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COMMUTATIVITY AND ITS ROLE 
IN THE PROCESSING OF LINEAR RECURSION* 

YANNIS E. IOANNIDIS+ 

D We investigate the role of commutativity in query processing of linear 
recursion. We give a sufficient condition for two linear, function-free, and 
constant-free rules to commute. The condition depends on the form of the 
rules themselves. For a restricted class of rules, we show that the condition 
is necessary and sufficient and can be tested in polynomial time in the size 
of the rules. Using the algebraic structure of such rules, we study the 
relationship of commutativity with several other properties of linear recur- 
sive rules and show that it is closely related to the important special classes 
of separable recursion and recursion with recursively redundant predi- 
cates. a 

1. INTRODUCTION 

Several general algorithms have been proposed for the processing of recursive 
programs in data base management systems (DBMSs). Recursive query processing 
is recognized as an expensive operation, and all the proposed algorithms incur 
some significant cost. Thus, it is important to identify special cases of recursion on 
which specialized and more efficient algorithms are applicable. Such special cases 
of recursion include bounded recursion (uniform or not), transitive closure, separa- 
ble recursion, and one-sided recursion. In this paper, we elaborate on another 
special case of recursion, where participating operators (or rules) commute with 
each other. When this happens,’ recursive queries can be decomposed into smaller 
queries, which are expected to have a lower total execution cost than the original 

query. 
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Commutativity has already been identified as a significant special case of 
recursion [13]. Its effect on general algorithms for several types of recursive queries 
have been studied, as well as how it can be used in conjunction with constants to 
reduce the amount of data at which the system has to look to answer a query with 
selections. This earlier work on commutativity was done within the algebraic 
framework of linear recursive operators (rules) [131. In this paper, we use the logic 
representation of rules to derive syntactic conditions for two linear, function-free, 
and constant-free recursive rules to commute with each other. These conditions 
are based on the form of the rules themselves and make no direct use of the 
definition of commutativity, which requires composing the two rules in both ways 
and examining the two composites for equivalence. For a class of rules for which 
the conditions are necessary and sufficient, they can be tested in time that is a 
polynomial in the size of the rules. We also use the algebraic formulation of 
recursion to compare commutativity with other special classes of recursion, in 
particular separable recursion and recursion with recursively redundant predicates, 
and discuss the effects of commutativity on the algorithms proposed for them. 

The paper is organized as follows. Section 1 is an introduction. Section 2 is a 
summary of the algebraic model for linear recursion, which has been introduced 
elsewhere [13]. In Section 3, we define commutativity in the algebraic model, show 
its impact on the efficiency of processing recursive rules, and discuss some previous 
work. In Section 4, we compare the notion of commutativity with separability and 
recursive redundancy. In Section 5, we use the logic representation of rules and 
present sufficient conditions for commutativity, which for a restricted class of rules 
are necessary and sufficient. In Section 6, separability and recursive redundancy 
are reexamined for the restricted class of rules studied in Section 5. Finally, Section 
7 contains our conclusions and some directions for future work. 

2. ALGEBRAIC MODEL 

In this section, we provide a summary of the algebraic model for linear recursion 
[13]. We use the terms relation and predicate indistinguishably. Consider the 
following pair of one linear recursive and one nonrecursive rule: 

qx (A+‘)):- P(p) A Q,(p) A ... A Q,(p), 

p(x (k+y:_Q(,(~+u), 

(2.1) 

(2.4 

where for each i, x(‘) 1s a vector of variables. No restriction is imposed on the form 
of the rule or on the finiteness of the relations corresponding to the various 
predicate symbols in the rule. Thus, for example, rules that contain functions can 
be expressed in the above form. Each one of P(x’“‘), Q(_$k”‘), and the Q,<x”‘)‘s 
is a (positiue) literal. Without loss of generality, we assume a typeless system, so 
that the schema of a relation is defined as the number of its argument positions. 

Operationally, (2.1) can be represented by a function f< P, {Q,}> that has {Q,) as 
parameters and accepts as input and produces as output relations of the same 
schema as P: f(P,{Qi}> c P. The function f can be thought of as a linear relational 
operator applied to the recursive relation P to produce another relation of the 
same schema. Let R be the set of all such operators. We can establish an algebraic 
framework in which we can define operations on relational operators as follows. 
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Multiplication of operators is defined by (A*B)P = A( BP) and addition by (A + 
B)P =AP U BP.’ For notational convenience we omit the operator *. Also, be- 
cause + and * are associative, we often omit the parentheses around them, 
assuming right associativity. The multiplicative identity (1P = P> and the additive 
identity (OP = 0, where 0 is the empty set) are defined in obvious ways. The nth 
power of an operator A is inductively defined as: A” = 1, A” = A*A”- ’ = A” ‘*A. 
Equality of operators in R is defined as A = B ti VP, AP = BP. Finally, a partial 
order I is defined on R as A I B m VP, AP c BP. The set R with the above 

defined operations forms a closed semi-ring [13]. 
The above embedding of the linear relational operators in a closed semi-ring 

allows the rewriting of the set of Horn clauses (2.1) and (2.2) (assuming that A is 
the operator that corresponds to (2.1)) as 

APcP, 

QcP. 

The minimal solution of the system is the minimal solution of the equation 

P=APuQ. (2.3) 

The solution is a function of Q. Hence, P can be written as P = BQ, and the 
problem becomes one of finding the operator B. Manipulation of (2.3) results in 
the elimination of Q, so that the equation contains operators only. In this pure 
operator form, the recursion problem can be restated as follows. Given operator A, 
find B satisfying the following: 

(a) l+AB=B, (2.4) 
(bl B is minimal with respect to (a), i.e., for all C, 1 + AC = C *B I C. 

Theorem 2.1. [13] The solution of equation (2.4a) with restriction (2.4b) is A* = 

C;=,, Ak. 

The operator A* is called the transitille closure of A. In the data base context, 
theorems similar to Theorem 2.1 were first derived by Aho and Ullman [4]. The 
unique characteristic of Theorem 2.1 as described above is that the solution of (2.4) 
is expressed in an explicit algebraic form within an algebraic structure like the 
closed senii-ring of linear relational operators. The implications of the manipula- 
tive power thus afforded on the implementation of A* are significant [ll-131. In 
this paper, we concentrate on the implications of commutativity of operators in the 
implementation of A*. 

Note that, although an operator A may be derived from a recursive rule, the 
operator itself is nonrecursive, i.e., it corresponds to a conjunctive query [g]. Also 
note that A” represents an operator. The query answer is the result of applying A* 
to a given relation Q. This is only an abstraction, however, that allows us to study 
recursion within the closed semi-ring of relational operators. It poses no restriction 

’ The above definitions are valid only if the operators involved arc appropriately compatible, e.g., for 
+, the operators have to agree on the schema of their input and the schema of their output. Although 
in the rest of the paper we only deal with appropriately compatible operators, the general algebraic 
theory incorporates all operators [13]. 
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whatsoever in the processing order of the query, i.e., it does not enforce that A* is 
computed first and then it is applied to Q. For example, assume that A* can be 
decomposed into B* and C*, i.e., A* = B*C*, so that the final computation is 
B*C*Q. The computation may proceed by first computing C*, then applying it to 
Q, and then using semi-naive [51 with B as the basic operator and (C*Q> as the 
initial relation. The significance of the algebraic formulation lies in the abstraction 
that it offers, within which the capability of the decomposition A* = B*C* can be 
exhibited. 

3. COMMUTATMTY 

3.1. Definitions and Motivation 

We say that two operators B and C commute if BC = CB. Consider computing A*, 
the transitive closure of A, where A = B + C. It has been shown that if CB I BkC’, 
for some k, 1 with k E (0,l) or I E {O,l), then A* = B*C* [131. Commutativity is a 
special case of this condition. The computation of A* is decomposed into two 
smaller computations, those of B* and C* (plus an additional multiplication of 
them). The complexity of B and C is smaller than that of A. In general, this is 
expected to affect the total cost of the computation significantly. To see this 
observe that the following always holds: 

(B+C)*=B*C*+(B+C)*CB(B+C)*. (3.1) 

This formula expresses the fact that the terms of the series that corresponds to 
(B + C>* can be partitioned into those that do not have CB in them and those that 
do. In general, all such terms need to be computed. If the condition that was 
mentioned at the beginning of this section holds, however, then the second set of 
terms does not need to be computed, because it is known that it can only produce 
duplicates. Unfortunately, this is not enough to prove that computing B*C* is 
more efficient than computing (B + C>*. In an actual implementation, several 
parameters affect performance, and their complex interactions can rarely be 
studied analytically, e.g., main memory size, buffer replacement strategies, and 
availability of indices. For example, the computation of B*C* is likely to be 
cheaper than that of (B + C)* because main memory can be used more efficiently 
when computing the transitive closure of smaller operators (recall that B 5 B + C 
and C 5 B + C), but this is hard to quantify. 

One aspect of performance that is tractable is the number of duplicate tuples 
produced by an algorithm. Quite often, especially in recursive computations, 
duplicate production and elimination has been shown to dominate the cost of an 
algorithm [ll. Comparing the computations of B*C* and (B + C)* with respect to 
duplicates, we derive the superiority of B*C* by the following general result. 

Theorem 3.1. Let {A,), (B,), {C,) be sets of linear operators such that euey operator in 
{A;) and {BJ is a product of operators in {CJ, and if (C, *** Ck_ ,C,) E {A;) (or 

IB,)) then (C, 1.. C,_ ,> E (A,) (or (B,)) as well. Consider two linear operators A 
and B, where A = B, A = Cj A;, and B = Cj Bi. Let Q be an arbitrary relation and 
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T be equal to T = AQ = BQ. If [A,} G {B,}, then the evaluation of T based on A 
produces no more duplicates than its evaluation based on B. 

PROOF. Let the derivation graph of a computation of T be a labeled directed graph 
G = (V, E, L: E + (C,)), where the set of nodes L’, the set of arcs E, and the label 
function L from E to the set of operators (C,) are defined as follows: 

I/= T, i.e., the nodes of G are the tuples in T, 

E = ((t, + t,)lt, is produced by applying one operator from (C,) on t,), 

L((t, + t,)) = C, where C E (C,) and t, is produced by applying C on t,. 

Since there is a 1 to 1 correspondence between nodes and tuples, we use the two 
terms indistinguishably. We assume a model of computation that starts at the 
tuples in Q and traverses the graph until all nodes are visited at least once. We also 
assume that the same tuple is not derived through the same arc more than once.2 
Such a computation can be achieved, for example, by employing the semi-naive 
evaluation [5]. 

A path in the graph from a tuple s in Q to a tuple t represents a derivation of t 
starting from s. The concatenation of the labels of the arcs along the path 
represent a product of the corresponding operators in (Ci) that is equal to one of 
the operators in (A,) or (Bj). No derived tuple has zero in-degree, i.e., every 
derived tuple is always connected to some tuple in Q. Each tuple is derived as 
many times as there are arcs entering it. Thus, the number of tuple derivations 
during a computation, which is the sum of the number of tuples in T plus the 
number of duplicates produced, is equal to the sum of the in-degrees of the nodes 
in the graph that corresponds to the computation, i.e., it is equal to IEl. If 
(A ;) 2 (B,), the graph corresponding to A has the same set of nodes but is possibly 
missing some of the arcs of the graph corresponding to B. In that case, some nodes 
have lower in-degree in the graph of A than in the graph of B, which implies that 
computing T based on A will produce less duplicates than computing it based on 
B. [? 

We would like to elaborate on the result of Theorem 3.1 briefly. Consider the 
derivation graph for the computation of T based on B. If that computation is 
duplicate-free, then all nodes have in-degree equal to 1, and no improvement can 
be made. Only arcs that lead into nodes with in-degrees that are higher than 1 can 
be removed from the graph of B to construct the graph of A. In that case, i.e., 
when the terms in (B;) - (A,) do produce tuples when applied to Q, the computa- 
tion based on A is more efficient than the computation based on B. 

Theorem 3.1 shows that it is important to be able to identify when two operators 
commute, since commutativity allows decompositions of the form (B + C)* = B*C*. 
It is applicable in this case with B*C*, (B + C>*, and (B, C) playing the roles of A, 
B, and (C,) respectively in its statement. Therefore, in several cases, using B*C* 
instead of (B + C>* decreases the number of produced duplicates. In Section 5, we 
present a sufficient condition for commutativity, which for rules of some restricted 
form is shown to be necessary and sufficient. 

’ We do not take into account any computation Steps that fail to produce a tuple. Such computation 
steps are not represented in the graph and their cost is not captured. 
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3.2. Preuious Work 

Commutativity or properties related to it have been rarely addressed in the past. 
The earliest result that we are aware of that is related to commutativity is by 
Lassez and Maher [14]. Their interest in commutativity was mostly with respect to 
certain decompositions that can be achieved when computing the transitive closure 
of the sum of multiple operators. They obtained two main results that are related 
to commutativity. In algebraic form, they are expressed as follows: 

B*C*=C*B*=B*+C*-(B+C)*=B*+C*, 

BC=CB=B+C=,(B+C)*=B*+C” 

The above results are easily generalized for an arbitrary number of operators. 
A syntactic sufficient condition for commutativity has been presented by Ra- 

makrishnan, Sagiv, Ullman, and Vardi [19]. Their condition is less general than the 
one presented in Section 5 and, therefore, fails to be necessary and sufficient for 
the class that ours is. It is always tested in polynomial time, however. Deriving this 
sufficient condition was part of a study of proof-tree transformations. (Commutativ- 
ity can be seen as a proof-tree transformation if operators are represented as proof 
trees). Among other results, that study led to an independent discovery of the 
above mentioned fact that if CB 5 B”C’, for some k, 1 with k E (0, 1) or 1 E (0, l}, 
then (B + C>* = B*C*. 

Finally, Dong has examined several possible decompositions of the transitive 
closure of the sum of multiple operators [9]. The only result that involves commu- 
tativity in a significant way can be expressed as follows in algebraic form: 

B*C* = C*B” .++ (B+C)* =B*C*=C”B*. 

4. COMMUTATMTY VS. SEPARABILITY AND RECURSLYE REDUNDANCY 

4.1. Commutatihity LX Separability 

The separable algorithm has been introduced by Naughton as an efficient process- 
ing method for some special class of linear recursive rules [151. For the sake of 
simplicity, it is presented below in its specialized form for two operators A, and 
A,. Extensions of it to an arbitrary number of operators are straightforward. 
Consider an initial relation q and a selection (T on arguments of either the 
parameter relations of A, or its input. The separable algorithm corresponds to the 
algebraic formula AT (aA:)q and is given below in pseudo-code form. The 
variables B and C contain operators, whereas the variables R and S contain 
relations. Multiplication of operators is shown explicitly for readability. 

Algotithm 4.1. The separable algorithm: 

B:= a; 
c:= u; 
repeat 

B:= B*A,; 
C:= B + C: 
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until C does not change 
R:= Cq; 
S:= R; 
repeat 

R:=A,R; 
S:= S u R; 

until S does not change. 

The first loop actually involves manipulating relations that are parameters of the 
various operators. Moreover, in every application of an operator inside each loop, 
only the new tuples produced in the previous iteration are used. The following 
theorem shows that the efficient separable algorithm is applicable to the class of 
commutative recursions. 

Theorem 4.1. Given two operators A, and A, that commute and a selection cr that 
commutes with one of them, the equality a(A, + AZ)* = AT(aA;) holds, i.e., the 
separable algorithm can be used for the computation of a( A, + A,)*. 

PROOF. Let A, A, = A, A,. The transitive closure of the sum of A, and A, is 
given by (A, + Al)* = ATAT [131. Given a query with a selection u that commutes 
with A,, an easy induction on the power of A, yields the result: 

a(A, +A?)* =AT(aA;). q 

The significance of the above theorem can be realized only in conjunction with 
additional results that are presented in Section 6. Essentially, its importance lies in 
the fact that it widens the class of recursive rules on which the separable algorithm 
is applicable. 

We should also note that, although Theorem 4.1 deals with two operators, the 
result can be generalized. Given a set of operators {A,}, 1 I i I n, that are mutually 
commutative and a set of selections {vi}, 0 5 i 5 n, such that a, commutes with all 
operators except Ai, the following holds: 

u0 VI c2 ... a,( A, +A? + ... +A,)*=(~,A~)(~,A;)~..(~,A;)(T~,. 

Usually, most of the selections are not present. In the presence of multiple 
selections, it is an interesting optimization problem to choose the order in which 
the various operators will be computed and the time when an operator will be 
applied to the input relation. 

4.2. Commutativity vs. Recut-sine Redundancy 

The class of recursions that contain recursively redundant predicates has also been 
introduced by Naughton 1161. Consider an operator A that is equal to the product 
BCD, i.e., A = BCD. In general, every term in the series A* = Cz=, Ak is an 
arbitrary product involving B, C, and D. Operator C is recursively redundant in A* 
if there is some N such that each term in the series of A* is equal to a product 
containing C less than N times. The nonrecursive predicates appearing in C as 
parameters are also called recursively redundant. Before stating the main result of 
this subsection we need the following definitions. An operator B is uniformly 
bounded, if there exist K and N, K < N, such that BN I BK. An operator B is 
torsion, if there exist K and N, K < N, such that BN = B’. Clearly, every torsion is 
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uniformly bounded, but the opposite is not true in general. The effect of the 
presence of recursively redundant operators on the query processing algorithm of 
an operator is given by the following result, which is actually a generalization of an 
earlier result on the subject [13]. (Without loss of generality, we assume that all 
operators have the same domain and range, so that the product of any pair of them 
is well defined.) 

Theorem 4.2. Let Q be a parameter relation of some operator A. If there exist L 2 1 
and operators B and C such that Q is a parameter of C but not of B, C is torsion, 

AL = BCL, and C”( BCL) = CL(CLB), (4.1) 

then Q is recursicely redundant in A*. 

PROOF. Consider a relation Q that satisfies the premises of the theorem. Let K > 0 
and N > 0, K < N, be the smallest numbers such that CN = CK. The above equality 
implies that CKL = CNL* h o Id s as well. It takes an easy induction to show that 

c mL _ -C(m+i(NmK))L,forall K<m<Nandall i>O. (4.2) 

The main result follows from the derivation below: 

KL- I 

A*= CA”+ FA” 
m = 0 m=KL 

=~~~:Am+(~~An)(~KA~L) 

KL-I L-l 

= c A”+ c A” c (BCL)” 
m=O ( ii n=O m=K 

[From the first equality of (4.1)] 

[From the second equality of (4.1)] 

[From (4.2)] 

KL- 1 L-l 

= c A” + c A” 
m=O i 1i n=O 

= r$jolA- + (IcIAn) ( I::A~~) ( ifo~i(NPK)) 

[From the first equality of (4.1)] 
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Note that CzVL _ ’ is the highest power of C used in any term of A*: since Q is not 
a parameter of B, the latter cannot contain C as a factor either. Thus, C is 
recursively redundant, and so is Q as one of its parameter relations. Clearly, the 
above formula corresponds to a more efficient algorithm than processing A as a 
whole, since C is processed only for a fixed finite number of times, i.e., NL - 1, 
beyond which only B is processed. q 

5. CHARACTERIZATION OF COMMUTATMTY 

We now turn our attention to commutativity as expressed in a logic framework. We 
restrict ourselves to linear, function-free, and constant-free recursive rules. If a 
variable appears in the consequent of a rule, it is called distinguished, otherwise it 
is called nondistinguished. We assume that the rules have the same consequent and 
share no nondistinguished variables. Moreover, repeated variables in the conse- 
quent are replaced by distinct ones, while adding the appropriate equality predi- 
cates in the antecedent. Finally, although the original task is to compute the 
transitive closure of two recursive rules with the same consequent, we are inter- 
ested in the commutativity of the underlying nonrecursive rules, i.e., conjunctive 
queries. Given a linear recursive rule whose recursive predicate is P, its underlying 
nonrecursive one is constructed by replacing the instance of P in its consequent by 
PO (output), and its instance of P in its antecedent by P, (input). However, we are 
still referring to these two predicates as instances of the recursive predicate. 

Given two nonrecursive rules r and s, a homomorphism f: r + s is a mapping 
from the variables of r into those of s, such that (i) if x is a distinguished variable 
then f(x) =x, and (ii) if Q(x,, . . . , x,,) appears in the antecedent of r, then 

Q(f(x,>,. ., f(x,,)) appears in the antecedent of s. Homomorphisms are directly 
related to the partial order of rules defined in Section 2 (for the corresponding 
operators). In particular, s is contained in r (i.e., given any relations for the 
predicates in the antecedents of r and s, the output relation produced by s for the 
predicate in its consequent is a subset of the one produced by r), denoted by s _< r, 
iff there exists a homomorphism f from r to s [3, 81. Also, s is equi~wlent to r, 
denoted by s = r, iff s I r and r IS. 

Given two rules r, and r?, the composite of r, with r2, denoted by r,rz is 
defined as the result of resolving the consequent of rz with the literal of the 
recursive predicate in the antecedent of r,.3 We say that two rules r, and rz with 
the same consequent commute, if composing r, with r2 and composing r2 with r, 
yield equivalent rules. This, in turn, is equivalent to the existence of homomor- 
phisms from each composite to the other. Clearly, the definition of commutativity 
suggests a straightforward algorithm to test it for two rules r, and r2: form the two 
composites r,r2 and r?r, and test their equivalence. Unfortunately, a polynomial 
time implementation of this algorithm is unlikely to exist, since equivalence of 
conjunctive queries is known to be an NP-complete problem [3, 81. 

5.1. A Sufficient Condition 

In this section, we give a sufficient condition for commutativity that avoids 
producing the two composites. The condition can be tested in exponential time, 

‘Analogously, the composite of a rule r with itself n times is denoted by r”. 
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because it potentially involves testing for equivalence of conjunctive queries. The 
test, however, is still more efficient than the one based on the definition of 
commutativity, because its exponential part is only occasionally applied on parts of 
the original rules as opposed to always being applied on the composites of the two 
rules. 

For a rule r, we define the function h from the set of distinguished variables in r 
to the set of all variables in r. For a distinguished variable X, h(x) is the variable 
that appears in the recursive predicate in the antecedent in the same position as x 
appears in the consequent. Since distinguished variables are assumed to appear 
exactly once in the consequents of rules (with the potential of repeated variables 
being realized by equalities in the antecedent), h is a function. We may also define 
powers of h as 

h’(x) =h(x), and h”(x) =h(h”-l(x)) if h”-‘(x) isdistinguished. 

For two rules r, and r2, the corresponding h functions are denoted by h, and h, 
respectively. We also define two more functions, g,, on the variables of r2 and g,, 
on the variables of r,. Since the two rules are assumed to share no nondistin- 
guished variable, the former is defined as 

z is nondistinguished 

z is distinguished, 

and the latter is defined similarly. By definition, when r,r2 is formed, a variable z 
in a predicate of r2 is always replaced by ,glJz). 

As a notation vehicle for the theorems to follow, we use a version of the 
a-graph of a rule (also called a-graph), which was introduced for the study of 
uniform boundedness [lo]. The a-graph of a rule is defined as follows: 

(i) There is a node in the graph for every variable in the rule. 
(ii) If two variables X, y appear in two consecutive argument positions of some 

nonrecursive predicate Q in the rule, a static directed arc(x +y> is put in 
the graph between the corresponding two nodes x, y. Also, if x appears in a 
unary nonrecursive predicate Q in the rule, a static directed arc(x +x) is 
put in the graph. In both cases, the label of the edge is Q. (Static arcs are 
shown as thin lines in all forthcoming figures.) 

(iii) If two variables x, y appear in the same position of the recursive relation P 
in the antecedent and the consequent respectively, then a dynamic directed 
arc(x -y> is put in the graph from node x to node y. (Dynamic arcs are 
shown as thick lines in all forthcoming figures.) 

Several characteristics of the underlying undirected graph of the a-graph of a rule 
are important, e.g., connected components. In the sequel, although these character- 
istics are defined for undirected graphs, we use them for directed ones as well, with 
the understanding that we always refer to the corresponding underlying undirected 
graphs. 

It is also important to partition the distinguished variables of a rule in the 
following categories (in the sequel, due to part (i> of the definition of the a-graph 
of a rule, we use the terms variable and node indistinguishably). Consider a set of 
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variables {x,), 0 pi I n - 1, n 2 1, such that x, appears in the same argument 
position of the recursive predicate in the antecedent as xc,+ ,Jmodn appears in the 
recursive predicate in the consequent (i.e., the positions of the variables in the 
antecedent is a permutation of their positions in the consequent). Any such 
variable is called persistent and in particular n-persistent (n is the cardinal@ of the 
set). More specifically, if no variable from the set appears anywhere else in the 
rule, every variable in the set is called free n-persistent. Otherwise, every variable in 
the set is called link n-persistent. All other variables are called general. Note that 
free n-persistent variables, n 2 1, are the only variables in their connected compo- 
nent in the a-graph, connected only via dynamic arcs of the form (x, +x(,+ ,Jmod,,). 

Finally, we need to define some interesting subgraphs of the a-graph of a rule 
[7]. Consider an undirected graph G, a subset E’ of its edges, and let G’ be the 
subgraph of G induced by E’. Let I” be the node set of G’. Define a relation - 
on the edges of G -E’ by the condition that, for two edges e, and e2, e, -e,, if 
e, = e, or there is a walk in G that contains e, and e, but contains no node from 
I/’ as an internal node (although the walk may start or end at nodes in I”). It is 
easy to verify that - is an equivalence relation on the edges of G. The subgraph 
of G induced by the edges of an equivalence class under the relation - is called a 
bridge of G with respect to G’. A bridge together with the part of G’ that is 
connected to the bridge forms an augmented bridge. In the sequel, unless otherwise 
noted, whenever we refer to bridges in the a-graph of a rule, we mean its bridges 
with respect to its subgraph induced by the dynamic arcs connecting each link 
l-persistent variable in the graph to itself. This is because they play a very 
important role in the study of commutativity and we refer to them continuously. 

Let G’ be a subgraph of the a-graph of a rule r and I” be its node set such 
that, for any distinguished variable x,x E V’ d h(x) E V’. Then, any augmented 
bridge with respect to G’ is an a-graph itself and corresponds to specific parts of 
the original rule. Thus, there is a unique narrow rule r,, that corresponds to such 
an augmented bridge. Its nonrecursive predicates in the antecedent are the ones of 
r that correspond to the static arcs of the augmented bridge. Its instances of the 
recursive predicate in the consequent and the antecedent are formed from the 
ones of r by projecting on the argument positions that contain in the consequent 
distinguished variables that appear in the augmented bridge. In addition, there is 
another unique wide rule rM, that corresponds to such an augmented bridge. Its 
only difference from r, is that its recursive predicate has the same arity as in r, 
with the additional distinguished variables being free l-persistent. Clearly, both 
rules constructed as above are unique, since they depend on a specific augmented 
bridge of the a-graph of a specific rule. Moreover, the a-graph of the narrow rule 
is the augmented bridge from which it was constructed. Thus, containment and 
equivalence of augmented bridges can be defined appropriately as containment and 
equivalence of the corresponding narrow rules. 

Example 5.1. Figure 1 is the a-graph of the rule: 

Variable z is free l-persistent, variables w and y are link l-persistent, variables u 
and u are free 2-persistent, and variable x’is general. 
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FIGURE 1. Example of an a-graph. 

For another example, see Figure 2, the a-graph of the rule 

P(u,w,x,Y,z):-P(u,u,u,y,y) AQ(u>u>y) AR(W) AS(x) A T(z). 

Variables u and y are link l-persistent. The augmented bridges of G with respect 
to the graph induced by the arcs (u+ u) and (y +y> have been enclosed in dotted 
boundaries. Their corresponding narrow rules are 

P(u,w):-P(u,u) AR(W), 

P(u,x,y):-P(u,u,y) AQ(u,u,y) AS(x), 

P(y,z):-P(Y,Y) AT(Z)> 

whereas their corresponding wide rules are 

P(~,w,x,Y,z):-~(~,~,~,Y,~) AR(W), 

~(~,w,~,Y,z):-~( U,W,U,Y,Z) ~Q(u>u>y) AS(X)> 

P(u,w,x,y,z):-~(~,~,~,y,y) AT(Z). 0 

The following theorem gives a sufficient condition for commutativity of rules of 
the form specified in the beginning of Section 5. Another, less general, sufficient 
condition for commutativity has been independently discovered and reported 

elsewhere [191. 

Theorem 5.1. Two rules r, and r2 with the same consequent commute if every 

distinguished cariable x satisfies one of the following: 

(a) x is free l-persistent in r, or r2; 
(b) x is link l-persistent in both r, and rr; 
(c) x is free m,-persistent, m, > 1, in r, and free m,-persistent, m2 > 1, in r2 and 

h,(h,(xN = h&h,(x)); 
(d) x is link m-persistent, m > 1, or general, and belongs to equicalent augmented 

bridges in both r, and r2. 
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FIGURE 2. Augmented 
in an a-graph. 
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PROOF. In the proof, we use the fact that commutativity of r, and r2 is defined as 

the equivalence of r,rz and rzr,, which in turn, is equivalent to the existence of 

homomorphisms from each composite to the other. Recall that we assume that the 

two rules have the same consequents and share no nondistinguished variables. 

Given that (a), (b), (cl, and (d) hold for r, and r2, we can partition their 

distinguished variables into the following vectors: 

pi vector of the free l-persistent variables in ri, i = 1,2; _ 

s vector of the common link l-persistent variables in r, and r2; 

_c vector of the common free persistent variables in the consequent of r, and 

r? that are free m,-persistent, m, > 1, in r,, i = 1,2; 

e _ vector of the link m-persistent, m > 1, and general variables that belong to 

equivalent augmented bridges in r, and rz. 

Without loss of generality, the variables in the consequents of the two rules are 

grouped so that they can be written in the following form: 

rI: P,(~,,_p,,s,c,e):-P,(17,,2,,~,h,(_c),_v,) us ~Qdw,>: - 

~2: P,(_p,,_p,,s,_c,_e):-P,(22,_~2,~,h2(~),~2) AS(u2) AQ,(_w,>. 

We have assumed that every rule seen as a conjunctive query is in its unique 
minimal form [8, 181. This has the implication that the augmented bridges that are 
equivalent in the two rules are isomorphic (i.e., they are the same up to reordering 
of their nonrecursive predicates and renaming of their nondistinguished variables), 
so that their nonrecursive predicates can be represented by a common S. Q,, Q2 
represent the remaining nonrecursive predicates, i.e., those of bridges whose 
general and link m-persistent variables, m > 1, in one rule are free l-persistent in 
the other. Finally, g,, g2, _u,,_u 2, _w,, _w2 are vectors of variables. In particular, 

11 it contains nondistinguished variables and variables from _p2; 

z2 it contains nondistinguished variables and variables from _p,; 

Wl it contains nondistinguished variables and variables from p2 and 5; _ 

!?!2 it contains nondistinguished variables and variables from _p, and 5; 

_vI~_uZ they contain nondistinguished variables and variables from _e and 5; 

!!I>&!, they contain nondistinguished variables and variables from e and s. 

Forming the two composites yields two equivalent rules: 

r1r2: P,(p,,p,,s7c,_e):-P,(Iz,z,,_s,h,(h,(_c)),g,,(v,)) - - 

AS(u,) *S(g,,(u,)) AQ,(_w,> ~Q,(_w,l, 

r2r1: P,(_p,,_p,,s,c,_e):-P,(z,,~,,_s,h,(h,(c)),g,,(_v,)) 

As(g2,(4) US AQI(cvI> ~Q,(_w2>. 
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We only explain the formation of rlr2, since r?r, is formed similarly. S(g, > 
remains as is from r,. The variables of L_L, in S change according to g,,(~~) to 

produce S(g,,&)). Q&E,> remains as is from r,. The nondistinguished variables 
of z2 remain the same. (Since the two rules have distinct nondistinguished variable 
names there is no need for renaming.) The distinguished variables in _w_ 7 are all 
members of p1 and s. Since all of them are l-persistent in r,, they remain the 
same in the composition. Hence, all the variables in wz remain the same, and this 
produces Q,(E,>. The variables in P, from r2 are formed as follows. The variables 
in z2 are either nondistinguished or they are free l-persistent in r,, i.e., they 
belong to p,, so they remain the same. The variables in _p2 are free l-persistent in 
r2, hence They are replaced by h,(p,), i.e., by the corresponding variables in the 
antecedent of r,, which are the varkbles in I,. The variables in 3 are l-persistent, 
so they remain the same. The variables in h2(c) are permuted according to h, to 
give h,(h,(c)). Finally, the variables in _uz are replaced by g,&). 

Examining the two composites we observe the following. First, the parts of them 
that come from augmented bridges that are equivalent in the two rules are 
isomorphic. This is because when s, = s2 = s, then s,sz = szs, = s2. More precisely, 
there is an isomorphism between the variables of g,, ~,,(LL,), and g,,(_v,) and 
those of g2, g2,(g,), and g,,(g,) respectively. A straightforward renaming of their 
nondistinguished variables will make the two parts equal. Moreover, none of these 
variables appears anywhere else in the rules, since they belong to distinct bridges in 
the a-graph. Thus, this renaming does not affect the remaining parts of the rules. 
Second, by part (c) of the statement of the theorem, the equality h,(h,(c)) = 
h,(h,(c)) holds. Third, the remaining parts of the two composites are the same. 
Hence, the two composites are isomorphic, i.e., equivalent. Therefore, the two 

original rules commute. 0 

Exumple 5.2. The canonical set of commuting rules involves the two linear forms of 
transitive closure: 

Both composites are equal to the rule below: 

The a-graphs of the two rules are shown in Figure 3. Every distinguished variable 
is free l-persistent in one of the two original rules, i.e., it satisfies condition (a) of 
Theorem 5.1. As a side comment, note that the product of the two original rules is 
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the recursive rule of the “same-generation” program. Some implications of this 
fact have been examined elsewhere [13]. 0 

Example 5.3. The following is a more complex pair of rules that also commute with 

each other: 

P~(~,.Y,~):-~,(u,Y,z) *Q(x,Y)> 

PO(X,y,z):-~,(x,Y,~) AR(Z,Y). 

Both composites are equal to the rule below: 

P,(x,Y,z):-p,(u>y,u) ~Q(x,y) AR(z,y). 

The a-graphs of the two rules are shown in Figure 4. Note that the condition of 
Theorem 5.1 is satisfied by the corresponding a-graphs. 0 

Unfortunately, as the following counterexample shows, the condition of Theo- 
rem 5.1 is not necessary for commutativity. 

Example 5.4. The following two rules also commute with each other: 

P~(x>Y):-~,(Y,w) A Q(x) 

po(x,~):-p,(u>u) AQ(x) AQ(Y> 

Both composites are isomorphic to the rule below: 

p,(x,~):-p,(u,nl AQ(Y> ~Q(wl AQ(xl. 

The a-graphs of the two rules are shown in Figure 5. Note that, in this case, the 
condition of Theorem 5.1 is not satisfied. 0 

5.2, A Necessary and Sufkient Condition 

We are not aware of any necessary and sufficient condition for commutativity of 
rules of unrestricted form that is computationally or aesthetically better than the 
condition of the definition of commutativity. In this section, we show that the 
condition of Theorem 5.1 is necessary and sufficient for commutativity if we restrict 
our attention to range-restricted rules, i.e., every variable in the consequent appears 
at least once in the antecedent as well, with no repeated variables in the consequent 
and no repeated nonrecursive predicates in the antecedant. The second restriction is 
enforced after all equalities have been eliminated from the antecedent. Before 
proceeding with the proof of the theorem, we need the following lemmas. 

io Q 
X Y 

rl 

FIGURE 4. a-graphs of commuting rules satisfying the condition of Theorem 5.1 
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rules not satisfying the condition of 
LQ LQ z:r ::,%raphs of commuting 

Lemma 5.1. Consider two rules, r, and r2, with no repeated variables in the conse- 
quent that commute with each other. Let x be a distinguished uariable, with 
h,(x) =x’ and h,(x) = xl’, such that both x’ and xl’ are distinguished. Then, one of 
the following holds: 

(a) both h,(x”) and h,(x’) are distinguishedand h,(x”) = h?(x’), i.e., h,(h,(x)) = 

h,(h,(x)), or 
(b) both h,(x”) and h,(x’) are nondistinguished. 

PROOF. Assume that the two rules have the following form: 

r,: Po(x;..):-P~(x’,) A ..., 

r?: Po(x;..):-P,(X”;..) A .... 

The two composites are 

rzr,: Po(x;..):-P,(g2,(x’);..) A .... 

Since x’ and x” are distinguished, by definition, glz(x”> = h,(x”) and g2,(x’) = 
hZ(x’). If h,(x”) is distinguished, due to the homomorphisms that have to exist 
between the two composites, it must be h,(x”) = h?(x)), which also implies that 
h,(x’) is distinguished. On the other hand, if h,(x”) is nondistinguished, due to the 
homomorphisms between the two composites, h?(x)) must be nondistinguished 
also. q 

Lemma 5.2. Consider two rules, r, and r2, with no repeated r)an’ables in the conse- 
quent and no repeated nonrecursiae predicates in the antecedent, that commute with 
each other. Let {x,}, 0 I k I n + 1, be a set of distinguished uariables such that 

h,(xk) =xk+ ,, i.e., h:+‘(x,,) =xk+,, for 0 I k I n, and x,, appears in a nonrecur- 

sive predicate Q. Then, one of the following holds: 

(a) h,(x,) =xk, O<k<n+l,or 

(b) h,(x,) =xk+,, i.e., h’;+‘(x,,) ‘xk+ ,, for 0 I k in, and x0 appears in a 
nonrecursive predicate Q in rz 

PROOF. Let h,(x,) =y,, 0 I k < n + 1. The relevant parts of r, and r2 are given 
below. We include a nonrecursive predicate Q in r2, but we examine both cases, 
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following: 

(a) x is free l-persistent in r, or r,; 
(b) x is link l-persistent in both r, and r,; 
(c) x is free m,-persistent, m, > 1, in rl andfree m,-persistent, m2 > 1, in r2 and 

h,(h,(x)) = h,(h,(x)); 
(d) x is link m-persistent, m > 1, or general, and belongs to equivalent augmented 

bridges in both r, and r2. 

PROOF. Recall that we assume that the two rules have the same consequents and 
share no nondistinguished variables. The “if” direction of the theorem follows 
from Theorem 5.1. 

For the other direction of the theorem, assume that r, and r2 commute. We 
show that for a distinguished variable x of r,, one of (a), (b), (c), or (d) holds in r2, 
depending on the type of x. Since the theorem is symmetric in r, and r2, the 
variables in r2 are not examined. We always consider x being the first distin- 
guished variable in the consequent, and we only write down the parts of the rules 
that are relevant to the proof. Also, unimportant variables are denoted by . - 

(i) x is a free l-persistent variable: This simply states that (a) holds. 
(ii) x is a link I-persistent variable: In this case, x appears at least twice in the 

antecedent of r,. Since the rules are range-restricted, this implies that 
there exists a set of distinguished variables ix,,, 0 5 k 5 n + 1, such that 

h,(x,) =xk+i, O<k<n,with x=x,=x,+i, and such that x,, appears in a 
nonrecursive predicate Q. If this is not true, then there must exist repeated 
variables in the consequent of rl, which is a contradiction. Applying 
Lemma 5.2 for x=x, yields hJx,)=x, or hZ(x,)=x,+,. Since x=x, = 
X n+ 1, this implies that in all cases h,(x) =x, i.e., x is l-persistent in r2 ((a) 
or (b) holds). 

(iii) x is a free m,-persistent variable, m, > 1: Since the rules are range-restricted, 
if x is not a free m,-persistent variable, m2 2 1, in r2, there must exist a set 
of distinguished variables (~~1, 0 5 k 5 n + 1, such that h,(y,) =y,+ ,, 0 I k 
<n,with x=y,+,, and such that y, appears in a nonrecursive predicate Q 
in rz. By Lemma 5.2, this implies that either x = h,(x) or x = h;+‘(y,) and 
y, appears in a nonrecursive predicate Q in rI. In the first case, x is a 
l-persistent variable in r,, and in the second case, x is a link f-persistent, 
I > 1, or general variable in rI. In both cases, this is a contradiction, since x 
is a free m ,-persistent variable, m, > 1, in r,. Hence, x must be a free 
m,-persistent, m2 2 1, variable in rz also. 

If m2 = 1, i.e., it is free l-persistent ((a) holds), then x satisfies the 
theorem. Otherwise, x is free m,-persistent, m2 > 1, in r2, and we have to 
show that h,(h,(x)) = h,(h,(x)). Since x is a free persistent variable in r, 
and r2, by definition, h,(x) and h,(x) must also be free persistent variables 
in rI and r2 respectively (hi(x) is part of the same component as x in r,). 
The argument in the previous paragraph can be applied in the case of 
h,(x) and yield that h,(x) is a free persistent variable in rI as well. Hence, 
h,(x), h,(x), and h,(h,(x)) are distinguished variables. By Lemma 5.1, 
h,(h,(x)) is also distinguished, and h&h,(x)) = h,(h,(x)), i.e., (c) holds. 

(iv) x is a link m-persistent, m > 1,or general variable: Again, since the rules are 
range-restricted, this implies that there exists a set of distinguished vari- 
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ables{Xk},O<k<n+l,suchthat h,(x,)=~~+,,O~k~n,with x=x,+,, 
and such that x0 appears in a nonrecursive predicate Q in r,. By Lemma 
5.2, this implies that either x = h,(x), i.e., that x is l-persistent in r2, or 
x=h;+‘(x,), d an x0 appears in a nonrecursive predicate Q in r2, i.e., that 
x is link persistent or general in r2. We examine the two cases separately. 

If x is l-persistent in r2, we show that it cannot be link l-persistent, i.e., 
it must be free l-persistent. Assume to the contrary that x is link l-per- 
sistent in r2. From case (ii) for r2, we conclude that x is l-persistent in r,, 
which is a contradiction. Hence, x must be free l-persistent in r2 ((a) 
holds). 

If x is link persistent or general in rz, we show that it belongs to an 
augmented bridge that is equivalent to the augmented bridge to which it 
belongs in r,. Recall that we examine the case where h,(x,) = xk+ ,, for all 
0 I k I n, which implies that h,(x,) = h,(x,). Since x =x,+ , is an arbitrary 
link m-persistent, m > 1,or general variable in its augmented bridge in r,, 
we can conclude that for any such variable z in that augmented bridge, 
either both h,(z), h,(z) are distinguished and h,(z) = h,(z), or both 
h,(z), h2(z) are nondistinguished, i.e., the structure of h for the augmented 
bridges of z in r, and r2 is the same. Hence, if we assume that the two 
augmented bridges are not equivalent, there must be some nonrecursive 
predicate connected (through a series of nonrecursive predicates) to a link 
m-persistent, m > 1, or general variable in the bridge in r, that is not 
connected through the same series of nonrecursive predicates to the same 
distinguished variable in the bridge in r2 (or vice-versa). Without loss of 
generality, assume that x is such a distinguished variable. Also without loss 
of generality, assume that h,(x) = h,(x) =y is a distinguished variable, and 
that only nondistinguished variables appear in the nonrecursive predicates 
connected to x (except x). The other cases are treated similarly. This 
situation is depicted in the following two rules: 

r,: Po( x, ... ):-R,(y,**.) AR,(X,Z,) AR,(Z,,Z2)... 

ARmmr(~,,-2,~,) ARm(z,,-I,&) A ..-, 

r2: P,(x;.. ):-p,(y;..) AR,(x,z;) AR,(z;,z;).** 

AR,_,(z;m,,z;p,) A ***. 

Composing the two rules we obtain the following: 

r3r2: P,(x;..):-P,(_;..) AR,(y,z;) AR2(z;,z;)... 

A&,-I(&-,,z;-,) 

A&(x,q) A&(z,,%)... A~~~,(z,,-~,z,,-,) 

AR,(z,-,,z,) A . . . . 

r2r,: P,(x;.*):-P,( ;.e) AR,(y,z,) AR,(z,,z,)..* 

ARm_,L ,zm-1) AK?l(zm-I~Zm) 

AR,(x,z;) AR,(z;,z;)**+ AR,_,(z;_,,z;_,) A ..e. 

Clearly, since y Zx (x is not l-persistent), the two composites are not 
equivalent, and r, and r2 cannot commute, which is a contradiction. Hence, 
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the assumption that the two augmented bridges to which x belongs in r, 
and r2 are not equivalent is wrong, i.e., Cd) holds. 0 

5.3. Complexity 

In order to show the complexity of testing the condition in Theorem 5.2, we first 
need to discuss the complexity of finding the bridges in a graph with respect to a 
subgraph and that of testing equivalence of two range-restricted rules with no 
repeated variables in the consequent and no repeated nonrecursive predicates in 
the antecedent. We discuss the two problems separately. 

Identifying the bridges of an undirected graph with respect to a subgraph is very 
similar to identifying biconnected components in the graph [2]. The two problems 
have the same complexity. In particular, the complexity of identifying bridges is 
given by the following lemma, which is provided without a proof. 

Lemma 5.3. Identifying the bridges of an undirected graph with respect to a subgraph 
can be done in O(n + e) time, where e is the number of edges and n is the number 
of nodes in the graph. 

The complexity of testing the equivalence of two rules with no repeated 
variables in the consequent and no repeated nonrecursive predicates in the 
antecedent is addressed in Lemma 5.4. 

Lemma 5.4. Equhjalence testing of two range-restticted rules with no repeated uariables 
in the consequent and no repeated nonrecursice predicates in the antecedant can be 
done in O(aloga), where a is the total number of argument positions in the 

predicates in the antecedents of the two rules. 

PROOF. Since the rules contain no repeated nonrecursive predicates, if they are 
equivalent, they have to be isomorphic. Moreover, every predicate in the one rule 
can map to only one predicate in the other. Thus, equivalence can be tested as 
follows: 

(1) Test if the set of predicates in the antecedents of the rules are the same. 
This can be done by first sorting the two sets, and then examining the 
predicates pair-wise, traversing the two sets in order; since the number of 
predicates is less than or equal to the number of argument positions in the 
predicates, this step takes O(a log a> time. 

(2) Define f such that for any pair of literals Q<x,, . . . , xn) in the antecedent of 

rI and Qcy,,..., y,) in the antecedent of r2, f(x,> =y, and test if f is 1 - 1 
(and onto) and X, =y, when x, is distinguished. This can be done by first 
sorting the list of variables of the one rule and then scanning the an- 
tecedents of both rules in parallel and recording the value of f(x) for every 
variable x in the sorted list. If at any point, two distinct values are assigned 
to f(x) or f(x) fx for a distinguished variable X, then the rules are not 
equivalent; otherwise, they are because f is an isomorphism between them. 
The cost of this step is dominated by the sorting cost of the variable list, i.e., 
it is O(a log a> time. 

Adding the time complexities of Steps (1) and (2) yields that the total time 
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complexity of testing equivalence of rules that satisfy the restrictions stated in the 
lemma is O(a log a>. 0 

Theorem 5.3. Commututkity of two range-restricted rules with no repeated rlariables in 
the consequent and no repeated nonrecursil’e predictates in the antecedent can be 
tested in O(aloga) time, where a is the total number of argument positions in the 

recursirle and the nonrecurskse predicates of the antecedents of the rules. 

PROOF. The algorithm has the following steps: 

(1) 

(2) 

(3) 

(4) 

(5) 

Form the a-graphs of the two rules. The most complex operation in this step 
is sorting the lists of variables of the two rules, so that a unique node is 
assigned to each one of them in the appropriate graph, independent of the 
number of times it appears in the corresponding rule. Thus, this step can be 
done in O(a log a> time. 
Identify the type of every distinguished variable (i.e., free l-persistent, link 
l-persistent, free m-persistent, m > 1, link m-persistent, m > 1, or general), 
and then identify the bridges of the underlying undirected graphs of the 
a-graphs of the two rules. The number of argument positions a is an upper 
bound on both the nodes and the arcs in the graph. Hence, by Lemma 5.3, 
this step can be done in O(a) time. 
For every link l-persistent variable in the one rule, check if it is l-persistent 
in the other. This step takes O(1) for every link l-persistent variable, for a 
total time of O(a). 
For every free m,-persistent variable, m, > 1, in the one rule, check if it is 
free m,-persistent, m, 2 1, in the other. In addition, for every such variable 
X, test whether h,(hz(x)) = h,(h,(x)) or not. This step takes O(1) for every 
free m,-persistent variable, m, > 1, for a total of O(a) time. 
For every link m-persistent, m > 1, or general variable in the one rule, 
check if it is free l-persistent in the other. If it is, do nothing. This step takes 
O(1) for every such variable, for a total of O(a) time. If it is not, check if it 
belongs in an equivalent augmented bridge in the other rule. Because the 
rules contain no repeated variables in the consequent and no repeated 
nonrecursive predicates in the antecedent, by Lemma 5.4, equivalence of all 
the relevant bridges can be tested in O(a log a) time. (In fact, its cost will be 
O(a) if the sorted variable lists from Step (1) are being used.) 

The total complexity is given by the sum of the total times for steps (11, (2), (3), 
(41, and (51, which is equal to O(a log a). •I 

6. SEPARABILITY AND RECURSIVE REDUNDANCY REVISITED 

In Section 4, we examined commutativity vs. separability and recursive redundancy 
as expressed in the abstract form of the algebra to obtain results that hold for any 
linear rules. In this section, we restrict ourselves to function-free, constant-free, 
and range-restricted rules and use our results from Section 5 to obtain more 
relationships of commutativity with separability and recursive redundancy for this 
class of rules. 
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6.1. Commutativity us. Separability 

Based on the original definition [15],4 two rules r, and rz with the same conse- 
quent are separable if 

(1) For any distinguished variable X, either h;(x) =x or h;(x) is nondistin- 
guished, i = 1,2; 

(2) For any distinguished variable X, either both x and h;(x) appear under 
nonrecursive predicates in r, or none, i = 1,2. 

(3) The sets of distinguished variables that appear under nonrecursive predi- 
cates in I, and r2 are either equal or disjoint. 

(4) The subgraph of the a-graph of ri induced by its static arcs is connected, 
i = 1,2. 

For the case of two rules, one can take advantage of the efficient features of the 
separable algorithm only if in Clause (3) the intersection of the sets of distin- 
guished variables that appear under nonrecursive predicates in Y, and r2 is empty. 
With this assumption, Naughton proved the following theorem on the relationship 
of separable recursions and the separable algorithm (Algorithm 4.1). 

Theorem 6.1 (151. Gicen two operators A, and A, that are separable and a full 
selection CT,’ then cr( A, + A,)* = AT(aA;), i.e., the separable algorithm can be 
used for the computation of u ( A, + A, )*. 

With the same assumption on Condition (3) of the definition of separable rules 
as above, we can prove the following lemma. 

Lemma 6.1. If two range-restricted rules r, and r2 with the same consequent are 
separable, then they only contain l-persistent and general variables. Moreoner, any 
link I-persistent or general nariable in r, is free l-persistent in r2 (similarly for the 
variables of r2 ). 

PROOF. Condition (1) of the definition of separable rules states that for any 
variable x, either h;(x) =x or hi(x) is nondistinguished, i = 1,2. In the first case, x 
is l-persistent in r,, whereas in the second one, x is general. If x is link 
l-persistent or general in one of the rules, say r,, x must appear under some 
nonrecursive predicate in r,. Otherwise, there must exist another distinguished 
variable y, such that h,(y) =x, which contradicts Condition (1) of the definition of 
separble rules. Hence, by Condition (3), x is free l-persistent in r2. 0 

Combining Lemma 6.1 with Theorem 5.1 yields the following theorem. 

Theorem 6.2. If two rules are separable then they commute, but the opposite does not 
hold. 

PROOF. If two rules r, and r2 are separable, by Lemma 6.1, every variable is free 
l-persistent in r, or r2, i.e., it satisfies Condition (a) of Theorem 5.1. Thus, by 
Theorem 5.1, the two rules commute. 

4 The definition given in this paper can be easily extended to multiple rules (in accordance to the 
ori 

8 
inal definition [15]). For presentation clarity, however, we restrict ourselves to two rules. 
The precise definition of full selections is given by Naughton [15]. For our purposes, the key 

observation is that if A, A? =A,A, and VA, = Ala, then u is a full selection. 



COMMUTATIVITY IN LINEAR RECURSION 245 

The rules of Example 5.3 serve as examples of commutative rules that are not 
separable. They violate both Condition (2) and Condition (3) of the separable 
definition. [7 

By Theorem 6.2, commutativity is a strictly more general notion than separabil- 
ity. Nevertheless, by Theorem 4.1, all the efficient processing algorithms for 
separable rules are applicable for commutative rules as well, i.e., Theorem 4.1 is a 
strict generalization of Theorem 6.1. 

6.2. Commutati&y cs. Recursive Redundancy 

The following lemma on the relationship of the properties of being uniformly 
bounded and being torsion is instrumental in proving the necessity of the condition 
of Theorem 4.2 for recursive redundancy. 

Lemma 6.2. ‘Every uniformly bounded rule with no repeated variables in the con- 
sequent and no repeated nonrecursice predicates in the antecedent is torsion. 

PROOF. Consider a rule r that satisfies the conditions of the lemma. By definition, 
this implies that there are k > 0 and T> 0 such that rkfT _< rk, i.e., there is a 
homomorphism f from rk to rk+T. Moreover, as Naughton has pointed out 1171, 
for the class of rules defined in the lemma, we can find k > 0 and T > 0 such that 
the antecedents of rk and rkf7 are of the form 

rk: ab, 

rk+r. 
. a@‘, 

where a, b, b’, and q are conjunctions of predicates that satisfy the following: (iI 
any two of them that appear in the same rule share no nondistinguished variables, 
(ii) the recursive predicate appears in b or b’, and (iii) b and 6’ are isomorphic. 
Naughton showed that there is a homomorphism f: rk + rk+’ such that f(a) = a 
and f(b) = b’ 1171. Consider rk+2r. Clearly, it can be written in the form 

rk+2T, aqq’b”, 

where q is isomorphic to q’ and b’ is isomorphic to b”. Property (9 and the 
isomorphism of q and q’ guarantee that no nondistinguished variable is shared 
between any two of a, q, q’ and b”. Based on this and the existence of f, we can 
define two homomorphisms f,: rkf7 + rk+2T and f2: rk+2T--+ rk+T as follows: 

f,(a) =a, f,(4) = 4, f,( b’) = b” 

f2(a) =a, f*(q) = 9, f*(q’) =q, f2( b”) = b’. 

The existence of f, and f2 imply that r k+T = rkf2’, i.e., that r is torsion. 0 
For the study of recursive redundancy, the following subset of the general 

variables in the a-graph of a rule plays an important role. Any general distin- 
guished variable whose corresponding node in the a-graph of a rule is connected to 
some link-persistent variable through a path of dynamic arcs alone is a ray 
variable. If II is the length of the shortest such path, then the variable is called 
n-ray. Let Z, and Z, be the sets of the link-persistent and ray variables in some rule 

’ Similar results are easily provable for the class df recursions examined by Ioannidis [lo] 
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r (corresponding to some operator A) respectively, and let I be the union of the 
two sets I = Zj u I,. Let G, denote the subgraph of the a-graph of r (A) induced by 
the dynamic arcs connecting the variables in I, and Gb denote the subgraph of the 
a-graph of r t, (AL> induced by the dynamic arcs connecting the variables in Z as 
well, for any L 2 1. In the study of recursive redundancy, an important role is 
played by the bridges of the a-graph of r with respect to G,. A necessary and 
sufficient condition for a nonrecursive predicate in a rule of some restricted form 
to be redundant was originally given by Naughton 1161. Using a different terminol- 
ogy, that condition is expressed in the following theorem. 

Theorem 6.3. [Ih]. A nonrecursit~e predicate in a rule with no repeated tsariab1e.s in the 
consequent and no repeated nonrecursit’e predicates in the antecedent is recursit’ely 
redundant if and only if it appears in a uniformly bounded augmented bridge of the 
o-graph of the rule with respect to G,. 

Example 6.1. 1161. Consider the following rule, whose corresponding a-graph is 
shown in Figure 6: 

knows(x,z) Abuys(z,y) Acheap -buys(x,y). 

Clearly, the component of the graph that contains the variable y is a uniformly 
bounded augmented bridge with respect to the subgraph induced by the dynamic 
arcs connecting its ray and link-persistent variables (of which there is only one: y). 
Thus, according to Theorem 6.3, the predicate cheap is recursively redundant. 
0 

We present a different necessary and sufficient condition that shows the 
relationship between commutativity and recursive redundancy. For that, we need 
the following lemmas. 

Lemma 6.3. Let A be an operator corresponding to a rule with no repeated r’ariables in 
the consequent and no repeated nonrecursice predicates in the antecedent. The 
following holds. 

(a> For all L 2 1, Z, and Zr are the sets of link-persistent and ray L’ariables of AL 
respectir lely . 

(b) There exists L 2 1 such that all i~ariables in Z, are link I-persistent and all 
t’ariables in Z, are l-ray in AL. 

PROOF. Part (a) is obvious. For Part (b), any link Lx-persistent variable x in A is 
link l-persistent in A’nL~ for all m 2 1. In addition, any L,.-ray variable y in A 
is l-ray in A” for all m 2 L,. Let cm(S) denote the set of common multiples of 
the members of a set S. Choose L = min{ MIM E cm It ,I L ,} and M 2 

b knows F;! dant predicate. 
FIGURE 6. a-graph of rule with a recursively redun- 

Z cheap 
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max?,, ,{L,}}. That is, L is the least common multiple of (L,r) that is greater than 
the maiimum of IL,). Clearly, all link-persistent variables in A are link l-per- 
sistent in AL, all ray variables in A are l-ray in AL, and no other variable satisfies 

that (because of Part (a)>. 0 
Consider a rule r with no repeated variables in the consequent and no repeated 

nonrecursive predicates in the antecedent, and let Q be one of those predicates. 
Clearly, the Lth power of r contains L instances of Q in the antecedent. Every 
such instance is said to be generated by the instance of Q in the antecedent of r. 
Accordingly, the static arcs in the a-graph of r’. that correspond to those 
predicates are said to be generated by the arc in the a-graph of r that corresponds 
to the original instance of Q. 

Lemma 6.4. Let A he an operator corresponding to a rule with no repeated variables in 
the consequent and no repeated nonrecursir?e predicates in the antecedent. The set of 
arcs generated by those of any bridge in the a-graph of A with respect to G, forms 
one or more bridges in the a-graph of AL with respect to Gt, for any L 2 1. 

PROOF. The lemma holds trivially for L = 1. Consider two arcs (z, + z,> and 
(w, --f w,> in the a-graph of A that belong to different bridges with respect to G,. 
Let (2; bz;) and <w; +2;) be the arcs generated by (z, +z?) and (w, +wz) 
respectively in A’-,L > 1. If (2,’ + 2;) and (w; + w;> are not connected in the 
a-graph of A’-, they trivially belong to different bridges with respect to G:. If they 
are connected, the walk that connects them must correspond to a walk that 
connects (2, + z2) and (w, + w2) in the a-graph of A, which by definition passes 
through at least one link-persistent or ray variable x of A, since the two arcs 
belong to different bridges. Thus, the walk connecting (2; +zA> and Cw; 4 wi) 
must pass through at least one of the variables that replace x in A’, for some 
1 IL. Since x is link persistent or ray, however, it is only replaced by link-per- 
sistent or ray variables as well. Thus, the walk connecting (2; + 2;) and Cw; + w;> 
must pass through one of those variables. By Lemma 6.3, this implies that the two 
arcs belong to different bridges with respect to Gf-. q 

Lemma 6.5. Consider the n-graph of some operator A. If C is the wide operator that 
corresponds to a set of augmented bridges of the graph with respect to G,, then there 
exists an operator B such that A = BC. 

PROOF. Let B be the operator that corresponds to the a-graph that is constructed 
as follows: in the a-graph of A, remove all arcs from the augmented bridges that 
correspond to C, introduce dynamic arcs so that their distinguished variables 
become (free or link) l-persistent, and keep the rest of the graph unchanged. 
Because of the way B and C are defined, one can apply an argument similar to that 
in the proof of Theorem 5.1 and show that A = BC. Roughly, all nonrecursive 
predicates in C remain unchanged in BC, because all variables that they contain 
are unaffected by the composition: the distinguished ones are l-persistent in B and 
the nondistinguished ones do not appear in B (nondistinguished variables in B and 
C come from different bridges in the a-graph of A), so by the definition of the g,, 
function (Section 9, they remain unchanged. Thus, the identity function serves as 
an isomorphism between the nonrecursive predicates of A and BC. Moreover, 
every distinguished variable of A has been left unaffected in exactly one of B and 
C, whereas it has been transformed to a l-persistent variable in the other. Thus, 
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the identity function serves as an isomorphism between the recursive predicates in 
the antecedents of A and BC as well. The above two facts yield the conclusion 
that A = BC. 0 

We can now proceed to the main result of this subsection. (Without loss of 
generality, we assume again that all operators have the same domain and range, so 
that the product of any pair of them is well defined.) 

Theorem 6.4. Let Q be a parameter relation of some operator A that corresponds to a 
range-restricted rule with no repeated variables in the consequent and no repeated 
nonrecursive predicates in the antecedent. Q is recursively redundant in A* if and 
only if there exist L 2 1 and operators B and C such that Q is a parameter of C but 
not B, C is uniformly bounded, 

AL = BCL, and C”( BCL) = Cv(CvB). 

PROOF. By Lemma 6.2, if C is uniformly bounded and the corresponding rule 
contains no repeated variables in the consequent and no repeated nonrecursive 
predicates in the antecedent, C is also torsion. Thus, the if part of this theorem is 
given by Theorem 4.2. 

For the only if part, assume that Q is recursively redundant. By Theorem 6.3, Q 
appears in a uniformly bounded augmented bridge in the a-graph of the rule with 
respect to G,. Let C be the wide operator that corresponds to this augmented 
bridge. Clearly, C is uniformly bounded. By Lemma 6.4, the nonrecursive predi- 
cates of the augmented bridge that corresponds to C in the a-graph of A generate 
others in AL, L 2 1, that form a set of bridges in the a-graph of AL with respect 
to G,L. It is straightfonvard to show that CL is the wide rule related to the 
corresponding augmented bridges. Thus, by Lemma 6.5, for all L 2 1, there exists 
an operator B such that A L = BCL. In addition, since all instances of Q are part of 

CL, Q is not a parameter of B. 
We choose L 2 1 as defined by Lemma 6.3, Part (b), i.e., such that all link-per- 

sistent variables in A are link l-persistent in AL and all ray variables in A are 
l-ray in AL. Based on the construction in the proof of Lemma 6.5, we can partition 
the distinguished variables of AL (as well as those of B and CL> as follows: 

X vector of link l-persistent and l-ray variables that appear in the augmented 
bridges that correspond to CL-they remain intact in CL whereas they are 
l-persistent in B; 

5, vector of the remaining distinguished variables that appear in the aug- 
mented bridges that correspond to CL-they remain intact in CL whereas 
they are free l-persistent in B; 

XB vector of all other distinguished variables-they remain intact in B whereas 
they are free l-persistent in CL. 

Without loss of generality, the variables in the consequents of the two rules are 
grouped so that the latter can be written in the following form: 

B: ~~(x,x,,~Tc):-~,(x,z,,x,) AQB(x’,-wB), 

CL: P( o x,xe,x,):-P,(hc’(X),Xe,Ic)AQc(X”,-Wc). 

Predicates Q, and Q, represent the nonrecursive predicates in B and CL 
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respectively. Also 2 -BY zc, -We, !?!C? - 3 - z x’ x” are vectors of variables such that 

ZR~-wB they contain nondistinguished variables and variables from &,; 

z,, ~~ they contain nondistinguished variables and variables from xc; 

x’, $” _ they contain variables from x. 

Forming the two composites, i.e., multiplying B and CL in both possible ways, 
yields the following two rules: 

BCL: P,(~,~,,~,):-P,(~CL(X),IB,ZL.)AQB(X’,--WA) AQ,(x”,--wc). 

CLB: P~(x,xR,xc):-P,(~C.~(X),IA,IC)AQR(~C~(X’),-WB) 

* Q,(x”,_w,). 

The formation of the above rules is straightforward and we do not explain it. 
Note that the two rules are isomorphic except for the first vector of arguments of 

Q *, which is equal to x’ in BC’-, whereas it is equal to h,~(&‘> in CLB. ‘I’hus, in 
order to prove that CL(BCL) = CL(CLB), we only need to investigate how these 
variables are affected by the multiplication with CL; all others behave equivalently 
in the two products. Recall that all variables in x’ are link l-persistent or l-ray in 
CL. For a variable x in x’ that is link l-persistent, h,!.(x) =x. For a variable x in 
x’ that is l-ray, he,(x) =y, where y is a link l-persistent in CL. Hence, indepen- 
dent of the type of x, h,l.(h,l(x)) = h,,(x). This implies that the first arguments of 
QB in CL(BCL) and CL(CLB) will be the same, like the remaining parts of the 
rules, i.e., it implies that the two products are equal. Thus, for rules in the class 
described in the statement of the theorem, the condition of Theorem 4.2 is 
necessary and sufficient for recursive redundancy. 0 

Example 6.2. Let A be the operator corresponding to the following rule, whose 
a-graph is shown in Figure 7: 

~(~,x,y,z):-~(x,~,x,~) ~Q(x,u) AR(x,y) AS(u,z). 

The role of C is played by the following rule: 

C: P(w,x,y,z):-P(x,w,x,z) AR(x,y). 

Clearly, C is uniformly bounded (it has no nondistinguished variables). The 
nonrecursive predicate R is recursively redundant according to Theorem 6.2 and 
its augmented bridge with respect to G, is enclosed in dotted boundaries in Figure 
7. Theorem 6.4 is satisfied for this example for L = 2. The rules corresponding to 

FIGURE 7. a-graph of rule with recursively redundant 
predicates. 

S 
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operators A*, B, and C2 are 

A’: P(w,x,y,z):--(w,x,w,u’) ~Q(w,u’) nR(w,x) r\S(u’,u) AQ(x,u) 

w&y) w&2), 

B: P(w,x,y,z):-P( w,x,y,u’) AQ(w,u’) As(u’,u) AQ(x,u) As(u,z), 

C2: P(w,x,y,z):-P(w,x,w,z) AR(w,x) AR(x,y). 

One can verify that A’ = BC’. The a-graphs of B and C’ are shown in Figure 8. 
Variables w and x are link l-persistent in both B and C*, whereas y is free 
l-persistent in B and z is free l-persistent in C’. By Theorem 5.1, C’ and B 

commute, and therefore, trivially C’(BC’) = C’(C’B), i.e., Theorem 6.4 is satis- 

fied. 0 

Exurnple 6.3. Let A be slightly different from the previous example, i.e., having 
Q(y, ~4) instead of Q(.Y, U) in the antecedent: 

8(w,x,y,z):-P(x,w,x,u) AQ(y,u) AR(x,y) As(u,z). 

The a-graph of A is shown in Figure 9. Everything proceeds as in Example 6.2, 
except for the way Q behaves. The rules corresponding to operators A’, B, and C2 

are 

A?: P(w,x,y,z):-P( w,x,w,u’) AQ(x,u’) Aft(w,x) AS(u’,rt) AQ(y,u) 

AR(x,y) As(u,z), 

B: P(w,x,y,z):-P(w,x,y,u’) AQ(x,u’) AS(U’,L~) Ae(y,~4) AS(u,z), 

C’: P(w,x,y,z):-P(w,x,w,~) AR(w,x) AR(x,y). 

One can verify that A” = BC2 and that BC’ # C’B. Note that the latter cannot be 
derived by Theorem 5.2, since repeated nonrecursive predicates appear in the 
antecedents of the two rules. Instead it is derived by forming the two products. 
BC’ is equal to A’, which was given above. C*B is shown below: 

C’B: P(w,x,y,z):-P( w,x,w,u’) AQ(x,Lf’) AR(w,x) As(u’,u) 

AQ(w,44) AR(x,y) As(u,z). 
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FIGURE 8. a-graphs of commuting rules B and C*, where A* = BC* and C is recursively 
redundant. 
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FIGURE 9. a-graph of rule with recursively redundant 
predicates. 

S 

Clearly, the two products are not equivalent, due to the presence of Q(y,u) and 
Q(w, ~1) in BC’ and C2B respectively. Nevertheless, multiplying either one with C2 
from the left yields the same rule, which after removing all repeated occurrences of 
literals is equal to 

C’( BC’) = C’( C’B): 

~(w,x,y,z):-P(w,x,w,u’) ~R(w,x) ~R(x,y) ~Q(x,u’) 

A r\S(u’,u) r\Q(w,u) r\S(u,z). 

Thus, Theorem 6.4 is satisfied. 0 

7. CONCLUSIONS 

We have investigated the role of commutativity in query processing of linear 

recursive rules. Using the algebraic structure of such rules, we have identified 

commutativity as the essence of many properties that give rise to important classes 
of recursive rules, i.e., separable rules and rules with recursively redundant predi- 
cates. For separable rules, in particular, we have shown that commutativity is a 
strictly more general notion than separability, while it still allows the efficient 
separable algorithm to be applicable. Focusing on rules that contain no functions 
and no constants, we have given a sufficient condition for such rules to commute. 
We have also shown that the condition is necessary and sufficient when the rules 
are range-restricted and contain no repeated variables in the consequent and no 
repeated nonrecursive predicates in the antecedent. In that case, the condition can 
be tested in polynomial time in the size of the rules. 

Commutativity emerges as a key property of linear recursive rules for which 
efficient algorithms can be applied. This paper is a first step in the investigation of 
its power. We believe that there is much more work to be done in this direction. 
Some problems we plan to study in the future are the following: characterize 
commutativity in more general classes of rules than the one studied in this paper; 
investigate the relationship of commutativity and one-sided recursion; investigate 
the relationship of commutativity and several optimizations proposed for the magic 
sets and counting algorithms (e.g., there seems to be a strong relationship between 
commutativity and the semi-join optimization [6]); examine ways to take advantage 
of partial commutativity, i.e., when the transitive closure of a product of operators 
is to be computed, only a subset of which are mutually commutative; and examine 
ways to take advantage of commutativity appearing in some higher power of an 
operator, as in the case of recursive redundancy. 
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