
Journal of Intelligent Information Systems, 3, 263-298 (1994)
�9 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Foundations of Visual Metaphors
for Schema Display

EBEN M. HABER

YANNIS E. IOANNIDIS

MIRON LIVNY

Department of Computer Sciences, University of Wisconsin, Madison, W1 53706

haber@ cs.wisc.edu

yannis@cs.wisc.edu

miron@cs.wisc.edu

Abstract. Many aspects of database systems have been improved by Graphical User Interfaces (GUIs). One
area that has not received adequate attention in GUI research is the visual presentation of schemas, despite
the increasingly important role that schemas play in database design and operation. Schema visualizations
are valuable for viewing and manipulating both the schema and the information captured by it. In this
paper, we describe a framework that formalizes the process of visualizing database schemas or any similar
structured information. It is based on the concepts of a data model capturing schemas, a visual model capturing
visualizations, and a visual metaphor that defines a mapping between the two models. This formal description
of the mapping between a schema and its visualization permits straightforward declaration of visual metaphors,
and provides criteria to evaluate metaphors as to their ability to correctly visualize a schema. Given a visual
metaphor, the framework divides visual information into that which has meaning relative to the data model,
that which has meaning to the user but not to the data model, and that which is only aesthetic. This separation
permits better use of aesthetic information, resulting in richer visualizations. As a whole, we believe that the
formalism provides the foundations on which better schema visualization tools can be built.

Keywords: Database system, schema, user interface, visualization of structured information, metaphor

1. Introduction

Graphical User Interfaces (GUIs) are playing increasingly important roles in Database
Management Systems (DBMSs): improving ease of use through more intuitive operation
and increasing information bandwidth from computer to user through visual display of
information. Research in this area has touched upon many aspects of DBMSs, includ-
ing visual DBA tools (Benjamin and Lew, 1986), non-textual specification of queries
(Batini, et al., 1991; Cruz, 1992), displaying and querying multimedia and visual infor-
mation (Egenhofer and Frank, 1988; Gupta, Weymouth, and Jain, 1991; Leong, Sam,
and Narasimhalu, 1989; Yoon, et al., 1987), creating visual representations of complex
data (Flynn and Maier, 1992; King and Novak, 1992; Maier, Nordquist, and Grossman,
1986; Mamou and Medeiros, 1991), browsing through databases (Agrawal, Gehani, and
Srinivasan, 1990; Motro, 1986; Stonebraker and Kalash, 1982; Tsuda, et al., 1990), and
form-based data entry (King and Novak, 1987).

One area that has not received adequate attention is schema visualization. Many DBMS
GUIs allow non-textual specification and browsing of schemas, but they focus on other
aspects of DBMS operation and not schema visualization per se. The majority of these
systems are limited to a single visual metaphor; they do not permit visualization flex-

264 HABER, IOANNIDIS, AND LIVNY

ibility. Issues of efficient, flexible, and usable schema display are important, yet have
received little attention in existing systems.

A database schema describes the conceptual structure of data stored in a DBMS. Tra-
ditionally, schemas have been visualized textually as expressions in a data definition
language and have been used for database design. Schema visualization is crucial in
the database design process, where an unintuitive display can result in misunderstand-
ings and design errors. In some systems, schemas play a role beyond that in database
design. Many DBMS GUIs also use the schema as a template for operations such as
querying, browsing, data entry and display (e.g., GOOD (Paredaens and Van den Buss-
che, 1992), GORDAS (Elmasri and Larson, 1985), GUIDE (Wong and Kou, 1982), QBE
(Zloof, 1975), QDB* (Angelaccio, Catarci, and Santucci, 1990), VILD (Leong, Sam, and
Narasimhalu, 1989), and many others). Our own work focuses on scientific databases
and experiment management systems (in the context of the ZOO Experiment Manage-
ment System (Ioannidis and Livny, 1992; Ioannidis, et al., 1993). In these systems, the
schema describes the structure of experimental data, and as such can capture the interre-
lationships between different parts of an experiment. A good visualization of a schema
can aid users in better understanding the experiment and its significance, useful not only
for human-computer interactions but also for collaborations among scientists. We are
working to improve visualization of schemas to assist their use in these various roles.

To better understand and support the process of schema visualization, we develop a
formalism with the following main elements: 1) a data model that captures schemas, 2)
a visual model that captures visualizations, and 3) a mapping between data and visual
models, referred to as a visual metaphor. In the interface community, the term metaphor
has been used in a variety of ways, generally describing a transformation between abstract
and visual information (Batini, et al., 1991). i The abstract information of concern to us is
the database schema. Examples of visual metaphors for schemas include directed graphs,
E-R diagrams, and textual tables. Clearly, these metaphors have different characteristics,
and would be useful in different circumstances. In general, there is no ideal metaphor,
thus metaphor choice is important. Unfortunately, no general metaphor selection criteria
exist. For the specific case of database schemas (and similar structured information), our
formalism is intended to provide a framework for flexible use, definition, and evaluation
of visual metaphors. This formalism permits the declarative definition of models and
metaphors, provides criteria for the identification of incorrect metaphors, and presents
some guidelines for metaphor comparison. It supports mixed metaphors, the use of
different visual metaphors for different parts of a single schema, establishing when and
how metaphors may be mixed. Finally, the formalism allows the richness of some visual
models to be used to capture information that is meaningful to the user but is beyond
the database schema. We have begun implementation of a schema visualization tool
based on this formalism. The tool displays and allows users to manipulate schemas and
subschemas using different metaphors, and in the future will allow users to define models
and metaphors dynamically. While our work is oriented towards database schemas, the
formalism is also applicable to the visualization of any structured data that conforms to
our definition of data models (which is found in the next section).

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 265

The rest of this paper is organized as follows. Section 2 describes data and visual
models. Section 3 defines visual metaphors. Section 4 discusses correctness and quality
of visual metaphors. Section 5 discusses mixing of metaphors. Section 6 describes
how the metaphor framework may be used to capture information that is conceptually
meaningful or aesthetically pleasing to the user, but is unrelated to the database schema.
Section 7 describes related work in the area. Section 8 outlines future work and offers
conclusions.

2. Data and Visual Models

For completeness, before presenting the definition of data and visual models, we briefly
review some basic definitions and notations of binary relations which will be used later
in the definition of visual metaphors. A binary relation r from set A (its domain) to
set B (its range) is denoted r : A ~ B. The relation r is called a function if for
each a E A there is at most one b E B where (a, b) E r; it is called total if for each
a C A there is at least one b E B where (a, b) E r; it is called injective if its inverse is
a function; and it is called onto if its inverse is total. Injective functions are sometimes
called 1-1 functions. Binary relations can be unioned, in which case, their domains, their
ranges, and the sets of pairs in the relations are unioned, respectively. For a function r,
we use r(a) = b instead of (a, b) E r. Functions may be applied to sets of values; if
A' c_ A, then r(A') is equal to {r(a) I a E A'}. We also use r -1 to denote the inverse
of a function r, which may return a subset of A if r is not 1-1. Finally, for a function r,
the notation r(a) is valid even if there is no b E B where r(a) = b. In that case, when
applying a set-valued function on r(a) , the empty set is returned.

2.1. Problem Formulation

By definition, a schema describes the conceptual structure of some information in a
database, specified using the primitives of some data model (for clarity, such a schema
will henceforth be referred to as a data schema). We are interested in the process of
creating a visualization of a data schema. For this, we introduce the notion of a visual
model. Like a data model, it describes the structure of some information, though its
primitives are visual. As with data schemas, any visual representation that conforms to
a visual model will be called a visual schema. Visual schemas are used for two basic
operations: presenting data schema information in a visual form, and allowing creation
or manipulation of a data schema through changes to a visual schema.

Using the above notions, the problem of visual representation of data schemas may be
stated formally as follows. Given a data model 79, let S(79) denote the set of valid data
schemas that can be constructed based on that model. Similarly, let S(~) denote the set
of visual schemas that can be constructed based on a visual model G. The sets S(D) and
S(G) are defined to be the information capacities (Miller, Ioannidis, and Ramakrishnan,
1993) of the data model 79 and the visual model G, respectively. In order to create visual

266 HABER, IOANNIDIS, AND LIVNY

schemas of data schemas, we require a binary relation between 5'(79) and 5'(G), whose
specific properties depend on the intended use of the visual schemas. Specifically,

. If a visual schema of ~ is used only to view any data schema of 79 in its entirety,
then an onto function must exist of the form f : S(G) --+ S(79), so that every data
schema can be represented visually.

. If, in addition, a visual schema of ~ is also used to update a data schema of 79, then
a total onto function must exist of the form f : S(G) --4 S(79), so that every visual
schema can be uniquely interpreted as a data schema.

Clearly, not all such functions f that satisfy the above properties are useful. Many
are arbitrary mappings, with no obvious correspondence between the data schema and
the visual schema. Our goal is to establish a relationship between the members of S(79)
and S(G) so that when users view a visual schema, they can infer the data schema to
which it maps. Thus, f should be derived from a correspondence between the features
of the data and visual models, which would enforce a structural similarity between data
schemas and visual schemas. This correspondence is a visual metaphor and is formally
introduced in Section 3. A formal description of the features of data and visual models
is given in the next subsection.

We should mention at this point that the above problem formulation has been motivated
by the very similar problem of mapping schemas and data between different data models
in a heterogeneous database system (Miller, Ioannidis, and Ramakrishnan, 1993). The
specific similarities and differences between the two problems are beyond the scope of
this paper.

2.2. A Formalism for Data~Visual Models and Schemas

In this subsection, we present a meta-model that can capture a large and interesting class
of data and visual models. Using this meta-model, we can describe the features of any
model in this class and discuss the relative information capacity of any pair of models.
Example models described in this meta-model are given in the following subsection.

DEFINITION 1 Every data or visual model AA can be seen as a sextuple AA = < 79,
.A,)2, Q, ~ , C > defined as follows:

79 is a finite set of identifiers for the types of primitives in .hd. Each such type P is
associated with a (possibly infinite) set of globally unique ids Z (P) that can be used
to identify primitives of type P.

A is a finite set of identifiers for property names of primitive types in .M. Each element
of .A is of the form P.A, where P E 7 9 and A captures some attribute that all
primitives of type P should have.

12 is a (possibly infinite) set of identifiers for values of properties of primitive types in
3,t. Each element of 12 is of the form P.A = = v, where P.A E A and v captures

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 267

some value that the/9.A attribute may have. For certain attributes, the values v may
be drawn from the sets 2- 0 of primitive ids.

Q is a function Q : 7 9 --~ 2 A, indicating for each primitive type P E 79 the set of
attribute identifiers in .,4 that correspond to 19.

7~ is a function 7"r : .4 --+ 2 v, indicating for each attribute/9.A E .4 the set of value
identifiers in 1) that can be assigned to it. To capture the set of actual values instead
of their identifiers (e.g., v instead of P .A = = v) the function ~* is used, where
n * (P . A) = {v I P .A = = v E n (P . A) }

C is a finite set of constraints, i.e., rules that must be satisfied by any schema expressed
in 2k4. These constraints are formulas in some prespecified language E. and use
elements that refer to identifiers in 7 9, A, 12.

Note that, by the way at and 12 were defined, if P r P ' then Q(P) and Q(P ') are
disjoint, and if 19.A r P ' .A ' then 7~(RA) and 7Z(PCA') are disjoint. Also note that
primitives are essentially complex objects, since some of their attributes can take values
that are primitives themselves.

Most of the common data models fall naturally in this meta-model. For example,
consider the relational model. It has relations and attributes as its primitive types, each
relation has a name, and each attribute has a name, a type, and a relation with which
it is associated. Fully specified examples of data and visual models may be found in
Section 2.4. The meta-model may be enhanced with several additional characteristics of
models in a straightforward way, e.g., with an identifier for the name of each instance
of the model, but we avoid that for simplicity of presentation.

As defined above, a data schema or visual schema may be considered as an instantiation
of a data or visual model, respectively. This is formally defined as follows:

DEFINITION 2 A schema S o f a model Ad is defined as follows:

| For every P E 79, there is afinite set [19] C Z(P) ofprimitives of type P that appear
in schema S.

�9 For every P.A E ,4, there is a total function [P.A] : [/9] ~ [7~*(/9.A)], which
determines the value of the P.A attribute for every primitive in [P]. The [T~*(/9.A)]
set is defined such that, if T~*(P.A) = Z(P') , for some 19' E 7 9, then [~*(P.A)] =
[/9']. Otherwise, [7~*(P.A)] = ~*(P.A) .

�9 For every c E C, there is a constraint [c], constructed from e by replacing every
P E 79 by [P], every P.A E A by [P.A], and every P.A = = v by v. All these
constraints are satisfied by the schema.

In the following table, we summarize the notations introduced in Definitions 1 and 2:

268 HABER, IOANNIDIS, AND LIVNY

Notation Explanation

79 The set of primitive types
P A primitive type

77(P) The set of identifiers for primitives of type P
[P] The set of primitives of type P in a schema

.A The set of attributes for all primitive types in 79
P.A The A attribute of primitives of type P

[P.A] (p) The value of the P.A attribute of the primitive p

V The set of values for all attributes in .4
P.A = = v The element v as a value of the attribute P.A

Q(P) The set of attribute identifiers of primitives of type P
TZ(P.A) The set of value identifiers of the P.A attribute
7-4*(P.A) The set of values of the P.A attribute

C The set of constraints of a model
[c] The instantiation of a constraint c E C for the

primitives in [P] and attribute values [P.A] in a schema

2.3. Creating Visual Models

Creation of data models is a classical database problem that is beyond the scope of this
paper (Batini, Ceri, and Navathe, 1992). In this subsection, we concern ourselves with
creating suitable visual models. There is an important difference between the two kinds
of models. Data models capture abstract organization of information. Their primitive
types, attributes, and values are determined by the information the model captures. Visual
models, however, must reflect not only the information to be organized, but also the
medium in which the models are expressed. Specifically, visual model primitive types
reflect both the information to be shown and the medium, while the possible attributes and
values of a primitive type are determined by the medium alone. For example, consider
a visual model used to display directed graphs. Any such model would likely have
primitive types corresponding to nodes and edges. If the model were oriented toward a
monochrome ASCII terminal, these primitive types and their attributes and values would
be very different from a similar model intended for a color bitmapped display system.
The ability to use colors, shapes, lines, and patterns would vary widely between the two.
In general, the number and semantics of visual model primitive types are determined
by the information that must be displayed, but the precise composition of the primitive
types is determined by the medium.

Because data models are used to represent abstract information, their types of primi-
tives may be chosen arbitrarily based on some conceptualization of the world. On the
other hand, visual model primitives must be visualizable. Therefore, visual primitive
types must be constructed using only certain visual building blocks. Motivated by our

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 269

involvement in developing a scientific Experiment Management System, we are con-
cerned with visual models to be displayed on color bitmapped workstations as these
are commonly available to scientists. To build visual models for this medium, we have
chosen the basic visual constructs described in the following table. The choice of these
constructs is somewhat arbitrary. They are not formally defined in this paper, but the
interested reader may find a formal discussion of visual constructs elsewhere (Foley, et
al., 1990). In the table below, location is a complex attribute consisting of the spatial
coordinates of the system. For the region, text-display, and picture-display constructs, it
is assumed to be the location of their center.

Construct Attributes

region

line
text-display
picture-display

shape, location, orientation, size, background-color,
background-pattern, boundary-width, boundary-color,
boundary-pattern
source-location,dest-location, width, color, pattern
text, font, location, orientation, size, and color
picture, location, orientation, size, and color

Visual primitive types are defined as compositions of the above primitive types or
other, previously defined, visual primitive types. The attributes of a visual primitive are
the attributes of all of its components, possibly renamed to avoid any naming conflicts.
Since compositions often have a large number of attributes, in our examples we have
omitted many visual attributes to make the examples more manageable.

To make the appearance of a composition coherent, it will usually be necessary to
include constraints relating the attributes of its different components. For example, if
a box with a piece of text in the center were required, a composition of a region and
a text-display would be defined as a primitive type, and a constraint would require the
value of the location attribute of text-display to be the same as the value of the location
attribute of region. These constraints regulate the appearance of visual primitives~ and
are called composition constraints to distinguish them from other, more semantically
focused constraints.

2.4. Example Data and Visual Models

Consider a very simple semantic data model, supporting entity-classes that may be mu-
tually related with binary relationships. Each entity-class has a name and a kind. The
two possible kinds are 'simple' (such as the class of integers or the class of character
strings) or 'compound' (user-defined classes). Each relationship has a name, a card-ratio
of ' 1:1', ' 1 :N', 'M: 1', or 'M:N', and two entity-classes with which it is associated. This
data model is the sextuple 79 = < 7979,.Av,'~v, Qv,T~v ,gv >, where Cv = 9, and
the primitive types in 799, their attributes in .Av, and their corresponding value sets as
determined by ~ are given in the following table?

270 HABER, IOANNIDIS, AND LIVNY

Primitive Type (P) Attribute (P.A) Attribute Values (~* (P.A))

entity-class name text
kind {simple, compound}

relationship name text
card-ratio {1:1, I:N, M:I, M:N}
from-class 27(entity-class)
to-class 27(entity-class)

Note that the set of values of an attribute has several possibilities: an infinite predefined
set (e.g., text), an enumerated set (e.g., {1:1 M:N}), or the set of all instances of a
primitive type (e.g., 2-(entity-class)).

Similarly, consider a very simple visual model that supports directed graphs. We define
the primitive types to be nodes and edges, the former a combination of a region and a
text-display, and the latter a combination of a line, a text-display, and two nodes. This
visual model is the sextuple G = < ;o~, V~, .A~, Q~, 7 ~ , C~ >, where the primitive
types in Pa, their attributes in .A~, and their corresponding value sets as determined by
~ are given in the following table. For simplicity, only a subset of the attributes is
shown.

Primitive Type (P) Attribute (P.A) Attribute Values (~* (P.A))

node shape {square,oval}
location plane-points
size { 100 pixels}
color {blue, red}
label-text text
label-color {black}

edge source-location plane-points
dest-location plane-points
color {black, blue, yellow, green, orange}
from-node 27(node)
to-node 7?(node)
label-text text
label-color {black}

There are four constraints in set Cg that all schemas of ~ must satisfy. Two of them
are composition constraints, related to the relative positioning of visual constructs within
each primitive type. The remaining two are somewhat more interesting, determining
the location of edge primitives in terms of the nodes they connect. Using simple Horn-
clauses, we show these constraints, which indicate that the location of the source (resp.
destination) of an edge is the same as the location of the from-node (resp. to-node) of
the edge:

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 271

Ve E edge, source-location(e) = location(from-node(e)), and
Ve E edge, dest-location(e) = location(to-node(e)).

3. Visual Metaphors

3.1. Definitions and Notation

A visual metaphor is defined as a correspondence between some of the features of a data
and a visual model, i.e., elements in P , "4, V. A metaphor induces a mapping between
data schemas (instances of the data model) and visual schemas (instances of the visual
model). Basing the schema mapping on the feature correspondence helps produce visual
schemas that, when viewed, allow the user to deduce the underlying data schema (Section
2.1). Consider a data model 79 = < 7979,.479,1279, Q79,7~79,C79 > and a visual model
G = < 79~, "4~, V~, Q~, T@, C~ >. A metaphor will include correspondences between
primitive types (7979 and 79~), between attributes ('479 and "4~), and between attribute
values (1279 and Va). (The above define a correspondence between constraints as well,
since constraints refer to elements of the 7 9, "4, and 12 sets.) These correspondences
describe the meaning of visual model features with respect to the underlying data model.
For example, given the data and visual models from Section 2.4, if a correspondence
were defined between the primitive types entity-class and node, then every instance of a
node in a visual schema would imply the existence of a entity-class in the data schema.
To allow presentation flexibility, we permit correspondences to exist between multiple
features in the visual model and a single feature in the data model (an example of this
is given in the next section). This is possible only when the visual model has a greater
information capacity than the data model (Section 2.1), which is almost always the case.

DEFINITION 3 A metaphor T is an onto function from ~ to D (denoted by T : ~ ---+ 79),
which is the union of the following three onto functions:

Function Tp : 79~-* 7979.
Function Ta : "4~ ~ "479,

Function Tv : V~ ~]379,

which is equal to UpE79g TPa , where for each
primitive type P, TaP : Q~(P) --~ QD(Tp(P))
is an onto function, a
which is equal to UP.At.% T~ "a, where for each
attribute P.A, TvP'A : ~g (P .A) --+ Tg79(Ta(P.A))
is an onto function.

As mentioned above, all constraints in C~ use elements that refer to identifiers in 79~,
"4~, and Y~. We occasionally use the notation T(c), c E C~, for the constraint constructed
from c by replacing each element referring to an identifier z of T'~ to "4G tO V~ by an
element referring to the identifier T(x). We also use the notation T(Zg(P)) to denote
Z79(T(P)).

272 HABER, IOANNIDIS, AND LIVNY

r i P A] ~,- v P .A = = v

t T

t ([P .A])

t(p) . ~ . v' �9 P ' . A ' = = v'

....................... V a l u e t o I d e n t i f i e r E 'P'

~.- M e t a p h o r

. ~,- A t t r i b u t e F u n c t i o n A p p l i c a t i o n

Figure 1. Commuting diagram between metaphors and attribute functions.

3.2. The Induced Schema Mapping

Given a metaphor as defined above, a mapping between data and visual schemas can be
induced. Using this induced mapping, any data schema of 73 can be transformed to a
visual schema of ~ in a manner that remains faithful to the metaphor.

DEFINITION 4 Given a metaphor T : ~ ~ 79 and a visual schema of G, T induces an
onto function t from (UPETa 9 [P]) I.J {[P.A] I P.A E A~ } onto the corresponding features
of some data schema of D with the following characteristics:

�9 (VP c T'g)(Vp E [P]) i fTp(P) is defined, then t(p) is aprimitive of type Tp(P).

�9 (VP E T'9)(VP.A E Q(P)) i fTa(P.A) is defined, then t([P.A]) is a function
[Ta(P.A)] : [Tp(P)] --~ [7~9(Ta(P.A))] such that (Vp E [P]) the following holds:

if [P.A](p) = v and T (P .A = = v) = (P' .A' = = v ')

then t([P.A])(t(p)) = v'.

The first clause above states that primitives of the visual schema in ~ represent prim-
itives in some data schema in 79 based on the type correspondence specified by T. The
second clause states that, for every visual model attribute mapped by Ta, there exists a
data model attribute whose values are determined based on the value correspondence Tv.
Essentially, this is a commutativity requirement that is best shown in Figure 1. Based
on the two clauses above, the induced function t determines a mapping from any visual
schema in G to some data schema in 73. As with the metaphor T, the induced function t
can be extended to include in its domain instantiations of constraints, t([e]) for c E C~.

3.3. An Example

To illustrate the above definitions, we present a metaphor T. This metaphor maps from
a visual model similar to that in Section 2.4 to the data model discussed in the same
section. The visual model has been supplemented with an additional primitive type,
called a blob, which consists of a region and two text-displays, referred to as label1 and

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 273

label2. Also, the from-node and to-node attributes of relationship have been extended
to accept as values both nodes and blobs. This function T is defined in the table on the
following page.

3.4. Discussion

A metaphor provides meaning to features of a visual model by establishing a correspon-
dence between them and the features of a data model. The precise meaning is captured
by the function T. For example, displaying a red oval node implies the existence of
a compound entity-class in the data model. The use of the T function and its induced
schema mapping t should produce visual schemas that users can correctly and unambigu-
ously interpret. Depending on various properties of T, the visual schema may include
features that do not carry any meaning and/or features that carry redundant meaning.
Based on knowledge of T, users should be able to ignore the former and not be confused
by the latter.

We would like to comment on the various properties of metaphors as they relate to
the relative information capacity of a data and a visual model. As a minimum require-
ment, a metaphor has been defined as an onto function: if it were not onto, then some
characteristics of a data model would not be captured visually; if it were not a function,
then a single visual construct could have multiple meanings, and therefore could not be
interpreted correctly. 4

For a metaphor that is not total, some visual elements do not mean anything with
respect to the data model. If a metaphor will be used only for retrieving a data schema,
T does not have to be total. Under retrieval, only existing schemas will be visualized, so
non-totality does not create any problem. Specifically, non-totality of Tp or T~ implies
that some visual primitive types or some values of visual attributes respectively will
never be used, while non-totality of Ta implies that the values of some attributes can be
arbitrary. If a metaphor will be used for retrieving and updating a schema, Tp and Ta
still do not have to be total. For Ta, the reasons are the same as above. A non-total
T v is permissible because visual primitive types that are not mapped by Tp may be used
for presentation purposes and can be ignored when mapping the visual schema to a data
schema. For each P.A that is mapped by Ta, however, T~ "A must be total. Otherwise,
one could draw a visual schema that would not be translatable to a data schema.

To demonstrate the use of a non-total metaphor, consider a data model D capturing
words in the English language as strings of letters from the Roman alphabet. A vi-
sual model ~ is constructed to visually present these words based on a straightforward
metaphor that maps each display of a word to the word itself. Because the strings are
visually expressed, ~ must also include information about typeface, size, color, letter
spacing, and other visual characteristics of letters that carry no particular meaning, i.e.,
Ta is not total. Because of this, G has a greater information capacity than 79: the number
of its visual schemas is equal to the number of English words (about 600,000) multiplied
many times by the possible typefaces, sizes, and the other characteristics. Yet regardless
of font or size, a visualization of a word carries an unambiguous meaning in the context
of the metaphor.

274 HABER, IOANNIDIS, AND LIVNY

x T(x)

node
node.label-text
node.label-text==x
node.color
node.shape
node.color== 'blue'
node.shape=='square'
node.color=='red'
node.shape=='oval'

entity-class
entity-class.name
entity-class.name==x
entity-class.kind
entity-class.kind
entity-class .kind== 'primitive'
entity-class .kind== 'primitive'
entity-class.kind== 'compound'
entity-class.kind=='compound'

blob
blob.labell-text
blob.labell-text==x
blob.labe12-text
blob.label2-text=='P'
blob.label2-text=='C'

entity-class
entity-class.name
entity-class.name==x
entity-class.kind
entity-class .kind== 'primitive'
entity-class .kind== 'compound'

edge
edge.label-text
edge.label-text==x
edge.from-node
edge.from-node==c
edge.to-node
edge.to-node==c
edge.color
edge.color=='green'
edge.color=='orange'
edge.color=-='yeUow'
edge.color== 'blue'
edge.color== 'black'

relationship
relationship.name
relationship.name==x
relationship.from-class
relationship, from-class==t(c)
relationship.to-class
relationship.to-class==t(c)
relationship.card-ratio
relationship.card-ratio==' 1:1'
relationship.card-ratio==' 1:1'
relationship.card-ratio==' I:N'
relationship.card-ratio=='M: 1'
relafionship.card-ratio=='M :N'

If a metaphor is not 1-1 then multiple visual elements have the same meaning with
respect to the data model. For both retrieval and update, the implications of this are the
same. If Tp or Tv are not 1-I then there is a choice of visual constructs that can be
used, which should be left to the user or resolved via some default mechanism. If T~
is not 1-1 then there is redundancy: multiple visual attributes capturing the same data
attribute. By the nature of visual models, there is no issue of choice here: all attributes
of a primitive must have some value in a visual schema, and therefore all those mapped
to the same data attribute should be assigned consistent values based on Tv. This issue of
consistency arises because of the redundancy semantics. For visual updates of schemas,
if several visual attributes are mapped to the same attribute by Ta, as soon as the value
of one of them is specified, the values of all others are uniquely determined.

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 275

Functions that are not 1-1 establish equivalence classes among the features of the visual
model, i.e., several features have the same meaning. For example, in the metaphor of
Section 3.3,

Tp(node) = Tp(blob) = entity-class

implies that a primitive of type entity-class may be represented equivalently as either a
visual primitive of type node or one of type blob. Attribute correspondences are similar
but more complex. A data model attribute may correspond to a set of visual attributes,
some of which may come from the same primitive type. For example, in the same
metaphor,

Ta(node.color) = Ta(node.shape) = Ta(blob.label2-text) = entity-class.kind

indicates the same choice of node or blob primitive types as above. In addition, it specifies
redundancy: visual attributes node.color and node.shape are from the same primitive
type, so they redundantly capture data attribute entity-class.kind. Value mappings are
similar, but even more complicated, so they warrant two examples. First,

Tv(edge.color == 'green') = Tv(edge.color == 'orange')
= (relationship.card-ratio ==' 1:1')

demonstrates attribute value choice; two values have the same meaning with respect to
the metaphor. Second,

T~(node.color == 'blue') = T~(node.shape == 'square')
= Tv(blob.label2-text == 'P ')
= (entity-class.kind == 'primitive')

includes values from different primitive types (e.g. node.color versus blob.label2-text),
paralleling the choice at the primitive type level, and different values for different at-
tributes of the same primitive type (e.g. node.color and node.shape), indicating values
for redundant attributes.

Figure 2 gives an example schema and a visual schema that could be produced by ap-
plying the induced mapping of the example metaphor in Section 3.3. (Due to limitations
of the printing medium, color attributes cannot be displayed directly; instead they are
indicated by the name of the color along the line of the edge.)

4. Judging Metaphors: The Good, the Bad, and the Ugly

Given a framework for creating visual metaphors, it is necessary to examine issues of
metaphor correctness. We thus develop criteria that are useful in ensuring that a metaphor
accurately presents information. There are issues beyond correctness, however, that affect
how well metaphors visualize information. We discuss these issues of metaphor quality
and their impact on visualization as well.

276 HABER, IOANNIDIS, AND LIVNY

enUty-classl ("Name", primitive)
enUty-class2 ("Age", primitive)
entity-class3 ("Salary", primitive)
entity-class4 ("Person", compound)
relationship1 ("Children", M:N, entity-class4, entity-class4)
relationship2 ("Has Name", I:N, entity-class4, enUty-classl)
relationship2 ("Has Age", I:N, entity-class4,entity-class2)
relationship2 ("Has Salary", I:N, entity-class4, entity-class3)

A DDL Representation of the
Data Schema

Has Name I I

Children ~ (Yellow)] I

A Visual Model Representation
of the Data Schema

Figure 2. Example of a Metaphor Applied to a Schema.

4.1. Metaphor Correctness

We have already discussed the requirements for the relation T in order for it to be
a valid metaphor based on the desired operational goals, retrieval and/or update. In
addition, there are three other issues that affect the correctness of a metaphor. All three
require some consistency between the metaphor and the visual model, the first in terms
of allowed attribute values, and the second two in terms of constraints.

First, consider attributes whose values are primitives, e.g., the from-class attribute of
relationship in Section 3.3. It is necessary that the type of such a primitive-valued visual
attribute be consistent with the metaphor and with the type of the data model attribute to
which it is mapped. Continuing the above example, the attribute relationship.from-class
takes values of type entity-class. The primitive type entity-class is mapped to by more
than one visual primitive type, specifically node and blob. As a result, it is necessary
that the ~,isual attribute edge.from-node, which maps to relationship.from-class, accept as
values primitives of types node and blob. Specifically, if Tg~(P.A) = Z(P') for some
pi E T'7~ then the following should hold:

T4o*(T -1 (P.A)) = Up,,ET-l(p,)5[(Ptl).

For example, the metaphor of Section 3.3 satisfies the above since

* 1 T46 (T - (relationship.from-class)) = 5[(node) U 5[(bloh)

=- Up,T_1 (class)Z(P) �9

Otherwise, it would not be possible to choose arbitrary node or blob representations for
entity-class primitives.

Second, when there is redundancy in the metaphor, i.e., Ta is not 1-1 and different
attributes of the same primitive type in 7"9~ are mapped to the same attribute of some

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 277

primitive type in 7979, the values of the former attributes must be consistent. This can be
enforced with constraints in Cg. For example, in the metaphor presented in the previous
section, the color and shape attributes of node are redundantly used to capture the kind
attribute of entity-class. For the metaphor to be correct as defined in Section 3.3, the
visual model must include the following constraints:

Vn E node, color(n) = 'blue' ~ shape(n) = 'square',
Vn E node, color(n) = 'red' r shape(n) = 'oval ' .

Allowing any other combination of shape with color would permit visual schemas with
no corresponding data schema. This would prevent the visual model from being used for
updates of the data schema, since it would allow conflicting values of the kind attribute
of the entity-class. For example, a visual schema with a blue oval node would have no
meaning with respect to the metaphor.

Third, the constraints of the visual model should be such that no valid visual schema
will map to an invalid data schema, and vice versa. This is ensured through a relationship
between the constraints in the data model and those in the visual model. This relationship
may be very complex, since one may perform inferences on a given set of constraints
to derive additional constraints that are not explicitly specified. For the purposes of
this paper, we take a simple approach and consider only some straightforward sufficient
conditions for the consistency of constraints between the two models. Specifically, for
two constraints c and c ~, c subsumes c ~ if the set of schemas that satisfy c is a subset of
the set of schemas that satisfy c ~. Consider the subset Cg ~ of the constraints in C~ that
are mapped by the metaphor T. (Note that no composition constraint is among them.)
If the visual model will be used for retrieval only, then the following should hold:

r e ' E C~', 3c E Cz~, e subsumes T(c ') .

This is sufficient to ensure that all data schemas have a corresponding visual schema. On
the other hand, if the visual model will be used for updates as well, then the following
should hold:

Cz~ = {T(c) I c E C g ' } .

This is sufficient to additionally ensure that all visual schemas have a corresponding
data schema. Note that the visual model may have additional constraints, those in Cg -
Ca ~, e.g., composition constraints or other constraints that are enforced for presentation
purposes.

4.2. Metaphor Quality

A metaphor may be correct and none-the-less present information poorly. For example,
it is conceivable to have a correct metaphor where Ta is not a function. Such a Ta
would map the same visual attribute to more than one data attribute, so that each value
of the former corresponds to a combination of values of the latter. We have decided,

278 HABER, IOANNIDIS, AND LIVNY

however, that this introduces a level of visual complexity that is often uncomfortable
and would result in confusing visual schemas in many cases. For example, consider
the relationship primitive type of the data model in Section 2.4, enhanced with a kind
attribute taking values 'part-of' and 'association'. Following the metaphor of Section 3.3,
consider mapping the edge.color attribute to the combination of the relationship.kind and
relationship.card-ratio attributes. Each of eight colors would map to a given combination
of kind and ration, e.g., T('orange') = ('part-of' , 'M:N'). Such a Ta relation is not
strictly incorrect, i.e., a well defined mapping between visual and data schemas can still
be derived with the desirable properties with respect to information capacity. We believe,
however, that such a metaphor would be more difficult for most users to remember than
one where two separate visual attributes are mapped to the two data attributes. We thus
disallow non-functional Ta's.

Beyond functionality of T~, other characteristics of metaphor quality also affect infor-
mation presentation. We discuss three such traits that greatly affect metaphors: informa-
tion hiding, which occurs when information is captured by the visual model but is not
visible to the user, visual ambiguity, which happens when visual primitives of different
primitive types or different values of the same attribute appear identical to the user, and
semantic ambiguity, which exists when visual attribute values do not suggest the data
attribute values they capture. The first two issues are concerned with the visual model
alone, while the third regards the metaphor itself. There exist other issues of metaphor
quality beyond those mentioned above, including intuitiveness, versatility, and emphasis.
These are more difficult to quantify so they are beyond the scope of this paper.

In general, there are no universal rules about good user interfaces. Nevertheless, we
believe there are certain desirable and undesirable characteristics of user interfaces in
the context of our own work. We thus conclude the discussion of each of the metaphor
quality traits above with comments on the trait's implications, and whether we believe
these implications to be good or bad.

4.2.1. Hidden Information

Not all information captured by a visual model is visible to the user. This hidden infor-
mation falls into two categories: transient and structural. Transient hidden information
is not visible to the user but can become visible through some manipulation of the visual
schema that leaves the underlying data schema unchanged. Consider the visual model
described in Section 2.4 and the metaphor from Section 3.3. The node primitives have
locations that may be anywhere on the plane, thus it is possible for two nodes to have
the same location. The convention for such cases in a 2-D display system is to make
one of the nodes invisible or partly visible, conceptually "behind" the other node. The
node that is behind captures information, yet the user cannot see it. If the front node
is moved, an operation that does not affect the underlying data schema, the back node
becomes visible. Figure 3 demonstrates how one primitive can be partially or totally
hidden by another.

This example of hidden information depends on the fact that the location attribute is
free, not part of the metaphor. Freedom of other attributes can also result in transient

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 279

Both Node1 and Node2 Partially Node2 Completely
Node2 Visible Hidden Hidden

Figure 3. An example of transient hidden information.

e2

edge1

Figure 4. An example of structural hidden information.

hidden information. For example, if the size of a node were free, the node could be
hidden by setting its size to zero.

Structural hidden information is information that a visual model captures but does not
display. COnsider the edge primitive type from the visual model in Section 3.1 and the
metaphor in Section 3.3. It has two attributes, from-node and to-node, which are not
directly shown. Their values are made visible by the constraints that define the location
of the edge. Consider the result of removing this constraint from the visual model. The
location of edges would no longer be constrained; an edge line could appear anywhere
in the visual schema with no relation to the nodes specified by its from-node and to-
node attributes. The visual model would still be valid; it would still capture the same
information, but this information would not be visible to the user. Figure 4 demonstrates
the appearance of a visual schema with and without the constraints which determine edge
location. The same metaphor contains another example of structural hidden information.
Edges are not directed, and as a result it is not possible to distinguish the edge's from-
node from the to-node. Structural hidden information can occur whenever the appearance
of one attribute is affected by another attribute or constraint. In the above example, the

280 HABER, IOANNIDIS, AND LIVNY

Figure 5. Polygons of 15 and 17 sides.

from-node attribute is made visible through a constraint that links it to another attribute,
source-location.

We believe that structural hidden information should usually be avoided, whereas tran-
sient hidden information need not be. In many cases, a model that cannot visually
display all the information it captures is undesirable. Temporarily invisible information,
however, is not a problem as the hidden information can be made visible when necessary.
In fact, transient hidden information can be a very useful tool for reducing clutter in a
visual schema by hiding infrequently needed information.

4.2.2. Visual Ambiguity

Visual ambiguity occurs when a visual model contains two distinct primitive types (mem-
bers of T'a) or two distinct values for the same attribute (members of Va) that are visually
indistinguishable. Two items are visually indistinguishable when a user viewing one can-
not discern which of the two it is.

Objects with identical appearance are obviously visually indistinguishable. For ex-
ample, it would be legal to define two different visual primitive types with the same
attributes and values, and equivalent constraints. Metaphors could be correctly and un-
ambiguously defined (since they depend on symbolic representations of the primitive
types and their characteristics), but users might be unable to interpret schemas correctly,
since instances of the two visual primitive types would appear the same. We refer to
these cases as strict visual ambiguity. A slightly less strict form of visual ambiguity
occurs in cases where attributes of two different primitives have different names, but the
same values and constraints.

Another kind of visual ambiguity occurs when two primitive types or attribute values
appear very similar, though not identical. Primitive types or attributes with a similar ap-
pearance may be visually indistinguishable, depending in part on the degree of similarity
and the visual acuity of the viewer. For example, if two polygons of 15 and 17 sides are
mapped to two different values of a data attribute, Figure 5 shows that users might not
be able to correctly distinguish between the two values. Another example would be two
primitive types with different attributes and values but the same appearance to the user.

Visual ambiguity is, in general, undesirable, because it results in schemas of a visual
model that may not be correctly interpreted by a user. Strict visual ambiguity is straight-

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 281

forward to detect by testing the Qg and ~ g functions, and the constraints affecting the
primitives in question. Non-strict ambiguity is much harder to define formally, let alone
detect; there may not exist universal similarity (as opposed to equality) measures. In-
vestigating possible definitions and similarity detection algorithms is part of our future
work.

4.2.3. Semantic Ambiguity

Semantic ambiguity occurs when the appearance of a visual attribute value does not bring
to mind the data attribute value with which it corresponds. The degree of ambiguity
depends upon the memory of the user, the range of data attribute values, the type of
visual attribute, and the choice of visual attribute values. For example, using randomly
assigned colors to represent values between 1 and 500 would be problematic for any user
lacking an eidetic memory (if the the values are of interest to the user). Using colors
ordered and spaced by their place in the spectrum would be better, giving the user a feel
for the magnitude of different values. Using Arabic numerals to represent these values
would be the most precise (though possibly less good for giving a quick impression of
the value). While improving human memory is beyond the scope of this paper, we can
offer visual attribute and value choice guidelines to reduce semantic ambiguity.

In general, any visual attribute type can be used for representing a data attribute with a
small value range. For example, it would not be difficult for a user to learn associations
between a small number of shapes, colors, or patterns, and their corresponding data
model values. Precisely capturing values with a larger range, however, requires visual
attributes with inherent meaning; the visual value must in some way suggest the data
value. Attribute types may be divided into two categories with respect to inherent
meaning. Text and pictures can have much inherent meaning as long as the viewer
shares a linguistic or cultural context with the creator. For example, a picture formed
of a red octagon with the word "STOP" in the middle has an immediate association for
most people. Shape, color, pattern, size, and location have less inherent meaning, and
what meaning they have is limited to more narrow contexts. For example, a red colored
light means "stop" in the context of driving, but it also means "on" in the context of
electric kitchen ovens and toasters. If a precise representation is not needed, the limited
inherent meaning of these attributes can be useful. For example, consider a metaphor that
associates the spectrum of colors to a large range of temperatures. While specific values
would be hard to determine, the user could easily make comparisons and determine
general magnitudes of values.

As a result, in most cases text and pictures should be used to represent values with
large ranges. In some cases, when a general impression of the value is needed instead
of the exact value, other attributes can be used. Values with a smaller range, such as
entity-class kind from Section 2.2, may be represented by any type of attribute.

282 HABER, IOANNIDIS, AND LIVNY

5. Combining and Mixing Metaphors

Different metaphors have different characteristics: emphasis, space efficiency, intuitive-
ness, and versatility. There is no single metaphor that is best for all schemas and all
situations. We believe that a schema visualization tool should support a variety of
metaphors and associated visual models. Users will be able to choose among them so
that the same data schema may be viewed as different visual schemas, each suitable for
different circumstances.

The use of different metaphors may be taken one step further, by allowing the use of
different metaphor correspondences for different parts of the same visual schema. This
is faithful to the definition of metaphors in Section 3.1, which allows correspondences
between one data model primitive type and several visual model primitive types. Such
metaphors may originally be defined this way, or may be defined as a combination
of two simpler metaphors. This involves combining their visual models into a single,
unified model, and combining the metaphors to map from that model. The following
section presents some example metaphors that will be used to demonstrate the formal
specification of metaphor combination.

5.1. Example Visual Metaphors

Consider the data model 79 of entity-classes and relationships described in Section 2.4.
Also consider the visual models, ~1 and ~2, described in the following table.

Visual model ~1 is similar to G described in Section 2.4. Visual model G2 has nodes
that are rectangles, and instead of using edges to represent a connection between two
nodes, it uses arrangements. Arrangements are formed from a text-display construct
and two nodes, a parent-node and child-node. The existence of an arrangement affects
the location of the child-node. The specific physical arrangement is defined by a set of
constraints which require node placement similar to a textual outline, where subpoints
appear below and indented to the right of the main points. It should be noted that G2
is a visual model not for general directed graphs but only for trees, as any child node
with multiple parents would have conflicting constraints on its location. These models
are accompanied by several composition constraints, which are of no particular interest
and are therefore not shown.

For each visual model, we define a metaphor. The two metaphors are shown in the
table below. For brevity, the part of the metaphor that corresponds to the Tv function
is not included. Visual metaphor T1 : ~1 ~ 79 is similar to the metaphor described in
Section 3.1, except that it does not include the blob primitive type, and entity-class.kind is
represented by node.label-color. Visual metaphor T2 : G2 --~ 79 is different in that entity-
class.kind is captured by node.color, and that relationships are expressed as physical
arrangements of the related nodes (as described earlier). Figure 6 gives examples of a
simple schema displayed using each of the metaphors. This example, drawn from the
Cupid simulation model (Ioannidis, Livny, and Haber, 1992), shows a case where the
outline metaphor is more compact than the graph metaphor.

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 283

oo0s,zd//
, ~,~~Bulk Don~sity/ ~Qua'~xracti~

/ Silt Fractio' n Clay Fraction San ,on
Texture

Clod Size

Bulk Density

Silt Fraction

Quartz Fraction

Clay Fraction

Sand Fraction

-ffgg

Figure 6. An example schema displayed using each of the two metaphors.

Model Primitive Type (P) Attribute (P.A) Attribute Values (7~* (P.A))

G1 node

edge

shape {oval}
location plane-points
size {100 pixels}
color {white}
label-text text
label-color {blue,red}
source-location plane-points
dest-locafion plane-points
color {red, orange, magenta, green}
from-node Z(node)
to-node Z(node)
label-text text
label-color {black}

6~ node

arrangement

shape {rectangle}
location plane-points
size {100 pixels}
color {yellow, brown}
label-text text
label-color {black}
label-text text
label-color {red, orange, magenta, green}
label-location plane-points
parent-node Y(node)
child-node 2?(node)

284 HABER, IOANNIDIS, AND LIVNY

z e 61 Tl(x)

node entity-class
node.label-text entity-class.name
node.label-color entity-class.kind

edge
edge.label-text
edge.from-node
edge.to-node
edge.labd-color

relationship
relationship.name
relationship.from-class
relationship.to-class
relationship.card-ratio

x ~ g2 T~(x)

node entity-class
node.label-text entity-class.name
node.color entity-class.kind

arrangement
arrangement.label-text
arrangement.parent-node
arrangement, child-node
arrangement.label-color

relationship
relationship.name
relationship.from-class
relationship.to-class
relationship.card-ratio

5.2. Combining Visual Models and Metaphors

In order to use different metaphors for different parts of a schema, the visual models
associated with these metaphors must be combined into a single model. In addition, the
metaphors themselves must be combined to form a unified metaphor, mapping from the
combined visual model to the data model. Combining the visual models ensures that
the primitive types from different models may be used together, and that the metaphors
themselves may be combined.

There are several abstractions that could be used to model the combination of visual
models and metaphors, any of which results in a valid, unambiguous, and usable metaphor
and schema mappings. These abstractions differ in the level of mixing that they permit of
the visual models and metaphor functions. In this subsection, we discuss an abstraction
that allows mixing at all levels. The subsequent subsections describe correctness and
quality issues involved in mixing metaphors based on that abstraction.

For the visual models ~1 = < 79al, .Agl,))al, Qg~, 7~g~, C~ > and ~2 = < Pg2, A~2,
•g2, Qa2,~g2,Ca2 >, consider their combination G = < 79~,Aa,Va,Qa,
7Za, Ca >. By definition, for any primitive type P that is common to both visual
models, the equality Qg~ (P) = Qaz(P) holds, i.e., the same primitive type has the
same attributes in all visual models that include it. The elements of the visual models

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 285

are combined as follows:

Note
tions

p~ = p ~ u p ~

A~ = A~I u A~2

v~ = v~l u v~2

C 0 = C~lUCg2.

that, based on the naming convention established in Definition 1, the above equa-
imply that:

VP ~P~, Q~(P) = Q~(P) uQ~2(P)

VP.A E .A~, Tr = 7r UTC~(P.A).

Given a combined visual model, two metaphors T1 = Tpl U Tal U Tvl and T2 =
Tp2 U T,~2 U Tv2 may be combined to form a unified metaphor T = Tp U Ta U Tv where

Tp = Tpl U Tp2

Ta = T~I U T~2

Tv = T~ u T~2.

5.3. Correct and Good Mixing of Metaphors

The result of combining two metaphors using the process shown in the previous section
must satisfy Definition 3 in order for it to be a metaphor itself. Assume that 771 and 772
are correct metaphors with respect to either viewing or updating data schemas. Then, T1
and T2 are onto functions with possible additional properties of totality and/or 1-1ness.
When taking the union of T~I and Tx2 (for x E {p, a, v}), totality and onto-ness can
never be lost. 1-1ness may be lost when unioning, but it is unrelated to correctness and
only effects redundancy and choice in a metaphor (Section 3.2), so it does not present
a problem. Functionality, however, is necessary for correctness and may be lost when
unioning. In that case, T is not a correct metaphor, implying that the original metaphors
are not combinable. To correctly combine T1 and 772, the resulting Tp, Ta, and Tv must
be functions.

The combined metaphor must also satisfy the criteria from Section 4.1. In addition, the
new set of constraints established by unioning the constraints of the two original visual
models must contain no contradictions and should not exclude any visual schema that
was valid in the two original visual models. If any of the above does not hold, then the
original metaphors are not combinable.

We should emphasize once again that one could use a different abstraction from that
described in Section 5.2 to combine metaphors. Such an abstraction would possibly allow
different pairs of metaphors to become combinable. We have chosen the above abstraction
for its simplicity and because it captures several desirable metaphor combinations.

286 HABER, IOANNIDIS, AND LIVNY

5.4. Example Metaphor Combination

Consider the example metaphors from the previous section. When the two are combined,
the metaphor will appear as follows:

x T(x)

node
node.label-text
node.label-color
node.color
edge
arrangement
edge.label-text
arrangement.label-text
edge.from-node
arrangement.parent-node
edge.to-node
arrangement.child-node
edge.label-color
arrangement.label-color

entity-class
entity-class.name
entity-class.kind
entity-class.kind
relationship
relationship
relationship.name
relationship.name
relationship.from-class
relationship, from-class
relationship.to-class
relationship.to-class
relationship.card-ratio
relationship.card-ratio

Where both original metaphors are the same, such as the mapping of entity-class or
entity-class.name, the combined metaphor is the same. Where the original metaphors
diverge, the combined metaphor either offers choice (as in the case of relationships), or
redundancy (as with entity-class.kind).

The unified visual model undergoes similar changes:

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 287

Primitive Type (P) Attribute (P.A) Attribute Values (7~(P.A))

node shape {oval, rectangle}
location plane-points
size { 100 pixels}
color {yellow, brown, white}
label-text text
label-color {blue,red, black}

edge source-location plane-points
dest-location plane-points
color {red, orange, magenta, green}
from-node Z(node)
to-node Z(node)
label-text text
label-color {black}

arrangement label text
label-color {red, orange, magenta, green}
label-location plane-points
parent-node Z(node)
child-node Z(node)

Nodes existed in both of the original models, yet they had different shapes. In the
combined model, a choice of shape exists. Figure 7 gives an example of a schema
displayed using the mixed metaphor. Note how node shape is either oval or rectangular,
and how relationships may be displayed either using an edge or an arrangement.

6. Visually Capturing Additional Information

The definition of models and metaphors allows the visual model to have greater infor-
mation capacity than the data model. Specifically, there may be more primitive types
in the visual model than in the data model, the visual model primitive types used in
the metaphor may have more attributes than their corresponding data model primitive
types, and the range of visual attribute values may be greater than that of their corre-
sponding data model attributes. It is possible to define the visual model to have the
same information capacity as the data model, but often extra information capacity is
valuable. Surplus information capacity may be used in two ways. One is to enrich the
metaphor. For example, the Tp, Ta and Tv functions may be many-to-one, allowing
redundancy and choice in representing information. The other use of extra information
capacity, and the subject of this section, is to capture information outside of the data
schema. This information may be divided into two categories: presentation and personal
data model information. Presentation information has no meaning and simply improves
the aesthetics of the visual schema. The personal data model is a superset of the data
model, additionally containing information that is part of the user's conception but not

288 HABER, IOANNIDIS, AND LIVNY

I Company I
a m e

m~oloyee

Name ~
Age
Salaff

Phone # ~
Address

Department Product

I O pa"ment [

Employees ~ #produced

Floor ~ ProductType

Figure 7. An example of a schema displayed using the combined metaphor.

captured by the database. These two kinds of information will be discussed in depth in
this section.

6.1. Presentation Information

Presentation information is visual information that conveys no meaning to the user. For
example, the locations of nodes in a directed graph could be chosen for purely aesthetic
reasons. While not capturing any part of the data schema, this information is important as
it can affect the readability of a presentation. There are many ways to lay out a directed
graph, all having the same meaning, but some are much more readable than others.

Presentation information is captured by those surplus visual model primitives types
and attributes that are not in the domain of the metaphor, and by the attribute value and
primitive type choices that are part of the metaphor. For an example of the use of extra
primitive types, consider the visual model and metaphor from Section 3.1 supplemented
with the following primitive type:

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 289

Primitive Type (P) Attribute (P.A) Attribute Values (T~* (P.A))

rect shape { rectangle }
location plane-points
size integer x integer pixels
background-color { white }
border-color { black }
border-width { 2 } pixels

This rect is a black bordered rectangle of any given size and location. Not part of
the metaphor's domain, it can be used freely without affecting the meaning of a visual
schema. For example, a rect could be placed around the entire schema to give it a border
and improve its appearance.

An example of surplus attributes may be found in the same metaphor: node-location is
not specified by the mapping and can be freely specified as mentioned above. Similarly,
the possibility of representing 1:1 relationships as either 'green' or 'orange' edges allows
the user aesthetic leeway without changing the meaning of the visual schema.

Another means of capturing presentation information is through choice of visual model
primitive types. Different primitive types may have very different appearances, affecting
the aesthetics of the schema. For example, consider the combined metaphor described in
Section 5.4. It maps two visual primitive types, edge and arrangement, to relationships.
These visual primitive types have very different appearances and would be suitable in
different situations.

6.2. Personal Data Model Information

Databases are commonly used for holding information about real-world items. Data
schemas describe the organization of these items in as much detail as allowed by the
data model. Frequently, however, there exists other organizational information about
these items that might be helpful to the user, but is not or cannot be captured by the data
schema.

We introduce the notion of a personal data model to capture the organization of the
database from the user's viewpoint. This is no different from any other data model, except
for the fact that each user may have a different personal data model (while there is a
single system data model) and also that each personal data model must be an extension
of the system data model. Accordingly, personal visual metaphors may be defined from
a visual model to personal data models to capture the full range of characteristics of
personal data schemas, as shown in Figure 8. Such an extended metaphor would map
visual model primitive types, attributes, and values not used by the regular metaphor
(i.e., its excess information capacity) to corresponding constructs of the personal data
model that are not part of the system data model.

As an example of a personal data model and its corresponding personal metaphor,
consider the data model of Section 2.4, whose primitive types are entity-class and re-

290 HABER, IOANNIDIS, AND LIVNY

(Data Model)~ 1
I Personal Model J< Personal Met apho~J4e-----~

Figure 8. The Personal Data Model and Metaphor as Extensions of the Data Model and Visual Metaphor

Figure 9. A directed graph.

lationship. Like other object-oriented/semantic data models, this model does not allow
higher-level groupings of entity-classes or relationships, an ability that could be very
useful to a user. For example, a schema combining data from several experiments could
have entity-classes grouped by their original experiment, their roles within the experi-
ment (e.g., input versus output), whether their contents are considered accurate, and their
significance to the user. Multiple simultaneous orthogonal groupings may be captured
this way, with an entity-class belonging to several different groups for different reasons.
This may be achieved by allowing a user to extend the above data model so that groups
can be captured. The visual metaphor from Section 3.1 may also be modified to represent
group information to the user. In the original metaphor, node size, label-color, shape,
and location are attributes that are not part of the metaphor mapping. If the visual model
were defined to allow these attributes a greater range of values, they could be used by
the personal metaphor to enhance the information that is captured visually. Figures 9,
10, and 11 give examples of an unmodified visual schema, grouping by location, and
grouping by shape and location, respectively.

7. Related Work

Visual presentation of abstract information has been studied for more than 40,000 years,
from pigments on cave walls to ink on paper to phosphor on the inside of video tubes. In
its broadest sense, this field includes work in art, psychology, cognitive science, human-
factors engineering, and many branches of computer science. The majority of this work

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 291

()

Figure 10. Grouping by location.

/k

Figure 11. Grouping by location and shape.

deals with the evaluation of visualizations with respect to human perception (exemplified
by the work of Edward R. Tufte (Tufte, 1983; Tufte, 1990). A much smaller body of
work is concerned with the process of creating visualizations from abstract information;
this work is concentrated in computer science due to its need to communicate computer
data to humans. It is this area that is most closely related to our work.

There exist a large number of computer systems related to visualization. These include
visualization tools such as DBMS GUIs, which display data and schemas, and computer
assisted software engineering (CASE) tools, which create visualizations of data structures
and program execution. On another level of abstraction are user interface tools, which
allow users to create visualization tools. All of these systems are either explicitly or
implicitly based on some conception of the process of visualization. Our formalism
describes processes of visualization. As such it can be used as a means to classify and
compare these other systems, and explain some of their resulting characteristics.

Our formalism identifies three distinct parts in the process of visualization:

| The data involved (the data model),

| The visualization (the visual model), and

�9 A transformation between the data and visualization (the metaphor).

292 HABER, IOANNIDIS, AND LIVNY

The separation into three declarative descriptions permits metaphors to be evaluated,
compared, and combined. It also allows personal data model and presentation information
to be dealt with separately from visual information dependent on the metaphor.

In the following subsections, we use our formalism to evaluate visualization tools and
user interface tools. In these descriptions, we focus on two important aspects of these
systems: 1) how the models and metaphors are defined, and 2) whether or not it is
possible to define or change the models and metaphors. These have an impact on the
ability to test visualizations for correctness, to combine metaphors, and to supplement a
visualization with personal data model and presentation information.

7.1. Visualization Tools

There are many computer tools for visualizing information, more than could be adequately
covered here. We will discuss two areas of visualization tools that deal with structured
information suitable to the models of our formalism. These are DBMS GUIs, and CASE
tools.

7.1.1. DBMS GUIs

All database systems have some means to present schemas and data, though often the vi-
sual model is textual. Many systems do support GUIs with more advanced presentations;
their metaphors may be broken down into the following categories:

�9 Tables, which use rows and columns to indicate database structure, as with QBE
(Zloof, 1975) and other systems (Heiler and Rosenthal, 1985; Kuntz and Melchert,
1989; Ozsoyoglu, Matos, and Ozsoyoglu, 1989).

�9 Forms, which lay out information using a template that indicates structure, such as
(King and Novak, 1987) and most commercial database systems.

�9 Diagrammatic presentations, such as E-R-like Diagrams (Angelaccio, Catarci, and
Santucci, 1990; Elmasri and Larson, 1985; Leong, Sam, and Narasimhalu, 1989;
Miura, 1991; Siau, Chan, and Tan, 1991; Wong and Kou, 1982) and other directed
and non-directed graphs (Bryce and Hull, 1986; Consens and Mendelzon, 1990;
Creasy, 1989; Gupta, Weymouth, and Jain, 1991; King and Melville, 1984; Lam, et
al., 1990; Paredaens and Van den Bussche, 1992; Batini, et. al., 1991; Yoon, et al.,
1987).

�9 Icons (pictures) that represent a concept or action (Catarci, Constabile, and Levialdi,
1991; Kaneko and Hara, 1986; Tsuda, et al., 1990).

For visualizing schemas, all of these systems have a fixed, hard-coded data model,
visual model and metaphor. Although diagrammatic representations seem to be the most
popular, the persistence of other approaches indicates that there is no single best metaphor.
This further demonstrates the importance of flexible schema visualization. These systems

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 293

lack flexibility; they offer no choice in visualization, and no justification of their visual
models and metaphors.

7.1.2. CASE Tools

CASE tools are environments to aid software development. One feature they usually
provide is visualization of program data structures and execution. These visualizations
can help the user to better understand the operation of the software. In most cases the data
model, visual model, and metaphor are fixed. Evaluation, comparison, and combination
of metaphors is not possible. A few of these systems, such as Incense (Myers, 1983),
allow user definition of the visual model and metaphor, with alternate metaphors possible
for a given data primitive type. These are defined procedurally, however, so determination
of metaphor correctness is not possible.

7.2. User-Interface Tools

User Interface tools assist programmers in creating graphical user interfaces. They pro-
vide frameworks through which users can specify the appearance and interaction char-
acteristics of an interface. Part of the specified interface may be a visualization of
information; as such these systems support the description of data visualizations. We
consider three kinds of user interface tools: general tools, tools built on top of DBMSs,
and automatic tools.

7.2.1. General User Interface Tools

General user interface tools allow the user to create a visual model for a visualization,
though they use a variety of means to describe it. For example, the Chiron-1 (Taylor
and Johnson, 1993) and Motif (OSE 1990) systems rely upon procedural specifications,
where the user describes the structure of the visualization through calls to a library.
Marquise (Myers, McDaniel, and Kosbie, 1993) is an example of a demonstrational
system, where the user specifies the appearance and behavior of an interface by drawing
and laying out objects on the screen. InterViews (Linton, Calder, and Vlissides, 1988)
is similar, allowing the user to specify interface appearance by laying out special objects
in a graphical editor. Behavior of the interface, however, must be specified procedurally
in InterViews. HUMANOID (Szekely, Luo, and Neches, 1993) and UIDE (Sukavariya,
Foley, and Griffith, 1993) allow description of data and visual models through expressions
in formal modeling languages.

Most of these systems also allow specification of a metaphor, though in some cases the
metaphor is closely tied to the visual model. HUMANOID embeds in each visual model
primitive type a procedural description of the data to be presented. Lower level toolkits
such as Motif and InterViews require procedural specifications of all parts of the data
model and metaphor. Chiron also specifies metaphors (called "artists") procedurally,

294 HABER, IOANNIDIS, AND LIVNY

though they are separate from the visual model. All of these systems allow use of
different metaphors (e.g., the InterViews package was used to create our tool based
on the formalism). UIDE does not support a metaphor as described in our formalism.
It defines correspondences between visual and data model primitives, but not between
attributes or values. Instead it establishes correspondences between actions on visual
model objects (such as a click of the mouse) and actions on data model objects (such
as a change in a value). Marquise does not support a data model as distinct from the
visual model, and as such does not need metaphors. None of these systems allows
declarative definition of metaphors. As a result, they cannot test metaphors or metaphor
combinations for correctness, nor can they evaluate or compare metaphors.

7.2.2. DBMS User Interface Tools

A related area is DBMS User Interface tools. These include O2Look/ToonMaker (Borras,
et al., 1992), ODDS (Flynn and Maier, 1992), FaceKit (King and Novak, 1989), and
Picasso (Rowe, et al., 1990). These tools are oriented toward building interfaces, but
unlike other interface toolkits, they also interact with a database explicitly, using it to
store interface information and simplifying the specification of visualizations for database
objects. A related system is DOODLE (Cruz, 1992), which provides a visual language
for querying an OODBMS and defining visualizations of database objects.

These systems use the data model of the underlying database as the data model. Each
allows definition of the visual model in a different manner: ToonMaker provides an
interactive visual editor for creating visual primitives, ODDS uses declarative descrip-
tions, FaceKit procedurally specifies visualizations in methods of the object class to be
displayed, and Picasso uses widgets defined in Lisp. These systems do allow different
visualizations for any data object. As with many of the user interface tools described
above, however, these systems do not represent metaphors as separate from visualizations;
the definition of a visual item is tied to the database item it is to represent. Lacking
a separate metaphor, these systems do not evaluate or compare visualizations, or test
metaphor combinations for consistency.

7.2.3. Automatic User Interface Tools

Some user interface tools automatically generate presentations from a description of the
data (DON (Kim and Foley, 1993), Dost (Dewan and Solomon, 1990), GENIUS (Janssen,
Weisbecker, and Ziegler, 1993), TRIDENT (Vanderdonckt and Bodart, 1993), using a set
of predefined rules to determine presentation and interaction. These rules are analogous
to metaphors in that they describe the mapping from data to visualization. The rules
are hard-wired, however, so they cannot be changed or combined. Thus, there is no
determination of metaphor correctness, no possibility of mixing, and no flexibility in the
use of non-data model information.

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 295

7.3. Other Formalism Work

The work of Kuhn and Frank (Kuhn and Frank, 1991) is related to our work, yet covers
a different area. It uses algebraic mappings to study the behavior of user interfaces. For
example, it considers the similarities and differences between operations on a physical
desktop, and those on a computer's virtual desktop. This permits evaluation of correctness
of the behavioral aspects of visual metaphors. An earlier paper on the same subject by
these authors (Kuhn, Jackson, and Frank, 1991) encouraged some of our early ideas that
grew into our formalism.

8. Conclusions and Future Work

In this paper, we have presented a formalism for visual metaphors and described how it
may be used to improve the visual presentation of data schemas. This formalism allows
high level description of the correspondence between data and visual models. This
description allows simpler definition of metaphors, easier evaluation and comparison of
metaphors, and combination of different metaphors. The formalism can help improve
schema visualizations in the many roles they play.

Currently, a large part of the formalism has been implemented as a schema editing
tool. Arbitrary data models, visual models, and metaphors between them can be defined,
although in a hard-wired manner. (Our future work includes enhancing the interface
to allow users to define all of these dynamically.) The user can create and modify
visual schemas using direct-manipulation tools; these visual schemas are translated to
the appropriate data schemas based on the metaphor. We have tested the system with
various metaphors and data models and it works well, though limited space precludes a
more lengthy description of the schema editing tool in this paper.

Future work includes completing the schema editing tool. Two areas require effort:
allowing user definition of different visual models and metaphors, and creating a suf-
ficiently expressive language for specifying all necessary constraints. In addition, the
formalism should be examined for solutions to the problems of displaying very large
schemas, which are common in scientific databases (where schemas with thousands of
classes and tens of thousands of relationships are common). The various formalism
criteria for distinguishing metaphors need to be examined for testability; some may be
undecidable (e.g., visual ambiguity). Furthermore, the formalism should be expanded to
include "views", visualizations that contain subsets of data model information. It is also
important to determine applicability of the formalism to data models beyond the object-
oriented model with which we work; databases based upon other current models, and
earlier models in legacy systems (e.g., the network or un-normalized relational models)
would also benefit from improved schema visualization. Finally, once the formalism and
the system based on it are sufficiently developed, it will be important to evaluate them
empirically. Such an experiment would demonstrate the advantages and disadvantages
of our formal approach to visualization.

296 HABER, IOANNIDIS, AND LIVNY

Acknowledgements

Dr. Ioann id i s ' work has been par t ia l ly suppor ted by the Na t iona l Sc i ence F o u n d a t i o n

u n d e r Gran t s IRI -9113736 , IRI -9224741 , and IRI -9157368 (PYI Award) and by gran t s

f r o m DEC, I B M , HP, AT&T, and Informix . Dr. L i v n y ' s work has b e e n par t ia l ly suppor t ed

by the Na t iona l Sc ience F o u n d a t i o n u n d e r G r a n t IRI -9224741 . Spec ia l t h a n k s to J ane t

W i e n e r and R e n e e Mi l l e r for the i r p roof read ing , w i thou t w h o m this p a p e r wou ld h a v e

b e e n m o r e dense and less clear.

Notes

1. The term metaphor is sometimes used to describe behavior of visualizations as well as appearance. We do
not consider behavior in this paper.

2. For simplicity, we use the names of attributes directly instead of their corresponding full identifiers, i.e., A
instead of P.A. This also holds for all other models presented in this paper and applies to any constraints
that are shown as well.

3. Note that if P does not have an image under Tp, then QT~(Tp(P)) is the empty set. Therefore Ta P is
empty as well which makes it vacuously an onto function. Similar observations hold for T P'A.

4. Non-onto functions and non-functional correspondences will prove useful in extending metaphors to allow
visualizations of subsets of data schema information, part of our future work.

References

M. Angelaccio, T. Catarci, and G. Santucci. QDB*: A Graphical Query Language with Recursion. 1EEE
Transactions on Software Engineering, pages 1150-1163, October 1990.

R. Agrawal, N.H. Gehani, and J. Srinivasan. OdeView: The Graphical Interface to Ode. SIGMOD Record,
pages 34-43, 1990.

C. Batini, T. Catarei, M.F. Costabile, and S. Levialdi. Visual Query Systems, A Taxonomy. In 1FIP Conference
on Visual Database Systems, 1991.

D. Bryce and R. Hull. SNAP: A Graphics-based Schema Manager. In Proceedings of the International
Conference on Data Engineering, pages 151-164, 1986.

A. J. Benjamin and K. M. Lew. A Visual Tool for Managing Relational Databases. In Proceedings of the
International Conference on Data Engineering, 1986.

P. Borras, J.C. Mamou, D. Plateau, B. Poyet, and D. TaUot. Building user interface for database applications.
SIGMOD Record, pages 32-38, March 1992.

T. Catarci, M.E Costabile, and S. Levialdi. Iconic and Diagramatic Interfaces, an Integrated Approach. In
IEEE Workshop on Visual Languages, 1991.

M. Consens and A. Mendelzon. GraphLog: a Visual Formalism for Real Life Recursion. In T.I. Kunnii,
editor, Visual Database Langauges, pages 404-415. North-Holland, Amsterdam, The Netherlands, 1990.

P. Creasy. ENIAM: A More Complete Conceptual Schema Language. In Proceedings of the International
Conference on Very Large Data Bases, pages 107-114, 1989.

I. E Cruz. DOODLE: A Visual Language for Object-Oriented Databases. In Proceedings ofACM SIGMOD
International Conference on Management of Data, pages 71-80, June 1992.

P. Dewan and M. Solomon. An Approach to Support Automatic Generation of User Interfaces. ACM
Transactions on Programming Languages and Systems, 12(4):566-609, October 1990.

M. Egenhofer and A. Frank. Towards a Spatial Query Language: User Interface Considerations. In Proceedings
of the International Conference on Very Large Data Bases, pages p124 - 133, 1988.

R. Elmasri and J. Larson. A Graphical Query Facility for ER Database. In Proceedings of the 1985 1EEE
Conference on the E-R Approach, pages 236-245, 1985.

FOUNDATIONS OF VISUAL METAPHORS FOR SCHEMA DISPLAY 297

B. Flynn and D. Maier. Supporting Display Generation for Complex Database Objects. SIGMOD Record,
pages 18-24, March 1992.

J. D. Foley, A. van Dam, S. K. Feiner, and J.E Hughes. Computer Graphics: Principles and Practice.
Addison-Wesley, Reading, Massachusetts, 1990.

A. Gupta, T. Weymouth, and R. Jain. Semantic Queries with Pictures: The VIMSYS Model. In Proceedings
of the International Conference on Very Large Data Bases, pages 69-79, 1991.

S. Heiler and A. Rosenthal. G-Whiz*, a Visual Interface for the Functional Model with Recursion. In
Proceedings of the International Conference on Very Large Data Bases, pages 209-218, 1985.

Y. Ioannidis and M. Livny. Data Model Mapper Generators In Observation DBMSs. In Heterogeneous DB
Workshop, December 1989.

Y. Ioannidis and M. Livny. Conceptual Schemas: Multi-Faceted Tools for Desktop Scientific Experiment
Management. International Journal of Intelligent and Cooperative Information Systems, 1(3), December
1992.

Y. Ioannidis, M. Livny, and E. M. Haber. Graphical User Interfaces for the Management of Scientific
Experiments and Data. SIGMOD Record, pages 47-53, March 1992.

Y. Ioannidis, M. Livny, E. M. Haber, R. Miller, O. Tsatalos, and J. Wiener. Desktop Experiment Management.
IEEE Data Engineering Bulletin, 16(1):19-23, March 1993.

C. Janssen, A. Weisbecker, and J. Ziegler. Generating User Interfaces from Data Models and Dialogue Net
Specifications. In INTERCHI '93, Proceedings of the Conference on Human Factors in Computing Systems,
pages 419--423, April 1993.

W. Kuhn and A. U. Frank. A Formalization of Metaphors and Image-Schemas in User Interfaces. In H.M.
Mark and A.U. Frank, editors, Cognitive and Lunguistic Aspects of Geographic Space, pages 419-434.
Kiuwer Academic Publisher, Amsterdam, The Netherlands, 1991.

W. C. Kim and J. D. Foley. Providing High-level Control and Expert Assistance in the User Interface
Presentation Design. In INTERCHI '93, Proceedings of the Conference on Human Factors in Computing
Systems, pages 430-437, April 1993.

A. Kaneko and Y. Hara. A Multimedia Document Base System for Office Work Support. In IEEE COMPSAC,
pages 336-343, 1986.

W. Kuhn, J. P. Jackson, and A. U. Frank. Specifying Metaphors Algebraically. SIG CHI Bulletin, January
1991.

R. King and S. Melville. SKI: A Semantic-Knowlegeable Interface. In Proceedings of the International
Conference on Very Large Data Bases, pages 30-33, 1984.

M. Kuntz and R. Melchert. Pasta-3's Graphical Query Language: Direct Manipulation, Cooperative Queries,
Full Expressive Power. In Proceedings of the International Conference on Very Large Data Bases, pages
97-105, 1989.

R. King and M. Novak. Freeform: A User-Adaptable Form Management System. In Proceedings of the
International Conference on Very Large Data Bases, pages 331-339, 1987.

R. King and M. Novak. FaceKit: A Database Interface Design Toolkit. In Proceedings of the International
Conference on Very Large Data Bases, pages 115-123, 1989.

R. King and M. Novak. Building Reusable Data Representations with FaceKit. SIGMOD Record, pages
11-17, March 1992.

H. Lain, H. M. Chen, E S. Ty, J. Qiu, and S.Y.W. Su. A Graphical Interface for an Object-Oriented Query
Language. In IEEE COMPSAC, pages 231-235, 1990.

M. A. Linton, P. R. Calder, and J. M. Vlissides. InterViews: A C++ Graphical Interface Toolkit. Technical
Report CSL-TR-88-358, Stanford University, July 1988.

M. Leong, S. Sam, and D. Narasimhalu. Towards a Visual Language for an Object-Oriented Multi-Media
Database System, pages 465-495. Elsevier Science Publishers B.V., 1989.

R. Miller, Y. Ioannidis, and R. Ramakrishnan. The use of information capacity in schema integration and tran
slation. In Proc. 19th Int. VLDB Conference, Dublin, Ireland, August 1993.

T. Miura. A Visual Data Manipulation Language for a Semantic Data Model. In IEEE COMPSAC, pages
212-218, 1991.

J.C. Mamou and C. B. Medeiros. Interactive Manipulation of Object-Oriented Views. In Proceedings of the
International Conference on Data Engineering, pages 60-69, 1991.

B. A. Myers, R. G. McDaniel, and D. S. Kosbie. Marquise: Creating Complete User Interfaces by Demon-
stration. In INTERCHI '93, Proceedings of the Conference on Human Factors in Computing Systems, pages
293-300, April 1993.

298 HABER, IOANNIDIS, AND LIVNY

D. Maler, E Nordquist, and M. Grossman. Displaying Database Objects. Technical Report CS/E 86-001,
Oregon Graduate Institute, January 1986.

A. Motro. BAROQUE - a Browser for Relational Database. ACM TOIS, 4(2):164-181, April 1986.
B. A. Myers. INCENSE: A System for Dispalying Data Structures. Computer Graphics, 17(3):115-125, July

1983.
G. Ozsoyglu, V. Matos, and Z. M. Ozsoyglu. Query Processing Techniques in the Summary-Table-by-Example

Database Query Language. ACM Transactions on Database Systems, pages 526-573, December 1989.
Open Software Foundation, Englewood Cliffs, New Jersey. OSF/MotifStyle Guide, Revision 1.0, 1990.
J. Paredaens and J. Van den Bussche. An Overview of GOOD. SIGMOD Record, pages 25-31, March 1992.
L. Rowe, J. Konstan, B. Simth, S.Seitz, and C. Lin. The Picasso Application Framework. Technical Report

UCB/ERL M90/18, University of California, Berkeley, March 1990.
K,L. Siau, H.C. Chan, and K.P. Tan. Visual Knowledge Query Language as a Front-end to Relational Systems.

In IEEE COMPSAC, pages 373-378, 1991.
P. 'Noi' Sukavariya, J. D. Foley, and T. Griffith. A Second Generation User Interface Design Environment:

The Model and The Runtime Architecture. In INTERCHI '93, Proceedings of the Conference on Human
Factors in Computing Systems, pages 375-382, April 1993.

M. Stonebraker and J. Kalash. TIMBER - A Sophisticated Relational Browser. In Proceedings of the
International Conference on Very Large Data Bases, pages 1-10, 1982.

P. Szekely, P. Luo, and R. Neches. Beyond Intferface Builders: Model Based Interface Tools. In INTERCHI
'93, Proceedings of the Conference on Human Factors in Computing Systems, pages 383-390, April 1993.

K. Tsuda, M. Hirakawa, M Tanaka, and T. Ichickawa. Iconic Browser: An Iconic Retrieval System for
Object-Oriented Databases. Journal of V~sual Languages and Computing, 1, 1990.

R.N. Taylor and G. E Johnson. Separation of Concerns in the Chiron-1 User Interface Development and
Management System. In INTERCHI '93, Proceedings of the Conference on Human Factors in Computing
Systems, pages 367-374, April 1993.

E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Conn., 1983.
E. R. Tufte. Env&ioning Information. Graphics Press, Cheshire, Conn., 1990.
J. M. Vanderdonckt and F. Bodart. Encapsulating Knowledge For Intelligent Automatic Interaction Objects

Selection. In INTERCHI '93, Proceedings of the Conference on Human Factors in Computing Systems,
pages 424-429, April 1993.

H. K. T. Wong and I. Kon. GUIDE: Graphical User Interface for Database Exploration. In Proceedings of
the International Conference on Very Large Data Bases, pages 22-32, 1982.

B. D. Yoon, B. Do, E Suzuki, H. Ishikawa, and A. Makinouchi. Experimental Multimedia DBMS Ising an
Object-Oriented Approach. In IEEE COMPSAC, pages 632-641, 1987.

M. Zloof. Query-by-Example, The Invocation and Definition of Tables and Forms. In Proceedings of the
International Conference on Very Large Data Bases, 1975.

