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Abstract. The need for approximations of information has become very
critical in the recent past. From traditional query optimization to newer
functionality like user feedback and knowledge discovery, data manage-
ment systems require quick delivery of approximate data in order to
serve their goals. There are several techniques that have been proposed
to solve the problem, each with its own strengths and weaknesses. In this
paper, we take a look at some of the most important data approximation
problems and attempt to put them in a common framework and iden-
tify their similarities and differences. We then hint on some open and
challenging problems that we believe are worth investigating.

1 Introduction

One of the main selling points of traditional database systems is consistency and
accuracy. Given a database, the semantics of a query are precisely defined, and
its answer is unique and exact. Approximations have been traditionally used
only internally, as part of query optimization, whose goal is not really to find
the actual optimal plan to execute a query but one that is close to it, avoid-
ing the really poor ones. Given this approximate goal, database systems obtain
approximations of the values of various size-related and cost-related parameters
and use them to optimize queries.

In the recent past, however, things have changed and the need for approxi-
mations has increased sharply, moving also to the external layers of the database
system. The answers to the queries themselves may now be approximate some-
times, as a quick feedback mechanism to the user on what to expect or be-
cause an accurate answer is expensive to obtain and not useful [5]. Furthermore,
queries are no longer the only form of interaction with data, with on-line ana-
lytical processing, data mining, and other knowledge discovery methods playing
a prominent role, all requiring essentially the extraction of approximate infor-
mation from the database [2].

As a result, there has been extensive work on various aspects of the topic, with
many interesting results. This work includes: extensive generalizations of earlier
� This is an approximate title as it does not quite represent the text that follows,

which touches upon some issues that are beyond approximations or databases as
well. The text itself is also an approximation, as it ignores several aspects of the
topic, focusing only on personal curiosities.
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database techniques for traditional (relational) data; invention of new techniques
that approximate more complex types of data, e.g., spatial and temporal data;
cross-fertilization with other areas that deal with information approximation,
e.g., signal processing, and very successful adaptations of their techniques to
the database environment (e.g., wavelets); redefinition of traditional problems
of other areas (e.g., pattern recognition, statistics) and invention of scalable
solutions that are effective when applied on large databases; and others.

Algorithm
Distance
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Distance
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Data Elements
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Fig. 1. Generic Flow of Approximation Process

For the purposes of this paper, any process of data approximation, exhibits
roughly the flow shown in Figure 1. The nodes in that chain are described below:

1. Data: This is the original data that requires approximation.
2. Data analysis: This is the overall approach followed to derive an approxima-

tion of the incoming data, e.g., histograms or wavelets. Typically, incoming
data elements are partitioned into groups of similar elements, called buckets
(a term we use in this paper), clusters, patterns, and several other names.
The data elements that fall in each bucket are then represented by the same
approximate information. There are two aspects of each approximation tech-
nique that play a major role in its behavior:
a) Algorithm: This is the algorithm run on the incoming data to generate

its approximation.
b) Distance: This is a measure of similarity between data elements that

permits data elements that are “close” to be placed in the same bucket.
3. Stored approximation: This is the information generated by the approxi-

mation algorithm. It approximates the original data and is typically much
smaller in size that it. This information is in the form of buckets representing
parts of the space from which the original data is drawn. Again, there are
two critical aspects of each bucket:
a) Bucket definition: This is the specification of the part of the space that

corresponds to a bucket.
b) Bucket data elements: This is the information that is used to approximate

the actual data elements that fall in a bucket.
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4. Approximation use: This is the process by which the appropriate stored ap-
proximations are used to generate any approximate information required.
Essentially, this corresponds to the actual purpose of the whole data ap-
proximation process.

5. Result approximation: This is the output of the previous step, i.e., the ap-
proximate information required at the end. A key parameter in characterizing
this output is the following: that determines
a) Distance: This is a measure of the quality of the generated approximate

output, capturing its similarity to the corresponding output that would
have been generated by applying a precise procedure on the original
data. Usually it is intimately related to the distance parameter used by
the data analysis performed earlier.

In this paper, we take a look at some of the most important data approxi-
mation processes that have been defined within different scientific areas and put
them side by side with some of the most prominent techniques that have been
proposed to solve them. We then hint on some open problems that we believe
are interesting and challenging, whose solution may have some impact.

We should emphasize at this point that the entire area of data approximation
is quite extensive and we make no attempt to be comprehensive or well-balanced
by any means. We focus mostly on discrete data as it represents the primary
concern of most data applications. Furthermore, we pay special attention to
histograms and discuss them in more detail as they represent the main approx-
imation technique used in current database systems. Finally, the choice of open
problems is driven mostly by personal observations.

The paper is organized as follows. Section 2 defines data distributions and
their characteristics that are useful for the rest of the paper and gives the essen-
tials of histograms. Sections 3 to 8 outline some of the open problems that we
consider worth investigating. Finally, Section 9 wraps up our thoughts.

2 Definitions

In the following, we briefly define several concepts on discrete data and present
the key characteristics of histogram-based approximation, both of which are
central in our discussion.

2.1 Data Distributions

For simplicity, we confine our detailed definitions on 1-dimensional data elements
[9]. The domain D of an attribute X in relation R is the set of all possible values
of X and the (finite) value set V (⊆ D) is the set of values of X that are actually
present in R. Let V = { vi: 1 ≤ i ≤ D }, where vi < vj when i < j. The spread
si of vi is defined as si = vi+1 − vi, for 1 ≤ i < D (with s0 = v1 and sD = 1)1.
1 The above holds for numerical attributes, where difference is defined. A commonly

used technique for constructing histograms on non-numerical attributes (e.g., string
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The frequency fi of vi is the number of tuples t ∈ R with t.X = vi. Finally, the
area ai of vi is equal to vi × fi. The data distribution of X (in R) is the set of
pairs T = { (v1, f1), (v2, f2), . . . , (vD, fD) }.

The above can be extended to n-dimensional data elements, coming from
multiple attributes Xi, 1 ≤ i ≤ n of R [8]. The joint frequency of a combination
of n values, one from each attribute, is the number of tuples in R that contain
the i-th value in attribute Xi, for all i. The joint data distribution T1,..,n of
X1, .., Xn is the entire set of (value combination, joint frequency) pairs.

2.2 Histograms

A histogram on an attribute X is constructed by using a partitioning rule to
partition the data distribution of X into a number of mutually disjoint sub-
sets called buckets and approximating the frequencies and values in each bucket
in some common fashion. With respect to bucketization, several partitioning
rules have been proposed. The most effective ones seem to be V-optimal(V,A)
or V-optimal(V,F), whose buckets correspond to non-overlapping regions of X
values with the minimum overall variance of the areas (A) or the frequencies
(F) of the values grouped together, respectively. The MaxDiff(V,A) and MaxD-
iff(V,F) histograms are almost as effective but are much simpler to construct
[7], and therefore, maybe slightly more popular. Their buckets correspond to
non-overlapping regions of X values such that bucket breaks occur where the
differences between the areas (A) or the frequencies (F), respectively, of neigh-
boring values are maximized [9].

With respect to the information stored within each bucket to approximate the
data elements that fall in it, the most common approach for values is to employ
the uniform spread assumption [9], under which attribute values are assumed to
be placed at equal intervals between the lowest and highest values in the bucket.
Likewise, the most effective approach for frequencies is to employ the uniform
frequency assumption, under which the frequencies in a bucket are approximated
by their average.

Histograms can also be constructed on joint data distributions in a simi-
lar fashion. The task of identifying the appropriate partitioning of the multi-
dimensional space in buckets is harder in this case, but several approaches have
been developed that are quite successful in generating effective multi-dimensional
histograms, at least for small numbers of dimensions [8,3].

3 Unification of Approximation Problems

In the past, several approximation problems have been defined that appear to
have much similarity, yet they have been given different names and are ap-
proached using different techniques. Although it is clear that their differences

attributes) is to use a function that converts these vlaues into floating point numbers
before constructing a histogram. For example, this technique is used in DB2.
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are critical enough that they cannot all be unified completely, even partial uni-
fication would be really beneficial and could enrich the set of techniques applied
to each of these problems significantly.

To illustrate the issues, we present three such problems and discuss their
similarities and differences. One of them comes from the database world: se-
lectivity estimation. The others come from the world of statistics and artificial
intelligence: clustering and classification. We present all these techniques for the
2-dimensional case. With respect to the incoming ‘Data’ in Figure 1, we ignore
any common differences in the focus of various problems and take a database
perspective, i.e., we assume data elements on discrete numeric dimensions. Each
of the other components of Figure 1 is discussed for each problem separately.

Selectivity Estimation

– Data Analysis: Partition the joint data distribution T1,2 into buckets, where
each bucket contains similar elements. Similarity is defined based on some
distance function that takes into account both the values of the two at-
tributes and the value of the frequency.

– Approximation Storage: For each bucket, store a very short approximation
of the T1,2 elements that fall there, typically by approximating each at-
tribute/dimension and the frequency separately.

– Approximation Use: At query time, use the stored aggregate information to
approximate the original T1,2 elements of the bucket, so that estimations of
the query result size or sometimes the query result itself can be derived.

Clustering

– Data Analysis: Partition the joint data distribution T1,2 into buckets, where
each bucket contains similar elements. Similarity is defined based on some
distance function that takes into account just the values of the two attributes
usually. Typically, clustering is used in cases where the frequency of each
element is 1, but this does not have to be the case necessarily.

– Approximation Storage: For each bucket, store a very short approximation
of the pairs of V1 × V2 that fall there and the general area they occupy.
Typically, this is a representative (not necessarily existing) element and a
radius around it [10], but for scalable approaches, this may be much richer[2].

– Approximation Use: At insertion time, the inserted element is compared
against the representative of each cluster and is placed in the most appro-
priate one (if any).

Classification. In this, next to every element of V1 × V2 there is another at-
tribute that takes values from a known, finite (typically small) set, the set of
classes/categories. The goal is to identify the characteristics of the elements that
fall into each class.

– Data Analysis: Partition the joint data distribution T1,2 into buckets, where
each bucket contains similar elements. Similarity is defined based on some
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distance function that takes into account just the values of the two attributes
and on equality when it comes to the class attribute. Here again, in classi-
fication, the frequency of each element is 1. Even if it is not, however, it is
mostly ignored and the effort concentrates on the pairs in V1×V2 (actually,
usually on only one of the dimensions in each step of the algorithm) and the
class attribute.

– Approximation Storage: For each bucket, store a very short approximation
of the subspace occupied by the pairs of V1 × V2 that fall there (but not
the pairs themselves), typically through specifications of the borders of the
subspace, as well as the category they represent.

– Approximation Use: At insertion time, the inserted element is compared
against the areas of the buckets and is classified into the class associated
with the bucket it falls in.

Note that the approximation use is rather distinct for each problem, and this
is natural as to a large extent it defines the problem. For example, note that the
purpose of selectivity estimation is dealing with queries, whereas the remaining
problems deal mostly with updates (what happens when a new element arrives).
On the other hand, often clustering may have no explicit use phase (the interest
being in identifying clusters in existing information), whereas the other problems
do for the most part.

With respect to the other two main components of Figure 1, however, com-
paring the three problems above and approaching them from a database perspec-
tive, we observe some striking similarities. The data analysis performed under
each problem is essentially the same, yet the techniques that are used are very
different. More or less the same holds for approximation storage. Clearly, some
of these differences are to be expected, e.g., the presence of the additional class
attribute for classification may have a positive or negative impact on the appro-
priateness of a specific analysis technique. In general, however, there appears to
be no well documented reasoning for many of these differences.

The above raises several interesting questions. Why can’t the histogram tech-
niques that have been developed for selectivity estimation be used for clustering
or vice versa? What would the impact be of using stored approximations de-
veloped for one problem to solve another? Is the different applicability of the
techniques due to the differences in the intended use in each approximation
problem? In that case, what is the extent of any such dependency and how can
it be articulated? In general, given the great variety of techniques that exist
for data approximation, it is crucial to obtain an understanding of the advan-
tages and disadvantages of each one, its range of applicability, and in general,
their relative characteristics when mutually compared. A comprehensive study
needs to be conducted that will include several more techniques than those men-
tioned here. The “New Jersey Data Reduction Report” [1] has examined many
techniques and has produced a preliminary comparison of their applicability to
different types of data. It can serve as a good starting point for verification,
extrapolation, and further exploration, not only with respect to applicability,
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but also precise effectiveness trade-offs, efficiency of the algorithms, and other
characteristics.

There are also questions on the nature of the approximation problems as
well. Why can’t the class attribute in classification be considered as an addi-
tional dimension of the data element space and have the problem be considered
as clustering? When is this meaningful? Likewise, why can’t the frequency in
selectivity estimation be considered as another dimension of the joint data dis-
tribution and have the problem be considered as traditional clustering? The only
distinction of the frequency is that there is a functional dependency from the
attributes X1 and X2 to the frequency. What exactly does one gain (if anything)
by taking advantage of that fact and treating frequency separately?

Elaborating on the last point, consider Figure 2 showing a typical data dis-
tribution of a single attribute X of a relation. Assuming any of the established

Buckets

X
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C
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Q
E
R
F

ATTRIBUTE VALUES

Fig. 2. One-Dimensional Data Distribution

most effective types of histograms mentioned earlier, the data distribution ele-
ments will be partitioned so that there is no overlap in the values of X among the
buckets and that similar frequencies and distances are placed in each bucket. As-
suming further that there is space for four buckets, the buckets shown in Figure
2 are the likely outcome of any histogram construction algorithm.

Let us ignore, for a moment, the fact that the vertical axis represents fre-
quencies and treat it as just a second dimension of the objects. The problem
immediately changes to that of clustering; furthermore, applying any of the
main clustering techniques that exist in the literature, it is very likely that the
resulting clusters would have been the same. It is this relationship and similarity
between the two problems that needs to be investigated and capitalized upon.

Such investigation is certainly not trivial and would need to address several
general and detailed issues that arise. To mention just one of these issues, in
Figure 2, one could argue that typical clustering algorithms applied on the entire
2-dimensional space might not have formed the second bucket. The reason would
be that, although the y-values of the points (frequencies) are similar, the x-values
are relatively far apart. The reason why histograms would probably form that
bucket is that in selectivity estimation, the approximation of the x-axis in each
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bucket is through some version of the uniform spread assumption. Hence, it is
not proximity of the values themselves that is required for forming a bucket but
proximity of their spreads. A hasty conclusion from the above may be that the
selectivity estimation problem reduces precisely to clustering if applied on the
space where the x-axis represents spreads instead of values. This is not quite
true, however, as the spreads of the first points in every bucket are immaterial,
so a traditional clustering algorithm would not succeed completely either. What
one could do in this case is open for investigation.

As a last point of this section, we would like to note that there may be close
relationships between the problems not only at the full-scale level discussed so
far, but at a finer level as well. As a simple example, we consider the classifica-
tion problem and one of its most important classes of algorithms: decision tree
methods [2]. Operating on a multi-dimensional joint data distribution T1,..,n, the
most popular decision tree algorithms (ordinary binary classification trees) se-
quentially split one of the dimensions in two pieces, eventually partitioning the
space into hyper-rectangles whose elements belong to a unique class. Ignoring
the tree-pruning aspects that these algorithms employ, which are irrelevant to
our discussion, this is exactly how, for example, the MHIST approach to multi-
dimensional histograms operates [8]. The splitting criteria employed in decision
trees methods are different from those associated with MHIST, which are the
traditional ones applied for 1-dimensional histogram construction. Could these
be appropriate for decisions trees as well (applied on the class attribute)? Would
the decision tree construction criteria be appropriate for histograms? Would
some of the other histogram approaches be appropriate as a general approach to
decision tree construction? This and several other potential relationships need
to be worked on for the possible benefit of all problems.

4 Pattern (Bucket) Recognition

In all three problems mentioned above, data analysis is applied on a given set of
dimensions. In traditional pattern recognition, however, there is usually an earlier
stage where the dimensions are chosen among a great number of possibilities. A
critical problem then is which dimensions to choose. There are several techniques
that exist that address this problem with varying success depending on the case.

In selectivity estimation, dimension selection does not exist for the most part,
as what needs to be approximated is usually known and given. Nevertheless, this
issue may arise when we try to transform selectivity estimation into a clustering
problem, as mentioned in Section 3, where the actual attribute values may have
to be replaced by their corresponding spreads or something else. How does one
choose appropriate alternatives? Although for the particular case, this may turn
out to be not very hard, in general deriving dimensions in which patterns emerge,
not by choosing among alternatives but by transforming them, is a very hard
problem, not only for database estimation but for pattern recognition in general.

As an example, consider the 2-dimensional space above (whether the y-axis
represents frequencies or not is irrelevant). It is clear to the human eye that
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Y

X

Fig. 3. Hard-to-Discover Patterns

there are two patterns in the figure, one with Y decreasing and one with Y
increasing as X increases. Nevertheless, the patterns cross each other in the X-
Y space, the elements that belong to each pattern do not satisfy any proximity
criteria in that space, so current clustering techniques will most likely fail to
identify them. One would have to model the elements in a very specific way, in
a different multi-dimensional space, for the elements of each pattern to be close
to each other and far from the elements of the other pattern. Understanding the
mechanisms of such general pattern recognition is a great challenge that needs
investigation. Such an effort should certainly try to address all five Gestalt Rules
for clustering: small distance (on which current clustering techniques are quite
effective), similarity, completion, continuity (where the example of Figure 3 falls),
and symmetry. Some are harder to define than others, but we believe that an
investigation in this direction will produce very interesting results.

5 Approximation within a Bucket

5.1 Approximation of Dimension Values and Frequencies

Consider the 1-dimensional data distribution of Figure 2, and the four buck-
ets that have been indicated there. As mentioned in Section 2.2, a histogram
makes certain uniformity assumptions within each bucket, most often the uni-
form distribution assumption for frequencies and some version of the uniform
spread assumption for values. Hence, for the example of Figure 2, the stored
information would generate the approximate distribution of Figure 4. Observe
that frequencies are treated differently from attribute values: the frequencies in a
bucket are assumed constant, whereas the values in a bucket are assumed to fol-
low a linear rule. Hence, buckets need to store more information to approximate
the values that fall in them than their frequencies. In principle, however, not all
data distributions are served best with such an approach. For example, compare
the three distributions of Figure 5. The first two are very similar cases, only that
one can be thought of as rotated 90 degrees compared to the other. The third
one is a mixture of the two. The current approach of histograms would work very
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Fig. 4. Approximate One-Dimensional Data Distribution
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Fig. 5. (a) “Horizontal” Buckets, (b) “Vertical” Buckets, (c) “Mixed” Buckets

well with the left distribution2, but not with the other two. For that second case,
a much better approximation would be to store the average attribute value of a
bucket (since they are all roughly the same) and assume a linear function for the
frequencies that these roughly-equal values have. Likewise, for the third case,
one bucket should be treated like the first case, and the other like the second
case.

One may argue that range queries on values would perform poorly if all
similar values are represented by their average. However, it is unclear if that
would have a negative effect on the average performance if the values in a bucket
come from a small range. One may further argue that distributions like those
of Figure 5 are not expected to be found in databases, so the problem would
never arise in practice. However, the problem remains even if the y-axis does
not represent frequencies but a second value dimension, a case which is more

2 This is assuming that buckets are allowed to overlap in the value domain, which is
not typically the case, but this is orthogonal to the focus of this discussion which is
approximation within a bucket.
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plausible. In that case, current histograms would apply some version of the
uniform spread assumption for both dimensions of all buckets, whereas clearly a
distinct approach for each dimension in each bucket would have generated much
better results.

To increase the accuracy of histogram approximations, there should be no
fixed, predefined approximation approach to the value dimensions and the fre-
quencies. Histograms should be flexible enough to use the optimal approximation
for each dimension in each bucket, one that would produce the best estimations
for the least amount of information. Identifying what that optimal approxima-
tion is is a hard problem and requires further investigation. Incidentally, note
that this problem is intimately related to the problem of pattern identification
mentioned above (Section 4), as identifying a pattern implies identifying a small
amount of information that can be used to represent the elements of the pattern
without much loss of information.

5.2 Approximation of Multi-dimensional Elements

Consider a 2-dimensional space and suppose that a 2-dimensional histogram uses
the uniform spread assumption on each dimension of each bucket to approximate
the values that appear there. The original values represent the projections of the
actual elements that fall in the bucket, and the uniform spread assumption leads
to an approximation of those projections. It does not offer an approximation
for the actual placement of the elements in the 2-dimensional space. Current
approaches make some gross oversimplifications to the problem, which may be
responsible for large estimation errors. For example, if the projection of the
elements on dimension Xi generates ni unique values, i ∈ {1, 2}, then often the
assumption is made that all elements of the cross-product of the values in the
dimension projections are in the bucket. Clearly, this may be far from reality,
as the cross-product has n1 ∗ n2 elements, whereas the same projections might
have been generated by as few as max(n1, n2) actual elements.

The key question that arises then is how to take into account both the actual
number of elements in a 2-dimensional (rectangular) bucket and their projections
and place them uniformly in it. There does not seem to be an easy answer to
this question. The source of the problem may be that the concept of uniformity
is not necessarily appropriately defined in this case. Needless to say, the problem
may be even harder in higher dimensions. We believe that any solution to this
problem would improve the accuracy of histograms significantly in several cases.

6 Distance Metric

As shown in Figure 1, the concept of distance is central to approximation. It plays
a major role in comparing data elements for bucket formation, identifying the
appropriate approximate information to be stored, and even comparing results
of data processing (on accurate and approximate data) for error measuring.
Choosing the appropriate distance metric is crucial.
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Clearly, there is no issue with the distance of numeric values, as there is a
very natural definition of distance for them based on the difference of their actual
values. The same is more or less true for elements in a multi-dimensional space
with numeric dimensions, where there are several natural distance definitions
(the L-norms) that produce useful results. The situation stops being as straight-
forward as soon as we move on to other types of elements, especially those with
rich structure, e.g., graphs, XML files, and other semi-structured data. To illus-
trate the problem, we discuss two data types that are problematic: strings and
sets (used mostly in the general sense of multisets, i.e., bags).

With respect to strings, a classical approach is to use the edit distance, i.e.,
the number of edit actions (insertions, deletions, replacements, swaps, etc.) that
one has to perform in order to reach one string from the other. With respect
to approximating string information in a bucket, a trie is usually employed.
All these however, are only syntactic approaches to string distance. There are
several cases, where a more semantic approach is warranted and might give
better results. For example the strings ‘city’, ‘town’, and ‘village’ are very far
apart in edit-distance, but are very close semantically. More often than not, the
information conveyed by placing them in one bucket and using one of them to
represent all three would be far more accurate than any other approach. What
forms of semantic distances would make sense, how to maintain such knowledge
that would allow for semantic distances to be calculated efficiently, and what the
impact of using such distance metrics would be on approximations are questions
that require further investigation.

With respect to sets, the problems are even harder. In comparing two sets,
one has to overcome value mismatches (different member elements appearing
in the two sets) and cardinality mismatches (both at the level of one set being
larger than the other and at the level of one member element appearing different
number of times in the two sets). The former could be consider as a special case
of the latter using zero cardinality for the nonexistent elements, but it carries
distinctly different semantics, so it should be treated separately. Traditional
measures from other areas (e.g., Hausdorff distance) do not take into account
either one of the mismatches above, hence, they are not very appropriate for
approximations in databases. Other distances that have been introduced exactly
for that purpose (e.g., DIST [6]) still seem to produce unintuitive distances on
certain cases, e.g., the distance between {1, 1, 1, 2} and {1, 2, 2, 2} is equal to 12,
the same as the distance between {1, 1, 1, 100} and {1, 100, 100, 100}. Finding
distance functions for sets that respect intuition and have useful mathematic
properties (e.g., being metric) is quite a challenge, but would be a major step
forward in approximating sets in databases.

7 Approximations and Indices

The fact that there is a close relationship between approximate statistics kept
in databases, especially histograms, and indices has been recognized in the past
in several works [1]. If one considers the root of a B+ tree, the values that
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appear in it essentially partition the attribute on which it is built into buckets
with the corresponding borders. Each bucket is then further subdivided into
smaller buckets by the nodes of the subsequent level of the tree. One can imagine
storing the appropriate information next to each bucket specified in a node, hence
transforming the node into a histogram, and the entire index into a so called
hierarchical histogram. This may adversely affect index search performance, of
course, as it would reduce the out-degree of the node, possibly making the tree
deeper. Nevertheless, although this idea works against the main functionality of
an index, its benefits are non-negligible as well, so it has even been incorporated
into some systems.

We believe that hierarchical histograms and, in general, the interaction be-
tween approximation structures and indices should be investigated further, as
there are several interesting issues that remain unexplored as analyzed below.
Consider again a B+ tree whose nodes are completely full, and assume for sim-
plicity that it has been built on a foreign key of a relation. In that case, the root
of the tree specifies a bucketization of the attribute domain that corresponds to
an equi-depth histogram, i.e., each bucket contains an equal number of elements
under it. Similarly, any node in the tree specifies an equi-depth bucketization of
the range of values in leads to. If the nodes of the tree are not completely full,
the equi-depth property does not quite hold, in the worst case one bucket’s oc-
cupancy being within a factor o 2h of another’s, where h is the depth of the tree.
On the average, however, the equi-depth property should hold to a satisfactory
level.

The main issue with B+ trees being turned into hierarchical equi-depth his-
tograms is that equi-depth histograms are far from optimal overall on selectivity
estimation [9]. Histograms like V-optimal(V,F), V-optimal(V,A), MaxDiff(V,F),
and MaxDiff(V,A) are much more effective. What kind of indices would one get
if each node represented bucketizations following one of these rules? Clearly, the
trees would be unbalanced. This would make traditional search less efficient on
the average. On the contrary, other forms of searches would be served more effec-
tively. In particular, in a system that provides approximate answers to queries,
the root of such a tree would provide a higher quality answer than the root of
the corresponding B+ tree. Furthermore, the system may move in a progressive
fashion, traversing the tree as usual and providing a series of answers that are
continuously improving in quality, eventually reaching the leaves and the final,
accurate result.

Returning to precise query answering, note that typically indices are built
assuming all values or ranges of values being equally important. Hence, having
a balanced tree becomes crucial. There are often cases, however, where different
values have different importance and different frequency in the expected work-
loads. If this query frequency or some other such parameter is used in conjunction
with advanced histogram bucketization rules, some very interesting trees would
be generated whose average search performance might be much better than that
of the B+ tree.
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From the above, it is clear that the interaction between histograms and in-
dices presents opportunities but also several technical challenges that need to
be investigated. The trade-off between hierarchical histograms that are balanced
trees with equi-depth bucketization and those that are unbalanced with more
advanced bucketizations requires special attention. The possibility of some com-
pletely new structures that would strike even better trade-offs, combining the
best of both worlds, cannot be ruled out either.

8 Original Data and Final Result Approximation

The last set of challenges we would like to mention are related to the two end
components of Figure 1. As hinted in the rest of the paper, most current approxi-
mation efforts are applicable to data elements with numeric fields, whether alone
in a 1-dimensional space or combined in multi-dimensional spaces. Very little has
been done on categorical domains. Current practice is to map the categorical
values onto a numeric domain and then use its properties. This often presents
problems, as categorical values exhibit behavior that is unnatural to them. The
earlier discussion on possible distance functions for strings may be relevant in
general for categorical domains and their approximation. Even greater challenges
are presented in approximating information with more complex structure, e.g.,
graphs or XML files.

On the other end, most current efforts on selectivity estimation have focused
on selection queries. Dealing with joins or other operators or combinations of
them has been rare [4] and has not produced completely satisfactory results.
Given the importance of more complex queries, these problems should be given
some special attention.

9 Conclusions

The importance of approximation in database systems will continue to grow, as
increasingly more such functionality will be required. This will come both from
demands for higher quality approximations in domains that are already being
dealt with in database systems, e.g., better histograms, and from demands for
new functionality, e.g., progressive refinement of query answers or advanced data
mining applications.

We have identified several problems that we believe they represent nontrivial
technical challenges and their solution (or any progress toward a solution) would
improve our understanding of how information should be approximated most
effectively and could influence directly or indirectly current approaches. These
problems are summarized below:

– To what extent can the various approximation problems defined so far be
unified under a common model, and what is the effectiveness of techniques
developed for one such problem when used for another?
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– What are the underlying principles of human pattern recognition and how
can they be used to develop techniques for bucketizing data in the most
effective way even when that is not a result of proximity in the natural space
where the data resides?

– Given a set of elements that fall in a bucket, what information should be
stored in the bucket for the most effective approximation of the set, in terms
of obtaining the best trade-off between information size and approximation
error?

– What are intuitive and mathematically robust distance functions for non-
numeric data elements or data elements with complex structure?

– What are the opportunities that arise from combining index technology with
approximation technology and how can the trade-off between efficient index
searches and high-quality approximations be balanced?

– How can complex data elements and complex operator results be approxi-
mated?

It seems that there is a lot of work on approximations in front of us. Hopefully,
as a community, we will be able to move forward on some of these problems,
and have some fun on the way too!
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