
λόγος: A System for Translating Queries into Narratives
Andreas Kokkalis1, Panagiotis Vagenas1, Alexandros Zervakis1

Alkis Simitsis2, Georgia Koutrika3, Yannis Ioannidis1
1 University of Athens

Athens, Hellas
{a.kokkalis,p.vagenas,a.zervakis,yannis}@di.uoa.gr

2 HP Labs
Palo Alto, CA, USA

alkis@hp.com

3 IBM Almaden
San Jose, CA, USA

gkoutri@us.ibm.com

ABSTRACT
This paper presents Logos, a system that provides natural lan-
guage translations for relational queries expressed in SQL. Our
translation mechanism is based on a graph-based approach to the
query translation problem. We represent various forms of struc-
tured queries as directed graphs and we annotate the graph edges
with template labels using an extensible template mechanism.
Logos uses different graph traversal strategies for efficiently ex-
ploring these graphs and composing textual query descriptions.
The audience may interactively explore Logos using various da-
tabase schemata and issuing either sample or ad hoc queries.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous

Keywords
Query translation, SQL queries, Natural Language

1. INTRODUCTION
 “Logos, originally ... (meant) ... ‘opinion’, ‘word’, ‘speech’,
‘reason’, became a technical term in philosophy, beginning
with Heraclitus (535–475 BC), who used the term for a prin-
ciple of order and knowledge. … For Heraclitus logos pro-
vided the link between rational discourse and the world's ra-
tional structure. … Aristotle (384–322 BC) applied the term
to refer to ‘reasoned discourse’.” [Wikipedia].

Logos (λόγος in Greek) is the system we have developed for gene-
rating natural language translations for SQL queries.

Explaining queries in text may be useful in a handful of cases. For
example, many applications (e.g., museum portals, digital libra-
ries, e-commerce sites, and so forth) offer a form-based environ-
ment for formulating queries to search (web-based) databases. In
addition, emerging Do-It-Yourself (DIY), database-driven web
application platforms empower non-programmers to easily create
and evolve applications customized to their needs by manipulat-
ing visual elements. In all these scenarios, involving searching
and programming over a database, user interactions with the inter-
face are translated to structured queries. Explaining these implicit-
ly built queries without exposing the details of the underlying
query language becomes vital especially when executing a query
may have a different outcome from what the user anticipated.
Translation of a user’s choices on a certain form in a narrative can

assist her in forming queries correctly, even without being expert
in use of a specific interface or a query language.

Query translation can be also helpful when users use a structured
query language. Before sending the query for execution, seeing it
expressed in a more familiar way can help check whether it cap-
tures correctly the intended meaning. A user trying to understand
an error message concerning her mistaken query might prefer to
have an explanation of that query in a familiar language, instead
of getting back an error code and a generic error description. As
another example, when a query returns an empty answer, an ex-
planation of the query may help identify parts of the query that
are responsible for the failure. Similarly, when a query returns a
very large number of answers, a query explanation may help the
user understand the reasons and possibly rewrite the query into
one that returns fewer results. As yet another example, translating
queries into natural language descriptions can be handy in self-
guided exercises as part of a database class for students to get
better familiarized with database query languages.

Traditionally, the application of natural-language techniques to
the front-end of an information system environment focused
mainly on the opposite direction of the one studied here: from NL
requests to queries production (e.g., [3, 6]). Other research efforts
have tried to provide visual explanations to queries (e.g., [1]).

Finding a correct and meaningful translation for a query is not
trivial. Some queries do not have obvious semantics. Consider for
example the following query (Query 1, Q1):

select a.id, a.name from MOVIE m, CAST c, ACTOR a
where m.id = c.mid and c.aid = a.id
group by a.id, a.name having count(distinct m.year) = 1

One may see a typical aggregate query, but in reality, it is the
count aggregate that implies all and dominates the query. Hence,
it is not obvious how to produce a correct narrative, such as:

 “Find the actors whose movies are all in the same year”

Other queries contain different type of difficulty. A query with
many joins might be straightforward to be translated by simply
following primary key (PK) – foreign key (FK) relationships, but
producing a meaningful translation might not be that trivial. Con-
sider for example the following query, which involves a large
number of relations interconnected via PK-FK join relationships:

select a.name, m.title from MOVIE m, CAST c, ACTOR a,
 DIRECTED r, DIRECTOR d, GENRE g
where m.id=c.mid and c.aid=a.id and m.id=r.mid and r.did=d.id
 and m.id = g.mid and d.name = `Coppola'
 and g.genre = `action'

Due to the number of join relationships, a straightforward transla-
tion would be lengthy and convoluted. However, with appropriate
templates, this query (Query 2, Q2) can be translated as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05...$10.00.

673

“Find the titles of action movies directed by Coppola and the
names of actors that play in these movies” or

“Find the actors and titles of action movies directed by Coppola”

Our system, Logos, deals with such difficulties through two key
mechanisms: (a) a template mechanism that allows the translation
of peculiar syntactic patterns and the production of more natural
text, and (b) a set of query graph traversal strategies that generate
text from a query avoiding repetition of certain phrases or nouns
and lengthy narratives.

2. BACKGROUND
In this section, we provide an overview of our approach.

DB Schema and Queries as Graphs. We take a graph-theoretic
approach for representing a database schema and various forms of
structured queries as directed graphs. The database schema graph
is a directed graph that captures the basic roles of relations and
attributes in queries over the database. Its nodes are relations and
attributes, and its edges are either membership (connecting
attributes to relations), selection (from relations to attributes), or
predicate edges (from attribute to attribute, i.e., joins). A simple
query graph captures the possible semantics of an SPJ query and it
is an extension of the database schema graph. Its nodes are rela-
tion (one for each tuple variable in the query), attribute (one for
each attribute occurrence), and value nodes (one for each value or
a set of values specified in the query). Its edges are membership
(capturing projections), predicate (capturing joins), and selection
edges (capturing selection conditions). For more complex query
types, a query graph may contain other edge and node types that
capture functions as well as order-by, group-by and having claus-
es. For details, we refer the interested reader to [2].

Graph Annotations and Templates. We give semantics to the
various parts of a query by annotating the query graph edges with
template labels using an extensible template mechanism.

Each node that can be part of a query graph may be annotated by
a label that signifies the meaning of the node in natural language.
For example, for the relation MOVIE, the label may be ‘movies’.
Similarly, each edge (or path) connecting two nodes can be anno-
tated by a label that signifies the meaning, in natural language, of
the relationship between the source and destination node. For
instance, the membership edge connecting MOVIE to its attribute
Title may have the label ‘of’. Labels are stored on the database
schema graph for both nodes and edges. A query graph inherits
these edges from the database graph.

Our translation methods traverse the query graph and create
phrases by composing labels found on the way. For producing
more natural results, we use template labels at different granulari-
ty levels and an extensible template mechanism to fuse these la-
bels. A template label, l((v, u)), is assigned to an edge (v, u) or to
a path connecting v to u. This template is used for the interpreta-
tion of the relationship between v and u in a narrative. A template
label may have the form:

l((v, u)) = expr1 + l(v) + expr2 + l(u) + expr3

Template labels are created manually by a human, and can pro-
duce high-quality, concise text. As a short example, a template for
the selection edge eσ(MOVIE, year) may be the following:

l(eσ(MOVIE, year)) = l(MOVIE) + “ released in ” + MOVIE.year.<val>

Query Translation as Graph Traversal. We use three domain-
independent graph traversal strategies for efficiently exploring
query graphs and composing query descriptions as narratives.

Figure 1. Translation form

The first strategy (BST algorithm) composes separate clauses for
each part of the query. First, it translates the membership edges,
then it connects all query relations to the query subject through
the joins in the query, and finally, it reads the paths that connect
relations to value nodes that are specified for attributes on these
relations. The translation is performed in a depth-first way on the
query graph starting from the query subject to all relations
through the joins on the graph. The query subject represents what
the query refers to. Identifying the query subject is important
because it determines how we traverse the query graph, i.e., the
query translation direction, and what kind of clauses we generate.
Naturally, it is a relation with attributes projected in the select-
clause that holds a central position in the query graph (see [2]).

In the second strategy (MRP algorithm), the translation is realized
in a holistic manner, where information from all parts of the query
graph is blended in the translation as we traverse the graph. The
key idea here is that, while in BST all query components refer
always to the query subject, in MRP we use additional reference
points to avoid long, possibly unnatural, sentences. In this way,
we semantically split the translation at multiple points.

Finally, the third strategy (TMT algorithm) enables the use of
predefined, richer, templates for query parts in an effort to pro-
duce more concise translations.

Example translations for each strategy are shown in Figure 1.
Next, we present the features of Logos.

3. INTERACTING WITH LOGOS
User Perspective. Typically, a regular user is interested in the
query translation and user profile forms.

Query Translation. Query translation is achieved through a form,
where the user provides a query and sees its translation into natu-
ral language (see Figure 1). The translation can be customized by
setting parameters such as preferred language, translation algo-
rithm, and factorization. This latter option controls whether spe-
cial words such as articles or relative pronouns are repeated or
not, thus tuning translation verbosity. It is possible to get more
than one translation in the same form by selecting multiple trans-
lation algorithms. Then, the user may issue a new query or refine
the existing translation by modifying the parameters. It is also
possible to label and store a query for later use.

674

Figure 2. Schema browsing and labeling

For issuing a query, one needs to be aware of the database sche-
ma. Logos features a tree-like schema explorer (see Figure 2) that
enables a quick review of the database schema. First, the user is
presented with the top-level nodes of the structure tree; i.e., the
relations in the database. Expanding relation nodes displays their
child attribute nodes, whereas selecting a specific node –either
relation or attribute– displays its label (see Section 2; e.g., ‘mov-
ies’ for the relation MOVIE). In the latter case, label editing –
which typically is an administrator task– is also available.

User Profiles. Logos features an interactive web interface that
allows for customized query translation. In order to provide a
seamless user experience, profile data are stored. This data in-
cludes translation preferences, such as language, translation algo-
rithm, and factorization, as well as a list of saved queries.
Through a user profile page (see Figure 3), translation preferences
may be modified and then persisted, while queries in the history
log may be selected for translation. Users may also assign labels
to queries in the history log.

Figure 3. User settings

Administrator Perspective. Logos can be used for tuning a data-
base schema in a way that enables meaningful and useful transla-
tions. Logos connects to a DBMS and extracts the metadata of a
database schema. Having connected to a specific database, tem-
plate definition is carried out using Logos’ integrated administra-
tion console. Our implementation does support default labels
(e.g., “of” for membership edges), but as the designer provides the
system with more fine-tuned labels, the translation results are
even more descriptive.

For fine-tuning, template graph synthesis is performed in a step-
by-step, incremental manner assisted by Logos. Figure 4 shows
the template building process for the part of Q2 that results into
the “action movies directed by Coppola”. The template graph in-
volved consists of two paths. The first one starts from the MOVIE
relation node, gets to DIRECTOR through DIRECTED, using PK-FK

Figure 4. Template construction

attribute nodes, then moves to the name attribute of the DIRECTOR
relation and finally to its value node. The second path starts from
the MOVIE relation node, gets to GENRE using PK-FK attribute
nodes, then moves to the genre attribute of the GENRE relation and
finally to its value node.

For creating the template, we work as follows. First, we use the
path editor to determine a path by designating successive edges.

Let us examine the first path. Using the source tree-like selector,
the source relation node (MOVIE) and its respective attribute (id)
are determined. Then the type of the current path operation is
specified as a join. After selecting, say, the equality operator as
the predicate operator, we use the destination tree-like selector to
determine how the join ends.

Figure 5. Suggestions

Logos exploits PK-FK relationships to offer destination node
suggestions (see Figure 5) and therefore, to facilitate and accele-
rate the entire task. Using this feature, we can easily select the
DIRECTED relation and the respective mid attribute and thus, con-
clude this join. Then, this join is added to the current path. We
then repeat this process twice to build the entire path: first, we add
the join from DIRECTED to DIRECTOR and then, the selection from
DIRECTOR to their name value. After the path has been completed,
it can be added to the current template.

Next, Logos aggregates multiple joint paths. To add the second
path of the template, we first specify the node that it shares with
the first path and then repeat the same steps.

Once the template graph has been completed, an appropriate tem-
plate language expression [2,5] has to be assigned to it before it
gets stored. The template language expression in this case is:

GENRE.genre.<val> + “ ” + l(MOVIE) + “ directed by ” + DIREC-
TOR.name.<val>

Finally, the designer may assign this template label to the pro-
duced graph and store the template.

Multilingual Query Translations. Logos also offers translations
into languages other than English. In many plain localization
settings, supporting a language only consists in string assignment.
Natural language generation however requires full expressiveness
and flexibility. Since every language has its own grammatical and

675

Figure 6. System architecture

syntactical peculiarities, simple string assignment are not enough
in this case. Logos tackles this challenge by considering language
extensibility at a more abstract level, so that grammatical and
syntactical aspects are embraced. In Logos API, each language is
defined through a programmatic module, which determines its
specific attributes and behavior in terms of the translation. In
addition, module inheritance allows for flexibility through code
reuse. With this approach, a new language can be supported by
creating a new module and integrating it into the system.

As a proof of concept, apart from English, Logos may also gener-
ate translations in Spanish and Greek. For example, Q1 would be
translated in Spanish as: “Buscar el nombre de los actores cuyas
películas son todas del mismo año” and in Greek: “Βρες το πεδίο
‘όνομα’ των αντικειμένων ‘ηθοποιοί’ των οποίων οι ταινίες είναι
όλες στον ίδιο χρόνο”.

4. DEMONSTRATION
We offer an interactive demonstration, where the participants will
be able to connect to a handful of databases and experiment with
queries provided by our system or ad hoc queries, and view and
customize query translations. We provide example database
schemata with varying number of tables, number of attributes per
table, and number of PK-FK relationships, so that participants can
experiment over schemata of different complexity.

The demonstration will serve two purposes: (a) to present how
Logos can be used by a regular user and (b) to highlight its exten-
sibility and design features presenting how an administrator may
use it. Hence, participants can interchangeably assume the role of
a regular user or administrator while interacting with Logos.

From a regular user’s perspective, we will demonstrate the query
translation and user profile forms as well as the multi-lingual
functionality. Participants may choose from a predefined set of
queries and also provide ad-hoc queries. The predefined set com-
prises queries over different database schemas with different level
of difficulty and particularities. Our goal here is two-fold: (a) to
show how the query translation engine can deal with all such
cases, and (b) to show the benefits of query translation as we go
from fairly simple queries to quite complex ones that do not lend
themselves to a straightforward translation.

Participants will also experiment with the different query transla-
tion strategies. Furthermore, they will be able to use the multi-
lingual translation and see how a query can be explained in text in
Spanish or Greek. They will be also able to store their favorite
query translation method, selected queries, and other parameters
as part of their own profile in the system. This functionality
would for instance help a SQL instructor to prepare queries and
their translations as part of self-guided exercises for her students
to use.

The second part of our demonstration is to show how Logos can
be used for enriching a database schema in a way that enables
meaningful and useful translations. Participants will be able to see
how template definition is carried out using Logos’ integrated
administration console. Our goal is to show how the designer can
provide the system with fine-tuned labels without much effort and
make the translation results over a particular database more de-
scriptive. The administrator may have her own set of queries that
she uses for testing how query translation looks like using differ-
ent templates. An administrator may also specify and store user
profiles in the system that contain specific sets of queries and
query translation options for the users to use.

5. ARCHITECTURE
Logos comprises two core components, namely the Translation
Engine and the GUI (see Figure 6). The Translation engine com-
prises five modules: the Schema and Query graphs, the Parser, the
Template mechanism, and the Translation algorithm module. The
engine is implemented in Java, using the Apache collections ge-
neric library. Its input is a database schema, an SQL query, and
the translation preferences, and the output is the translation of the
query in natural language. We use PostgreSQL as our database.

The Schema and Query graphs represent database schemas and
SQL queries, respectively. Nodes and edges are decorated with
labels that signify their meaning in natural language. Both graphs
are implemented using the Java Universal Network/Graph
Framework (JUNG) library.

The Parser is a top down parsing module that performs lexical
and syntactic analysis on the query and generates parts of the
Query graph, using information from the Schema graph and the
Template mechanism. For its implementation, we have used the
JavaCC parser generator.

The Template mechanism is a powerful feature for defining tem-
plate labels and assists in producing high quality, concise text.
Our template strategy tries to cover the query graph with the op-
timum combination of template labels. To facilitate this procedure
we use the powerSet methods found in the Google Core Libraries
for Java (Guava). The template language [2,5] used for registering
new templates is also implemented in JavaCC.

The Translation algorithm module embraces the various graph
traversal strategies, modeled separately as different classes. This
approach fosters extensibility, since it allows new traversal algo-
rithms to be seamlessly introduced into the system.

The GUI is a web application that runs on Tomcat and is imple-
mented in Java EE using servlets and JSP, along with jQuery. We
also use the JSTL library to avoid scriptlets in the JSP, the Joda
Time, and the Apache Commons Validator library.

6. REFERENCES
1. J. Danaparamita, W. Gatterbauer. QueryViz: Helping Users Understand

SQL Queries and their Patterns. In EDBT, 2011.
2. G. Koutrika, A. Simitsis, Y.E. Ioannidis. Explaining structured queries

in natural language. In ICDE, 2010.
3. M. Minock. A phrasal approach to natural language interfaces over

databases. In NLDB, 2005.
4. A. Simitsis, Y.E. Ioannidis. DBMSs Should Talk Back Too. In CIDR,

2009.
5. A. Simitsis, G. Koutrika, Y. Alexandrakis, Y.E. Ioannidis. Synthesizing

structured text from logical database subsets. In EDBT, 2008.
6. V. C. Storey, R. C. Goldstein, H. Ullrich. Naive semantics to support

automated database design. In IEEE TKDE, vol. 14, no. 1, 2002.

676

