.name 
entity-class.name==x 
entity-class.kind 
entity-class.kind 
entity-class .kind== 'primitive' 
entity-class .kind== 'primitive' 
entity-class.kind== 'compound' 
entity-class.kind=='compound' 

blob 
blob.labell-text 
blob.labell-text==x 
blob.labe12-text 
blob.label2-text=='P' 
blob.label2-text=='C' 

entity-class 
entity-class.name 
entity-class.name==x 
entity-class.kind 
entity-class .kind== 'primitive' 
entity-class .kind== 'compound' 

edge 
edge.label-text 
edge.label-text==x 
edge.from-node 
edge.from-node==c 
edge.to-node 
edge.to-node==c 
edge.color 
edge.color=='green' 
edge.color=='orange' 
edge.color=-='yeUow' 
edge.color== 'blue' 
edge.color== 'black' 

relationship 
relationship.name 
relationship.name==x 
relationship.from-class 
relationship, from-class==t(c) 
relationship.to-class 
relationship.to-class==t(c) 
relationship.card-ratio 
relationship.card-ratio==' 1:1' 
relationship.card-ratio==' 1:1' 
relationship.card-ratio==' I:N' 
relationship.card-ratio=='M: 1' 
relafionship.card-ratio=='M :N' 

If a metaphor is not 1-1 then multiple visual elements have the same meaning with 
respect to the data model. For both retrieval and update, the implications of this are the 
same. If  Tp or Tv are not 1-I then there is a choice of visual constructs that can be 
used, which should be left to the user or resolved via some default mechanism. If T~ 
is not 1-1 then there is redundancy: multiple visual attributes capturing the same data 
attribute. By the nature of visual models, there is no issue of choice here: all attributes 
of a primitive must have some value in a visual schema, and therefore all those mapped 
to the same data attribute should be assigned consistent values based on Tv. This issue of 
consistency arises because of the redundancy semantics. For visual updates of schemas, 
if several visual attributes are mapped to the same attribute by Ta, as soon as the value 
of one of them is specified, the values of all others are uniquely determined. 
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Functions that are not 1-1 establish equivalence classes among the features of the visual 
model, i.e., several features have the same meaning. For example, in the metaphor of 
Section 3.3, 

Tp(node) = Tp(blob) = entity-class 

implies that a primitive of type entity-class may be represented equivalently as either a 
visual primitive of type node or one of type blob. Attribute correspondences are similar 
but more complex. A data model attribute may correspond to a set of visual attributes, 
some of which may come from the same primitive type. For example, in the same 
metaphor, 

Ta(node.color) = Ta(node.shape) = Ta(blob.label2-text) = entity-class.kind 

indicates the same choice of node or blob primitive types as above. In addition, it specifies 
redundancy: visual attributes node.color and node.shape are from the same primitive 
type, so they redundantly capture data attribute entity-class.kind. Value mappings are 
similar, but even more complicated, so they warrant two examples. First, 

Tv(edge.color == 'green') = Tv(edge.color == 'orange') 
= (relationship.card-ratio ==' 1:1') 

demonstrates attribute value choice; two values have the same meaning with respect to 
the metaphor. Second, 

T~(node.color == 'blue') = T~(node.shape == 'square') 
= Tv(blob.label2-text == 'P ')  
= (entity-class.kind == 'primitive') 

includes values from different primitive types (e.g. node.color versus blob.label2-text), 
paralleling the choice at the primitive type level, and different values for different at- 
tributes of the same primitive type (e.g. node.color and node.shape), indicating values 
for redundant attributes. 

Figure 2 gives an example schema and a visual schema that could be produced by ap- 
plying the induced mapping of the example metaphor in Section 3.3. (Due to limitations 
of the printing medium, color attributes cannot be displayed directly; instead they are 
indicated by the name of the color along the line of the edge.) 

4. Judging Metaphors: The Good, the Bad, and the Ugly 

Given a framework for creating visual metaphors, it is necessary to examine issues of 
metaphor correctness. We thus develop criteria that are useful in ensuring that a metaphor 
accurately presents information. There are issues beyond correctness, however, that affect 
how well metaphors visualize information. We discuss these issues of metaphor quality 
and their impact on visualization as well. 
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enUty-classl ("Name", primitive) 
enUty-class2 ("Age", primitive) 
entity-class3 ("Salary", primitive) 
entity-class4 ("Person", compound) 
relationship1 ("Children", M:N, entity-class4, entity-class4) 
relationship2 ("Has Name", I:N, entity-class4, enUty-classl) 
relationship2 ("Has Age", I:N, entity-class4,entity-class2) 
relationship2 ("Has Salary", I:N, entity-class4, entity-class3) 

A DDL Representation of the 
Data Schema 

Has Name I I 

Children ~ (Yellow)] I 

A Visual Model Representation 
of the Data Schema 

Figure 2. Example of a Metaphor Applied to a Schema. 

4.1. Metaphor Correctness 

We have already discussed the requirements for the relation T in order for it to be 
a valid metaphor based on the desired operational goals, retrieval and/or update. In 
addition, there are three other issues that affect the correctness of a metaphor. All three 
require some consistency between the metaphor and the visual model, the first in terms 
of allowed attribute values, and the second two in terms of constraints. 

First, consider attributes whose values are primitives, e.g., the from-class attribute of 
relationship in Section 3.3. It is necessary that the type of such a primitive-valued visual 
attribute be consistent with the metaphor and with the type of the data model attribute to 
which it is mapped. Continuing the above example, the attribute relationship.from-class 
takes values of type entity-class. The primitive type entity-class is mapped to by more 
than one visual primitive type, specifically node and blob. As a result, it is necessary 
that the ~,isual attribute edge.from-node, which maps to relationship.from-class, accept as 
values primitives of types node and blob. Specifically, if Tg~(P.A) = Z(P')  for some 
pi  E T'7~ then the following should hold: 

T4o*(T -1 (P.A)) = Up,,ET-l(p,)5[(Ptl). 

For example, the metaphor of Section 3.3 satisfies the above since 

* 1 T46 ( T -  (relationship.from-class)) = 5[(node) U 5[(bloh) 

=- Up,T_1 (class)Z(P) �9 

Otherwise, it would not be possible to choose arbitrary node or blob representations for 
entity-class primitives. 

Second, when there is redundancy in the metaphor, i.e., Ta is not 1-1 and different 
attributes of the same primitive type in 7"9~ are mapped to the same attribute of some 
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primitive type in 7979, the values of the former attributes must be consistent. This can be 
enforced with constraints in Cg. For example, in the metaphor presented in the previous 
section, the color and shape attributes of node are redundantly used to capture the kind 
attribute of entity-class. For the metaphor to be correct as defined in Section 3.3, the 
visual model must include the following constraints: 

Vn E node, color(n) = 'blue' ~ shape(n) = 'square', 
Vn E node, color(n) = 'red' r shape(n) = 'oval ' .  

Allowing any other combination of shape with color would permit visual schemas with 
no corresponding data schema. This would prevent the visual model from being used for 
updates of the data schema, since it would allow conflicting values of the kind attribute 
of the entity-class. For example, a visual schema with a blue oval node would have no 
meaning with respect to the metaphor. 

Third, the constraints of the visual model should be such that no valid visual schema 
will map to an invalid data schema, and vice versa. This is ensured through a relationship 
between the constraints in the data model and those in the visual model. This relationship 
may be very complex, since one may perform inferences on a given set of constraints 
to derive additional constraints that are not explicitly specified. For the purposes of 
this paper, we take a simple approach and consider only some straightforward sufficient 
conditions for the consistency of constraints between the two models. Specifically, for 
two constraints c and c ~, c subsumes c ~ if the set of schemas that satisfy c is a subset of 
the set of schemas that satisfy c ~. Consider the subset Cg ~ of the constraints in C~ that 
are mapped by the metaphor T. (Note that no composition constraint is among them.) 
If  the visual model will be used for retrieval only, then the following should hold: 

r e '  E C~', 3c E Cz~, e subsumes T(c ' ) .  

This is sufficient to ensure that all data schemas have a corresponding visual schema. On 
the other hand, if the visual model will be used for updates as well, then the following 
should hold: 

Cz~ = {T(c) I c E C g '  } . 

This is sufficient to additionally ensure that all visual schemas have a corresponding 
data schema. Note that the visual model may have additional constraints, those in Cg - 
Ca ~, e.g., composition constraints or other constraints that are enforced for presentation 
purposes. 

4.2. Metaphor Quality 

A metaphor may be correct and none-the-less present information poorly. For example, 
it is conceivable to have a correct metaphor where Ta is not a function. Such a Ta 
would map the same visual attribute to more than one data attribute, so that each value 
of the former corresponds to a combination of values of the latter. We have decided, 
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however, that this introduces a level of visual complexity that is often uncomfortable 
and would result in confusing visual schemas in many cases. For example, consider 
the relationship primitive type of the data model in Section 2.4, enhanced with a kind 
attribute taking values 'part-of' and 'association'. Following the metaphor of Section 3.3, 
consider mapping the edge.color attribute to the combination of the relationship.kind and 
relationship.card-ratio attributes. Each of eight colors would map to a given combination 
of kind and ration, e.g., T( 'orange')  = ( 'part-of' ,  'M:N').  Such a Ta relation is not 
strictly incorrect, i.e., a well defined mapping between visual and data schemas can still 
be derived with the desirable properties with respect to information capacity. We believe, 
however, that such a metaphor would be more difficult for most users to remember than 
one where two separate visual attributes are mapped to the two data attributes. We thus 
disallow non-functional Ta's. 

Beyond functionality of T~, other characteristics of metaphor quality also affect infor- 
mation presentation. We discuss three such traits that greatly affect metaphors: informa- 
tion hiding, which occurs when information is captured by the visual model but is not 
visible to the user, visual ambiguity, which happens when visual primitives of different 
primitive types or different values of the same attribute appear identical to the user, and 
semantic ambiguity, which exists when visual attribute values do not suggest the data 
attribute values they capture. The first two issues are concerned with the visual model 
alone, while the third regards the metaphor itself. There exist other issues of metaphor 
quality beyond those mentioned above, including intuitiveness, versatility, and emphasis. 
These are more difficult to quantify so they are beyond the scope of this paper. 

In general, there are no universal rules about good user interfaces. Nevertheless, we 
believe there are certain desirable and undesirable characteristics of user interfaces in 
the context of our own work. We thus conclude the discussion of each of the metaphor 
quality traits above with comments on the trait's implications, and whether we believe 
these implications to be good or bad. 

4.2.1. Hidden Information 

Not all information captured by a visual model is visible to the user. This hidden infor- 
mation falls into two categories: transient and structural. Transient hidden information 
is not visible to the user but can become visible through some manipulation of the visual 
schema that leaves the underlying data schema unchanged. Consider the visual model 
described in Section 2.4 and the metaphor from Section 3.3. The node primitives have 
locations that may be anywhere on the plane, thus it is possible for two nodes to have 
the same location. The convention for such cases in a 2-D display system is to make 
one of the nodes invisible or partly visible, conceptually "behind" the other node. The 
node that is behind captures information, yet the user cannot see it. If  the front node 
is moved, an operation that does not affect the underlying data schema, the back node 
becomes visible. Figure 3 demonstrates how one primitive can be partially or totally 
hidden by another. 

This example of hidden information depends on the fact that the location attribute is 
free, not part of the metaphor. Freedom of other attributes can also result in transient 
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Both Node1 and Node2 Partially Node2 Completely 
Node2 Visible Hidden Hidden 

Figure 3. An example of transient hidden information. 

e2 

edge1 

Figure 4. An example of structural hidden information. 

hidden information. For example, if the size of a node were free, the node could be 
hidden by setting its size to zero. 

Structural hidden information is information that a visual model captures but does not 
display. COnsider the edge primitive type from the visual model in Section 3.1 and the 
metaphor in Section 3.3. It has two attributes, from-node and to-node, which are not 
directly shown. Their values are made visible by the constraints that define the location 
of the edge. Consider the result of removing this constraint from the visual model. The 
location of edges would no longer be constrained; an edge line could appear anywhere 
in the visual schema with no relation to the nodes specified by its from-node and to- 
node attributes. The visual model would still be valid; it would still capture the same 
information, but this information would not be visible to the user. Figure 4 demonstrates 
the appearance of a visual schema with and without the constraints which determine edge 
location. The same metaphor contains another example of structural hidden information. 
Edges are not directed, and as a result it is not possible to distinguish the edge's from- 
node from the to-node. Structural hidden information can occur whenever the appearance 
of one attribute is affected by another attribute or constraint. In the above example, the 



280 HABER, IOANNIDIS, AND LIVNY 

Figure 5. Polygons of 15 and 17 sides. 

from-node attribute is made visible through a constraint that links it to another attribute, 
source-location. 

We believe that structural hidden information should usually be avoided, whereas tran- 
sient hidden information need not be. In many cases, a model that cannot visually 
display all the information it captures is undesirable. Temporarily invisible information, 
however, is not a problem as the hidden information can be made visible when necessary. 
In fact, transient hidden information can be a very useful tool for reducing clutter in a 
visual schema by hiding infrequently needed information. 

4.2.2. Visual Ambiguity 

Visual ambiguity occurs when a visual model contains two distinct primitive types (mem- 
bers of T'a) or two distinct values for the same attribute (members of Va) that are visually 
indistinguishable. Two items are visually indistinguishable when a user viewing one can- 
not discern which of the two it is. 

Objects with identical appearance are obviously visually indistinguishable. For ex- 
ample, it would be legal to define two different visual primitive types with the same 
attributes and values, and equivalent constraints. Metaphors could be correctly and un- 
ambiguously defined (since they depend on symbolic representations of the primitive 
types and their characteristics), but users might be unable to interpret schemas correctly, 
since instances of the two visual primitive types would appear the same. We refer to 
these cases as strict visual ambiguity. A slightly less strict form of visual ambiguity 
occurs in cases where attributes of two different primitives have different names, but the 
same values and constraints. 

Another kind of visual ambiguity occurs when two primitive types or attribute values 
appear very similar, though not identical. Primitive types or attributes with a similar ap- 
pearance may be visually indistinguishable, depending in part on the degree of similarity 
and the visual acuity of the viewer. For example, if two polygons of 15 and 17 sides are 
mapped to two different values of a data attribute, Figure 5 shows that users might not 
be able to correctly distinguish between the two values. Another example would be two 
primitive types with different attributes and values but the same appearance to the user. 

Visual ambiguity is, in general, undesirable, because it results in schemas of a visual 
model that may not be correctly interpreted by a user. Strict visual ambiguity is straight- 
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forward to detect by testing the Qg and ~ g  functions, and the constraints affecting the 
primitives in question. Non-strict ambiguity is much harder to define formally, let alone 
detect; there may not exist universal similarity (as opposed to equality) measures. In- 
vestigating possible definitions and similarity detection algorithms is part of our future 
work. 

4.2.3. Semantic Ambiguity 

Semantic ambiguity occurs when the appearance of a visual attribute value does not bring 
to mind the data attribute value with which it corresponds. The degree of ambiguity 
depends upon the memory of the user, the range of data attribute values, the type of 
visual attribute, and the choice of visual attribute values. For example, using randomly 
assigned colors to represent values between 1 and 500 would be problematic for any user 
lacking an eidetic memory (if the the values are of interest to the user). Using colors 
ordered and spaced by their place in the spectrum would be better, giving the user a feel 
for the magnitude of different values. Using Arabic numerals to represent these values 
would be the most precise (though possibly less good for giving a quick impression of 
the value). While improving human memory is beyond the scope of this paper, we can 
offer visual attribute and value choice guidelines to reduce semantic ambiguity. 

In general, any visual attribute type can be used for representing a data attribute with a 
small value range. For example, it would not be difficult for a user to learn associations 
between a small number of shapes, colors, or patterns, and their corresponding data 
model values. Precisely capturing values with a larger range, however, requires visual 
attributes with inherent meaning; the visual value must in some way suggest the data 
value. Attribute types may be divided into two categories with respect to inherent 
meaning. Text and pictures can have much inherent meaning as long as the viewer 
shares a linguistic or cultural context with the creator. For example, a picture formed 
of a red octagon with the word "STOP" in the middle has an immediate association for 
most people. Shape, color, pattern, size, and location have less inherent meaning, and 
what meaning they have is limited to more narrow contexts. For example, a red colored 
light means "stop" in the context of driving, but it also means "on" in the context of 
electric kitchen ovens and toasters. If a precise representation is not needed, the limited 
inherent meaning of these attributes can be useful. For example, consider a metaphor that 
associates the spectrum of colors to a large range of temperatures. While specific values 
would be hard to determine, the user could easily make comparisons and determine 
general magnitudes of values. 

As a result, in most cases text and pictures should be used to represent values with 
large ranges. In some cases, when a general impression of the value is needed instead 
of the exact value, other attributes can be used. Values with a smaller range, such as 
entity-class kind from Section 2.2, may be represented by any type of attribute. 
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5. Combining and Mixing Metaphors 

Different metaphors have different characteristics: emphasis, space efficiency, intuitive- 
ness, and versatility. There is no single metaphor that is best for all schemas and all 
situations. We believe that a schema visualization tool should support a variety of 
metaphors and associated visual models. Users will be able to choose among them so 
that the same data schema may be viewed as different visual schemas, each suitable for 
different circumstances. 

The use of different metaphors may be taken one step further, by allowing the use of 
different metaphor correspondences for different parts of the same visual schema. This 
is faithful to the definition of metaphors in Section 3.1, which allows correspondences 
between one data model primitive type and several visual model primitive types. Such 
metaphors may originally be defined this way, or may be defined as a combination 
of two simpler metaphors. This involves combining their visual models into a single, 
unified model, and combining the metaphors to map from that model. The following 
section presents some example metaphors that will be used to demonstrate the formal 
specification of metaphor combination. 

5.1. Example Visual Metaphors 

Consider the data model 79 of entity-classes and relationships described in Section 2.4. 
Also consider the visual models, ~1 and ~2, described in the following table. 

Visual model ~1 is similar to G described in Section 2.4. Visual model G2 has nodes 
that are rectangles, and instead of using edges to represent a connection between two 
nodes, it uses arrangements. Arrangements are formed from a text-display construct 
and two nodes, a parent-node and child-node. The existence of an arrangement affects 
the location of the child-node. The specific physical arrangement is defined by a set of 
constraints which require node placement similar to a textual outline, where subpoints 
appear below and indented to the right of the main points. It should be noted that G2 
is a visual model not for general directed graphs but only for trees, as any child node 
with multiple parents would have conflicting constraints on its location. These models 
are accompanied by several composition constraints, which are of no particular interest 
and are therefore not shown. 

For each visual model, we define a metaphor. The two metaphors are shown in the 
table below. For brevity, the part of the metaphor that corresponds to the Tv function 
is not included. Visual metaphor T1 : ~1 ~ 79 is similar to the metaphor described in 
Section 3.1, except that it does not include the blob primitive type, and entity-class.kind is 
represented by node.label-color. Visual metaphor T2 : G2 --~ 79 is different in that entity- 
class.kind is captured by node.color, and that relationships are expressed as physical 
arrangements of the related nodes (as described earlier). Figure 6 gives examples of a 
simple schema displayed using each of the metaphors. This example, drawn from the 
Cupid simulation model (Ioannidis, Livny, and Haber, 1992), shows a case where the 
outline metaphor is more compact than the graph metaphor. 
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Figure 6. An example schema displayed using each of the two metaphors. 

Model Primitive Type (P) Attribute (P.A) Attribute Values (7~* (P.A)) 

G1 node 

edge 

shape {oval} 
location plane-points 
size {100 pixels} 
color {white} 
label-text text 
label-color {blue,red} 
source-location plane-points 
dest-locafion plane-points 
color {red, orange, magenta, green} 
from-node Z(node) 
to-node Z(node) 
label-text text 
label-color {black} 

6~ node 

arrangement 

shape {rectangle} 
location plane-points 
size {100 pixels} 
color {yellow, brown} 
label-text text 
label-color {black} 
label-text text 
label-color {red, orange, magenta, green} 
label-location plane-points 
parent-node Y(node) 
child-node 2?(node) 
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z e 61 Tl(x) 

node entity-class 
node.label-text entity-class.name 
node.label-color entity-class.kind 

edge 
edge.label-text 
edge.from-node 
edge.to-node 
edge.labd-color 

relationship 
relationship.name 
relationship.from-class 
relationship.to-class 
relationship.card-ratio 

x ~ g2 T~(x) 

node entity-class 
node.label-text entity-class.name 
node.color entity-class.kind 

arrangement 
arrangement.label-text 
arrangement.parent-node 
arrangement, child-node 
arrangement.label-color 

relationship 
relationship.name 
relationship.from-class 
relationship.to-class 
relationship.card-ratio 

5.2. Combining Visual Models and Metaphors 

In order to use different metaphors for different parts of a schema, the visual models 
associated with these metaphors must be combined into a single model. In addition, the 
metaphors themselves must be combined to form a unified metaphor, mapping from the 
combined visual model to the data model. Combining the visual models ensures that 
the primitive types from different models may be used together, and that the metaphors 
themselves may be combined. 

There are several abstractions that could be used to model the combination of visual 
models and metaphors, any of which results in a valid, unambiguous, and usable metaphor 
and schema mappings. These abstractions differ in the level of mixing that they permit of 
the visual models and metaphor functions. In this subsection, we discuss an abstraction 
that allows mixing at all levels. The subsequent subsections describe correctness and 
quality issues involved in mixing metaphors based on that abstraction. 

For the visual models ~1 = <  79al, .Agl, ))al, Qg~, 7~g~, C~ > and ~2 = <  Pg2, A~2, 
•g2, Qa2,~g2,Ca2 >, consider their combination G = <  79~,Aa,Va,Qa, 
7Za, Ca >. By definition, for any primitive type P that is common to both visual 
models, the equality Qg~ (P) = Qaz(P) holds, i.e., the same primitive type has the 
same attributes in all visual models that include it. The elements of the visual models 
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are combined as follows: 

Note 
tions 

p~ = p ~  u p ~  

A~ = A~I u A~2 

v~ = v~l u v~2 

C 0 = C~lUCg2. 

that, based on the naming convention established in Definition 1, the above equa- 
imply that: 

VP ~P~,  Q~(P) = Q~(P)  uQ~2(P) 

VP.A E .A~, Tr = 7r UTC~(P.A).  

Given a combined visual model, two metaphors T1 = Tpl U Tal U Tvl and T2 = 
Tp2 U T,~2 U Tv2 may be combined to form a unified metaphor T = Tp U Ta U Tv where 

Tp = Tpl U Tp2 

Ta = T~I U T~2 

Tv = T~ u T~2. 

5.3. Correct and Good Mixing of Metaphors 

The result of combining two metaphors using the process shown in the previous section 
must satisfy Definition 3 in order for it to be a metaphor itself. Assume that 771 and 772 
are correct metaphors with respect to either viewing or updating data schemas. Then, T1 
and T2 are onto functions with possible additional properties of totality and/or 1-1ness. 
When taking the union of T~I and Tx2 (for x E {p, a, v}), totality and onto-ness can 
never be lost. 1-1ness may be lost when unioning, but it is unrelated to correctness and 
only effects redundancy and choice in a metaphor (Section 3.2), so it does not present 
a problem. Functionality, however, is necessary for correctness and may be lost when 
unioning. In that case, T is not a correct metaphor, implying that the original metaphors 
are not combinable. To correctly combine T1 and 772, the resulting Tp, Ta, and Tv must 
be functions. 

The combined metaphor must also satisfy the criteria from Section 4.1. In addition, the 
new set of constraints established by unioning the constraints of the two original visual 
models must contain no contradictions and should not exclude any visual schema that 
was valid in the two original visual models. If any of the above does not hold, then the 
original metaphors are not combinable. 

We should emphasize once again that one could use a different abstraction from that 
described in Section 5.2 to combine metaphors. Such an abstraction would possibly allow 
different pairs of metaphors to become combinable. We have chosen the above abstraction 
for its simplicity and because it captures several desirable metaphor combinations. 
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5.4. Example Metaphor Combination 

Consider the example metaphors from the previous section. When the two are combined, 
the metaphor will appear as follows: 

x T(x) 

node 
node.label-text 
node.label-color 
node.color 
edge 
arrangement 
edge.label-text 
arrangement.label-text 
edge.from-node 
arrangement.parent-node 
edge.to-node 
arrangement.child-node 
edge.label-color 
arrangement.label-color 

entity-class 
entity-class.name 
entity-class.kind 
entity-class.kind 
relationship 
relationship 
relationship.name 
relationship.name 
relationship.from-class 
relationship, from-class 
relationship.to-class 
relationship.to-class 
relationship.card-ratio 
relationship.card-ratio 

Where both original metaphors are the same, such as the mapping of entity-class or 
entity-class.name, the combined metaphor is the same. Where the original metaphors 
diverge, the combined metaphor either offers choice (as in the case of relationships), or 
redundancy (as with entity-class.kind). 

The unified visual model undergoes similar changes: 
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Primitive Type (P) Attribute (P.A) Attribute Values (7~(P.A)) 

node shape {oval, rectangle} 
location plane-points 
size { 100 pixels} 
color {yellow, brown, white} 
label-text text 
label-color {blue,red, black} 

edge source-location plane-points 
dest-location plane-points 
color {red, orange, magenta, green} 
from-node Z(node) 
to-node Z(node) 
label-text text 
label-color {black} 

arrangement label text 
label-color {red, orange, magenta, green} 
label-location plane-points 
parent-node Z(node) 
child-node Z(node) 

Nodes existed in both of the original models, yet they had different shapes. In the 
combined model, a choice of shape exists. Figure 7 gives an example of a schema 
displayed using the mixed metaphor. Note how node shape is either oval or rectangular, 
and how relationships may be displayed either using an edge or an arrangement. 

6. Visually Capturing Additional Information 

The definition of models and metaphors allows the visual model to have greater infor- 
mation capacity than the data model. Specifically, there may be more primitive types 
in the visual model than in the data model, the visual model primitive types used in 
the metaphor may have more attributes than their corresponding data model primitive 
types, and the range of visual attribute values may be greater than that of their corre- 
sponding data model attributes. It is possible to define the visual model to have the 
same information capacity as the data model, but often extra information capacity is 
valuable. Surplus information capacity may be used in two ways. One is to enrich the 
metaphor. For example, the Tp, Ta and Tv functions may be many-to-one, allowing 
redundancy and choice in representing information. The other use of extra information 
capacity, and the subject of this section, is to capture information outside of the data 
schema. This information may be divided into two categories: presentation and personal 
data model information. Presentation information has no meaning and simply improves 
the aesthetics of the visual schema. The personal data model is a superset of the data 
model, additionally containing information that is part of the user's conception but not 
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Figure 7. An example of a schema displayed using the combined metaphor. 

captured by the database. These two kinds of information will be discussed in depth in 
this section. 

6.1. Presentation Information 

Presentation information is visual information that conveys no meaning to the user. For 
example, the locations of nodes in a directed graph could be chosen for purely aesthetic 
reasons. While not capturing any part of the data schema, this information is important as 
it can affect the readability of a presentation. There are many ways to lay out a directed 
graph, all having the same meaning, but some are much more readable than others. 

Presentation information is captured by those surplus visual model primitives types 
and attributes that are not in the domain of the metaphor, and by the attribute value and 
primitive type choices that are part of the metaphor. For an example of the use of extra 
primitive types, consider the visual model and metaphor from Section 3.1 supplemented 
with the following primitive type: 
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Primitive Type (P) Attribute (P.A) Attribute Values (T~* (P.A)) 

rect shape { rectangle } 
location plane-points 
size integer x integer pixels 
background-color { white } 
border-color { black } 
border-width { 2 } pixels 

This rect is a black bordered rectangle of any given size and location. Not part of 
the metaphor's domain, it can be used freely without affecting the meaning of a visual 
schema. For example, a rect could be placed around the entire schema to give it a border 
and improve its appearance. 

An example of surplus attributes may be found in the same metaphor: node-location is 
not specified by the mapping and can be freely specified as mentioned above. Similarly, 
the possibility of representing 1:1 relationships as either 'green' or 'orange' edges allows 
the user aesthetic leeway without changing the meaning of the visual schema. 

Another means of capturing presentation information is through choice of visual model 
primitive types. Different primitive types may have very different appearances, affecting 
the aesthetics of the schema. For example, consider the combined metaphor described in 
Section 5.4. It maps two visual primitive types, edge and arrangement, to relationships. 
These visual primitive types have very different appearances and would be suitable in 
different situations. 

6.2. Personal Data Model Information 

Databases are commonly used for holding information about real-world items. Data 
schemas describe the organization of these items in as much detail as allowed by the 
data model. Frequently, however, there exists other organizational information about 
these items that might be helpful to the user, but is not or cannot be captured by the data 
schema. 

We introduce the notion of a personal data model to capture the organization of the 
database from the user's viewpoint. This is no different from any other data model, except 
for the fact that each user may have a different personal data model (while there is a 
single system data model) and also that each personal data model must be an extension 
of the system data model. Accordingly, personal visual metaphors may be defined from 
a visual model to personal data models to capture the full range of characteristics of 
personal data schemas, as shown in Figure 8. Such an extended metaphor would map 
visual model primitive types, attributes, and values not used by the regular metaphor 
(i.e., its excess information capacity) to corresponding constructs of the personal data 
model that are not part of the system data model. 

As an example of a personal data model and its corresponding personal metaphor, 
consider the data model of Section 2.4, whose primitive types are entity-class and re- 
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Figure 8. The Personal Data Model and Metaphor as Extensions of the Data Model and Visual Metaphor 

Figure 9. A directed graph. 

lationship. Like other object-oriented/semantic data models, this model does not allow 
higher-level groupings of entity-classes or relationships, an ability that could be very 
useful to a user. For example, a schema combining data from several experiments could 
have entity-classes grouped by their original experiment, their roles within the experi- 
ment (e.g., input versus output), whether their contents are considered accurate, and their 
significance to the user. Multiple simultaneous orthogonal groupings may be captured 
this way, with an entity-class belonging to several different groups for different reasons. 
This may be achieved by allowing a user to extend the above data model so that groups 
can be captured. The visual metaphor from Section 3.1 may also be modified to represent 
group information to the user. In the original metaphor, node size, label-color, shape, 
and location are attributes that are not part of the metaphor mapping. If  the visual model 
were defined to allow these attributes a greater range of values, they could be used by 
the personal metaphor to enhance the information that is captured visually. Figures 9, 
10, and 11 give examples of an unmodified visual schema, grouping by location, and 
grouping by shape and location, respectively. 

7. Related Work 

Visual presentation of abstract information has been studied for more than 40,000 years, 
from pigments on cave walls to ink on paper to phosphor on the inside of video tubes. In 
its broadest sense, this field includes work in art, psychology, cognitive science, human- 
factors engineering, and many branches of computer science. The majority of this work 
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( ) 

Figure 10. Grouping by location. 

/k 

Figure 11. Grouping by location and shape. 

deals with the evaluation of visualizations with respect to human perception (exemplified 
by the work of Edward R. Tufte (Tufte, 1983; Tufte, 1990). A much smaller body of 
work is concerned with the process of creating visualizations from abstract information; 
this work is concentrated in computer science due to its need to communicate computer 
data to humans. It is this area that is most closely related to our work. 

There exist a large number of computer systems related to visualization. These include 
visualization tools such as DBMS GUIs, which display data and schemas, and computer 
assisted software engineering (CASE) tools, which create visualizations of data structures 
and program execution. On another level of abstraction are user interface tools, which 
allow users to create visualization tools. All of these systems are either explicitly or 
implicitly based on some conception of the process of visualization. Our formalism 
describes processes of visualization. As such it can be used as a means to classify and 
compare these other systems, and explain some of their resulting characteristics. 

Our formalism identifies three distinct parts in the process of visualization: 

| The data involved (the data model), 

| The visualization (the visual model), and 

�9 A transformation between the data and visualization (the metaphor). 
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The separation into three declarative descriptions permits metaphors to be evaluated, 
compared, and combined. It also allows personal data model and presentation information 
to be dealt with separately from visual information dependent on the metaphor. 

In the following subsections, we use our formalism to evaluate visualization tools and 
user interface tools. In these descriptions, we focus on two important aspects of these 
systems: 1) how the models and metaphors are defined, and 2) whether or not it is 
possible to define or change the models and metaphors. These have an impact on the 
ability to test visualizations for correctness, to combine metaphors, and to supplement a 
visualization with personal data model and presentation information. 

7.1. Visualization Tools 

There are many computer tools for visualizing information, more than could be adequately 
covered here. We will discuss two areas of visualization tools that deal with structured 
information suitable to the models of our formalism. These are DBMS GUIs, and CASE 
tools. 

7.1.1. DBMS GUIs 

All database systems have some means to present schemas and data, though often the vi- 
sual model is textual. Many systems do support GUIs with more advanced presentations; 
their metaphors may be broken down into the following categories: 

�9 Tables, which use rows and columns to indicate database structure, as with QBE 
(Zloof, 1975) and other systems (Heiler and Rosenthal, 1985; Kuntz and Melchert, 
1989; Ozsoyoglu, Matos, and Ozsoyoglu, 1989). 

�9 Forms, which lay out information using a template that indicates structure, such as 
(King and Novak, 1987) and most commercial database systems. 

�9 Diagrammatic presentations, such as E-R-like Diagrams (Angelaccio, Catarci, and 
Santucci, 1990; Elmasri and Larson, 1985; Leong, Sam, and Narasimhalu, 1989; 
Miura, 1991; Siau, Chan, and Tan, 1991; Wong and Kou, 1982) and other directed 
and non-directed graphs (Bryce and Hull, 1986; Consens and Mendelzon, 1990; 
Creasy, 1989; Gupta, Weymouth, and Jain, 1991; King and Melville, 1984; Lam, et 
al., 1990; Paredaens and Van den Bussche, 1992; Batini, et. al., 1991; Yoon, et al., 
1987). 

�9 Icons (pictures) that represent a concept or action (Catarci, Constabile, and Levialdi, 
1991; Kaneko and Hara, 1986; Tsuda, et al., 1990). 

For visualizing schemas, all of these systems have a fixed, hard-coded data model, 
visual model and metaphor. Although diagrammatic representations seem to be the most 
popular, the persistence of other approaches indicates that there is no single best metaphor. 
This further demonstrates the importance of flexible schema visualization. These systems 
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lack flexibility; they offer no choice in visualization, and no justification of their visual 
models and metaphors. 

7.1.2. CASE Tools 

CASE tools are environments to aid software development. One feature they usually 
provide is visualization of program data structures and execution. These visualizations 
can help the user to better understand the operation of the software. In most cases the data 
model, visual model, and metaphor are fixed. Evaluation, comparison, and combination 
of metaphors is not possible. A few of these systems, such as Incense (Myers, 1983), 
allow user definition of the visual model and metaphor, with alternate metaphors possible 
for a given data primitive type. These are defined procedurally, however, so determination 
of metaphor correctness is not possible. 

7.2. User-Interface Tools 

User Interface tools assist programmers in creating graphical user interfaces. They pro- 
vide frameworks through which users can specify the appearance and interaction char- 
acteristics of an interface. Part of the specified interface may be a visualization of 
information; as such these systems support the description of data visualizations. We 
consider three kinds of user interface tools: general tools, tools built on top of DBMSs, 
and automatic tools. 

7.2.1. General User Interface Tools 

General user interface tools allow the user to create a visual model for a visualization, 
though they use a variety of means to describe it. For example, the Chiron-1 (Taylor 
and Johnson, 1993) and Motif (OSE 1990) systems rely upon procedural specifications, 
where the user describes the structure of the visualization through calls to a library. 
Marquise (Myers, McDaniel, and Kosbie, 1993) is an example of a demonstrational 
system, where the user specifies the appearance and behavior of an interface by drawing 
and laying out objects on the screen. InterViews (Linton, Calder, and Vlissides, 1988) 
is similar, allowing the user to specify interface appearance by laying out special objects 
in a graphical editor. Behavior of the interface, however, must be specified procedurally 
in InterViews. HUMANOID (Szekely, Luo, and Neches, 1993) and UIDE (Sukavariya, 
Foley, and Griffith, 1993) allow description of data and visual models through expressions 
in formal modeling languages. 

Most of these systems also allow specification of a metaphor, though in some cases the 
metaphor is closely tied to the visual model. HUMANOID embeds in each visual model 
primitive type a procedural description of the data to be presented. Lower level toolkits 
such as Motif and InterViews require procedural specifications of all parts of the data 
model and metaphor. Chiron also specifies metaphors (called "artists") procedurally, 
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though they are separate from the visual model. All of these systems allow use of 
different metaphors (e.g., the InterViews package was used to create our tool based 
on the formalism). UIDE does not support a metaphor as described in our formalism. 
It defines correspondences between visual and data model primitives, but not between 
attributes or values. Instead it establishes correspondences between actions on visual 
model objects (such as a click of the mouse) and actions on data model objects (such 
as a change in a value). Marquise does not support a data model as distinct from the 
visual model, and as such does not need metaphors. None of these systems allows 
declarative definition of metaphors. As a result, they cannot test metaphors or metaphor 
combinations for correctness, nor can they evaluate or compare metaphors. 

7.2.2. DBMS User Interface Tools 

A related area is DBMS User Interface tools. These include O2Look/ToonMaker (Borras, 
et al., 1992), ODDS (Flynn and Maier, 1992), FaceKit (King and Novak, 1989), and 
Picasso (Rowe, et al., 1990). These tools are oriented toward building interfaces, but 
unlike other interface toolkits, they also interact with a database explicitly, using it to 
store interface information and simplifying the specification of visualizations for database 
objects. A related system is DOODLE (Cruz, 1992), which provides a visual language 
for querying an OODBMS and defining visualizations of database objects. 

These systems use the data model of the underlying database as the data model. Each 
allows definition of the visual model in a different manner: ToonMaker provides an 
interactive visual editor for creating visual primitives, ODDS uses declarative descrip- 
tions, FaceKit procedurally specifies visualizations in methods of the object class to be 
displayed, and Picasso uses widgets defined in Lisp. These systems do allow different 
visualizations for any data object. As with many of the user interface tools described 
above, however, these systems do not represent metaphors as separate from visualizations; 
the definition of a visual item is tied to the database item it is to represent. Lacking 
a separate metaphor, these systems do not evaluate or compare visualizations, or test 
metaphor combinations for consistency. 

7.2.3. Automatic User Interface Tools 

Some user interface tools automatically generate presentations from a description of the 
data (DON (Kim and Foley, 1993), Dost (Dewan and Solomon, 1990), GENIUS (Janssen, 
Weisbecker, and Ziegler, 1993), TRIDENT (Vanderdonckt and Bodart, 1993), using a set 
of predefined rules to determine presentation and interaction. These rules are analogous 
to metaphors in that they describe the mapping from data to visualization. The rules 
are hard-wired, however, so they cannot be changed or combined. Thus, there is no 
determination of metaphor correctness, no possibility of mixing, and no flexibility in the 
use of non-data model information. 
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7.3. Other Formalism Work 

The work of Kuhn and Frank (Kuhn and Frank, 1991) is related to our work, yet covers 
a different area. It uses algebraic mappings to study the behavior of user interfaces. For 
example, it considers the similarities and differences between operations on a physical 
desktop, and those on a computer's virtual desktop. This permits evaluation of correctness 
of the behavioral aspects of visual metaphors. An earlier paper on the same subject by 
these authors (Kuhn, Jackson, and Frank, 1991) encouraged some of our early ideas that 
grew into our formalism. 

8. Conclusions and Future Work 

In this paper, we have presented a formalism for visual metaphors and described how it 
may be used to improve the visual presentation of data schemas. This formalism allows 
high level description of the correspondence between data and visual models. This 
description allows simpler definition of metaphors, easier evaluation and comparison of 
metaphors, and combination of different metaphors. The formalism can help improve 
schema visualizations in the many roles they play. 

Currently, a large part of the formalism has been implemented as a schema editing 
tool. Arbitrary data models, visual models, and metaphors between them can be defined, 
although in a hard-wired manner. (Our future work includes enhancing the interface 
to allow users to define all of these dynamically.) The user can create and modify 
visual schemas using direct-manipulation tools; these visual schemas are translated to 
the appropriate data schemas based on the metaphor. We have tested the system with 
various metaphors and data models and it works well, though limited space precludes a 
more lengthy description of the schema editing tool in this paper. 

Future work includes completing the schema editing tool. Two areas require effort: 
allowing user definition of different visual models and metaphors, and creating a suf- 
ficiently expressive language for specifying all necessary constraints. In addition, the 
formalism should be examined for solutions to the problems of displaying very large 
schemas, which are common in scientific databases (where schemas with thousands of 
classes and tens of thousands of relationships are common). The various formalism 
criteria for distinguishing metaphors need to be examined for testability; some may be 
undecidable (e.g., visual ambiguity). Furthermore, the formalism should be expanded to 
include "views", visualizations that contain subsets of data model information. It is also 
important to determine applicability of the formalism to data models beyond the object- 
oriented model with which we work; databases based upon other current models, and 
earlier models in legacy systems (e.g., the network or un-normalized relational models) 
would also benefit from improved schema visualization. Finally, once the formalism and 
the system based on it are sufficiently developed, it will be important to evaluate them 
empirically. Such an experiment would demonstrate the advantages and disadvantages 
of our formal approach to visualization. 
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Notes 

1. The term metaphor is sometimes used to describe behavior of visualizations as well as appearance. We do 
not consider behavior in this paper. 

2. For simplicity, we use the names of attributes directly instead of their corresponding full identifiers, i.e., A 
instead of P.A. This also holds for all other models presented in this paper and applies to any constraints 
that are shown as well. 

3. Note that if P does not have an image under Tp, then QT~(Tp(P)) is the empty set. Therefore Ta P is 
empty as well which makes it vacuously an onto function. Similar observations hold for T P'A. 

4. Non-onto functions and non-functional correspondences will prove useful in extending metaphors to allow 
visualizations of subsets of data schema information, part of our future work. 
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