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Abstract. Personalization of keyword searches has attracted interest in the re-
search community as a means to decrease search ambiguity and return results 
that are more bound to be interesting to a particular user.  We describe a term-
based user profile that treats query disambiguation and personalization as a uni-
form term rewriting process. Its key feature is the representation of connections 
between terms based on possible rewritings between them on a per user basis. 
We present a query-rewriting algorithm for such query disambiguation based on 
the proposed profiles. Preliminary experimental results show the potential of 
the overall approach. 

1   Introduction 

Traditionally, search engines are deterministic in that they should return the same set 
of documents to all users with the same query at a certain time. Therefore, it is inher-
ent that search engines are not designed to adapt to personal preferences. This deter-
ministic behavior is desired in order to provide the users with the same view of infor-
mation; however, in the context of the World Wide Web, it often hinders users from 
locating relevant information. There are several aspects to the problem. First is the 
problem of abundant information made available to a wide spectrum of users with 
possibly different information needs. Only a fragment of this information is useful to a 
single user. Typically, only top results of a search are browsed by a user. If interesting 
information is not found there, a new query may be submitted or the task may be 
abandoned. A second related problem is that users typically issue poorly defined que-
ries of very few terms. For example, for the query "java programming", a user may 
be interested in tutorials, while another may be interested in source code. This ambi-
guity in the query is further amplified by the existence of synonyms and homonyms. 
Synonyms are two words that are spelt differently but have the same meaning. Homo-
nyms are words that are spelt the same but have different meanings. For example, for 
the query "apple", some users may be interested in documents dealing with "apple" 
as "fruit", while other users may want documents related to Apple computers. Con-
sequently, without prior knowledge, there is no way for the search engine to predict 
user interest from simple text based queries.  

The above situation gave rise to the idea of personalized search. In particular, stor-
ing user preferences in user profiles gives a system the opportunity to return more 



focused personalized (and hopefully smaller) answers. The general architecture of a 
personalized search system is depicted in Fig. 1.  

 
Fig. 1. Architecture of a Personalized Search System 

The system keeps a repository of user information (User Profiles) that is either in-
serted explicitly by the user or collected implicitly by monitoring user interaction with 
the system (User Profiling). The user interacts with the digital library through a User 
Interaction component, issuing keyword queries (Q) and then browsing the content 
retrieved (R). A query may not represent a unique information need, resulting in gen-
eration of many irrelevant answers. For example, a user searching for information on 
the Java programming language may submit the query "Java". The search personal-
ization module may be on top of a traditional search engine or may be integrated into 
it. The primary ways to personalize a search for an active searcher are query disam-
biguation and results ranking. Query disambiguation is typically performed by adding 
more terms in a query (query augmentation). For example, information that one usu-
ally asks about "programming" may be recorded. As a result, the query "Java pro-

gramming", which is closer to the actual user information need, is produced. Results 
ranking comprises re-ordering results returned by the underlying search engine based 
on user preferences. For example, instead of modifying the initial user query, the in-
formation about "programming" may be used to place results regarding "Java pro-

gramming" on top of the results returned. 

Contributions. Our work concerns keyword searches over unstructured data. We 
provide a term-based user profile that treats personalization and query disambiguation 
as a unified term rewriting process (Section 3). Its unique feature is the representation 
of connections between terms expressing possible rewritings between them. Based on 
this kind of user profile, we describe a query rewriting algorithm for query 
disambiguation and personalization (Section 4). Furthermore, results may be ranked 
based on the proposed user profile. Our framework is independent of the underlying 
search engine and of the profiling method employed (of course, user profiling 
effectiveness is an important ingredient for the success of a personalized system). 
Section 5 provides an overview of a prototype system implementing the proposed 
framework and discusses user profiling and implementation of searching using Google 
as the underlying search engine. Experimental results show the potential of the 
proposed framework. 



2   Related Work 

Relationships of our work with previous research efforts are sketched below: 

Information Retrieval and Filtering. Traditional Information Retrieval systems return 
the same results to all users issuing the same query [12]. Query disambiguation tech-
niques are used in many of these systems. However, most of them aim to discover 
corpus-wide word relationships based on co-occurrence analysis of a whole collection 
(e.g., term clustering [15], similarity thesauri [11]) and they do not take into account 
how a person perceives word relationships. Information filtering systems employ 
content-based and/or collaborative filtering methods to return items interesting to a 
specific user according to a profile capturing long-term user interests [1, 2, 4, 7, 17]. 

Personalized Searches. Recently Personalized Search systems have emerged. Recall 
that the primary ways to personalize a search are query augmentation and results rank-
ing. Most current approaches deal with results ranking. For example, Casper [14] 
ranks jobs returned to a user based on a user profile that specifies job cases previously 
ranked by the user. Inquirus [6] uses profiles that contain preferences about source 
selection and results ranking as well as terms from a predefined set that may be in-
serted to a query. METIORE [3] sorts an answer in the order of user preferences, 
giving the most interesting solution at the beginning. Their approach of personaliza-
tion is based on the concept of objective. The user specifies a search objective for 
every new session. The result of the ranking algorithm is the degree of relevance of an 
object to the present objective of a user. Persona [16] re-ranks results returned by the 
underlying search engine based on adapted gradient ascent HITS. [9] presents results 
for each query under appropriate categories deduced from profiles stored. We differ 
from these approaches in that we employ user profiles to personalize a user search 
either at the level of results ranking or at the level of query augmentation. Outride [10] 
also performs query augmentation. Personalization based on query modification has 
been also proposed for structured queries over database systems [8]. 

User Modeling. User modeling refers to representation of user characteristics. In in-
formation filtering systems, common user profile representations are borrowed from 
Information Retrieval and include Boolean, vector-space, and inference models [4, 
17]. Outride [10] employs user profiles based upon the ontology of the Open Direc-
tory Project (ODP), where each user has his own weighting across the top 1000 cate-
gories. In [9], a user profile consists of a set of ODP categories and for each category, 
a set of terms (keywords) with weights. The weight of a term in a category reflects the 
significance of the term in representing the user's interest in that category. In [3], for 
each objective all the documents evaluated are kept along with their evaluation. Each 
document has some representative features (keywords, author, year, etc…). These 
inherit the evaluation of the document that contains them. In Persona, the user profile 
is essentially a mapping of contexts to sets of ODP nodes [16]. A context is defined as 
a user query. We differ from the aforementioned approaches in that we provide a 
finer-grained user model which contains weighted terms and connections between 
them that represent term rewriting operations rather than semantic relations. Different 
users may have different profiles that do not adhere to some generally accepted con-



cept hierarchy. We believe that the main advantage of our approach is that we can 
model a user more precisely using terms and term associations that are useful to him. 
Moreover, this model permits the implementation of both query disambiguation and 
personalization as a unified process, based on a user profile that records what kind of 
operations should be performed in order to disambiguate and personalize a user query. 

User Profiling. An important building block of a personalization approach is the col-
lection of information about the user to generate a profile (based on the user model). 
User profiles for information filtering or personalized search are built either manually 
[6] or with the help of learning techniques [3, 9]. However, the latter typically build 
profiles consisting of one or more flat term vectors, while the user profile described in 
this paper is more complex. We describe a simple incremental algorithm for construct-
ing such structured profiles, which we have used in order to evaluate the potential of 
the approach proposed. 

3   User Profiles 

We consider queries that are formulated as combinations of terms with the use of 
logical operators. A term may be a word, e.g., "Java", or a phrase, e.g., "Artifi-
cial Intelligence". We use t1, t2, … to denote terms. Logical operators include 
AND, OR, NOT1 with their typical semantics. Whenever the operator among keywords is 
omitted, most search engines consider the logical-AND as the default operator. Exam-
ples of queries considered are the following: 

"Java AND programming" 
"geological AND phenomenon" 

Parentheses are used to allow nesting of operators and formulation of complex que-
ries. For example: 

"geological AND (phenomenon OR formation) " 
In practice, it has been observed that queries contain very few terms (one or two). 

That is why searches are often very ineffective. Given a user query, such as "Java", 
query terms may be combined with other terms through logical operators to produce a 
query, such as "Java AND programming AND ZPress editions", which is less 
ambiguous and represents user preferences. In this case, disambiguation and personal-
ization of a query may be both viewed as two sides of the same coin, i.e. as a unified 
term-rewriting process. Hence, we propose a term-based user profile that represents 
connections between terms based on possible rewritings between them. Modification 
of a user query is dictated by the user profile. In particular, we model the profile of 
each user as a directed graph G(V, E) (V is the set of nodes and E is the set of edges) 
with the following characteristics:  
• Nodes in V represent terms. The set of terms may be formed based on users’ past 

interaction histories, ontologies, etc. A weight may be assigned to a term, indicating 
a user’s interest in it. Weights are real numbers in the range [0, 1], where a value of 
1 indicates extreme interest, a value of 0 indicates lack of interest, and any inter-

                                                           
1 Most search engines interpret this binary operator as equivalent to AND NOT.  



mediate value indicates an intermediate level of interest for the term on the part of 
the user. Node weights may be used for ranking of results. 

• Edges in E represent connections between terms. An edge from term ti to term tj 
may be associated with a specific logical operator and expresses a possible rewrit-
ing of ti using tj. More specifically, E=C ∪ D ∪ N ∪ S, where: 
− C is a set of conjunction edges. A conjunction edge ti→tj indicates that ti is 

rewritten as ti AND tj.  
− D is a set of disjunction edges. A disjunction edge ti→tj indicates that ti is 

rewritten as ti OR tj.  
− N is a set of negation edges. A negation edge ti→tj indicates that ti is rewrit-

ten as ti NOT tj.  
− S is a set of substitution edges. A substitution edge ti→tj indicates that ti is 

replaced by tj. This operation is useful for dealing with cases of term misuse.  
Table 1 summarizes the edge types, their semantics, and graphical representation. 

Table 1. Different edge types and their semantics 

Edge Type Semantics Notation 

conjunction Given ti, consider ti AND tj  
disjunction Given ti, consider ti OR tj  
negation Given ti, consider ti NOT tj 

 
substitution Given ti, consider ti  

A weight may be assigned to each edge expressing the significance of the specific 
rewriting of the term for disambiguation/personalization of a query containing it. As 
with nodes, weights are real numbers in the range [0, 1] with the corresponding inter-
pretation. Fig. 2 provides an example for each edge type. Edge weights are tagged to 
the edges. Nodes and edges with a weight equal to zero are not stored in a profile.  

 

 
Fig. 2. Examples of edge types between terms 

An example user profile is depicted in the graph of Fig. 3. Note that this may be a 
disconnected graph with components corresponding to unrelated user information 
needs. For example, in Fig. 3, user interests include background images and Java 
programming which are unrelated to each other. On the other hand, a connected graph 
component may capture more than one user need. Based on the profile of Fig. 3, user 
needs include Java programming as well as database systems, which are connected. 

In general, for a pair of nodes ti and tj, there may be at most one edge ti→tj 
whose type would capture the rewriting that best reflects the typical conception of ti 
with respect to tj by the user. On the other hand, both ti→tj and tj→ti may exist. 



For example, Fig. 3 depicts that "Java" is connected to "programming" and "pro-
gramming" is connected to "Java". The weights of these rewritings, however, are not 
the same, since "programming" is also connected to "C". 

In addition to immediate term rewriting expressed by an explicit directed edge 
ti→tj, term rewriting may also be defined transitively by a set of adjacent edges 
connecting ti to tj through intermediary nodes in the profile graph. In that case, ti 
may be rewritten using tj by successively applying the rewritings expressed in the 
edges. The weight of a transitive rewriting is calculated as a function of the weights of 
the edges on the corresponding path. Specifically, if DN is the set of weights along the 
path, then the transitive weight is expressed as a function ƒT(DN). In principle, one 
may conceive of different functions that may play this role. Based on human intuition 
and cognitive evidence [13], these should satisfy the following basic condition:  

ƒT(DN) ≤ min(DN) (1) 

In our prototype, we used multiplication of weights for ƒT. For example, for the 
profile shown in Fig. 3, the weight of the transitive rewriting of "Java" using "data-
base systems" is 0.9*0.5=0.45. Another possible function is the minimum of 
weights. For the same example, the corresponding transitive weight would be 0.5. 

 

 
Fig. 3. Example user profile 

It should be pointed out that not all graphs with the above characteristics map to 
valid profiles. For example, between two terms there cannot be substitution edges in 
both directions. In addition, when constructing a profile, it must be determined which 
terms are connected with edges and which terms are connected through other terms.  

A separate profile as described above must be kept for each individual user of a 
system. Moreover, its overall design is quite general, so it can capture in exactly the 
same way profiles of groups of users as well but this is out of the scope of this paper. 

4   Query Disambiguation  

Based on the above, disambiguation and personalization of a user search are viewed 
as a unified query modification process, consisting of term-rewriting operations dic-
tated by the user profile. An algorithm for this purpose is presented in Fig. 4, and is 
called QDP (Query Disambiguation and Personalization). The algorithm takes as 



inputs a user query Q, a user profile U and a criterion CXT and produces a single modi-
fied query Q’. The criterion CXT establishes the query context, i.e. it specifies which 
terms of U, connected (directly or transitively) to terms included in Q, influence the 
original user query and, should therefore be considered in query modification. Exam-
ples of possible criteria are the following: 
− The transitive weight of any path connecting a new term tj to the query Q should 

be greater than a threshold T. 
− The number of edges of any path connecting a new term tj to the query Q should 

be less than a threshold T. 
For example, for the query "database systems" and the profile of Fig. 3, con-

sider the first criterion with a threshold T=0.6. Then, the terms "CompanyA" and 
"CompanyB" are the only ones considered within the query context. Criteria may be 
manually specified by an expert or automatically configured by the system. 

The algorithm is based on a best-first traversal of the graph representing the user 
profile. The basic idea is to gradually modify the query by considering, in each round, 
terms from the profile that are connected to those already in the query. The algorithm 
stops when there are no terms in the context of the original query to be used for further 
query refinement. 

QDP algorithm
Input: Query Q, User Profile U, Query-Context Criterion CXT

/*CXT(tj,Q)=TRUE then tj is in the context of Q */
Output: Modified query Q’

Begin
Q’=Q
Pick (ti→tj)⇒U s.t.:
ti⇒Q’, tj⇓Q’, ti→tj has max. weight among rewritings of Q’

While CXT(tj,Q)=TRUE
Replace ti⇒Q’ with the result of rewriting (ti→tj)
Pick (ti→tj)⇒U s.t.:
ti⇒Q’ and ti→tj has max. weight among rewritings of Q’

End

Fig. 4. Outline of QDP algorithm for personalization 

More specifically, the original query is mapped to the user graph. Any query term 
not mapped to a node in the profile is not affected by the algorithm. In each round, a 
term ti from the current version of Q’ is selected provided that there is an edge 
ti→tj stored in the profile with the greatest weight among all possible rewritings of 
any term in Q’ such that tj is within the context of the original query according to 
criterion CXT and is not already included in Q’. Query modification stops when there 
are no terms in the context of the original query that can be integrated into it. Fig. 5 
illustrates successive transformations of a query for the profile illustrated in Fig. 3 
using this algorithm with a threshold T=0.8. A slightly different version of QDP is 
employed if there are more than one possible rewritings of a specific term, such as 
"Java" connecting to "programming" and "island". In this case, the algorithm may 
return a set of queries. Depending on the personalization philosophy adopted by the 
system, the user may be provided with this set in order to choose which one better 



represents their current need, or, with the top-ranking results returned by each query. 
Details are omitted due to space considerations. 

 

 
Fig. 5. Execution of QDP using a query "Java", the example profile and a threshold T=0.8.   

5   Implementation 

In this section, we provide an overview of the prototype system that we have built 
following the architecture of Fig. 1 and the proposed framework. We have built this 
system on top of an existing search engine (Google).  

Search Interface. We have used the Google Web API service, a beta web program 
that enables developers to find and manipulate information on the web [18]. A person-
alized query, output by QDP, is translated into the appropriate syntax format expected 
by Google based on certain rules. For example, search for complete phrases is per-
formed by enclosing them in quotation marks. A word is excluded from the search 
(due to a NOT operator dictated by the profile) by placing a minus sign immediately in 
front of it. Results by Google are displayed to the user. We are implementing a mod-
ule that re-ranks results based on term weights stored in the user profile. 

User Profiling. We implemented a simple incremental algorithm for construction of 
profiles based on the user model presented with the purpose of evaluating the potential 
of the user model and of the query modification process. We only sketch it here. It 
builds profiles with no negations based on user feedback and one-keyword queries. 

When a user is presented with the results of a search, he may mark relevant docu-
ments. These are used as input to the profile construction algorithm which builds a 
sub-graph whose structure depends on the documents input as well as the number of 
them. The algorithm proceeds in three steps. First, document analysis is applied. Each 
document is mapped to a list of {word, number of word occurrences} pairs. 
Then, these lists and the initial query are used to construct a sub-graph. Initially, this 
sub-graph consists of one node corresponding to the query term. The algorithm gradu-
ally builds the sub-graph by adding nodes mapping (groups of) words encountered in 
the input document lists. Two or more words are treated as one group if the algorithm 
cannot decide on the number and type of edges to be used to connect them if these 
words are mapped to separate nodes. Rules for creation of edges include:  

The query term and a group of words co-exist in a given list ⇒

A conjunction edge is created between the respective nodes
The query term does not exist in a given list ⇒

A disjunction edge is created between the query node and the node(s) map-
ping the words of this list.
The query term does not exist in any given list ⇒

A substitution edge is created between its respective node and the node(s)



mapping the words of the lists.

At the end of this step, nodes in the sub-graph represent terms and edges represent 
term rewritings. Finally, the algorithm merges the sub-graph produced in the previous 
step into the user’s profile and assigns node and edge weights. If the user profile is 
empty, or has no similar nodes with the sub-graph, then the latter is simply added as a 
disconnected graph into the former. Similar nodes are those sharing common words, 
such as nodes {t1} and {t1, t2}. If the profile and the sub-graph have similar nodes, 
then they are merged. Merging preserves finer-grained structure which may already 
exist in the profile or dictated by the connections in the sub-graph. Each node of the 
profile that is new or has been affected by the merging is assigned the minimum of 
weights of the words mapped to it. The weight wt of a word is given by the formula: 

wt = ft*(Nt/N) (2) 

Nt: the number of past and current documents containing the word; N: the total 
number of documents of sets containing at least one document with this word; ft: the 
number of the word’s past and current occurrences to the total number of words of sets 
where the word exists. An edge is assigned a weight we with a value equal to: 

we = (Ne/N’) (3) 

Ne: the number of past and current documents containing associated words; N’: the 
total number of documents of sets with at least one document including these words. 

Experimental Results. We have conducted experiments with ten users. Since the un-
derlying engine is Google, our dataset is the Web. Each user was assigned three search 
tasks, such as finding an appropriate car rental, identifying the latest in fashion, and so 
forth, as well as allowed to consider two tasks of their own. The goal of a search task 
was to find at least two interesting and relevant resources. Each user had two sessions 
with the system. During the first one, no modification of user queries took place. The 
user could resubmit a query until the goal of a task was satisfied. In addition, users 
submitted feedback by marking relevant documents. This information was used by the 
profiling method. During the second phase, which took place three weeks after the 
first one, personalization was activated using the profiles built during the first session. 
As the main measure of effectiveness of our approach we have used the task comple-
tion time. On the average, participants satisfied their needs significantly faster when 
personalization was in effect rather than when queries were executed in their original 
form. Specifically, the average gain in time was equal to 29%. In addition, there was 
an increase in the number of relevant documents found among the top 20 results re-
turned by the search engine when personalization was applied. In some cases, when 
the initial user query had been extremely ambiguous, improvement was over 50% (i.e. 
over half of the top 20 results have been replaced by more relevant matches). 

6   Conclusions and Future Work 

In this paper, we have described a high-level architecture of a system for personalized 
searches. We have described a term-based graph-form user profile that allows thinking 



of query disambiguation and personalization as a unified term rewriting process. It 
interprets connections between terms as possible rewritings between them. Based on 
this kind of profile, we have provided a query-rewriting algorithm for query disam-
biguation and personalization. We have described a prototype system and presented 
promising results regarding the potential of the proposed framework.  

We are currently elaborating the prototype system. We are working on the ranking 
module, and on a more elaborate user profiling algorithm capable of handling nega-
tions and initial queries with more than one term. We are also interested in developing 
a mechanism for user profile validation and in more extensive experiments.  
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