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Abstract. Most methods proposed so far for classification of high-dimen-
sional data are memory-based and obtain a model of the data classes
through training before actually performing any classification. As a result,
these methods are ineffective on (a) very large datasets stored in databases
or data warehouses, (b) data whose partitioning into classes cannot be cap-
tured by global models and is sensitive to local characteristics, and (c¢) data
that arrives continuously to the system with pre-classified and unclassified
instances mutually interleaved and whose successful classification is sen-
sitive to using the most complete and/or most up-to-date information. In
this paper, we propose LOCUS, a scalable model-free classifier that over-
comes these problems. LOCUS is based on ideas from pattern recogni-
tion and is shown to converge to the optimal Bayes classifier as the size
of the datasets involved increases. Moreover, LOCUS is data-scalable and
can be implemented using standard SQL over arbitrary database tables.
To the best of our knowledge, LOCUS is the first classifier that combines
all the characteristics above. We demonstrate the effectiveness of LOCUS
through experiments over both real-world and synthetic datasets, compar-
ing it against memory-based decision trees. The results indicate an overall
superiority of LOCUS over decision trees on both classification accuracy
and data sizes that it can handle.

Keywords: Lazy Classification, Scalable Classification, Disk-Based
Classification, Optimal Bayes.

1 Introduction

Consider a collection of “labeled” objects available, often called a training set. The
objects are described by a number of attributes, called features, and are modeled as
feature vectors. The object labels are used to categorize each object into one of sev-
eral predefined classes. Assuming that the class of every object can be expressed as
a function of the object’s attributes, features are often called predictor attributes,
while the corresponding class is the dependent attribute. Classification is the task
of labeling new objects, whose class is unknown, using the a-priori labeling in the
training set as a basis. Some example applications of common classification tasks
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include automated medical diagnosis, target group identification, email filtering,
character or speech recognition, and fraud detection.

Interestingly, traditional classification algorithms mainly focus on providing
high accuracy even at the cost of iterative traversals of the training data, ne-
glecting the potential access costs of such operations. Clearly, this is acceptable
only for small datasets that fit in main memory: the majority of the literature
involves datasets with only a few hundreds of instances at most.

Nevertheless, increasing use of computers and database management systems
(DBMSs) in modern business environments, decreasing storage costs, and other
similar trends have generated a wealth of data stored in databases and data
warehouses. Data mining over such databases can discover useful information
that can help their owners predict future events based on past observations. As
a special case of data mining, classification presents new challenges when applied
to training sets that are orders of magnitude larger than the ones typically con-
sidered. Revisiting traditional classification algorithms to make them applicable
in today’s large-scale environment is highly desirable.

Existing classifiers can be placed into two main categories: eager and lazy.
Eager classifiers use an off-line training phase during which they build a model
of the training set. During classification they use this model to label unknown
objects. Popular eager classifiers include Decision Trees [I8] and Support Vector
Machines [5]. On the contrary, lazy classifiers need no training as they do not rely
on a global model. For every unknown object, they search the training set to find
the objects that are most similar to the unknown one (under various similarity
measures on the objects’ features, e.g., Euclidian distance). Then, they classify
the given object based on the classes of these most similar objects. The most
widely known lazy classifier is Nearest Neighbors [12].

Comparing the aforementioned general classification schemes, we can see that
eager classifiers pay a considerable cost for (off-line) training but provide faster
answers during decision, exploiting their use of a global model. On the contrary,
lazy methods spend no time in training at the expense of increased costs during
decision, due to on-line searching. Besides trivial training costs, another great
advantage of lazy classifiers is that they exhibit greater accuracy on complex
datasets when a global model is too hard to find, since they exploit only lo-
cal information. Furthermore, they need no incremental maintenance when the
training set is expanded with new known instances. This is extremely important
in applications that involve a continuous flow of new training data and classifi-
cation tasks that are sensitive to the most up-to-date information. For example,
automatically deciding whether to buy or sell a given share in a stock-market ap-
plication seems to be more effective if based on a window consisting of the most
recent transactions, rather than on a global model built on older observations.
Clearly, keeping such a window up to date is much easier in lazy schemes.

Our study of related work has revealed that most disk-based classification
methods proposed so far mainly focus on the development of eager classifiers.
To overcome this drawback, in this paper, we propose LOCUS (Lazy Optimal
Classification of Unlimited Scalability), an effective, efficient, and disk-based
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lazy classifier. LOCUS is data-scalable and can be implemented using standard
SQL over arbitrary database tables. It overcomes the efficiency problems of exist-
ing lazy methods providing very fast on-line answers, while it still enjoys all the
advantages of laziness described above. To the best of our knowledge, LOCUS
is essentially the first disk-based lazy classifier with the following properties:

— It exhibits good classification accuracy, which improves as training sets be-
come larger. This can be justified theoretically based on its convergence to
the optimal Bayes classifier, which minimizes the classification error prob-
ability. The same is also verified experimentally in comparison to Decision
Trees, a very popular and accurate existing classifier.

— It is database-friendly and, to the best of our knowledge, the only lazy
method that uses a small and constant number of highly selective range
queriesﬂ in order to classify unknown objects. Such queries actually need
to access a very small part of the underlying database and have been well
studied in the database literature. They can be expressed in standard SQL
and existing query optimizers guarantee their fast response times with the
use of traditional indices, e.g., BT-Trees.

The rest of this paper is organized as follows: In Section 2] we review related
work and, in Section B, we describe LOCUS and show its optimality with respect
to classification error probability. In Section @ we present the results of our
experimental evaluation using both real-world and synthetic datasets and, finally,
we conclude in Section [l and present our directions for future work.

2 Related Work

The problem of classification over small datasets that fit in main memory has
been thoroughly studied in the past and there are a very large number of related
papers. The most influential methods have been well described in existing text-
books related to pattern recognition [2I] and machine learning [T5]. Although
LOCUS is a disk-based approach built on fundamental ideas originally conceived
in these areas, surveying existing memory-based techniques in detail exceeds our
purpose.

The need for scalable and database-friendly data mining techniques over ex-
tremely large datasets has given thrust to revisiting traditional methods under
new constraints, in an attempt to transform them into scalable solutions. General
ideas towards this end can be found in related surveys [6/17].

Interestingly, a large number of these efforts have focused on Decision Trees,
mainly due to their ability of learning faster than other eager classifiers and their
accuracy, which has been found comparable or superior to other classification
models []]. Moreover, every path in a Decision Tree can be easily converted into
an SQL statement that can be used to access databases efficiently [I]. Popular

! The number of queries depends on the training set. In all cases we have seen in
practice one or two queries are enough.
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methods in this category include SLIQ [I3], SPRINT [I9], RainForest [9], Med-
Gen [1I], and BOAT [§]. Note that these methods do not actually propose a
new classification model. Instead, they provide a disk-based implementation of
a popular one, i.e., Decision Trees. The rationale behind LOCUS is similar. It
provides a disk-based implementation for a rather familiar classifier based on
counting training vectors in a fixed neighborhood centered at an incoming un-
known vector. The main differences between LOCUS and the other techniques
is that LOCUS is lazy and converges to an optimal solution with respect to
classification error probability as the training dataset becomes larger.

Another popular approach that can be combined with known classifiers to
reduce resource requirements is sampling and dataset size reduction. For exam-
ple, CB-SVM [23] first applies BIRCH [24], a disk-based clustering algorithm,
and then trains a classifier based on support vector machines using the centroids
of the identified clusters instead of the original data. Such methods induce po-
tentially expensive pre-processing that can be thought of as another form of
training. Moreover, they leave a taste of defeat as they depend on lossy tech-
niques. LOCUS considers every training vector as valuable. Both theoretical and
experimental results show that its accuracy improves as datasets become larger,
rendering it superior to sampling.

As we have already mentioned, lazy classifiers do not build a general model in
a training stage, but access the training data on-line for every decision. Relying
on local rather than global rules, they promise higher accuracy in inherently com-
plex situations. Popular lazy classifiers include Nearest Neighbors [12], IB1-IB5
[B], and LazyDT [7]. Clearly, evaluating a similarity measure between an un-
known vector and every training vector for ranking the latter accordingly is im-
practical in very large datasets. To overcome this drawback, several approaches
have been proposed, based on specialized multidimensional indices for acceler-
ating the search without scanning the entire training set [12]. (These methods
mainly focus on Nearest Neighbors.) However, it has been recently shown [20]
that accessing the data using such techniques can be even worse than a sequen-
tial scan through the entire dataset under very broad conditions. This is due
to the fact that the distance difference between the nearest and the furthest
neighbor is often so small that it turns methods based on Nearest Neighbors
inaccurate [4]. Based on these conclusions, we consider LOCUS as essentially
the first disk-based lazy classifier that guarantees both speed and accuracy over
any large dataset.

In order to achieve this, LOCUS uses an SQL Interface Protocol (SIP) [10]
and is based on highly selective range queries leaving the burden of data access
to the DBMS. Using SQL for implementation of data mining methods has been
proposed elsewhere [I0] as a general hint. Querying the data on the server where
it is originally stored (a) provides efficiency, (b) saves time from expensive export
operations, (c¢) provides increased security, since data is available only to autho-
rized users, and (d) enables scientists from different fields, potentially unwilling
to learn the usage of new software, to use familiar interfaces on top of a database
system. SQL interfaces have also been applied on construction of Decision Trees
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[10] as well as in DBPredictor [I4]. The latter is a lazy method that builds a
custom model consisting of an IF-THEN rule for every unknown vector. To do
this, it queries the training database iteratively, until some stopping criteria are
met. Executing an arbitrary number of queries per instance for building a local
model generates concerns about the performance of this method. Furthermore,
the model constructed is rather ad-hoc and its accuracy is not based on a math-
ematical foundation. Unlike DBPredictor, LOCUS uses a small fixed number of
queries per instance. Moreover, it builds no model but is based on raw counting,
which is proven to converge to the optimal Bayes classifier.

3 LOCUS C(Classification

In this section, motivated by the need for a scalable and accurate disk-based lazy
classifier, we propose LOCUS and argue that, to the best of our knowledge, it
is the first lazy classifier with these properties that converges to optimality with
respect to minimizing the classification error probability for large training sets.
In principle, given an unlabeled feature vector x, LOCUS counts the number
of neighbors per class that reside in a fixed neighborhood around x. Although
this idea is not novel (counting neighbors is common in pattern recognition), its
naive implementation overlooks that selecting the training vectors that live in
the given neighborhood of an arbitrary x by scanning the entire training set is
very expensive in large datasets. Moreover, although reasonable, it seems to be
rather ad-hoc. In the following subsections, we provide answers for both: First,
we show that our simple counting method can be based on a sound mathematical
background [2T] and converges to the optimal Bayes classifier. Second, we provide
a very efficient disk-based method to implement the otherwise familiar task of
counting. This is analogous to the contribution of algorithms like RainForest [9]
that provide efficient disk-based algorithms for the construction of well-known
Decision Trees in the area of eager classifiers.

3.1 Intuition of LOCUS

Assume a classification task in a D-dimensional feature space. For the sake of
simplicity, let all features be numerical with discrete domains (LOCUS can also
work with continuous and categorical features, as shown later). If C, denotes
the number of distinct values of the i-th feature (i € [1, D]), then there are C =
Ci1x Cy x ---x Cp possible different feature vectors. Suppose that our training
set is very dense and large, so that it contains an instance of every possible
vector. Then, intuitively, when an unknown vector x comes, it seems reasonable
to classify it according to the class of the training vector y that matches x
exactly (i.e., y = x).

Unfortunately, this ideal scenario is very unrealistic, mainly due to two rea-
sons: the number of features is usually large and most features have large do-
mains. Both factors result in an increase of C. For example, if D = 10 and C; =
10 Vi € [1, D], then C = 10'°. Hence, even in this rather simple case an ideal
training set should consist of 10 billion feature vectors, which seems impractical.
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In practice, the available training set is usually sparse, i.e., it contains a very
small subset of all possible feature vectors. Hence, finding an exact match to x
has very low probability. To overcome this drawback, a reasonable solution is
to loosen the condition of “exact match”. Since finding a training vector y such
that y = x is usually infeasible, we can alternatively search for training vectors
in a narrow neighborhood Y centered at x. Formally, we can say that y € Y iff
vi € [xi-6i, x;+6;] V1 € [1, D], where y; (x;) is the value of y (x) for the i-th
feature and §;s denote our tolerance regarding the extent of the neighborhood
Y around x. If §; values are small enough to ensure a small deviation from the
ideal scenario described above and large enough to make Y non-empty with
high probability, then classifying x according to the majority class in Y seems
intuitively reliable.

In the 2-dimensional example of Fig. [l we would classify the unknown vector
X = <X, X9> as “4”, as indicated by the majority of training points that fall
within a small area centered at x.

Clearly, loosening the “exact match” condition as described above is possi-
ble for all numerical features (either discrete or continuous). Furthermore, it is
possible for categorical features, if their values can be ordered. In such cases the
range [x;-6;, X;406;] must be substituted by a range of contiguous values around
x; according to the defined order. On the other hand, such loosening is not pos-
sible in non-ordered categorical features, in which case, we leave the equality
condition unmodified. In general, this is of minor importance for two reasons:
(a) Usually, there is a mixture of numerical and categorical features and loos-
ening the equality condition for those that include ordering is just enough. (b)
Categorical attributes have usually small domains, which makes the satisfaction
of an exact match condition highly possible.

In the following subsection, we flesh out a known argument from pattern
recognition [2I] that proves optimality for the classifier described above, showing
that it converges to the optimal Bayes classifier as training datasets become
larger.
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Fig. 1. Classification example of vector x = <x1, x2>

3.2 Optimality

Assume that x is an unlabelled feature vector and that there are M possible
classes w1, - - -, wps to which it can be classified. Then our task is to classify x into
the most probable of these classes. Naturally, the term “most probable” brings in
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mind the conditional probabilities P(w; | x), i € [1, M]. Hence, it seems reasonable
to classify x as w; if P(w; | x) > P(w; | x) ¥ j € [1, M] such that j#i. This rule
is known as the Bayes classification rule. Actually, this reasonable rule, which
seems rather empirical, turns out to minimize the classification error probability
[27]. Hence, the Bayes classifier, which performs classification according to the
Bayes classification rule, is optimal with respect to minimizing the classification
error probability.

So, our original classification problem has now been transformed into that of
comparing the conditional probabilities P(w; | x), i € [1, M]. In order to fulfill
this task, let us recall the Bayes rule from the probability theory basics:

p(x|w; )P (wi)
P(wilx) = (1)
p(x)
In this formula P(w;) is the a priori probability of class w;, p(x | w;) is the
class-conditional probability density functiorﬂ and p(x) is the pdf of x.
For the sake of simplicity, let us focus on the 2-class case (M=2). Then, using

formula ([d)) transforms the Bayes classification rule as follows: classify x to wy if
the following holds

P(wi[x) > Plws|x) =
p(x|w1)P(w1) _ p(x|ws2)P(w2)
px)  C opx)
p(x|wi1) _ P(wz)
p(xlz) ~ P(wn) @

Let N denote the total number of training vectors (N7 of which belong to wy
and Ny to wq), V the volume of some neighborhood centered at x, and ny (ng)
the number of training vectors that belong to wy (ws2) and reside in the given
neighborhood. Then the elements of formula (2)) can be estimated as follows [21]:

1,

Ni' ond p(xfws) ~ \1/ xn (el 2)

P(w;) = N

These estimators converge to the real values when N; — oo, provided that V
— 0, n; — oo, and 1{}1 — 0 (i € [1, 2]) at the same time.

In other words, these conditions indicate that using the aforementioned esti-
mators is more reliable when (a) the number of training vectors is very large, (b)
the neighborhood around x is rather small, and (c) there is a large number of
training vectors within the borders of the neighborhood, which is though much
smaller than the total number of training vectors.

Replacing the elements of formula ([2) with their estimators gives:

1 % ni Nsy
\% Ny N
1 12 > Ny = N1 > No
\% No N

2 We assume that x can take any value in the D-dimensional feature space. In the case
that feature vectors can take only discrete values, pdfs become probabilities.
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The last inequality implies classifying x to w; if n; > ns. This simplified
criterion is an estimator of the Bayes classification rule and can be generalized
for the multi-class case as follows: classify x to w; if n; > n; V j € [1, M] such
that j#i.

This result proves that the intuitive classifier described in the previous sub-
section, which simply relies on counting training vectors that fall inside a given
neighborhood around x, converges to the optimal Bayes classifier, which mini-
mizes the classification error probability.

Let us revisit the pdf estimator:

1,
p(x|w;) ~ v XN,

This can be written as

1Y e(x))
X

\% N, )

p(x|w;) ~
where ¢(x;) is a kernel function that returns 1 if x; resides in the given neighbor-
hood, or 0 otherwise. In the literature [21], there are smoother kernel functions
that better estimate continuous pdfs. However, in our case count seems to be
enough, since it is easy to implement and our goal is not to find the absolute
values of pdfs, but to identify the class that maximizes the pdf in the given
neighborhood.

3.3 Disk-Based Implementation

LOCUS is based on the criterion described above fixing a small neighborhood
around an incoming feature vector x and counting the number of its neighbors
for every class in a lazy fashion. The majority class wins. Note that this strategy
differs from that of the K-Nearest Neighbors, where the number of neighbors is
fixed instead of the volume of the neighborhood. As we have shown, this intuitive
alternative converges to an optimal solution. Furthermore, lazily counting seems
to be very attractive, due to its simplicity. However, a naive implementation can
be very expensive in terms of memory requirements and I/O costs. Recall that,
formula (B]) includes an invocation of the kernel function ¢ for every training vec-
tor. This implies a complete scan of the training set for every incoming unknown
object, which is unacceptable for very large datasets, on which we focus.

A straightforward solution would be to apply sampling in order to keep only
a small fragment of the original data that fits in main memory. However, as we
have shown, LOCUS converges to optimality when the underlying dataset is as
large as possible. Hence, sampling is out of question.

An alternative solution is to implement LOCUS over a DBMS using standard
SQL. This approach is popular in data mining and it has been shown effective in
different mining tasks [I0]. Note that counting neighbors in a small area can be
easily transformed into a highly selective range query that accesses directly the
feature vectors (stored as tuples) that reside in the given ranges. Such queries
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have been thoroughly studied in the database literature and existing query opti-
mizers guarantee high efficiency with the use of traditional indexing techniques.
This property actually turns LOCUS into an efficient disk-based approach that
is database-friendly.

Back to the example in Fig. [[l assume that known objects are stored in a re-
lation R with the following schema R(f1, fa, class). Then the number of objects
of each class that fall within the given volume can be found by the following

query:

SELECT class, count(*)

FROM R

WHERE f1 Z x1—61 AND fl S X1+(51 AND f2 Z X2—(52 AND f2 S X2—|—62
GROUP BY class

Since the volume V is chosen small so that n;/N; — 0, the number of tuples
accessed by the query above is actually orders of magnitude smaller than the total
number of tuples in R. This property makes LOCUS scalable, enabling it work
over very large datasets, which minimizes the classification error probability, as
shown in the previous subsection.

If in our previous example feature fy was categorical with no ordering defined
for its values, the corresponding query would be:

SELECT class, count(*)

FROM R

WHERE f1 Z x1—61 AND fl S X1+(51 AND f2=X2
GROUP BY class

As we have already explained, the existence of categorical features does not
generate problems.

3.4 Selection of Neighborhood Volume

As shown in Section [B.2], a proper value for the neighborhood volume V depends
on the characteristics of the underlying training set. Clearly, V must be smaller
when the dataset is denser and vice versa. A dataset becomes denser as (a)
the size N of the training set increases, (b) the number of relevant features D
decreases, and (c) the number of different values of every feature C; decreases.

Choosing a proper value for the neighborhood volume V can be automated by
using cross-validation for minimizing the classification error. Generally, if V is
too small the result set of the queries used by LOCUS is empty and classification
accuracy is marginal. The execution time of such queries is very fast, since they
actually access a limited number of tuples, if any, making initial experimentation
with small values of V very cheap. As V increases, the probability that a result
set is empty decreases and this can be easily observed, since in this case, LOCUS
starts returning useful results and classification accuracy increases. Finally, when
V becomes too large, a considerable proportion of feature vectors lies in the
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corresponding neighborhood, which invalidates the preconditions of optimality
and results once more in a decrease of classification accuracy overall. Hence, we
propose selecting V with cross-validation, i.e., by identifying a value that strikes
a balance between the two trends and minimizes classification error.

4 Experimental Evaluation

To evaluate the efficiency of the proposed techniques, we have compared LOCUS
with Decision Trees (DTs) [18], as they have been popular and effective, and have
been widely used for benchmarking in the past. The actual implementation of
DTs we have used is J48, which is a variation of C4.5 [I8] offered in weka [22],
a standard, open-source suite of machine learning algorithms. We have also run
some initial experiments with Nearest-Neighbors, implemented in weka as well.
Its scalability has been found poor, even for moderate-sized datasets, and its
accuracy comparable to that of DTs. Hence, we have excluded it from further
investigation. We have implemented LOCUS in C++4 and we have used an open-
source DBMS for query processing. We have run our experiments on a Pentium
4 (2.8 GHz) PC with 512 MB memory under Windows XP. Below, we present
the results of our experimental evaluation of the algorithms of interest over
appropriate subsets of the features of both synthetic and real-world datasets.

Synthetic datasets: Due to lack of publicly available very large real-world
datasets we have used ten functions, first proposed elsewhere [2], that have been
widely used in the past for generating synthetic data proper for evaluating disk-
based classification algorithms. The resulting datasets consist of nine predictor
attributes (6 numerical, 3 categorical) of various domain sizes and two classes.
Please refer to the bibliography [2] for more information.

We have generated datasets of various sizes and devoted a reasonable size of
200 MB of memory to memory-based DTs, which have managed to run over
small and medium datasets (of 5 x 10% and 5 x 10* tuples) but not over larger
ones (of 5 x 10° tuples or more). We have further tested LOCUS with datasets
two orders of magnitude beyond this limit (of 5 x 10° and 5 x 105 tuples). All
test sets have consisted of 10 tuples. Below, we illustrate the most indicative
results.

Fig. [2 shows the error rates generated by LOCUS and DTs, respectively, for
medium datasets (N=5 x 10* tuples) generated by the ten functions mentioned
above. We see that LOCUS wins in four cases (2, 7, 8, 9), is equal with DTs
in three (1, 3, 10), and loses in three (4, 5, 6). Its greatest success over DTs
occurs in function 2, which is complicated enough to prevent DT's from building
a global model. LOCUS overcomes this based on local information only.

Expectedly, the accuracy of LOCUS improves converging to optimality as
datasets become larger. We show this in Fig. Bl which presents the error rates
generated by LOCUS for all ten functions when the number of training tuples
varied from 5 x 103 to 5 x 10%. Clearly, error rates tend to decrease and finally
LOCUS reaches the accuracy of DTs for all cases it lost in Fig. 2l These results
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Fig. 3. Error rate using synthetic data wrt dataset size

show the potentiality of LOCUS, mainly in very large datasets, for all of which
error rates have dropped under 1%.

As an example of how the prerequisites (mentioned in Section [3.2]) for conver-
gence to Bayes optimality hold when the size of the training dataset grows, Fig.[d]
shows the size of the neighborhood volume V used by LOCUS as a function of
the number of tuples stored in the database. The specific volumes have been
found with cross-validation over datasets generated with function 5 (behavior is
similar for all ten functions). The values indicated are the normalized volumes
(i.e., the fractions of the volumes over the volume corresponding to the largest
training set) and clearly show that V tends to zero as the size of the dataset
increases.

Fig. Bl illustrates the scalability of LOCUS with respect to the number of tu-
ples stored in the database (x-axis is logarithmic). Each point represents the
average time for making a decision. Averages refer to all ten functions. Perform-
ing classification in approximately half a second over datasets consisting of 5
x 10° tuples is very promising. Note that in these experiments we have used a
single BT-Tree for each dataset, indexing the corresponding attribute with the
largest domain. Optimistically, since the classification algorithm can be applied
directly over the database relation R that holds the original data, it is highly
likely that R is already indexed for other purposes, implying that effective reuse
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Dataset F N M
Patient 8 90 3
Glass 9 214 7
Liver 6 345 2
BreastCancer 9 609 2
Diabetes 8 768 2
Letters 16| 2x10° 26
CovType 5000 10| 5x10° 7
CovType 50000 10| sx10° 7
CovType 500000 10| 5x10° 7

Fig. 6. Properties of the real datasets we have used

of existing resources may just be enough. On the other hand, multidimensional
index structures like R-trees and techniques like pre-sorting stored data or ma-
terializing views could be used to generate better results. The effect of these
techniques in this case is identical to that when applied to any (simple) queries
expressed in standard SQL, so it is orthogonal to and beyond the scope of this

paper.
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Real datasets: As we have already mentioned, LOCUS behaves best under large
datasets; hence, testing its behavior over real data, which are rather small, is
really challenging. In our study, we have chosen commonly used publicly available
real-world datasets [16]. Fig. [ shows the properties of the real datasets we
have used (number of features F, number of tuples N, and number of classes
M, respectively). Datasets appear ordered according to the average number of
tuples per class they contain. We expect better results as this number increases.
In small datasets (up to Diabetes), we have treated 2/3 of all tuples as known and
1/3 as unknown (separation has been random), which is common. In Letters and
CovType we have used 1,000 unknown tuples instead. All results are averages
of five different experiments per dataset.

Fig. [d shows the error rates generated by LOCUS and DTs respectively. Er-
ror rates are in general high over most of these datasets, which exhibit inherent
difficulty in being used for prediction tasks. LOCUS performs worst over Glass,
which is too sparse, consisting of only 214 tuples for 7 classes. Nevertheless, sur-
prisingly, it outperforms DTs in most cases overall, even over very small datasets.
As datasets become larger (mainly in Letters and CovType) its superiority in-
creases. This is also clear in Fig. B which shows the accuracy improvements over
CovType with respect to the training set size. The symbol “X” denotes that
DTs failed to deal with the case of 5 x 10° tuples.
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Overall, we have shown that LOCUS is scalable, its accuracy is comparable to
that of eager DT's in small datasets and becomes superior when datasets become
larger. Hence, we have provided strong evidence that it is a promising classifier,
mainly suited for datasets with large and constantly growing sizes.

5 Conclusions and Future Work

In this paper, we proposed LOCUS, an accurate and efficient disk-based lazy
classifier that is data-scalable and can be implemented using standard SQL. We
have shown that in most cases it exhibits high classification accuracy, which
improves as training sets become larger, based on its convergence to the optimal
Bayes. Overall, the results are very promising with respect to the potential of
LOCUS as the basis for classification, mainly over large or inherently complex
datasets.

Note that, in this thread of our work, we have focused on classification scal-
ability with respect to the number of known vectors N and have deliberately
neglected scalability with respect to the number of dimensions D. The latter
problem is tightly related to methods for feature selection, which are orthogonal
to our work presented here. In the future, we plan to investigate the applicabil-
ity of similar techniques for feature selection as well. Furthermore, we intend to
implement a parallel version of LOCUS and study its effectiveness on regression
problems (possibly replacing the “count” aggregate function with “average”).
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