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COMMUTATIVITY AND ITS ROLE
IN THE PROCESSING OF LINEAR RECURSION*

YANNIS E. IOANNIDIS'

> We investigate the role of commutativity in query processing of linear
recursion. We give a sufficient condition for two linear, function-free, and
constant-free rules to commute. The condition depends on the form of the
rules themselves. For a restricted class of rules, we show that the condition
is necessary and sufficient and can be tested in polynomial time in the size
of the rules. Using the algebraic structure of such rules, we study the
relationship of commutativity with several other properties of linear recur-
sive rules and show that it is closely related to the important special classes
of separable recursion and recursion with recursively redundant predi- 4
cates.

1. INTRODUCTION

Several general algorithms have been proposed for the processing of recursive
programs in data base management systems (DBMSs). Recursive query processing
is recognized as an expensive operation, and all the proposed algorithms incur
some significant cost. Thus, it is important to identify special cases of recursion on
which specialized and more efficient algorithms are applicable. Such special cases
of recursion include bounded recursion (uniform or not), transitive closure, separa-
ble recursion, and one-sided recursion. In this paper, we elaborate on another
special case of recursion, where participating operators (or rules) commute with
each other. When this happens, recursive queries can be decomposed into smaller
queries, which are expected to have a lower total execution cost than the original

query.

7

*An earlier version of this paper appeared in the Proceedings of the 15th International VLDB
Conference,’/Amsterdam, The Netherlands, August 1989, pp. 155-164.
¥ Partially supported by the National Science Foundation under Grant IRI-8703592.
" Address cqrrespondence to Y. loannidis, Computer Sciences Department, University of Wisconsin,
Madison, WI53706. Email: YANNIS@CS.WISC.EDU.
" “Recetved November 1989; accepted June 1991.

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1992
655 Avenue of the Americas, New York, NY 10010 0743-1066 /92 /$5.00



224

YANNIS E. IOANNIDIS

Commutativity has already been identified as a significant special case of
recursion [13]. Its effect on general algorithms for several types of recursive queries
have been studied, as well as how it can be used in conjunction with constants to
reduce the amount of data at which the system has to look to answer a query with
selections. This earlier work on commutativity was done within the algebraic
framework of linear recursive operators (rules) [13]. In this paper, we use the logic
representation of rules to derive syntactic conditions for two linear, function-free,
and constant-free recursive rules to commute with each other. These conditions
are based on the form of the rules themselves and make no direct use of the
definition of commutativity, which requires composing the two rules in both ways
and examining the two composites for equivalence. For a class of rules for which
the conditions are necessary and sufficient, they can be tested in time that is a
polynomial in the size of the rules. We also use the algebraic formulation of
recursion to compare commutativity with other special classes of recursion, in
particular separable recursion and recursion with recursively redundant predicates,
and discuss the effects of commutativity on the algorithms proposed for them.

The paper is organized as follows. Section 1 is an introduction. Section 2 is a
summary of the algebraic model for linear recursion, which has been introduced
elsewhere [13]. In Section 3, we define commutativity in the algebraic model, show
its impact on the efficiency of processing recursive rules, and discuss some previous
work. In Section 4, we compare the notion of commutativity with separability and
recursive redundancy. In Section 5, we use the logic representation of rules and
present sufficient conditions for commutativity, which for a restricted class of rules
are necessary and sufficient. In Section 6, separability and recursive redundancy
are reexamined for the restricted class of rules studied in Section 5. Finally, Section
7 contains our conclusions and some directions for future work.

2. ALGEBRAIC MODEL

In this section, we provide a summary of the algebraic model for linear recursion
[13]. We use the terms relation and predicate indistinguishably. Consider the
following pair of one linear recursive and one nonrecursive rule:

P(x% ")~ P(x) AQ(x DY A AQ(x™), (2.1)
P()_c(kﬂ)):,Q(E(kH))’ (2.2)

where for each i, x") is a vector of variables. No restriction is imposed on the form
of the rule or on the finiteness of the relations corresponding to the various
predicate symbols in the rule. Thus, for example, rules that contain functions can
be expressed in the above form. Each one of P(x®), @(x** "), and the @ (x®)’s
is a (positive) literal. Without loss of generality, we assume a typeless system, so
that the schema of a relation is defined as the number of its argument positions.

Operationally, (2.1) can be represented by a function f(P,{Q,)}) that has {Q,} as
parameters and accepts as input and produces as output relations of the same
schema as P: f(P,{Q,}) C P. The function f can be thought of as a linear relational
operator applied to the recursive relation P to produce another relation of the
same schema. Let R be the set of all such operators. We can establish an algebraic
framework in which we can define operations on relational operators as follows.
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Multiplication of operators is defined by (A*B)P = A(BP) and addition by (A +
B)P =AP U BP.' For notational convenience we omit the operator *. Also, be-
cause + and * are associative, we often omit the parentheses around them,
assuming right associativity. The multiplicative identity (1P = P) and the additive
identity (0P = &, where O is the empty set) are defined in obvious ways. The nth
power of an operator A is inductively defined as: 4" =1, A" =A+A4" "' =A4"""'=A4.
Equality of operators in R is defined as A =B = VP, AP = BP. Finally, a partial
order < is defined on R as A <B = VP, AP C BP. The set R with the above
defined operations forms a closed semi-ring [13].

The above embedding of the linear relational operators in a closed semi-ring
allows the rewriting of the set of Horn clauses (2.1) and (2.2) (assuming that A is
the operator that corresponds to (2.1)) as

APCP,
QcP.
The minimal solution of the system is the minimal solution of the equation
P=APUQ. (2.3)

The solution is a function of Q. Hence, P can be written as P = BQ, and the
problem becomes one of finding the operator B. Manipulation of (2.3) results in
the elimination of @, so that the equation contains operators only. In this pure
operator form, the recursion problem can be restated as follows. Given operator 4,
find B satisfying the following:

(a) 1+ AB =B, 2.4
(b) B is minimal with respect to (a), i.e., forall C, 1 + AC=C=B <C.

Theorem 2.1. [13] The solution of equation (2.4a) with restriction (2.4b) is A* =
Tioo A~

The operator A* is called the transitive closure of A. In the data base context,
theorems similar to Theorem 2.1 were first derived by Aho and Ullman [4]. The
unique characteristic of Theorem 2.1 as described above is that the solution of (2.4)
is expressed in an explicit algebraic form within an algebraic structure like the
closed senii-ring of linear relational operators. The implications of the manipula-
tive power thus afforded on the implementation of A* are significant [11-13]. In
this paper, we concentrate on the implications of commutativity of operators in the
implementation of A*.

Note that, although an operator 4 may be derived from a recursive rule, the
operator itself is nonrecursive, i.e., it corresponds to a conjunctive query [8]. Also
note that A* represents an operator. The query answer is the result of applying 4*
to a given relation @. This is only an abstraction, however, that allows us to study
recursion within the closed semi-ring of relational operators. It poses no restriction

" The above definitions are valid only if the operators involved are appropriately compatible, e.g., for
+, the operators have to agree on the schema of their input and the schema of their output. Although
in the rest of the paper we only deal with appropriately compatible operators, the general algebraic
theory incorporates all operators [13].
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whatsoever in the processing order of the query, i.e., it does not enforce that A4* is
computed first and then it is applied to Q. For example, assume that 4* can be
decomposed into B* and C*, ie., A* =B*C*, so that the final computation is
B*C*Q. The computation may proceed by first computing C*, then applying it to
Q. and then using semi-naive [5] with B as the basic operator and (C*Q) as the
initial relation. The significance of the algebraic formulation lies in the abstraction
that it offers, within which the capability of the decomposition 4* = B*C* can be
exhibited.

3. COMMUTATIVITY

3.1. Definitions and Motivation

We say that two operators B and C commute if BC = CB. Consider computing 4*,
the transitive closure of A4, where A4 = B + C. It has been shown that if CB < B*C/,
for some k, I with k €{0,1} or / €{0,1}, then A* = B*C* [13]. Commutativity is a
special case of this condition. The computation of A4* is decomposed into two
smaller computations, those of B* and C* (plus an additional multiplication of
them). The complexity of B and C is smaller than that of A. In general, this is
expected to affect the total cost of the computation significantly. To see this
observe that the following always holds:

(B+C)*=B*C*+ (B+ C)*CB(B + C)*. (3.1)

This formula expresses the fact that the terms of the series that corresponds to
(B + C)* can be partitioned into those that do not have CB in them and those that
do. In general, all such terms need to be computed. If the condition that was
mentioned at the beginning of this section holds, however, then the second set of
terms does not need to be computed, because it is known that it can only produce
duplicates. Unfortunately, this is not enough to prove that computing B*C* is
more efficient than computing (B + C)*. In an actual implementation, several
parameters affect performance, and their complex interactions can rarely be
studied analytically, e.g., main memory size, buffer replacement strategies, and
availability of indices. For example, the computation of B*C* is likely to be
cheaper than that of (B + C)* because main memory can be used more efficiently
when computing the transitive closure of smaller operators (recall that B<B+ C
and C < B+ C), but this is hard to quantify.

One aspect of performance that is tractable is the number of duplicate tuples
produced by an algorithm. Quite often, especially in recursive computations,
duplicate production and elimination has been shown to dominate the cost of an
algorithm [1]. Comparing the computations of B*C* and (B + C)* with respect to
duplicates, we derive the superiority of B*C* by the following general result.

Theorem 3.1. Let { A}, {B;}, {C,} be sets of linear operators such that every operator in
{A;} and {B}} is a product of operators in {C}}, and if (C, - C,_,C,)€{A}} (or
{B}) then (C, --- C,_ ) €{A;} (or (B}) as well. Consider two linear operators A
and B, where A =B, A=Y, A, and B=Y, B,. Let Q be an arbitrary relation and
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T be equal to T=AQ = BQ. If {A;} C{B}, then the evaluation of T based on A
produces no more duplicates than its evaluation based on B.

PROOF. Let the derivation graph of a computation of T be a labeled directed graph
G=(V,E,L: E - {C,)}), where the set of nodes V, the set of arcs E, and the label
function L from E to the set of operators {C;} are defined as follows:

V=T, ie., the nodes of G are the tuples in T,
E ={(t, = t,)lt, is produced by applying one operator from {C;} on ¢},
L((r, - 1,)) = C, where C € {C}} and ¢, is produced by applying C on ¢,.

Since there is a 1 to 1 correspondence between nodes and tuples, we use the two
terms indistinguishably, We assume a model of computation that starts at the
tuples in @ and traverses the graph until all nodes are visited at least once. We also
assume that the same tuple is not derived through the same arc more than once.?
Such a computation can be achieved, for example, by employing the semi-naive
evaluation [5].

A path in the graph from a tuple s in @ to a tuple ¢ represents a derivation of ¢
starting from s. The concatenation of the labels of the arcs along the path
represent a product of the corresponding operators in {C;} that is equal to one of
the operators in {A4,} or {B}. No derived tuple has zero in-degree, ie., every
derived tuple is always connected to some tuple in Q. Each tuple is derived as
many times as there are arcs entering it. Thus, the number of tuple derivations
during a computation, which is the sum of the number of tuples in T plus the
number of duplicates produced, is equal to the sum of the in-degrees of the nodes
in the graph that corresponds to the computation, ie., it is equal to [E| If
{A,} c{B}, the graph corresponding to A4 has the same set of nodes but is possibly
missing some of the arcs of the graph corresponding to B. In that case, some nodes
have lower in-degree in the graph of A than in the graph of B, which implies that
computing T based on A will produce less duplicates than computing it based on
B. O

We would like to elaborate on the result of Theorem 3.1 briefly. Consider the
derivation graph for the computation of T based on B. If that computation is
duplicate-free, then all nodes have in-degree equal to 1, and no improvement can
be made. Only arcs that lead into nodes with in-degrees that are higher than 1 can
be removed from the graph of B to construct the graph of A. In that case, i.e.,
when the terms in {B;} — {A4,} do produce tuples when applied to @, the computa-
tion based on A is more efficient than the computation based on B.

Theorem 3.1 shows that it is important to be able to identify when two operators
commute, since commutativity allows decompositions of the form (B + C)* = B*C*.
It is applicable in this case with B*C*, (B + C)*, and { B, C} playing the roles of A,
B, and {C;} respectively in its statement. Therefore, in several cases, using B*C*
instead of (B + C)* decreases the number of produced duplicates. In Section 5, we
present a sufficient condition for commutativity, which for rules of some restricted
form is shown to be necessary and sufficient.

* We do not take into account any computation $teps that fail to produce a tuple. Such computation
steps are not represented in the graph and their cost is not captured.
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3.2. Previous Work

Commutativity or properties related to it have been rarely addressed in the past.
The earliest result that we are aware of that is related to commutativity is by
Lassez and Maher [14]. Their interest in commutativity was mostly with respect to
certain decompositions that can be achieved when computing the transitive closure
of the sum of multiple operators. They obtained two main results that are related
to commutativity. In algebraic form, they are expressed as follows:

B*C* = C*B* =B* + C* = (B + C)* = B* + C*,
BC=CB=B+C=(B+C)*=B*+C".

The above results are easily generalized for an arbitrary number of operators.

A syntactic sufficient condition for commutativity has been presented by Ra-
makrishnan, Sagiv, Ullman, and Vardi [19]. Their condition is less general than the
one presented in Section 5 and, therefore, fails to be necessary and sufficient for
the class that ours is. It is always tested in polynomial time, however. Deriving this
sufficient condition was part of a study of proof-tree transformations. (Commutativ-
ity can be seen as a proof-tree transformation if operators are represented as proof
trees). Among other results, that study led to an independent discovery of the
above mentioned fact that if CB < B*C/, for some k,! with k €{0,1} or / €{0, 1},
then (B + C)* = B*C*.

Finally, Dong has examined several possible decompositions of the transitive
closure of the sum of multiple operators [9]. The only result that involves commu-
tativity in a significant way can be expressed as follows in algebraic form:

B*C* =C*B* « (B + C)* = B*C* = C*B*.

4. COMMUTATIVITY VS. SEPARABILITY AND RECURSIVE REDUNDANCY

4.1. Commutativity vs. Separability

The separable algorithm has been introduced by Naughton as an efficient process-
ing method for some special class of linear recursive rules [15]. For the sake of
simplicity, it is presented below in its specialized form for two operators 4, and
A,. Extensions of it to an arbitrary number of operators are straightforward.
Consider an initial relation g and a selection ¢ on arguments of either the
parameter relations of A4, or its input. The separable algorithm corresponds to the
algebraic formula A% (oA%)q and is given below in pseudo-code form. The
variables B and C contain operators, whereas the variables R and S contain
relations. Multiplication of operators is shown explicitly for readability.

Algorithm 4.1. The separable algorithm:

B:=¢;

C:=o;

repeat
B:=B+*A,;

C:=B+C;
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until C does not change

R:= Cq;

S:=R,;

repeat
R:=AR;
S:=SUR,;

until S does not change.

The first loop actually involves manipulating relations that are parameters of the
various operators. Moreover, in every application of an operator inside each loop,
only the new tuples produced in the previous iteration are used. The following
theorem shows that the efficient separable algorithm is applicable to the class of
commutative recursions.

Theorem 4.1. Given two operators A, and A, that commute and a selection o that
commutes with one of them, the equality 0( A, + A,)* = A¥(aA%) holds, i.e., the
separable algorithm can be used for the computation of o( A, + A,)*.

ProOOF. Let 4,A,=A,A,. The transitive closure of the sum of 4, and A4, is
given by (A, + A,)* = A% A% [13]. Given a query with a selection ¢ that commutes
with A4, an easy induction on the power of A4, yields the result:

o(A, +A,)* =AT(cA%). a

The significance of the above theorem can be realized only in conjunction with
additional results that are presented in Section 6. Essentially, its importance lies in
the fact that it widens the class of recursive rules on which the separable algorithm
is applicable.

We should also note that, although Theorem 4.1 deals with two operators, the
result can be generalized. Given a set of operators {4}, 1 <i < n, that are mutually
commutative and a set of selections {o;}, 0 <i < n, such that o, commutes with all
operators except A, the following holds:

0y0,0; o (A + Ay + +A,)" = (0'|AT)(0'2A"2‘) "'(‘TnAt)Uo-

Usually, most of the selections are not present. In the presence of multiple
selections, it is an interesting optimization problem to choose the order in which
the various operators will be computed and the time when an operator will be
applied to the input relation.

4.2. Commutativity vs. Recursive Redundancy

The class of recursions that contain recursively redundant predicates has also been
introduced by Naughton [16]. Consider an operator A that is equal to the product
BCD, ie., A=BCD. In general, every term in the series 4* =Y7_, A* is an
arbitrary product involving B, C, and D. Operator C is recursively redundant in A*
if there is some N such that each term in the series of A* is equal to a product
containing C less than N times. The nonrecursive predicates appearing in C as
parameters are also called recursively redundant. Before stating the main result of
this subsection we need the following definitions. An operator B is uniformly
bounded, if there exist K and N, K <N, such that BY <BX. An operator B is
torsion, if there exist K and N, K <N, such that BY = BX, Clearly, every torsion is
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uniformly bounded, but the opposite is not true in general. The effect of the
presence of recursively redundant operators on the query processing algorithm of
an operator is given by the following result, which is actually a generalization of an
earlier result on the subject [13]. (Without loss of generality, we assume that all
operators have the same domain and range, so that the product of any pair of them
is well defined.)

Theorem 4.2. Let Q be a parameter relation of some operator A. If there exist L. > 1
and operators B and C such that Q is a parameter of C but not of B, C is torsion,

L =pBc*t, and CH(BC:) =C*(C*B), (4.1)
then Q is recursively redundant in A*.

ProoF. Consider a relation @ that satisfies the premises of the theorem. Let K> 0
and N > 0, K <N, be the smallest numbers such that C" = C*. The above equality
implies that CX" = CN* holds as well. It takes an easy induction to show that

Cmb = CctmiN=KIL for all K<m <N and all i > 0. (4.2)
The main result follows from the derivation below:
KL—1
U SCI ST
m=10 m=KL
KL—1 L-1 e
= Yy A"+ | L A ( ZAmL)
m=0 n=0 =
KL—1

L-1 =
= ) A"+ ZA"(Z BC") )
m=0 n=0 =
[From the first equality of (4.1)]

KL L-1 =
=Y A+ | LA ( Y BC'”LB”’“)
m=0 n=40 m=K
[From the second equality of (4.1)]

i=0
[From the first equality of (4.1)]

Kl.—1 NL -1 %
= Z A" + Z Am)(ZBi(N—K))

m=0 m=KL

KL-1 L—1 N—-1 x )
— Z AM + E A" Z BCML)( ZBmAlﬁ»l(N—K))
m=0 n=4( m=K i=0
[From (4.2)]
KL -1 L—1 N-1 x A
— Z Am+ ZAn Z chLBmfl (ZBI(NK))
m=K i=0
KL -1 L-1 N-1 x
— Z Am + Z A" Z AmL)( ZBi(NK))
m=0 n=0 m=K

KL—1 NL—1

=Y a+| X A'")(B(N"")*.
m=0

m=KL
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Note that CM- ! is the highest power of C used in any term of A4*: since @ is not
a parameter of B, the latter cannot contain C as a factor either. Thus, C is
recursively redundant, and so is @ as one of its parameter relations. Clearly, the
above formula corresponds to a more efficient algorithm than processing A as a
whole, since C is processed only for a fixed finite number of times, i.e., NL — 1,
beyond which only B is processed. O

5. CHARACTERIZATION OF COMMUTATIVITY

We now turn our attention to commutativity as expressed in a logic framework. We
restrict ourselves to linear, function-free, and constant-free recursive rules. If a
variable appears in the consequent of a rule, it is called distinguished, otherwise it
is called nondistinguished. We assume that the rules have the same consequent and
share no nondistinguished variables. Moreover, repeated variables in the conse-
quent are replaced by distinct ones, while adding the appropriate equality predi-
cates in the antecedent. Finally, although the original task is to compute the
transitive closure of two recursive rules with the same consequent, we are inter-
ested in the commutativity of the underlying nonrecursive rules, i.e., conjunctive
queries. Given a linear recursive rule whose recursive predicate is P, its underlying
nonrecursive one is constructed by replacing the instance of P in its consequent by
P, (output), and its instance of P in its antecedent by P; (input). However, we are
still referring to these two predicates as instances of the recursive predicate.

Given two nonrecursive rules r and s, a homomorphism f: r — s is a mapping
from the variables of r into those of s, such that (i) if x is a distinguished variable
then f(x)=x, and (i) if Q(x,...,x,) appears in the antecedent of r, then
O(f(x,),..., f(x,)) appears in the antecedent of s. Homomorphisms are directly
related to the partial order of rules defined in Section 2 (for the corresponding
operators). In particular, s is contained in r (ie., given any relations for the
predicates in the antecedents of r and s, the output relation produced by s for the
predicate in its consequent is a subset of the one produced by r), denoted by s <r,
iff there exists a homomorphism f from r to s [3, 8]. Also, s is equivalent to r,
denoted by s =r, iff s <r and r <s.

Given two rules r, and r,, the composite of r; with r,, denoted by r;r, is
defined as the result of resolving the consequent of r, with the literal of the
recursive predicate in the antecedent of r,." We say that two rules r; and r, with
the same consequent comumute, if composing r, with r, and composing r, with r,
yield equivalent rules. This, in turn, is equivalent to the existence of homomor-
phisms from each composite to the other. Clearly, the definition of commutativity
suggests a straightforward algorithm to test it for two rules r, and r,: form the two
composites r,r, and r,r, and test their equivalence. Unfortunately, a polynomial
time implementation of this algorithm is unlikely to exist, since equivalence of
conjunctive queries is known to be an NP-complete problem [3, 8].

5.1. A Sufficient Condition

In this section, we give a sufficient condition for commutativity that avoids
producing the two composites. The condition can be tested in exponential time,

}Analogously, the composite of a rule r with itself » times is denoted by r”".
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because it potentially involves testing for equivalence of conjunctive queries. The
test, however, is still more efficient than the one based on the definition of

SO, NOWCOVOL, 15 S INMOIC CIIQICIIY 4l 100 Q10 DasCA O UIC GQOeiiiition oOf

commutativity, because its exponential part is only occasionally applied on parts of
the original rules as opposed to always being applied on the composites of the two
rules.

For a rule r, we define the function # from the set of distinguished variables in r
to the set of all variables in r. For a distinguished variable x, #(x) is the variable
that appears in the recursive predicate in the antecedent in the same position as x
appears in the consequent. Since distinguished variables are assumed to appear
exactly once in the consequents of rules (with the potential of repeated variables
being realized by equalities in the antecedent), 4 is a function. We may also define
powers of & as

h'(x)=h(x), and h"(x)=h(h""'(x)) if A""'(x) is distinguished.

For two rules r, and r,, the corresponding 4 functions are denoted by #, and h,
respectively. We also define two more functions, g,, on the variables of r, and g,,
on the variables of r,. Since the two rules are assumed to share no nondistin-
guished variable, the former is defined as

z S no
81(2) = {h(z) z is distinguished,

and the latter is defined similarly. By definition, when r,r, is formed, a variable z
in a predicate of r, is always replaced by g,,(z).
As a notation vehicle for the theorems to follow, we use a version of the

a-graph of a rule (also called a-graph), which was introduced for the study of

uniform boundedness [10]. The a-graph of a rule is defined as follows:

(i) Ther

(ii) If two variables x,y appear in two consecutive argument pos1t10ns of some
nonrecursive predicate @ in the rule, a static directed arc(x — y) is put in
the graph between the corresponding two nodes x, y. Also, if x appears in a
unary nonrecursive predicate @ in the rule, a static directed arc(x —x) is
put in the oranh In both cases, the label of the edge is 0. (Static arcs are
shown as thm lmes in all forthcoming figures.)

(iii) If two variables x, y appear in the same position of the recursive relation P
in the antecedent and the consequent respectively, then a dynamic directed
arc(x —y) is put in the graph from node x to node y. (Dynamic arcs are
shown as thick lines in all forthcoming figures.)

Several characteristics of the underlying undirected graph of the a-graph of a rule
are important, e.g., connected components. In the sequel, although these character-
istics are defined for undirected graphs, we use them for directed ones as well, with
the understanding that we always refer to the corresponding underlying undirected

aranhe

51“1—’]!6.
It is also important to partition the distinguished variables of a rule in the

following categories (in the sequel, due to part (i) of the definition of the a-graph
of a rule, we use the terms variable and node indistinguishably). Consider a set of
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variables {x;}, 0 <i<n—1, n>1, such that x, appears in the same argument
position of the recursive predicate in the antecedent as x;, ),,4, appears in the
recursive predicate in the consequent (i.e., the positions of the variables in the
antecedent is a permutation of their positions in the consequent). Any such
variable is called persistent and in particular n-persistent (n is the cardinality of the
set). More specifically, if no variable from the set appears anywhere else in the
rule, every variable in the set is called free n-persistent. Otherwise, every variable in
the set is called link n-persistent. All other variables are called general. Note that
free n-persistent variables, n > 1, are the only variables in their connected compo-
nent in the a-graph, connected only via dynamic arcs of the form (x; = x;, 1,n0q.)-

Finally, we need to define some interesting subgraphs of the a-graph of a rule
[7]. Consider an undirected graph G, a subset E’ of its edges, and let G' be the
subgraph of G induced by E'. Let V' be the node set of G'. Define a relation ~
on the edges of G — E’ by the condition that, for two edges ¢, and e,, e, ~ e,, if
e, =e, or there is a walk in G that contains ¢, and e, but contains no node from
I’" as an internal node (although the walk may start or end at nodes in V7). It is
casy to verify that ~ is an equivalence relation on the edges of G. The subgraph
of G induced by the edges of an equivalence class under the relation ~ is called a
bridge of G with respect to G’'. A bridge together with the part of G’ that is
connected to the bridge forms an augmented bridge. In the sequel, unless otherwise
noted, whenever we refer to bridges in the a-graph of a rule, we mean its bridges
with respect to its subgraph induced by the dynamic arcs connecting each link
1-persistent variable in the graph to itself. This is because they play a very
important role in the study of commutativity and we refer to them continuously.

Let G’ be a subgraph of the a-graph of a rule r and V' be its node set such
that, for any distinguished variable x,x € V' = A(x) € I/’. Then, any augmented
bridge with respect to G’ is an a-graph itself and corresponds to specific parts of
the original rule. Thus, there is a unique narrow rule r, that corresponds to such
an augmented bridge. Its nonrecursive predicates in the antecedent are the ones of
r that correspond to the static arcs of the augmented bridge. Its instances of the
recursive predicate in the consequent and the antecedent are formed from the
ones of r by projecting on the argument positions that contain in the consequent
distinguished variables that appear in the augmented bridge. In addition, there is
another unique wide rule r, that corresponds to such an augmented bridge. Its
only difference from r, is that its recursive predicate has the same arity as in r,
with the additional distinguished variables being free 1-persistent. Clearly, both
rules constructed as above are unique, since they depend on a specific augmented
bridge of the a-graph of a specific rule. Moreover, the a-graph of the narrow rule
is the augmented bridge from which it was constructed. Thus, containment and
equivalence of augmented bridges can be defined appropriately as containment and
equivalence of the corresponding narrow rules.

Example 5.1. Figure 1 is the a-graph of the rule:
P(u,v,w,x,y,z):—=P(v,u,w,w,y,z) AQ(x,y).

Variable z is free 1-persistent, variables w and y are link 1-persistent, variables u
and v are free 2-persistent, and variable x-is general.
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: Q
u x y 2

FIGURE 1. Example of an a-graph.

For another example, see Figure 2, the a-graph of the rule
P(uv,w,x,y,2):— P(v,v,u,y,y) AQ(v,u,y) AR(w) AS(x) AT(z).

Variables v and y are link 1-persistent. The augmented bridges of G with respect
to the graph induced by the arcs (v — v) and (y — y) have been enclosed in dotted
boundaries. Their corresponding narrow rules are

P(v,w):— P(v,v) AR(w),

P(v,x,y):—P(v,u,y) AQ(v,u,y) ANS(x),
P(y,z):=P(y,y) AT(2),

whereas their corresponding wide rules are
P(v,w,x,y,z):—P(v,v,x,y,2) AR(w),
P(v,w,x,y,z):—P(v,w,u,y,z) ANQ(v,u,y) AS(x),
P(v,w,x,y,z):—P(v,w,x,y,y) AT(Z2). O

The following theorem gives a sufficient condition for commutativity of rules of
the form specified in the beginning of Section 5. Another, less general, sufficient
condition for commutativity has been independently discovered and reported
elsewhere [19].

Theorem 5.1. Two rules r, and r, with the same consequent commute if every
distinguished variable x satisfies one of the following:

(a) x is free 1-persistent in r| orr,;

(b) x is link 1-persistent in both r, and r,;

(¢) xis free m-persistent, m, > 1, in r, and free m,-persistent, m,> 1, in r, and
h(hy(x)) = hy(hy(x);

(d) x is link m-persistent, m > 1, or general, and belongs to equivalent augmented
bridges in both r, and r,.

FIGURE 2. Augmented bridges
in an a-graph.
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PROOF. In the proof, we use the fact that commutativity of r, and r, is defined as
the equivalence of rr, and r,r,, which in turn, is equivalent to the existence of
homomorphisms from each composite to the other. Recall that we assume that the
two rules have the same consequents and share no nondistinguished variables.
Given that (a), (b), (¢), and (d) hold for r, and r,, we can partition their
distinguished variables into the following vectors:

p; vector of the free 1-persistent variables in r;, i =1,2;
s vector of the common link 1-persistent variables in r; and r,;

¢ vector of the common free persistent variables in the consequent of r, and
r, that are free m -persistent, m,>1,1in r,, i = 1,2;

e vector of the link m-persistent, m > 1, and general variables that belong to
equivalent augmented bridges in r, and r,.

Without loss of generality, the variables in the consequents of the two rules are
grouped so that they can be written in the following form:

ry: P()(_Pl’fz,§,Q’€)1‘P1<E|,Z1a§7h|(§)’l)1) AS(u) AQi(wy),

ry P()(Enfz’§,£’€)3_P/(_z’_Pz’é"hz(E)’yz) AS(uy) A Qy(w,).

We have assumed that every rule seen as a conjunctive query is in its unique
minimal form [8, 18]. This has the implication that the augmented bridges that are
equivalent in the two rules are isomorphic (i.e., they are the same up to reordering
of their nonrecursive predicates and renaming of their nondistinguished variables),
so that their nonrecursive predicates can be represented by a common S. @,,Q,
represent the remaining nonrecursive predicates, i.e., those of bridges whose
general and link m-persistent variables, m > 1, in one rule are free 1-persistent in
the other. Finally, z,, z,, v,,v,, w,, w, are vectors of variables. In particular,

Z it contains nondistinguished variables and variables from D2
z, it contains nondistinguished variables and variables from p;;
w, it contains nondistinguished variables and variables from P> and s;
w, it contains nondistinguished variables and variables from p, and s;

v,,v, they contain nondistinguished variables and variables from ¢ and s;
u,,u, they contain nondistinguished variables and variables from ¢ and s.

Forming the two composites yields two equivalent rules:
riryt Po(pispassic €)= P2y, 20,8, 1 (hy(¢)). 812(v2))
AS(ur) AS(81(82)) A Qw1 ) A Qr(w,),
rar: Po(£1:£2’§,£s§)3_P/(Z—'z’Zl’§’h2(h1(§))a821(yl))

A S(gzl(ﬂl)) AS(uy) AQ(wy) AQy(w,).
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We only explain the formation of r,r,, since r,r, is formed similarly. S$(u,)
remains as is from r,. The variables of u, in S change according to g,(u,) to
produce S(g,,(u,)). @,(w,) remains as is from r,. The nondistinguished variables
of w, remain the same. (Since the two rules have distinct nondistinguished variable
names there is no need for renaming.) The distinguished variables in w, are all
members of p, and s. Since all of them are 1l-persistent in r;, they remain the
same in the composition. Hence, all the variables in w, remain the same, and this
produces @,(w,). The variables in P, from r, are formed as follows. The variables
in z, are either nondistinguished or they are free l-persistent in r|, ie., they
belong to py, so they remain the same. The variables in p, are free 1- per51stent in
r,, hence they are replaced by A (pz) i.e., by the corresponding variables in the
antecedent of r,, which are the variables in z,. The variables in s are 1-persistent,
so they remain the same. The variables in 4,(c) are permuted according to &, to
give h,(h,(¢)). Finally, the variables in v, are replaced by g,,(v,).

Examining the two composites we observe the following. First, the parts of them
that come from augmented bridges that are equivalent in the two rules are
isomorphic. This is because when s, =s, =s, then s,s, = 5,5, = 52. More precisely,
there is an isomorphism between the variables of u,, g,,(u,), and g,,(v,) and
those of u,, g,(u,), and g,,(v,) respectively. A straightforward renaming of their
nondistinguished variables will make the two parts equal. Moreover, none of these
variables appears anywhere else in the rules, since they belong to distinct bridges in
the a-graph. Thus, this renaming does not affect the remaining parts of the rules.
Second, by part (c) of the statement of the theorem, the equality A (h,(c)) =
h,(h(c)) holds. Third, the remaining parts of the two composites are the same.
Hence, the two composites are isomorphic, i.e., equivalent. Therefore, the two
original rules commute. |

Example 5.2, The canonical set of commuting rules involves the two linear forms of
transitive closure:

Po(x,y):= Q(x,u) NP (u,y),
P,(x,y):— P/(x,v) AR(v,y).

Both composites are equal to the rule below:
Py(x,y):— P (u,v) AQ(x,u) AR(v,y).

The a-graphs of the two rules are shown in Figure 3. Every distinguished variable
is free 1-persistent in one of the two original rules, i.e., it satisfies condition (a) of
Theorem 5.1. As a side comment, note that the product of the two original rules is

u i y

]
Q ] R FIGURE 3. a-graphs of

i commuting rules satisfying
! the condition of Theorem

x y E X y 5.1,
]
]
]

ry r2
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the recursive rule of the “same-generation” program. Some implications of this
fact have been examined elsewhere [13]. O

Example 5.3. The following is a more complex pair of rules that also commute with
each other:

Po(x,y,2):= Py(it,y,2) AQ(x,¥),
Py(x,y,2):—P/(x,y,v) AR(z,y).

Both composites are equal to the rule below:

Py(x,y,z):—P(u,y,v) AQ(x,y) AR(z,y).

The a-graphs of the two rules are shown in Figure 4. Note that the condition of
Theorem 5.1 is satisfied by the corresponding a-graphs. a

Unfortunately, as the following counterexample shows, the condition of Theo-
rem 5.1 is not necessary for commutativity.

Example 5.4. The following two rules also commute with each other:
Po(x,y): =P (y,w) A Q(x)
Po(x,y):=Pi(u,v) AQ(x) AQ(y)

Both composites are isomorphic to the rule below:
Po(x,y):— P(u,v) AQ(y) AQ(w) AQ(x).

The a-graphs of the two rules are shown in Figure 5. Note that, in this case, the
condition of Theorem 5.1 is not satisfied. |

5.2. A Necessary and Sufficient Condition

We are not aware of any necessary and sufficient condition for commutativity of
rules of unrestricted form that is computationally or aesthetically better than the
condition of the definition of commutativity. In this section, we show that the
condition of Theorem 5.1 is necessary and sufficient for commutativity if we restrict
our attention to range-restricted rules, i.e., every variable in the consequent appears
at least once in the antecedent as well, with no repeated variables in the consequent
and no repeated nonrecursive predicates in the antecedant. The second restriction is
enforced after all equalities have been eliminated from the antecedent. Before
proceeding with the proof of the theorem, we need the following lemmas.

H 1Y
0 QOO Q-r |
x y £ x y z

ry ra

FIGURE 4. «-graphs of commuting rules satisfying the condition of Theorem 5.1.
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Lemma 5.1. Consider two rules, r, and r,, with no repeated variables in the conse-
quent that commute with each other. Let x be a distinguished variable, with
h(x)=x"and h,(x) =x", such that both x' and x" are distinguished. Then, one of
the following holds:

(a) both h(x") and hy(x") are distinguished and h\(x") = h,(x"), i.e., h(h,(x)) =
h,(h (X)), or
(b) both h\(x") and h,(x') are nondistinguished.

PROOF. Assume that the two rules have the following form:
Fis Po(x, )= Py (x', ) A e
ryt Po(x, o )i=P(x", ) A -
The two composites are
riry: Po(x, - )i= Pr(gi(x"), ) A e,
rar Po(x, =) 1= P8 (x), ) A e

Since x' and x” are distinguished, by definition, g,,(x") =hA(x") and g, (x") =
hy(x"). If h(x") is distinguished, due to the homomorphisms that have to exist
between the two composites, it must be s (x") = h,(x'), which also implies that
h,(x') is distinguished. On the other hand, if #,(x”) is nondistinguished, due to the
homomorphisms between the two composites, /,(x’) must be nondistinguished
also. a

Lemma 5.2. Consider two rules, r| and r,, with no repeated variables in the conse-
quent and no repeated nonrecursive predicates in the antecedent, that commute with
each other. Let {x,}, 0 <k <n+ 1, be a set of distinguished variables such that
h(x) =x,,,, i.e, ¥ (x)) =x,.,,, for 0 <k <n, and x, appears in a nonrecur-
sive predicate Q. Then, one of the following holds:

(@ h(x)=x,,0<k<n+1,o0r
) hfx)=x,.,, i.e, 5" (x))=x,,,, for 0<k<n, and x, appears in a
nonrecursive predicate Q in r,.

PrOOF. Let hy(x,)=y,, 0 <k <n + 1. The relevant parts of r, and r, are given
below. We include a nonrecursive predicate @ in r,, but we examine both cases,
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when it exists and when it does not. The two different instances of Q@ will be
distinguished by superscripts.

i Po(Xgsee Xyt )i Pr(x s X ) AQ (g, ) A

rat Po(Xgseeos Xps o )im Pr(Ygseo s Yis s ) AQP (2,00 ) A e

Composing the two rules we have
rirpt Po( Xy, X )= Pr(81a(ye)s -5 812(yi) s )
AQ (xy ) AQP(g1(2), ) A e,
rars Po(xgseo o X, )= P(Y oo s Vi)
/\Q‘(y(,,-”) /\QZ(Z,"') A e

Examining the two composites we distinguish two cases. If @ does not appear in
r, (i.e., if we ignore @2), in order for the two composites to be equivalent, it has to
be y,=x,. An easy induction on k shows that y, =x,, i.c.., h,(x,) =x,, for all
O<k<n+1.

Basis: For k=0, it was just shown that y, =x,.

Induction step: Assume that the claim is true for some 0 <k < n. We prove it for
k + 1. By the induction hypothesis, it is y, =x,. Hence, g,(y,) =g.(x)=h(x)
=x,, ;. (The second equality is due to x, being a distinguished variable, whereas
the last one is by the definition of {x,}.) Due to the homomorphisms that must exist
between the two composites in order for them to be equivalent, the instance of P,
in r,r, must map to the instance of P, in r,r, and vice-versa. Comparing the two,
we conclude that y, ., =x,,, (because x,,, kK <n, is a distinguished variable).

If Q appears in r,, then one of z or y, must be equal to x,. If y,=x,, we have
just shown that h,(x,)=x,, for all 0<k<n+1. If z=x, then since z is
distinguished, by definition it must be g,,(z) =g5(x,) = 1 (x,) = x,. Since the two
composites are equivalent, the necessary homomorphisms between them imply that
Yo =X,. Again, an easy induction on k shows that y, =x,,,, i.e., h,(x,)=x, ., for
all 0 <k <n.

Basis: For k =0, it was just shown that y, =x,.

Induction step: Assume that the claim is true for some 0 <k <n — 1. We prove it
for k + 1. By the induction hypothesis, it is y, =x,.,. Hence, g,»(y,) =g »(xc. )
=h(x,, ) =x,.,. By definition, since k +2 <n + 1, x, , is distinguished. Hence,
comparing again the two instances of P, in r;r, and r,r;, we conclude that
Vw1 = Xky2-

In both cases, whether r, contains @ or not, we have shown that one of (a) or
(b) holds. O

Theorem 5.2. Two range-restricted rules r, and r, with the same consequent and no
repeated variables in the consequent and no repeated nonrecursive predicates in the
antecedent commute if and only if every distinguished variable x satisfies one of the
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following:

(a) x is free 1-persistent in r, or ry;

(b) x is link 1-persistent in both r, and r,;

(c) x is free m-persistent, m, > 1, in r, and free m,-persistent, m, > 1, in r, and
hy(hy(x)) = hy(hy(x));

(d) x is link m-persistent, m > 1, or general, and belongs to equivalent augmented
bridges in both r| and r,.

PROOF. Recall that we assume that the two rules have the same consequents and
share no nondistinguished variables. The “if” direction of the theorem follows
from Theorem 5.1.

For the other direction of the theorem, assume that r, and r, commute. We
show that for a distinguished variable x of r, one of (a), (b), (c), or (d) holds in r,,
depending on the type of x. Since the theorem is symmetric in r1 and rz, the
variables in 7, are not examined. We always consider x being the first distin-
guished variable in the consequent, and we only write down the parts of the rules
that are relevant to the proof. Also, unimportant variables are denoted by

(i) x is a free 1-persistent variable: This simply states that (a) holds.

(ii) x is a link 1-persistent variable: In this case, x appears at least twice in the
antecedent of r,. Since the rules are range-restricted, this implies that
there exists a set of distinguished variables {x,}, 0 <k <n + 1, such that

L+ Y— Nl < with v —yv — nd quch that anneare in a
’L \A '\« U >N ’l YWiLil A A auu ouLil lllub J\« a wald 111 a
[AS4d 34 k+1 n = Xn+l> 0 4PpP

nonrecursive predicate @. If this is not true, then there must exist repeated
variables in the consequent of r;, which is a contradiction. Applying
Lemma 5.2 for x =x, yields s,(x,)=x, or A (x,)=x,,,. Since x=1x,

X, ., this implies that in all cases hz(x) x, i.e., x is 1-persistent in r, ((a)
or (b) holds).

(iii) x is a free m -persistent variable, m, > 1: Since the rules are range-restricted,
it x is not a free mz—persmtent variable, m, > 1, in r,, there must exist a set
of distinguished variabies {y,}, 0 <k <n + 1, such that 4,(y,) =y,,,0<k
<n,with x =y, ,, and such that y, appears in a nonrecursive predicate Q
in r,. By Lemma 5.2, this implies that either x = h(x) or x = h7* '(y,) and
y¢ appears in a nonrecursive predicate @ in r,. In the first case, x is a
1-persistent variable in s and in the second case, x is a link /- persistent
!> 1, or general variable in 7,. In both cases, this is a contradiction, since x
is a free m-persistent variable, m,; > 1, in r;. Hence, x must be a free
m,-persistent, m, > 1, variable in r, also.

If my,=1, ie, it is free 1-persistent ((a) holds), then x satisfies the
theorem. Otherwise, x is free m,-persistent, m, > 1, in r,, and we have to
show that h,(h,(x)) =h,(h,(x)). Since x is a free persistent variable in r,
and r,, by deﬁnition, hl(x) and h,(x) must also be free persistent variables
in r; and r, respectively (h,(x) is part of the same component as x in 7).
The argument in the previous paragraph can be applied in the case of
h,(x) and yield that 4,(x) is a free persistent variable in 7, as well. Hence,
h(x), hy(x), and h,(hy(x)) are distinguished variables. By Lemma 5.1,

h,(h (x)) is also distinguished, and A ,(h(x)) = h (h(x)), i, (c) holds.

(iv) xis a link m -persistent, m > 1,0r general variable: Again, since the rules are

nee-restricted. t

ange-restricted, ists a set of distineui ed vari-

] SLl Ul Uisuligu u G vYaiil



COMMUTATIVITY IN LINEAR RECURSION 241

ables {x,}, 0 <k <n+ 1, such that A (x,)=x,,,,0<k<n,with x=x,,,,
and such that x, appears in a nonrecursive predicate @ in r;. By Lemma
5.2, this implies that either x = h,(x), i.e., that x is 1-persistent in r,, or
x =h3""(x,), and x, appears in a nonrecursive predicate Q in r,, i.e., that
x is link persistent or general in r,. We examine the two cases separately.

If x is 1-persistent in r,, we show that it cannot be link 1-persistent, i.e.,
it must be free 1-persistent. Assume to the contrary that x is link 1-per-
sistent in r,. From case (ii) for r,, we conclude that x is 1-persistent in r,,
which is a contradiction. Hence, x must be free 1-persistent in r, ((a)
holds).

If x is link persistent or general in r,, we show that it belongs to an
augmented bridge that is equivalent to the augmented bridge to which it
belongs in r,. Recall that we examine the case where A,(x,)=x, , for all
0 <k < n, which implies that #,(x,) = h,(x,). Since x =x,_, is an arbitrary
link m-persistent, m > 1,or general variable in its augmented bridge in r,,
we can conclude that for any such variable z in that augmented bridge,
either both #h(z2),h,(z) are distinguished and #h(z)=h,(z), or both
h(z), h,(z) are nondistinguished, i.e., the structure of 4 for the augmented
bridges of z in r, and r, is the same. Hence, if we assume that the two
augmented bridges are not equivalent, there must be some nonrecursive
predicate connected (through a series of nonrecursive predicates) to a link
m-persistent, m > 1, or general variable in the bridge in r, that is not
connected through the same series of nonrecursive predicates to the same
distinguished variable in the bridge in r, (or vice-versa). Without loss of
generality, assume that x is such a distinguished variable. Also without loss
of generality, assume that A ,(x) =Ah,(x) =y is a distinguished variable, and
that only nondistinguished variables appear in the nonrecursive predicates
connected to x (except x). The other cases are treated similarly. This
situation is depicted in the following two rules:

ri: Po(x,- )= Py, ) AR(x,2)) ARy (2(,2,)
/\Rm—l(zm—Z’zm—l) /\Rm(zm—l’zm) A s
ry: Po(x,--):=Pi(y, ) AR(x,2]) ARy (z{,2;) -
AR, _(Zp 2y Zp ) N
Composing the two rules we obtain the following:
rr: Po(x,"-):—P,(_,'--)/\Rl(y,zl’)/\Rz(z{,zz’)---
AR, _(2p_ 3520 1)
AR(x,2) ARy (21,2,) " AR _ (22521 _1)
/\Rm(zm—l?zm)/\”"
ryry: PO(x""):_Pl(_"”)/\Rl(y7z])AR2(21’22)'“
/\Rm——l(zm‘Z’Zm—l) /\Rm(zm—l’zm)
AR(x,z]) ANRy(z{,23) * AR, _((Zp_2sZi_1) A e

Clearly, since y #x (x is not 1-persistent), the two composites are not
equivalent, and r, and r, cannot commute, which is a contradiction. Hence,
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the assumption that the two augmented bridges to which x belongs in 7,
and r, are not equivalent is wrong, i.e., (d) holds. O

5.3. Complexity

In order to show the complexity of testing the condition in Theorem 5.2, we first
need to discuss the complexity of finding the bridges in a graph with respect to a
subgraph and that of testing equivalence of two range-restricted rules with no
repeated variables in the consequent and no repeated nonrecursive predicates in
the antecedent. We discuss the two problems separately.

Identifying the bridges of an undirected graph with respect to a subgraph is very
similar to identifying biconnected components in the graph [2]. The two problems
have the same complexity. In particular, the complexity of identifying bridges is
given by the following lemma, which is provided without a proof.

Lemma 5.3. Identifving the bridges of an undirected graph with respect to a subgraph
can be done in O(n + e) time, where e is the number of edges and n is the number
of nodes in the graph.

The complexity of testing the equivalence of two rules with no repeated
variables in the consequent and no repeated nonrecursive predicates in the
antecedent is addressed in Lemma 5.4.

Lemma 5.4. Equivalence testing of two range-restricted rules with no repeated variables
in the consequent and no repeated nonrecursive predicates in the antecedant can be
done in Olaloga), where a is the total number of argument positions in the
predicates in the antecedents of the two rules.

PrOOF. Since the rules contain no repeated nonrecursive predicates, if they are
equivalent, they have to be isomorphic. Moreover, every predicate in the one rule
can map to only one predicate in the other. Thus, equivalence can be tested as
follows:

(1) Test if the set of predicates in the antecedents of the rules are the same.
This can be done by first sorting the two sets, and then examining the
predicates pairwise, traversing the two sets in order; since the number of
predicates is less than or equal to the number of argument positions in the
predicates, this step takes O(alog a) time.

(2) Define f such that for any pair of literals Q(x,,..., x,) in the antecedent of
r; and Q(y,,...,y,) in the antecedent of r,, f(x,) =y, and test if fis 1 —1
(and onto) and x; =y, when x; is distinguished. This can be done by first
sorting the list of variables of the one rule and then scanning the an-
tecedents of both rules in parallel and recording the value of f(x) for every
variable x in the sorted list. If at any point, two distinct values are assigned
to f{x) or f(x)=x for a distinguished variable x, then the rules are not
equivalent; otherwise, they are because f is an isomorphism between them.
The cost of this step is dominated by the sorting cost of the variable list, i.e.,
it is O(a log a) time.

Adding the time complexities of Steps (1) and (2) yields that the total time
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complexity of testing equivalence of rules that satisfy the restrictions stated in the
lemma is O(a log a). m|

Theorem 5.3. Commutativity of two range-restricted rules with no repeated variables in
the consequent and no repeated nonrecursive predictates in the antecedent can be
tested in OCaloga) time, where a is the total number of argument positions in the
recursive and the nonrecursive predicates of the antecedents of the rules.

PrROOF. The algorithm has the following steps:

(1) Form the a-graphs of the two rules. The most complex operation in this step
is sorting the lists of variables of the two rules, so that a unique node is
assigned to each one of them in the appropriate graph, independent of the
number of times it appears in the corresponding rule. Thus, this step can be
done in O(alog a) time.

(2) Identify the type of every distinguished variable (i.e., free 1-persistent, link
1-persistent, free m-persistent, m > 1, link m-persistent, m > 1, or general),
and then identify the bridges of the underlying undirected graphs of the
a-graphs of the two rules. The number of argument positions a is an upper
bound on both the nodes and the arcs in the graph. Hence, by Lemma 5.3,
this step can be done in O(a) time.

(3) For every link 1-persistent variable in the one rule, check if it is 1-persistent
in the other. This step takes O(1) for every link 1-persistent variable, for a
total time of O(a).

(4) For every free m -persistent variable, m, > 1, in the one rule, check if it is
free m,-persistent, m, > 1, in the other. In addition, for every such variable
x, test whether A ,(h,(x)) = h,(h (x)) or not. This step takes O(1) for every
free m,-persistent variable, m, > 1, for a total of O(a) time.

(5) For every link m-persistent, m > 1, or general variable in the one rule,
check if it is free l-persistent in the other. If it is, do nothing. This step takes
O(1) for every such variable, for a total of O(a) time. If it is not, check if it
belongs in an equivalent augmented bridge in the other rule. Because the
rules contain no repeated variables in the consequent and no repeated
nonrecursive predicates in the antecedent, by Lemma 5.4, equivalence of all
the relevant bridges can be tested in O(a log @) time. (In fact, its cost will be
O{a) if the sorted variable lists from Step (1) are being used.)

The total complexity is given by the sum of the total times for steps (1), (2), (3),
(4), and (5), which is equal to O(alog a). 0

6. SEPARABILITY AND RECURSIVE REDUNDANCY REVISITED

In Section 4, we examined commutativity vs. separability and recursive redundancy
as expressed in the abstract form of the algebra to obtain results that hold for any
linear rules. In this section, we restrict ourselves to function-free, constant-free,
and range-restricted rules and use our results from Section 5 to obtain more
relationships of commutativity with separability and recursive redundancy for this
class of rules.
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6.1. Commutativity vs. Separability

Based on the original definition [15],* two rules r, and r, with the same conse-
quent are separable if

(1) For any distinguished variable x, either A,(x) =x or h,(x) is nondistin-
guished, i = 1,2;

(2) For any distinguished variable x, either both x and h,(x) appear under
nonrecursive predicates in r; or none, i =1,2.

(3) The sets of distinguished variables that appear under nonrecursive predi-
cates in r, and r, are either equal or disjoint.

(4) The subgraph of the a-graph of r; induced by its static arcs is connected,
i=1,2.

For the case of two rules, one can take advantage of the efficient features of the
separable algorithm only if in Clause (3) the intersection of the sets of distin-
guished variables that appear under nonrecursive predicates in r; and r, is empty.
With this assumption, Naughton proved the following theorem on the relationship
of separable recursions and the separable algorithm (Algorithm 4.1).

Theorem 6.1 [15]. Given two operators A, and A, that are separable and a full
selection o, then o(A, + A))* = AN (aA3}), i.e., the separable algorithm can be
used for the computation of o(A, +A,)*.

With the same assumption on Condition (3) of the definition of separable rules
as above, we can prove the following lemma.

Lemma 6.1. If two range-restricted rules r, and r, with the same consequent are
separable, then they only contain 1-persistent and general variables. Moreover, any
link 1-persistent or general variable in r, is free 1-persistent in r, (similarly for the
variables of r,).

ProoF. Condition (1) of the definition of separable rules states that for any
variable x, either #,(x) = x or h,(x) is nondistinguished, i/ = 1,2. In the first case, x
is 1-persistent in r;, whereas in the second one, x is general. If x is link
1-persistent or general in one of the rules, say r;, x must appear under some
nonrecursive predicate in r,. Otherwise, there must exist another distinguished
variable y, such that #,(y) =x, which contradicts Condition (1) of the definition of
separble rules. Hence, by Condition (3), x is free 1-persistent in r,. m|
Combining Lemma 6.1 with Theorem 5.1 yields the following theorem.

Theorem 6.2. If two rules are separable then they commute, but the opposite does not
hold.

PrOOF. If two rules r; and r, are separable, by Lemma 6.1, every variable is free
1-persistent in r, or r,, i.e., it satisfies Condition (a) of Theorem 5.1. Thus, by
Theorem 5.1, the two rules commute.

* The definition given in this paper can be easily extended to multiple rules (in accordance to the
origsinal definition [15]). For presentation clarity, however, we restrict ourselves to two rules.
The precise definition of full selections is given by Naughton [15]. For our purposes, the key
observation is that if 4,4, =4, A4, and o4, =A4,0, then o is a full selection.
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The rules of Example 5.3 serve as examples of commutative rules that are not
separable. They violate both Condition (2) and Condition (3) of the separable
definition. a

By Theorem 6.2, commutativity is a strictly more general notion than separabil-
ity. Nevertheless, by Theorem 4.1, all the efficient processing algorithms for
separable rules are applicable for commutative rules as well, i.e., Theorem 4.1 is a
strict generalization of Theorem 6.1.

6.2. Commutativity vs. Recursive Redundancy

The following lemma on the relationship of the properties of being uniformly
bounded and being torsion is instrumental in proving the necessity of the condition
of Theorem 4.2 for recursive redundancy.

Lemma 6.2. *Every uniformly bounded rule with no repeated variables in the con-
sequent and no repeated nonrecursive predicates in the antecedent is torsion.

ProOF. Consider a rule r that satisfies the conditions of the lemma. By definition,
this implies that there are £ >0 and 7> 0 such that rEt T <15 ie., there is a
homomorphism f from r* to r**7. Moreover, as Naughton has pointed out [17],
for the class of rules defined in the lemma, we can find k£ > 0 and 7> 0 such that

the antecedents of r* and r** 7 are of the form
rk: ab,
AT agh?,

where a, b, b’, and q are conjunctions of predicates that satisfy the following: (i)
any two of them that appear in the same rule share no nondistinguished variables,
(ii) the recursive predicate appears in b or b’, and (iii) b and b’ are isomorphic.
Naughton showed that there is a homomorphism f: r* — r¥*7 such that f(a)=a
and f(b) =b"[17]. Consider r**27. Clearly, it can be written in the form

rk+27: aqqrbn’

where g is isomorphic to g’ and b’ is isomorphic to b". Property (i) and the
isomorphism of ¢ and ¢’ guarantee that no nondistinguished variable is shared

between any two of a, g, ¢’ and b". Based on this and the existence of f, we can
define two homomorphisms f,: r¥* 7> rk*27 and f,: r** 27— r** " as follows:

fi(a) =a, filg) =q, fi(b") =b"
fla)=a,  fi(q)=q. fi(q')=q, f2(b") =b".

The existence of f, and f, imply that r**"=r%*27 je,, that r is torsion. 0

For the study of recursive redundancy, the following subset of the general
variables in the w-graph of a rule plays an important role. Any general distin-
guished variable whose corresponding node in the a-graph of a rule is connected to
some link-persistent variable through a path of dynamic arcs alone is a ray
variable. If n is the length of the shortest such path, then the variable is called
n-ray. Let I, and [, be the sets of the link-persistent and ray variables in some rule

® Similar results are easily provable for the class of recursions examined by Ioannidis [10].
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r (corresponding to some operator A) respectively, and let I be the union of the
two sets [ =1, U, Let G, denote the subgraph of the a-graph of r ( 4) induced by
the dynamic arcs connecting the variables in 7, and G} denote the subgraph of the
a-graph of r’ (A4") induced by the dynamic arcs connecting the variables in / as
well, for any L > 1. In the study of recursive redundancy, an important role is
played by the bridges of the a-graph of r with respect to G,. A necessary and
sufficient condition for a nonrecursive predicate in a rule of some restricted form
to be redundant was originally given by Naughton [16]. Using a different terminol-
ogy, that condition is expressed in the following theorem.

Theorem 6.3. [16]. A nonrecursive predicate in a rule with no repeated variables in the
consequent and no repeated nonrecursive predicates in the antecedent is recursively
redundant if and only if it appears in a uniformly bounded augmented bridge of the
a-graph of the rule with respect to G,.

Example 6.1. [16]. Consider the following rule, whose corresponding a-graph is
shown in Figure 6:

knows(x, z) A buys(z,y) A cheap(y) — buys(x,y).

Clearly, the component of the graph that contains the variable y is a uniformly
bounded augmented bridge with respect to the subgraph induced by the dynamic
arcs connecting its ray and link-persistent variables (of which there is only one: y).
Thus, according to Theorem 6.3, the predicate cheap is recursively redundant.
O

We present a different necessary and sufficient condition that shows the
relationship between commutativity and recursive redundancy. For that, we need
the following lemmas.

Lemma 6.3. Let A be an operator corresponding to a rule with no repeated variables in
the consequent and no repeated nonrecursive predicates in the antecedent. The
following holds.

(a) Forall L > 1, I, and I, are the sets of link-persistent and ray variables of A"
respectively.

(b) There exists L > 1 such that all variables in 1, are link 1-persistent and all
variables in I, are 1-ray in A".

PROOF. Part (a) is obvious. For Part (b), any link L -persistent variable x in A4 is
link 1-persistent in A™% for all m > 1. In addition, any L -ray variable y in A4
is 1-ray in A™ for all m =L . Let cm(S) denote the set of common multiples of
the members of a set S. Choose L =min{M|Mecm, (L} and M=

FIGURE 6. «a-graph of rule with a recursively redun-

knows y  dant predicate.

z cheap
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max, . ,{L }}. That is, L is the least common multiple of {L } that is greater than
the maximum of {L ). Clearly, all link-persistent variables in A are link 1-per-
sistent in A%, all ray variables in 4 are 1-ray in A%, and no other variable satisfies
that (because of Part (a)). |

Consider a rule r with no repeated variables in the consequent and no repeated
nonrecursive predicates in the antecedent, and let Q@ be one of those predicates.
Clearly, the Lth power of r contains L instances of @ in the antecedent. Every
such instance is said to be generated by the instance of @ in the antecedent of r.
Accordingly, the static arcs in the a-graph of r® that correspond to those
predicates are said to be generated by the arc in the a-graph of r that corresponds
to the original instance of Q.

Lemma 6.4. Let A be an operator corresponding to a rule with no repeated variables in
the consequent and no repeated nonrecursive predicates in the antecedent. The set of
arcs generated by those of any bridge in the a-graph of A with respect to G, forms
one or more bridges in the a-graph of A“ with respect to G|, for any L > 1.

PrOOF. The lemma holds trivially for L =1. Consider two arcs (z, —z,) and
(w, = w,) in the a-graph of A that belong to different bridges with respect to G,.
Let (z] = z3) and (w]| — 2)) be the arcs generated by (z;, = z,) and (w, - w,)
respectively in A%, L > 1. If (z; > z;) and (w] - wj}) are not connected in the
a-graph of A", they trivially belong to different bridges with respect to GF. If they
are connected, the walk that connects them must correspond to a walk that
connects (z, — z,) and (w, = w,) in the a-graph of A, which by definition passes
through at least one link-persistent or ray variable x of A, since the two arcs
belong to different bridges. Thus, the walk connecting (z] = z5) and (w; = w})
must pass through at least one of the variables that replace x in A', for some
[ < L. Since x is link persistent or ray, however, it is only replaced by link-per-
sistent or ray variables as well. Thus, the walk connecting (z| — z5) and (w| = w3)
must pass through one of those variables. By Lemma 6.3, this implies that the two
arcs belong to different bridges with respect to G a

Lemma 6.5. Consider the a-graph of some operator A. If C is the wide operator that
corresponds to a set of augmented bridges of the graph with respect to G, then there
exists an operator B such that A = BC.

PROOF. Let B be the operator that corresponds to the a-graph that is constructed
as follows: in the a-graph of A, remove all arcs from the augmented bridges that
correspond to C, introduce dynamic arcs so that their distinguished variables
become (free or link) 1-persistent, and keep the rest of the graph unchanged.
Because of the way B and C are defined, one can apply an argument similar to that
in the proof of Theorem 5.1 and show that 4 = BC. Roughly, all nonrecursive
predicates in C remain unchanged in BC, because all variables that they contain
are unaffected by the composition: the distinguished ones are 1-persistent in B and
the nondistinguished ones do not appear in B (nondistinguished variables in B and
C come from different bridges in the a-graph of A), so by the definition of the g,
function (Section 5), they remain unchanged. Thus, the identity function serves as
an isomorphism between the nonrecursive predicates of 4 and BC. Moreover,
every distinguished variable of A has been left unaffected in exactly one of B and
C, whereas it has been transformed to a 1-persistent variable in the other. Thus,
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the identity function serves as an isomorphism between the recursive predicates in
the antecedents of 4 and BC as well. The above two facts yield the conclusion
that 4 = BC. O

We can now proceed to the main result of this subsection. (Without loss of
generality, we assume again that all operators have the same domain and range, so
that the product of any pair of them is well defined.)

Theorem 6.4. Let Q be a parameter relation of some operator A that corresponds to a
range-restricted rule with no repeated variables in the consequent and no repeated
nonrecursive predicates in the antecedent. Q is recursively redundant in A* if and
only if there exist L > 1 and operators B and C such that Q is a parameter of C but
not B, C is uniformly bounded,

A*=BC*, and CY(BC')=C:(C"B).

ProOF. By Lemma 6.2, if C is uniformly bounded and the corresponding rule
contains no repeated variables in the consequent and no repeated nonrecursive
predicates in the antecedent, C is also torsion. Thus, the if part of this theorem is
given by Theorem 4.2,

For the only if part, assume that Q is recursively redundant. By Theorem 6.3, Q
appears in a uniformly bounded augmented bridge in the a-graph of the rule with
respect to G,. Let C be the wide operator that corresponds to this augmented
bridge. Clearly, C is uniformly bounded. By Lemma 6.4, the nonrecursive predi-
cates of the augmented bridge that corresponds to C in the a-graph of A generate
others in A%, L > 1, that form a set of bridges in the a-graph of 4" with respect
to GF. It is straightforward to show that C* is the wide rule related to the
corresponding augmented bridges. Thus, by Lemma 6.5, for all L > 1, there exists
an operator B such that AL = BC*. In addition, since all instances of Q are part of
C*, @ is not a parameter of B.

We choose L > 1 as defined by Lemma 6.3, Part (b), i.e., such that all link-per-
sistent variables in A are link 1-persistent in A% and all ray variables in A are
1-ray in A*. Based on the construction in the proof of Lemma 6.5, we can partition
the distinguished variables of 4" (as well as those of B and C*) as follows:

x  vector of link 1-persistent and 1-ray variables that appear in the augmented
bridges that correspond to CL—they remain intact in C whereas they are
1-persistent in B;

xc vector of the remaining distinguished variables that appear in the aug-
mented bridges that correspond to C*—they remain intact in C* whereas
they are free 1-persistent in B;

xp vector of all other distinguished variables—they remain intact in B whereas
they are free 1-persistent in C*-.

Without loss of generality, the variables in the consequents of the two rules are
grouped so that the latter can be written in the following form:

B: Po(x,xp,%c): = P(%,25,%c) A Qp(¥',wp),
Ch: Po(x,x5,%0):= Pi(hci(%), X5, 2¢) A QX" wc)-

Predicates @, and Q. represent the nonrecursive predicates in B and C*
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respectively. Also, zg, zq, Wy, we, x', x" are vectors of variables such that

zp,wy they contain nondistinguished variables and variables from x,;

z¢,we they contain nondistinguished variables and variables from x;

"

x',x" they contain variables from x.

Forming the two composites, i.e., multiplying B and C* in both possible ways,
yields the following two rules:

BC": Py(x, %5, %c): = Pi(hci(x),25,2¢) A Qp(x",wp) AQe(x",we).
C"B: Py(x, X, Xc):—P(hei(x),25,2c) A QB(hc’—()_‘,)a&’B)
AQe(x",we).

The formation of the above rules is straightforward and we do not explain it.
Note that the two rules are isomorphic except for the first vector of arguments of
Q. which is equal to x' in BC', whereas it is equal to A..(x") in C*B. Thus, in
order to prove that CX(BC*) = C*(C"B), we only need to investigate how these
variables are affected by the multiplication with C*; all others behave equivalently
in the two products. Recall that all variables in x" are link 1-persistent or 1-ray in
C*L. For a variable x in x' that is link 1-persistent, #.(x) =x. For a variable x in
x' that is 1-ray, A .(x) =y, where y is a link 1-persistent in C*. Hence, indepen-
dent of the type of x, hoi(hoi{x)) = h(x). This implies that the first arguments of
Q; in CL(BCY) and CL(CLB) will be the same, like the remaining parts of the
rules, i.e., it implies that the two products are equal. Thus, for rules in the class
described in the statement of the theorem, the condition of Theorem 4.2 is
necessary and sufficient for recursive redundancy. a

Example 6.2. Let A be the operator corresponding to the following rule, whose
a-graph is shown in Figure 7:

P(w,x,y,z):=P(x,w,x,u) AQ(x,u) AR(x,y) AS(u,z).
The role of C is played by the following rule:
C: P(w,x,y,z):=P(x,w,x,z) AR(x,y).

Clearly, C is uniformly bounded (it has no nondistinguished variables). The
nonrecursive predicate R is recursively redundant according to Theorem 6.2 and
its augmented bridge with respect to G, is enclosed in dotted boundaries in Figure
7. Theorem 6.4 is satisfied for this example for L = 2. The rules corresponding to

FIGURE 7. a-graph of rule with recursively redundant
predicates.
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operators A%, B, and C* are
A*: P(w,x,y,z):— P(w,x,w,u’) AQ(w,u') AR(w,x) AS(u',u) AQ(x,u)
AR(x,y) AS(u,z),
B: P(w,x,y,z):—P(w,x,y,u’) NQ(w,u') AS(u',u) AQ(x,u) ANS(u,z),
C?: P(w,x,y,z):—P(w,x,w,z) AR(w,x) AR(x,y).

One can verify that 4> = BC?. The a-graphs of B and C” are shown in Figure 8.
Variables w and x are link l-persistent in both B and C?, whereas y is free
1-persistent in B and z is free 1-persistent in C?2. By Theorem 5.1, C* and B
commute, and therefore, trivially C*(BC?) = C*(C*B), i.c., Theorem 6.4 is satis-
fied. ]

Example 6.3. Let A be slightly different from the previous example, i.e., having
Q(y, u) instead of Q(x,u) in the antecedent:
P(w,x,y,z):=P(x,w,x,u) NQ(y,u) AR(x,y) AS(u,z).

The a-graph of A is shown in Figure 9. Everything proceeds as in Example 6.2,
except for the way @ behaves. The rules corresponding to operators A*, B,and C*
are

A% P(w,x,y,z)i—=P(w,x,w,u') AQ(x,u') AR(w,x) AS(u',u) ANQ(y,uj
AR(x,y) AS(u,z),

B: P(w,x,y,z):=P(w,x,y,u’) AQ(x,u’"y AS(u',u) ANQ(y,u) AS(u,z),

C?: P(w,x,y,z):—P(w,x,w,2) AR(w,x) AR(x,y).

One can verify that 4% = BC? and that BC? # C*B. Note that the latter cannot be
derived by Theorem 5.2, since repeated nonrecursive predicates appear in the
antecedents of the two rules. Instead it is derived by forming the two products.
BC? is equal to A%, which was given above. C*B is shown below:
C’B: P(w,x,y,z):=P(w,x,w,u’) AQ(x,u’) ANR(w,x) AS(u',u)
AQ(w,u) AR(x,y) AS(u,z).

B ! lod

FIGURE 8. a-graphs of commuting rules B and C?, where A°=BC? and C is recursively
redundant.
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FIGURE 9. a-graph of rule with recursively redundant
predicates.

Clearly, the two products are not equivalent, due to the presence of Q(y,u) and
O(w,u) in BC? and C?B respectively. Nevertheless, multiplying either one with C?
from the left yields the same rule, which after removing all repeated occurrences of
literals is equal to

C*(BC?) =C*(C’B):
P(w,x,y,z):—P(w,x,w,u') AR(w,x) AR(x,y) ANQ(x,u’)
AAS(u,u) ANQ(w,u) AS(u,z).
Thus, Theorem 6.4 is satisfied. 0

7. CONCLUSIONS

We have investigated the role of commutativity in query processing of linear
recursive rules. Using the algebraic structure of such rules, we have identified
commutativity as the essence of many properties that give rise to important classes
of recursive rules, i.e., separable rules and rules with recursively redundant predi-
cates. For separable rules, in particular, we have shown that commutativity is a
strictly more general notion than separability, while it still allows the efficient
separable algorithm to be applicable. Focusing on rules that contain no functions
and no constants, we have given a sufficient condition for such rules to commute.
We have also shown that the condition is necessary and sufficient when the rules
are range-restricted and contain no repeated variables in the consequent and no
repeated nonrecursive predicates in the antecedent. In that case, the condition can
be tested in polynomial time in the size of the rules.

Commutativity emerges as a key property of linear recursive rules for which
efficient algorithms can be applied. This paper is a first step in the investigation of
its power. We believe that there is much more work to be done in this direction.
Some problems we plan to study in the future are the following: characterize
commutativity in more general classes of rules than the one studied in this paper;
investigate the relationship of commutativity and one-sided recursion; investigate
the relationship of commutativity and several optimizations proposed for the magic
sets and counting algorithms (e.g., there seems to be a strong relationship between
commutativity and the semi-join optimization [6]); examine ways to take advantage
of partial commutativity, i.c., when the transitive closure of a product of operators
is to be computed, only a subset of which are mutually commutative; and examine
ways to take advantage of commutativity appearing in some higher power of an
operator, as in the case of recursive redundancy.
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