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Abstract. In this paper we present a distributed query framework suitable for
use in federations of digital libraries (DL). Inspired by e-commerce technology,
we recognize CPU-processing and queries (and query answers) as commodities
and model the task of query optimization and execution as a task of trading CPU-
processing, queries and query-answers. We show that our framework satisfies the
needs of modern DL federations by respecting the autonomy of DL nodes and
natively supporting their business model. Our query processing conception is in-
dependent of the possible distributed architecture and can be easily implemented
over a typical GRID architectural infrastructure or a Peer-To-Peer network.

1 Introduction

Digital Libraries’ users may need to simultaneously use two or more libraries to find
the information they are looking for. This increases the burden of their work as it forces
them to pose the same query to different DLs multiple times, each time using a possibly
different user interface and a different metadata schema. Digital Libraries are aware of
this deficiency and have been trying for a long time to attack this problem by creating
federations of DLs. Especially for small DLs, joining such federations is necessary for
attracting more users and thus, ensuring their economic survival.

The architectures of these federations usually follow a wrapper-based centralized
mediation approach. Nevertheless, the growth of DL collections and the increase in the
number of DLs joining federations have rendered these architectures obsolete. Almost
every major DL is evaluating new architectures to replace its old systems. For instance, a
kind of P2P architecture will be evaluated within the framework of the BRICKS [2] Eu-
ropean Integrated Project (peer nodes are called Bricks nodes in this project), whereas
the GRID architecture will be evaluated within the DILIGENT [8].

Obviously, existing DL federations will benefit a lot by the above architectures as
the improved search and browse response-time will enable them to form even larger
federations. On the other hand, even today’s hardware and software architectures (e.g.,
ultra fast SANs) do provide the means for building fast federations, yet DLs are still
reluctant in unconditionally joining them. It seems that apart from the scalability prob-
lem, there are additional ones inhibiting the creation of large federations. DLs prefer
to keep their systems completely autonomous. They want their nodes to be treated as
black boxes, meaning that remote nodes should make no assumption on the contents,
status and capabilities of their systems. Exporting this information to distant nodes hurts
the autonomy of DLs, which in turn reduces their flexibility and increases the burden
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of their work. An additional problem is that DLs are usually competitive institutions,
therefore, the proposed distributed architectures should natively respect and support
their business requirements.

The main contribution of this position paper is the presentation of a query process-
ing schema, which may be setup over a P2P or GRID-based network architecture. Our
proposal respects the autonomy of existing DLs and natively addresses their business
model. The rest of the paper is organized as follows: In section 2, we discuss the busi-
ness requirements of DLs. In section 3, we present our query processing architecture.
In section 4, we discuss any relevant work before concluding.

2 Digital Libraries Federations Requirements

In the introduction we argued that DLs are reluctant in forming federations because
they are not sure that these systems comply with their business model and respect their
autonomy. In the following paragraphs, we briefly examine these requirements focusing
on the problems they create to the two most prominent future DL architectures, i.e, P2P
networks and the GRID.

Business Model - Content Sharing. Economic prosperity of Digital Libraries is usu-
ally bound to their ability to sell information (content, annotation and metadata) and
data processing services to their users. These are in fact the only assets DLs hold, mak-
ing them reluctant to give away any data to third-party entities, especially if this is done
over the Internet. For instance, in BRICKS many institutions will not export or mirror
their data to the common BRICKS community network but instead will allow access
to their data and legacy systems through the use of conventional wrappers. Employ-
ing a strict security and trust policy in every network node and using state-of-the-art
content-watermarking techniques reduces the reluctance of DLs in sharing their data.
Nevertheless, experience shows that no security system is perfect and DLs are aware of
this fact.

The reluctance of DL to share their content creates a lot of problems in architec-
tures following the GRID paradigm, since the latter model the process of evaluating
queries as a task of moving the data (content) to one or more processing GRID-nodes,
and then starting the actual execution of these queries. Obviously, a completely new
query processing architecture must be used that will minimize the physical movement
of (unprocessed) data.

P2P-based systems are also affected by the content sharing restriction problem.
Building a metadata P2P indexing service, using a Distributed Hash Table (DHT), will
distribute the metadata of a DL to multiple, potentially less trusted nodes, including
other competitive DLs. This is not something that a DL’s manager will easily approve. A
solution would be to use a double hashing technique, i.e., build a DHT of the hash value
of the metadata instead of the metadata themselves. In this way, nodes will know the
hash value of the metadata but not the exact metadata. If the users make only keywords-
based queries, this approach will be satisfactory. But if advanced query capabilities are
required, a traditional query processor that uses DHT indices and requires the physical
movement of data, just like the GRID architecture, will have to be used. Thus, even in
the case of P2P-based systems, a new query processing framework is required that will
also minimize the physical movement of unprocessed information.
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Business Model - Integration of Query Processing and Accounting. Consider a
small federation of two DLs where the first DL holds digital pictures while the sec-
ond one has information concerning poetry. Assume that a user of this federated sys-
tem is looking for pictures that were created by painters that have also written certain
types of poems. This query combines pieces of information from both DLs, yet only
retrieves/browses content from the first one. Since DL sell (any possible piece of) in-
formation, it is a matter of the billing policy of each DL, whether the user should be
charged only for the retrieved content, or also for the information of the second DL
that was used during query processing. If DLs choose to charge for any information
they provide, which we expect in the future to be a typical business scenario, the query
optimizer and the accounting system should be closely integrated.

Competitive Environment. The most important business requirement of future DLs
federations is that these should be compatible with the competitive nature of the DLs
market, i.e., information is asset and data should be treated as commodities for trad-
ing in a competitive environment. Competition creates problems in DL federations, as
it results in potentially inconsistent behavior of the nodes at different times. The query
processing architecture should be capable of handling cases where remote nodes expose
imprecise information. Such behavior is typical (and allowed) in competitive environ-
ments.

Autonomy. A requirement of modern DL federations is that distributed architectures
should respect the autonomy of DLs and treat them as black boxes. Middle-wares and
wrapper-based architectures help in preserving the autonomy of remote nodes. How-
ever, during query processing and optimization, existing proposals require, a priori, cer-
tain pieces of information (e.g., data statistics, remote nodes status (workload), nodes
capabilities (e.g., which variables must be bound), operators (e.g., union, join) cost
functions and parameters) that clearly violate their autonomy. A proper query process-
ing architecture that respects DL’s autonomy and work only with information that nodes
expose during query processing.

3 The Query Trading Architecture

3.1 Execution Environment

We have recently proposed a new query processing architecture [18] that meets the
scalability and autonomy requirements of future DLs and perfectly matches their busi-
ness requirements. Figure 1 presents a typical example of the proposed architecture. It
shows a network of five autonomous DL nodes (N1 − N5). Each of them, stores its
own information (data and metadata) and may additionally store copies of other nodes’
data and metadata, if such a thing is allowed by the policy of these distant nodes. For
instance, in Fig. 1, both nodes N2 and N3 have information on “Greek Documents”
for the period 500BC-400BC. This redundancy may be necessary for load-balancing or
robustness reasons, or it may be simply the natural result of competition between nodes
N2 and N3.

The only requirement of our architecture is that there must be a kind of directory
service holding information on which data each node locally holds. For small networks,



226 F. Pentaris and Y. Ioannidis

Fig. 1. Architecture overview

this can be implemented using a centralized mechanism (e.g. an LDAP server). For
larger networks, the directory service can follow the P2P and DHT paradigm. Each node
must register in the directory service a (high-level) description of the data it holds. In
Fig. 1 we have drawn the contents of the directory service next to each node. We should
note that the directory service is used only in the initial phase of queries’ evaluation to
locate relevant (to the queries) DL nodes. The selection of the actual nodes that will
evaluate these queries is handled by the economics-based mechanism presented in the
next subsection. This is different to a traditional P2P search engine. The latter contains
information on all the objects (and their properties/attributes/terms) of the distributed
system, whereas our directory service contains more high-level information such as
which nodes hold information concerning (e.g.) middle-age pictures.

3.2 Query Evaluation Mechanism

During query evaluation, we treat DL nodes as black boxes, assuming nothing on their
workload or capabilities. The only information required is the one available thought
the directory service. Execution of distributed queries is handled by splitting them into
pieces (sub-queries), forwarding them to nodes capable of answering them, and then
combining the results of these queries to build the answer of the distributed query.

To make our architecture more concrete, continuing the previous example (Fig. 1)
we assume that a user at node N1 asks for the URLs of every ancient Greek document
written in Athens between 500BC and 498BC. Since DL nodes are black boxes, N1 can
do nothing better than asking the rest DL nodes for any piece of information that might
be of some help in evaluating the query. As Fig. 2 shows, network congestion is avoided
by having N1 sent its “request for help” only to the directory service, which in turn, only
forwards this request to the relevant (to the query) nodes. Any node answering to this
request sends its reply directly to the initial node (N1), which further reduces network
bandwidth consumption.

In the example of Fig. 2, we assume that N2 offers to return to N1 a URL list of
all relevant documents written between 500BC and 499BC in 25 seconds and the rest
documents (498BC) in 20 seconds. Similarly, node N3 offers the same information in
50 and 15 seconds respectively. Obviously, node N1 query optimizer will choose node
N2 for all URLs concerning documents written in 500-498BC and N3 for the rest ones.
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Fig. 2. Example of query processing

That is, the query processor of N1 effectively purchases the answer of the original query
from nodes N2 and N3 for 20 and 15 seconds respectively.

The above example shows the main idea behind the query processing architecture
that we propose. It is inspired by e-commerce technology, recognizes queries (and query
answers) as commodities and approaches DL federations as information markets where
the commodities sold are data. Query parts (and their answers) are traded between DL
nodes until deals are struck with some nodes for all of them. Distributed query execution
is thus modeled as a trading of parts of query-answers. Buyer nodes (e.g., N1) are those
requiring certain pieces of information in order to answer a user query. Seller nodes
(e.g., N2 and N3) are those offering buyers this missing information.

Although the idea is simple, it is difficult to construct an algorithm that can optimize
the trading of queries and queries answers. For instance, assume that in the previous
example, node N3 offered the URLs of the documents written in 500BC,499BC and
498BC separately for 20s, 30s, and 15s respectively. In this case, node N1 has many
different ways of combining the offers of N2 an N3. In fact, it might worth for N1

to negotiate with node N2 the case of N2 also returning the URLs of the documents
written in 500BC and 499BC separately, before node N1 decides on which offers can
be combined in the best way.

3.3 General Trading Negotiation Parameters

There are a lot of parameters that affect the performance of a trading framework such
as the one described in the previous sub-section. For details on these parameters see
[1,3,4,11,13,15,17,18,21,22,25]. We briefly describe the most important ones:

Negotiation protocol. Trading negotiation procedures follow rules defined in a nego-
tiation protocol [25]. In each step of the procedure, the protocol designates a number
of possible actions (e.g., make a better offer, accept offer, reject offer, etc.) that a node
may take. In the previous example, we assumed that the protocol used was bidding
[23]. This protocol is simple but obviously cannot work when the number of nodes is
large. In larger networks, plain bidding would lead to network flooding problems. In
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this case, a better alternative is to use an agent-based or P2P-based [15] auction, which
reduces the number of exchanged network messages. If the items/properties negotiated
are minor and the nodes participating in the negotiation are few, then the oldest known
protocol, bargaining can be also used.

Strategy. In each step of the negotiation procedure and depending on the negotiation
protocol followed, nodes have multiple possible actions to choose from. It is the strategy
followed by each node that designates which action is the best one. The strategy can
be either cooperative or competitive (non-cooperative). In the first case, nodes try to
maximize the join utility of all nodes that participate in the negotiation. In the second
case, nodes maximize their personal utility. Our architecture supports both types of
strategies. In cooperative ones, nodes expose information that is accurate and complete.
In competitive setups, nodes expose information that is usually imprecise. For instance,
a node may lie about the time required for the retrieval of a piece of information.

User preferences and items valuation. In section 3.2 we gave an example where the
value of the commodities (i.e., the pieces of information) offered by remote nodes was
expressed in term of the time required to fetch this information. More generally, offers
of remote nodes will have many different properties, including (e.g.) the time required
to retrieve the information, the precision and age of the data, and its cost in monetary
units. That is, the valuation of an offer is multi-dimensional (a vector of values). The
user must supply a preference relation over the domain of these vectors that orders the
set of possible offers. This relation is known to buyer nodes and is used during the
negotiation phase (e.g., during bidding) to select the offers that best fit the needs of the
user.

Market Equilibrium. In competitive environments, nodes provide imprecise infor-
mation. For instance, if the preference relation is the total cost (in monetary units) of
the answer, then nodes will increase the value of all pieces of information that have
more demand than supply. This will cause a decrease in the demand of this information
and after some time, values will stop fluctuating and the market will be in equilibrium,
i.e., demand will equal supply for all traded queries. This requires all other parameters
affecting the value of items to be static [6]. The designer of a system can model the
market in such a way that equilibrium values force the system to have a specific behav-
ior (e.g, altruistic nodes are not overloaded). A nice property of our architecture is that
according to the first welfare theorem [20] of economics, equilibriums will always be
Pareto optimal, i.e., no node can increase its utility without decreasing the utility of at
least on other node.

Message congestion mechanisms. Distributed implementation of the previous nego-
tiation protocols have run into message congestion problems [23] caused by offers
flooding. This can be avoided using several different approaches such as agent-based ar-
chitectures, focused addressing, audience restriction, use-based communication charges
and, mutual monitoring [17,23].

3.4 The Proposed Architecture

As it was mentioned earlier, we model query processing as a query trading procedure.
Although there is a lot of existing work in e-commerce and e-trading (see previous sub-
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section), there in an important difference between trading queries (and their answers)
and the rest commodities. In traditional e-commerce solutions, the buyer receives offers
for the complete items that he/she has asked for. However, in our case, it is possible that
no DL node has every piece of information required to answer a user supplied query.
Sellers will have to make offers for parts of the query (sub-queries) depending on the
information that each DL holds locally. Buyers will have to somehow merge these of-
fers to produce the answer of the initial queries. Since all nodes are black boxes, most
sellers will make overlapping offers and buyers will have to make multiple rounds of
communication with the seller nodes to ensure that the accepted offers are not overlap-
ping. The problem of query optimization also complicates the task of the buyer since
better offers not always improve the global distributed query execution plan. In the next
paragraphs, we present how query optimization works in our framework. Further details
on the proposed framework and its performance characteristics are given in [18].

The distributed execution plans produced by our framework consist of the query-
answers offered by remote DL seller nodes together with the processing operations
required to construct the results of the optimized queries from these offers. The query
optimization algorithm [18] finds the combination of offers and local processing oper-
ations that minimizes the valuation (cost) of the final answer. For this reason, it runs
iteratively, progressively selecting the best execution plan. In each iteration, the buyer
node asks (Request for Bids -RFBs) for some queries and the sellers reply with offers
that contain the estimations of the properties of these queries (query-answers). Since
sellers may not have all the data referenced in a query, they are allowed to give offers
for only the part of the data they actually have. At the end of each iteration, the buyer
uses the received offers to find the best possible execution plan, and then, the algorithm
starts again with a possibly new set of queries that might be used to construct an even
better execution plan. The buyer may contact different selling nodes in each iteration,
as the additional queries may be better offered by other nodes. This is in contrast to the
traditional trading framework, where the participants in a negotiation remain constant.

In order to demonstrate our algorithm, we will use Fig. 3 that shows a typical mes-
sage workflow among the buyer and seller nodes when the number of nodes is small
(i.e., the bidding protocol is sufficient and we don’t need to use auctions) and nodes
follow a cooperative strategy. In this figure, a node receives a query Q that cannot be
answered with the data that this node locally holds. For this reason it acts as a buyer
node and broadcasts a RFB concerning query Q to some candidate seller nodes. The
sellers in their turn, examine the query and if they locally have any relevant information
concerning parts of it, they inform the buyer of the properties of these parts (offers). In
our example, only two nodes return some offers back to the buyer.

The buyer node waits for a timer to expire (bidding duration) and then considers all
offers it has received to construct an initial optimal distributed query execution plan.
It then examines this plan to find any other possible part of the query that could help
the buyer further improve the distributed plan. In Fig. 3 we assume that the buyer (e.g.)
found some parts of the initial query that are offered by both sellers. For this reason it
starts a second iteration of the bidding procedure, this time requesting for bids on these
overlapping parts. Figure 3 shows that only one seller makes an offer in the second
bidding procedure. After the bidding procedure of the second negotiation is over, the
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Buyer Sellers

User submits query Q to
a (buyer) node

of the DL federation Buyer node requests for bids concerning query Q from four candidate seller nodes

Two nodes reply with the parts of query Q that

they can answer from their local data. The rest nodes

cannot assist (e.g., they are overloaded) and do not reply

Buyer node examines all received offers and
builds an initial optimal distributed execution plan.

It then analyses this plan and identifies
certain parts of query Q that might worth asking

from sellers

One node replies with offers

concerning some of the parts of query Q that

the buyer asked for. The rest nodes cannot help and sent no reply

Query Q

Buyer node requests for bids concerning parts of query Q from
three candidate seller nodes

Buyer node examines all received offers and
builds an improved optimal distributed execution

plan. It then analyses this distributed plan and
cannot find any part of query Q that could further

improve the currently optimal distributed
execution plan

Buyer node informs sellers of the final distributed query execution plan and asks themto execute the assigned parts of the plan and return to the buyer the partial results

Buyer receives the results of parts of the query
and uses them to construct the answer of the

initial query Q.

Seller nodes return the

answers of the assigned parts of query Q

Result of query Q

Fig. 3. Workflow of network messages between the buyer and seller nodes

buyer uses the new offer(s) to further improve the distributed plan and then re-examines
it to find any other possible part of the query that can be improved. In our example, we
assume that the buyer cannot find any such sub-query. Therefore, it asks from the se-
lected remote nodes to evaluate the parts of the distributed plan that have been assigned
to them and then return the results of these parts back to the buyer node. The latter uses
these results to construct the answer of the initial query Q.

3.5 Processing-Tasks Trading

It is common in DLs to pose queries requiring substantial CPU processing to answer.
For instance, a user may ask for all Cycladic-art picture objects that look similar to a
specific one, where the similarity of two pictures is defined according to a user-supplied
function. Answering this query will require substantial processing to evaluate the user-
supplied function multiple times. For this reason in [19] we proposed a further en-
hancement to the previous query trading algorithm (QT) that allows it to also trade
processing-tasks. There are three different ways to accomplish this:

Single processing-task trading. After the query trading has been completed and a dis-
tributed query execution plan has been produced, we can analyze this plan to identify
processing-hungry operations that might worth assigning to distant nodes (e.g., a user-
supplied picture similarity function, or some CPU-bounded join operators). We could
then run a single round of processing-tasks trading to assign them to remote nodes.



Query Trading in Digital Libraries 231

Table 1. Comparison of different ways of query and process-task trading

Algorithm Advantages Disadvantages Suitability

Plain query Fastest optimization Produces the worst Small queries without

trading mechanism query execution plans user-defined functions

Single Fast Limited capabilities Large queries

processing-task optimization for assigning with non-complex

trading mechanism processing tasks user-defined functions

Iterative query Assigns many Slow optimization Large queries

and processing-task processing tasks mechanism with complex

trading to remote nodes user-defined functions

Simultaneous query Full distribution of Very slow Very large queries

and processing-task processing tasks optimization with heavy processing

trading mechanism requirements

Apart from the fact that we trade processing-tasks instead of queries, processing-tasks
trading is similar to the plain query trading described in the previous section.
Single processing-tasks trading is especially useful when optimizing DL queries con-
taining processing operators that should be applied after the matching rows/objects have
been retrieved. An example of such a query would be the one asking for thumbnail pic-
tures of all Cycladic-art objects found in 2004. Note that if this query was expressed
in SQL, its select part would contain a user-defined function that converts the retrieved
full-resolution pictures to thumbnails.

Iterative query and processing-task trading. The second approach is to run a query
trading followed by a processing-task trading iteratively, until the distributed query ex-
ecution plan cannot be further improved. This approach is better than the first one,
since it partially integrates query and processing trading. However, it increases the time
required for query optimization and thus should be preferred in queries involving pro-
cessing of user-defined function before the matching DL objects have been identified. If
these queries were expressed in SQL, they would have contained user-defined functions
in the where part of the query.

Simultaneous query and processing-task trading. The last approach is to fully inte-
grate query and processing trading, i.e., simultaneously request bids for both queries
and processing. This approach yields the best query execution plans but requires ex-
cessive time for the query optimization. Therefore, it should be the preferred option for
very large queries requiring substantial amounts of CPU-processing.

Table 1 summarizes the advantages and disadvantages of the three different ways of
processing-task trading. This summary is the result of an excessive set of experiments
presented in [19].
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3.6 Parameters Affecting Query and Processing-Task Trading

In section 3.3 we discussed the parameters affecting all trading frameworks, including
the ones presented in this paper. In this section, we focus our attention on the query and
processing-task trading specific parameters.

Items valuation. In section 3.3 we argued the the valuation of an offer is multi-di-
mensional. However, this does not necessary mean that offers, made for a specific query,
will differ in many attributes. It can be proved that under certain conditions in competi-
tive (non-cooperative) environments, if all offers for a query differ in only one property
(e.g., query execution time), then in market equilibrium all nodes will make the same
offer for that query. For instance, if the query trading framework is used as a classical
query optimization mechanism, then all offers for each query will differ only in the
query execution time. Then, the previous proposition states that in competitive market
equilibrium, all nodes for the same query will offer the same execution time. The proof
of this proposition is based on the fact that (a) only a single equilibrium price exists and
(b) no node will have an incentive to deviate from that market price.

Negotiation protocol. In the previous paragraph we argued that if offers differ in only
one property, then in the end (at market equilibrium), all offers for the same query
will be equivalent. In this case, the best negotiation protocol to use, is plain bidding or
auctioning, since all offer’s properties are constant and thus non-negotiable. This does
not hold if offers may differ in more than one property. For instance, if the query trading
framework is used for the purpose of charging users for the search and browse facilities
used, then nodes’ offers for the same query will differ in (e.g.) both the price and in
the quality of the data offered. In this case, the preferences of the user can be better
satisfied using a multi-lateral bargaining protocol, that will allow users to efficiently
and simultaneously negotiate all possible price-quality combinations.

Strategy. In cooperative environments where offers for the same query differ in only
one property, there is no reason to implement any strategy. If the environment is com-
petitive, then results from the theory of games [21] should be used. Finally, the most
difficult case is when offers for the same query differ in multiple properties. Then, the
resulting trading framework solves the problem of multi-objective query optimization.
Examples of strategies that work in this scenario are given in [14,7].

Market Equilibrium. In section 3.3 we argued that in market equilibrium, the alloca-
tion of resources is Pareto optimal. It can be proved [19] that usually, the requirements
of the second theorem of microeconomics [7] hold for the query and processing-tasks
trading framework. This theorem is the opposite of the first theorem of microeconomics
mentioned in section 3.3 and in our case, states that any load-balancing algorithm
achieving Pareto optimal resource distribution in distributed DLs can be implemented
using the query trading algorithm. This last proposition shows the power of our query
and processing-tasks trading algorithm.

Subcontracting. The example of section 3.2 was a rather simple case, since sellers
nodes did not considered the case of constructing offers using data retrieved from third
party nodes, i.e., subcontracting parts of offers. In experiments presented in [19], it was
shown that subcontracting increases network messages exchanges and thus, does not
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always increase the performance of the distributed system. However, in many cases, this
technique is unavoidable as it is the only one allowing buyers to acquire data residing
in nodes that are only indirectly (though a third node) accessible to them.

Contracting. Contracts are used in microeconomics to describe the obligations of sell-
ers and buyers and usually define a penalty that a buyer/seller will pay to the
seller/buyer if it unilaterally breaks the contract. In the trading framework, contracts can
be used to model the notion of adaptive query optimization. As mentioned in section
3.4, the query trading is an iterative algorithm that initially finds and then progressively
optimizes the distributed execution plan of queries. We may use the notion of contract-
ing to allow buyers to early start the evaluation of queries (i.e., make an early contract),
before the final iteration of the trading algorithm has completed. Early contracting re-
duces the algorithm execution time, yet, it risks the contracted query execution plan to
be much more worsen than the optimal one. In this case, buyers will have to stop the
evaluation of the query, wasting a lot of resources (the penalty of breaking the con-
tract), and then restart query evaluation using the optimal execution plan (found in the
last iteration of the algorithm). Note that this is one of the ideas behind the notion of
adaptive query optimization. Thus, with the proposed contracting modelling, we can
use the existing microeconomic theory (e.g., [14]) to predict the performance of this
type of adaptive query optimization.

Quality of Service. Previously, we discussed the possibility of a buyer breaking a con-
tact. More generally, the opposite can also happen, i.e, a seller may unilaterally break a
contract. For instance, if a network failure occurs, then some sellers may not be able to
fulfill their contracts with distant buyers. This possibility is handled in microeconomics
using the notion of insurance, which can also be used in our trading framework. The
role of insurance companies will be played by certain network nodes and links that
will be ready to assist in query evaluation if a seller runs into some predefined difficul-
ties (e.g., out of processing resources). Existing microeconomic theory and the theory
of choice under uncertainty can be used to calculate the exact amounts of resources
that must be reserved by the insurance nodes, so that the whole DL network exhibits a
certain levels of QoS.

4 Related Work

There is a lot of work in distributed query execution and optimization over P2P systems.
However, query-processing techniques employed by these systems cannot be used (di-
rectly) in DL systems, as P2P systems are typically/often limited to keyword-based
searches, and thus cannot support advance predicate- or ontology-based queries. As far
as grid architectures are concerned, DL node autonomy and diversity result in lack of
knowledge about any particular node with respect to the information it can produce and
its characteristics, e.g., query capabilities, cost of production, or quality of produced re-
sults. If inter-node competition exists, it additionally results in potentially inconsistent
node behavior at different times. All these problems make traditional query optimiza-
tion techniques [9,10,16] inappropriate [5,12,24] for autonomous systems such as the
ones encountered in Digital Libraries. Our proposed trading framework natively han-
dles these problems without any difficulty.
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As far as the authors are aware of, the only architecture that closely resembles ours
is Mariposa [24]. Nevertheless, Mariposa’s optimization algorithm produces plans that
exhibit unnecessarily high communication costs [12] and are arbitrarily far from the de-
sired optimum [16,18]. Furthermore, Mariposa violates the autonomy of remote nodes
as it require all nodes to follow a common cost model and asks remote nodes to expose
information on their internal state (e.g., their current workload).

5 Conclusion

We propose a query processing paradigm, that respects the autonomy of DL nodes and
natively supports their business model (information trading). Our framework natively
supports distributed query optimization and allows for Pareto Optimal allocation of DL
resources. It can be easily implemented over a typical GRID architectural infrastructure,
where the GRID nodes will act as sellers and/or buyers of information and processing.
For scalability reasons, a decentralized (P2P) agent-based auction mechanism and/or a
P2P DHT for the directory service implementation can be used.
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