
Personalization of Queries Based on User Preferences

Georgia Koutrika , Yannis Ioannidis

University of Athens,
Department of Informatics and Telecommunications,

Athens, Greece
{koutrika, yannis}@di.uoa.gr

Abstract. Query Personalization is the process of dynamically enhancing a
query with related user preferences stored in a user profile with the aim of
providing personalized answers. The underlying idea is that different users may
find different things relevant to a search due to different preferences. Essential
ingredients of query personalization are: (a) a model for representing and
storing preferences in user profiles, and (b) algorithms for the generation of
personalized answers using stored preferences. Modeling the plethora of
preference types is a challenge. In this paper, we present a preference model
that combines expressivity and concision. In addition, we provide algorithms
for the selection of preferences related to a query and the progressive generation
of personalized results, which are ranked based on user interest.

1. Introduction

A user accessing an information system with the intention of satisfying an
information need, may have to reformulate the query issued several times and sift
through many results until a satisfactory, if any, answer is obtained. This is a very
common experience especially for Web searchers, due to information abundance and
users’ heterogeneity in the Web. A critical observation is that different users may find
different things relevant when searching because of different preferences, goals etc.
Thus, they may expect different answers to the same query. Consider a simple case:
two users, Jon and Julie, access a web-based movies database both searching for
comedies. Jon is a fan of director W. Allen, while Julie is not. Most systems would
consider only the request issued and return to both users the same, exhaustive list of
comedies. However, storing user preferences in profiles gives a system the
opportunity to return more focused, personalized (and hopefully smaller) answers.

Query Personalization is the process of dynamically enhancing a query with
related user preferences stored in a user profile with the purpose of providing
personalized answers. Focusing on the user enables a shift from what is called
‘consensus relevancy’ where the computed relevancy for the entire population is
presumed relevant for each user, toward ‘personal relevancy’ where relevancy is
computed based on each individual’s characteristics [18]. Personalized results for Jon
would include W. Allen’s comedies, while personalized results for Julie would not.
Which preferences are related to a request and how these affect the final answer are

Dagstuhl Seminar Proceedings 04271
Preferences: Specification, Inference, Applications
http://drops.dagstuhl.de/opus/volltexte/2006/403

2 Georgia Koutrika , Yannis Ioannidis

dynamically determined based on the query, the profile and the personalization logic
applied.

Query personalization approaches have recently attracted interest in both IR and
Databases research communities [14, 18, 16]. We are concerned with query
personalization in the context of databases. Essential ingredients of query
personalization are (a) a model for storing preferences in user profiles, (b) a query
personalization framework that specifies what kind of personalized answer is
generated given a query and a user profile, and (c) query personalization algorithms.

We adopt the query personalization framework presented in our earlier work [14].
Based on that, given a query and a profile, a personalized answer is built by
specifying the number K of top preferences from the user profile that should be
considered, and the number L (L≤K) of those preferences that should at least be
satisfied. Parameters K and L can be specified directly by the user or derived based on
various criteria on the query context, such as user location, time, device, etc. Query
personalization proceeds in two phases: (Preference Selection) Top K preferences are
derived from the user profile. (Personalized Answer) These are combined with the
query, and a personalized answer is returned satisfying (at least) L of the K
preferences.

Outline. In this paper, we present the following:
• A Preference Model. We present a preference model that combines expressivity

and concision. In particular, we model a set of dimensions along which several
types of preferences may be formulated.

• Preference Selection Algorithms. We provide efficient algorithms for the selection
of preferences related to a query according to various criteria. The notion of degree
of criticality is introduced for ordering preferences and selecting the top K.

• Generation of Personalized Answers. A simple approach for generating
personalized answers is to integrate the top K preferences into the query issued and
construct a new one. This query is, then, executed by the underlying database
system [14]. We see how this simple method may be adopted to the preference
model described here and discuss its shortcomings. Then, we describe an algorithm
for the progressive generation of personalized results, which are ranked based on
the estimated user interest.

• Ranking Functions. Results may be ranked based on which preferences are
satisfied or not. Several classes of ranking functions are described.

• Experimental Results. We have conducted experiments testing the efficiency of the
proposed query personalization algorithms, the appropriateness of the ranking
functions, and the effectiveness of personalized search. We will provide an
overview of the experimental results in order to give insight so as to the
appropriateness of ranking functions, and the effectiveness of personalized search.

2. Related Work

Preference is a fundamental notion in applied mathematics [7], philosophy [8], AI
[20], and databases [15]. However, only recently this area has attracted a broader

Personalization of Queries Based on User Preferences 3

interest in the database community. Two approaches have been pursued. In the
qualitative approach, preferences between tuples in the answer to a query are
specified using preference relations. Two frameworks have been proposed, in which
preference relations are defined using logical formulas [5] or special preference
constructors [12, 13]. Preference relations are embedded into relational query
languages through a relational operator that selects from its input the set of the most
preferred tuples (e.g., winnow [5], BMO [12, 13]). Skylines [3, 17] are special cases
of these preference queries. In the quantitative approach, preferences in queries are
specified using scoring functions that associate a numeric score with every tuple of
the answer [1]. Several algorithms have been proposed for efficiently answering top-K
queries, i.e. queries that retrieve the best K objects that minimize a specific function
[4, 21, 9].

Our earlier model [14] associates degrees of interests (like scores) with
preferences. Yet, there are substantial differences from the quantitative framework
[1]. The latter does not capture preferences expressed on relationships between
entities, e.g., ‘I am very interested in the actors of a film’, and implicit preferences. In
addition, it uses distance functions for tuple ranking; thus top tuples are those with the
smallest distance from the target values. On the other hand, ranking functions [14]
estimate the overall interest in a tuple with respect to a combination of preferences.
Top tuples are those with the highest interest based on this function.

The model presented here has the aforementioned features of the earlier model, but
is of greater expressive power. The earlier model represents only preferences of the
kind ‘I like actor W. Allen’ (exact positive presence preference), as opposed to the
generalized that captures several types, such as ‘I like films with duration around 2h’
(elastic preference), ‘I do not like thrillers’ (negative preference), ‘I like movies
without violence’ (regarding absence of values).

Compared to our extended model, the quantitative framework [1] does not capture
negative preferences and preferences for the absence of values. The qualitative
frameworks [5, 13] do not capture preferences expressed on relationships between
entities and implicit preferences. Besides, [13] defines specific preference
constructors, thus not considering the possibility of having arbitrary constraints in
preferences. [5] does not express negative preferences and preferences for the absence
of values. Furthermore, preference relations provide an abstract, generic way to talk
about priority, and importance. Thus, [5, 13] cannot capture different degrees of
interest, such as ‘I like comedies very much’, ‘I like dramas a little’, and preference
queries return most preferred tuples without distinguishing how better is one tuple
compared to another. We capture such variations in priority and importance by
associating preferences with degrees of interest. Query results are also ranked based
on the degree of interest. Then, an application may use qualitative descriptors for
preferences and desired results defined in terms of intervals of degrees of interest.
E.g., a ‘best’ descriptor could map to degrees between 0.9 and 1; then a user could
ask for ‘best’ matches. We do not, yet, support skylines, and conditional preferences.

All the above database approaches deal with the expression of preferences in
queries. We focus on the representation of preferences in user profiles and query
personalization algorithms. Although personalization is a very broad research area,
and there are different approaches from information filtering and recommender
systems [19, 11] to intelligent agents [2], query personalization approaches in IR [18,

4 Georgia Koutrika , Yannis Ioannidis

16] and databases [14] are just emerging.

3. Preference Model

Consider a movies database described by the schema below; primary keys are
underlined.

 THEATRE(tid, name, phone, region, ticket),
 PLAY(tid, mid, date), GENRE(mid, genre)
 MOVIE(mid, title, year, duration)
 CAST(mid, aid, award, role) ACTOR(aid, name)
 DIRECTED(mid, did), DIRECTOR(did, name)

Preferences may be expressed for values of attributes, and for relationships
between entities. Preferences for values are quite involved. Preferences for
relationships indicate to what degree, if any, entities related depend on each other (in
particular by preferences on each other).

Example 1. Jon’s preferences include the following.
(p1) He likes director W. Allen very much. (p2) He does not like movies released before

1980. (p3) He prefers a ticket price around 6 Euros. (p4) He prefers movies of duration around
2h. (p5) He is happy if the movie is not a musical. (p6) He would rather not go to non-
downtown theatres. (p7) He is extremely interested in the director of a movie. (p8) He cares a
lot about the movie genre. (p9) He cares less about the theatres showing a movie. (p10) He cares
a lot about the movies of a theatre.

Our approach to personalization is based on maintaining, for every user, a user
profile whose structure is related to the features of the data and query models.
Without loss of generality, we focus on queries over relational databases.
Nevertheless, our approach is applicable to any graph model capturing entities and
relationships. User preferences may be articulated over a higher level graph model
representing the data other than the database schema. This is a useful abstraction for
using a profile over multiple databases with similar information but possibly different
schemas, and for hiding schema restructuring.

3.1 Stored Atomic Preferences

For an attribute R.A of a relational table R, let DA be its domain of values. Given our
focus on query personalization, we store preferences at the level of atomic query
elements, which are therefore called atomic preferences. Preferences for values of
attributes are stored as atomic selections (atomic selection preferences), and
preferences for relationships are stored as atomic joins (atomic join preferences).

Atomic Selection Preferences. For any atomic selection condition q on attribute
R.A, a user’s preference for values satisfying (or not) q is expressed by the degree of
interest in q, denoted by doi(q), which is defined as follows:

doi(q) = < dT(u), dF(u) >
where ∀ u∈ DA satisfying q, dT(u), dF(u) ∈ [-1,1] and dT(u)*dF(u) ≤ 0.

Personalization of Queries Based on User Preferences 5

The last condition should hold for normal users, based on psychological evidence
[6]. This model is quite general and can express several preference types. These are
described below, as each part of the above definition is analyzed, by distinguishing
three relevant dimensions of preferences: valence, concern, elasticity.

Valence. Preferences may be positive (expressing liking), negative (expressing
dislike) or indifferent (expressing don’t care). Valence is captured by the different
values of the degrees of interest dT(u), and dF(u): a positive degree indicates
increasingly higher interest (degree 1 is for ‘must-have’ domain values); a negative
degree indicates increasing dislike (degree −1 is for ‘most-unpleasant’ values); a
degree equal to 0 indicates indifference. Preferences with dT(u) = dF(u) = 0, are not
stored in the profile.

 Concern. Preferences may be presence (concerning the presence of values) or
absence (concerning the absence of values). A user’s concern is captured by the pair
< dT(u), dF(u) >. As defined, dT(u) captures a user's concern for the presence of values
u of R.A (or any other path of the schema leading to R.A) that make q evaluate to
true. dF(u) captures a user's concern for the absence of the same values, i.e. for q
evaluating to false. dT(u) is not derivable from dF(u), and vice versa. Strong interest in
a value could be combined with indifference or with strong negative interest in its
absence.

Elasticity. Preferences may be exact or elastic depending on whether the domain
DA is categorical or numeric. Given the mutual independence of categorical values,
preferences for these are considered exact and are either satisfied exactly or not at all.
On the other hand, preferences for numeric values may be smoothly continuous over
their domain and may be satisfied approximately, in which case, they are considered
elastic. Elasticity is captured by the form of the functions dT(u), and dF(u). Constant
doi functions are used for exact preferences. There are many possible functions for
the representation of elastic preferences. Fig. 1 shows possible forms of those.
Various parameters are required for the detailed description of an elastic doi
function, such as the interval of values for which the function is non-zero. For
simplicity, we will use e(d) to denote an elastic function avoiding a detailed
representation of it. The subscript denotes the maximum (min.) degree this function
returns, depending on its form, (see Fig. 1). We have experimented with functions of
the form of Fig. 1 (a). Using a set of elastic doi functions, a system may support
fuzzy operators, such as ‘around’, for the expression of elastic preferences by users.

Fig. 1. Example forms of elastic functions

6 Georgia Koutrika , Yannis Ioannidis

Using these dimensions, all (3*2*2) combinations of the above preference types
are valid for formulating preferences. The model in our earlier work captured only
one type: exact positive presence preferences.

Example 1 (cont’d). We draw examples from Jon’s preferences. Regarding
valence, p1 is an instance of a positive preference, and p2 is an instance of a negative
one. Regarding concern, one may be concerned for the presence (absence) of a value,
while one is indifferent for the opposite case. These are simple preferences. E.g., Jon
has a positive interest in the presence of W. Allen but he does not care if W. Allen has
not directed a film. Consequently, p1 is a simple positive presence preference. On the
other hand, he prefers downtown theatres and he is against the idea of a theatre not
being there. P6 combines positive presence and negative absence preference as one; it
is a complex preference. Regarding elasticity, p1, and p2 are instances of exact
preferences. However, Jon’s preference for movies with duration around 2 hours is
elastic, as movies of 122 or 115 minutes are close matches probably of similar interest
to him. Thus, p4 is an elastic preference.

Join Preferences. Join preferences are simpler as they do not lend themselves to
any of the variations mentioned above. A user’s preference for a join condition q is
expressed by the degree of interest in q, doi(q), defined as follows:

doi(q) = < d >, where d ∈ [0, 1].

Degree 0 indicates lack of any interest in the join condition, while degree 1
indicates extreme (‘must-have’) interest. In addition, join preferences are directed.
E.g., movies and theatres are related but Jon thinks that theatres depend on movies
(p10) much more than the other way around (p9). Therefore, a join preference
expresses the dependence of the left part of the join on the right part. In other words,
the left part indicates the relation already included in a query and the right
corresponds to the relation that may be included influencing the final result, if the join
is considered. Fig.2 shows how Jon’s profile may look like.

< DIRECTOR.name=‘W. Allen’, 0.8, 0 >
< MOVIE.year<1980, -0.7, 0 >
< THEATRE.ticket=‘6Euros’, e(0.5), 0 >
< MOVIE.duration=‘2h’, e(0.7), e(-0.5)>
< GENRE.genre=‘musical’, -0.9, 0.7 >
< THEATRE.region=‘downtown’ 0.7, -0.5 >
< MOVIE.mid=DIRECTED.mid, 1 >
< DIRECTED.did=DIRECTOR.did, 0.9 >
< MOVIE.mid=GENRE.mid, 0.8 >
< MOVIE.mid=PLAY.mid, 0.7 >
< PLAY.tid=THEATRE.tid, 1 >
< THEATRE.tid=PLAY.tid, 1 >
< PLAY.mid=MOVIE.mid, 1 >

Fig. 2. Example user profile

A user’s preferences over the contents of a database can be expressed on top of a
personalization graph [14]. This is a directed graph G(V, E) (V: the set of nodes; E: the

Personalization of Queries Based on User Preferences 7

set of edges) and it is an extension of the database schema graph. Nodes in V are (a)
relation nodes, one for each relation in the schema, (b) attribute nodes, one for each
attribute of each relation in the schema, and (c) value nodes, one for each value that is
of any interest to a particular user. Likewise, edges in E are (a) selection edges, from
an attribute node to a value node; such an edge represents the potential selection
condition connecting the attribute and the value, and (b) join edges, from an attribute
node to another attribute node; such an edge represents the potential join condition
between these attributes. As explained earlier, two attribute nodes may be connected
through two different join edges, in the two possible directions. Given the 1-to-1
mapping between edges in the graph and atomic preferences, degrees of interest are
placed as labels on the edges. Part of the personalization graph corresponding to Jon’s
profile is illustrated in Fig. 3.

As a matter of notation, we use <q, dT(u), dF(u) > to denote a selection preference
p, and <q, d > to denote a join preference p. For simplicity, we may omit parameter u
from the doi of selection preferences.

Fig. 3. Example personalization graph

3.2 Implicit Preferences

By composing atomic user preferences that are adjacent in the personalization graph
(composable), one is able to build implicit preferences, i.e., preferences expressed
through relationships. Given the one-to-one mapping between edges in the
personalization graph and atomic preferences, an implicit user preference is mapped
to a directed path. An implicit join preference is mapped to a path in the
personalization graph between two attribute nodes. It is comprised of composable join
edges and represents the “implicit” join condition between the corresponding
attributes. An implicit selection preference is mapped to a path in the personalization
graph from an attribute node to a value node. It is comprised of join edges and a
selection edge that are composable, and represents the ‘implicit’ selection condition
connecting the corresponding attribute and value. An implicit query element is the

8 Georgia Koutrika , Yannis Ioannidis

conjunction of the constituent atomic ones. The degree of interest in an implicit
preference is a function of the degrees of interest in the participating atomic
preferences. In principle, one may imagine several functions. All of them, however,
should satisfy the condition that the absolute degree of interest in an implicit
preference decreases as the length of the corresponding directed path increases,
capturing human intuition and cognitive evidence [6]. We have chosen multiplication
as this function.

Example 2. These preferences from Jon’s profile
< MOVIE.mid=DIRECTED.mid, 1 >
< DIRECTED.did=DIRECTOR.did, 0.9 >
< DIRECTOR.name=‘W. Allen’, 0.8 0 >

are composed into this implicit preference for movies directed by W. Allen:
 < MOVIE.mid=DIRECTED.mid and
 DIRECTED.did=DIRECTOR.did and
 DIRECTOR.name=‘W. Allen’, 0.72, 0 >

Note that any directed path in the personalization graph could map to an implicit
preference. However, based on human intuition and cognitive evidence [6], we deal
with acyclic paths only.

3.3 Combinations of Preferences

Satisfaction of an atomic or implicit selection preference <q, dT, dF > is equivalent to
satisfaction of q if dT ≥ 0 or failure of q if dF ≥ 0. Failure of a preference is the exact
opposite. Thus, the doi in the satisfaction of a preference is d+(u) = max(dT(u), dF(u)).
The degree of interest in the failure is d− (u) = min(dT(u), dF(u)).

Example 3. Consider these preferences of Jon.
< DIRECTOR.name=‘W. Allen’, 0.8, 0 >
< GENRE.genre=‘musical’, -0.9, 0.7 >

The first one is satisfied by tuples that satisfy the corresponding condition, e.g.,
movies directed by W. Allen. The second one is satisfied by tuples that do not satisfy
the corresponding condition, e.g., theatres that do not play musicals.

The overall degree of interest in a combination of preferences is calculated using a
ranking function. We distinguish the following cases: (a) all preferences are satisfied
(positive combination), (b) none of the preferences is satisfied (negative
combination), and (c) some preferences are satisfied and others not (mixed
combination).

Positive Combinations. Consider a set P+ of N+ preferences and the set D+ of the
corresponding satisfaction (non-negative) doi's (for simplicity, we omit u):

D+ ={di+ | di+: doi in pi ∈ P+, i = 1… N+}
The degree of interest in a positive combination should be a function of the degrees

di
+. In principle, one may imagine several functions. A parameter that appears pivotal

in this issue is max(D+). Around it, one may see three different philosophies.

Personalization of Queries Based on User Preferences 9

Inflationary. The degree of interest in multiple preferences satisfied together
increases with the number of these preferences, i.e., r + (D+) ≥ max(D+), expressing a
philosophy of ‘the more the better’. The function proposed in [14] belongs here:

∏
=

++ −−=
N

1i
i1)d1(1r

(1)

Dominant. The degree of interest in multiple preferences satisfied together is
exactly equal to the degree of interest of the most interesting of these preferences, i.e.
r + (D+) = max(D+). This function captures a ‘winner-takes-all’ philosophy, thus it does
not depend on the number of preferences. In other words, an answer is as good as its
best feature.

Reserved. The degree of interest in multiple preferences satisfied together is
between the highest and the lowest degrees of interest among the original preferences,
i.e. min(D+) ≤ r+ (D+) ≤ max(D+). The underlying principle is that the degree of interest
in satisfying multiple preferences should primarily depend on the importance of them.
The following function belongs to this category:

∏
=

++ −−=
N

1i

N/1
i2)d1(1r

(2)

The appropriateness of a ranking function is judged only by the philosophy of the
approach taken towards personalization and, more importantly, by how closely it
reflects human behavior. We have experimented with the above functions, and we
will discuss results giving insight as to the appropriateness and intuitiveness of each
one of them.

Negative Combinations. A similar issue arises with respect to the degree of
interest in multiple preferences not satisfied, i.e., dealing with multiple non-positive
degrees in a set D_. This case is symmetric with the previous one and may be treated
in a similar fashion. The pivotal parameter is min(D_) and one may define
inflationary, dominant, and reserved ranking functions. The counterparts of r1+ and
r2

+ above, are exactly the same, only with an exchange of the ‘+’ and ‘−’ sign
everywhere.

Mixed Combinations. The degree of interest in a combination of positive (D+) and
negative (D_) degrees is a function of the degrees of interest in the two sets satisfying
the followings conditions:

r−(D_) ≤ r D+, D_) ≤ r+(D+) (3)

r(d, _ d) = 0 (4)

Examples of such functions are the following:
−+ += rrr1 (5)

−+

−
−

+
+

+
+

=
NN

r*Nr*N
r2

(6)

10 Georgia Koutrika , Yannis Ioannidis

We have experimented with these formulas as well. Formula (6) is more
appropriate, as it captures the intuition that the overall degree of interest should be
affected not only by the degrees of interest in its positive and negative parts, but also
by the number of preferences contributing to each one of them. Personalized answers
may be ranked with the use of a ranking function.

3.4 Preference Order

The notion of degree of criticality is introduced for ordering preferences and selecting
the top K of them. Intuitively, the most important or critical preference is the one with
the highest d+, and the lowest d−.

The degree of criticality c of a preference <q, dT(u), dF(u) > is defined as follows

c = d0
+ + d0

− (7)

c ∈ [0, 2] and d0+ = max(d + (u)), d0− = |min(d − (u))|.
Based on the degree of criticality, preferences are ordered as the following

example shows.

Example 4. These preferences from Jon’s profile
p1: < DIRECTOR.name=‘W. Allen’, 0.8, 0 >
p4: < MOVIE.duration=‘2h’, e(0.7), e(-0.5)>
p5: < GENRE.genre=‘musical’, -0.9, 0.7 >

are ordered in decreasing criticality as follows:
p5 (c5 = 1.6), p4 (c4 = 1.2), p1 (c1 = 0.8).

Criticality can be extended to join preferences by assuming the degree of interest in
their failure as being equal to 0. For joins, the property of decreasing degree of
interest as the length of the corresponding path increases transfers over to the degree
of criticality as well. Unfortunately, the same does not hold for implicit selections.
Consider an implicit selection preference with degree of criticality cS. For any
constituent implicit join with a degree of criticality cJ, the following bound is derived
by applying simple mathematics

cS ≤ 2*cJ (8)

4. Preference Selection

The first step of the query personalization process deals with for the extraction of the
top (most critical) K preferences related to a query. A preference may be related at a
syntactic or semantic level. Our system currently supports the former level. A
preference is syntactically related to a query, if it maps to a path attached to the query
graph. This is a sub-graph on top of the personalization graph and includes all the
nodes corresponding to relations involved in the query (possibly replicated if multiple
tuple variables range over them) and all the selection and join edges corresponding to
the atomic conditions of the query qualification. For example, in Fig. 4 the query

Personalization of Queries Based on User Preferences 11

select title
from MOVIE M, PLAY P
where M.mid=P.mid and P.date=‘28/07/2004’

is depicted as a sub-graph in grey color on top of the personalization graph
corresponding to Jon’s profile.

Fig. 4. A query on top of a personalization graph

An implicit preference related to this query is:
MOVIE.mid=GENRE.mid and GENRE.genre=‘comedy’

Parameter K is specified with the use of some criterion. For example, a criterion
based on the degree of criticality of preferences, may specify that the top 5
preferences, or preferences with a degree of criticality above a threshold c0, should be
selected; a criterion based on the desired degree of interest in results, may designate
results of degree > 0.8.

Problem Formulation. Given the personalization graph G corresponding to a user
profile and the query sub-graph on top of this graph representing a query Q, we
consider the set PN of all paths pi in G that are related to Q in decreasing order of
criticality ci, i.e.,

PN = {pi | i∈ [1, N], ci-1 ≥ ci }

The set of preferences that may affect the query, based on some criterion C(.) on
the degrees of criticality, is the ordered subset PK = {pi| i∈ [1, K], ci-1 ≥ ci } of
PN such that:

K=max ({ t| t∈ [1, N]: C(Pt) holds }).

Algorithms. A preference selection algorithm should gradually construct directed
paths attached to the query sub-graph on the personalization graph G in decreasing
order of criticality. Consider the personalization graph depicted in Fig. 5. For
simplicity, attributes and values involved in joins and selections are omitted. Each
edge is labeled with the degree of criticality of the corresponding atomic preference.

12 Georgia Koutrika , Yannis Ioannidis

Implicit joins have the property of decreasing degree of criticality as the length of the
corresponding path increases. This gives the possibility of a best-first traversal of the
personalization graph G. In Fig. 5, AB is more critical than AE and, due to the
abovementioned property, it is guaranteed that ABD is more critical than AEF.

Fig. 5. Example graph with degrees of criticality

Unfortunately, monotonicity is lost for the degree of criticality of implicit selection
preferences. Hence, a best-first traversal of the graph does not guarantee that implicit
selections are generated in the proper order. Indeed, ABDs1 is not more critical than
AEFs2.

An implicit selection preference may be safely output only if it is more important
than the most critical selection preference unseen (mcsu). Based on Formula (8), the
latter is comprised of the most critical implicit join currently known followed by an
atomic selection with a degree of criticality equal to 2. Thus, an implicit selection
preference may be safely output only if it has a degree of criticality at least equal to
the degree of criticality of that join multiplied by two. Otherwise, the algorithm should
expand that join and examines longer paths stemming from it.

Assuming that the most critical implicit join currently known is followed by an
atomic selection with a degree of criticality equal to 2 gives a worst-case estimate for
mcsu. What the algorithm needs would be the real degree of criticality of the most
critical selection preference following that join. For this purpose, a pre-processing
step would be necessary: for each join edge, all subsequent paths should be visited in
order to find the maximum degree of criticality among them. Then, this degree could
be tagged on that join edge. However, neither this pre-processing step nor,
maintenance of that extra information is cheap. If the degree of criticality of some
edge changes, or a new edge is added, then all join edges that expand to paths
including this edge must be updated. A cheap alternative is keeping a fake criticality
fc, defined as follows:

For every selection edge, fc is set to 1. For every join edge, fc is set to the
maximum degree of criticality of all edges following this one. If one of those is a join,
its degree of criticality is multiplied by 2.

Both creation and maintenance of fake criticalities are cheap. Then, a preference
selection algorithm may treat each path with a degree of criticality c and a fake
criticality fc, as if it were an implicit selection preference with criticality equal to
c∗fc (instead of c). As a result, a best-first traversal of the personalization graph G
based on the product c∗fc is now possible. Whenever a selection preference is
constructed, it is output immediately. The algorithm, called FakeCrit, is outlined
below.

It generates the set PK of top K preferences based on some criterion C(.). A queue
QP of preferences is kept in order of decreasing c∗fc. Initially, it contains atomic

Personalization of Queries Based on User Preferences 13

preferences related to the query. In each round, the algorithm picks from QP the head
p. If p is a selection satisfying the criterion C(PK ∪ {p}), then it is output. If p is a join
satisfying the criterion C(PK ∪ {p }), then, it is expanded into longer paths which are
added into QP. A new path p ∧ ACi is generated for each atomic preference ACi that is
composable with p. These atomic preferences are considered in order of decreasing
c*fc. A new path is not inserted in QP: (a) if it expands to a relation included into p
or Q, because a cycle is generated; (b) if the product of its degree of criticality and its
fake degree of criticality (cPA*fcPA) is < c0, provided that criterion C specifies that top
K preferences must have a degree of criticality greater than c0 > 0. The algorithm
terminates when all top K preferences have been derived.

5. Generation of Personalized Answers

The top K preferences are integrated into the user query and a personalized answer is
generated. This should be:

(a) Interesting to the user, i.e. it should satisfy (at least) L from the top K
preferences.

(b) Ranked based on the degree of interest.
(c) Self-explanatory. For each tuple returned, the preferences satisfied and/or not

should be provided in order to explain its selection and ranking.
We describe two approaches for the generation of personalized answers. Elastic

preferences are translated into appropriate range conditions using a set of rules before
they can be inserted into a query.

Simply Personalized Answers (SPA). One approach is to integrate the top K
preferences into the initial query and build a new one, which is executed. We
formulate the personalized query as the union of a set of sub-queries, each one
mapping to one or more of the K preferences selected. Each sub-query is built by
extending the initial query by an appropriate qualification involving the participating
preferences. This sub-query also returns the positive degree of interest of the
corresponding preference. If it contains an elastic preference, then the corresponding
elastic function provides the degree of interest in each tuple. This approach is adapted
from [14], so that it can handle elastic and absence preferences. We will give a
representative example, without going into technical details.

Example 6. Suppose Jon submitted a simple query
 select title from movies

Assume that the following preferences have been selected, from which L=2 should
be satisfied.

p1: MOVIE.mid=DIRECTED.mid and
DIRECTED.did=DIRECTOR.did and
DIRECTOR.name=‘W. Allen’ (presence)

p2: MOVIE.year<1980 (absence 1-1)

p3: MOVIE.mid=GENRE.mid and GENRE.genre=‘musical’
 (absence 1-n)

14 Georgia Koutrika , Yannis Ioannidis

The kind of sub-query built depends on the preference type. A preference to be
satisfied may be presence or absence preference. Moreover, we distinguish between
1−1 and 1−n absence preferences. The following sub-queries are built for each case.

(Presence preferences)
Q1: select title, 0.72 degree
 from MOVIE M, DIRECTED D, DIRECTOR DI
 where M.mid=D.mid and D.did=DI.did and

DI.name=‘W. Allen’

(1−1 absence preferences) They are mapped to sub-queries in the same way as
presence ones. The only difference is the change of the condition’s operator:

Q2: select title, 0 degree
 from MOVIE M
 where M.year>=1980

(1−n absence preferences)
Q3: select title, 0.7 degree
 from MOVIE M
 where M.mid not in (select M.mid

 from MOVIES M, GENRE G
 where M.mid=G.mid and
 G.genre=‘musical’)

The expected results are obtained by taking the union of the partial results of the
sub-queries, grouping by the projected attributes of the initial query, and excluding all
groups with less than L rows. Results are ranked based on the combination of
preferences satisfied.

select title,r(degree)
from Q1 Union All Q2 Union All Q3
group by title
having count(*) = 2
order by r(degree)

where r is a ranking function (implemented as a user-defined aggregate function),
and each sub-query is replaced by Qi for presentation purposes.

Although this approach is simple, it has certain disadvantages. It does not generate
self-explanatory results. It cannot rank results based both on preferences from the K
selected are satisfied and which are not. It may become very inefficient when there
are 1−n absence preferences. It does not allow for a progressive retrieval of tuples.
Tuples are returned only after they have all been retrieved, merged, grouped and
ordered.

Progressive Personalized Answers (PPA).We present an algorithm for generation
of progressive, personalized, self-explanatory, ranked results, which handles
1−to−many absence preferences more efficiently.

The basic idea is as follows. Preferences are integrated into sub-queries as
described in the SPA methodology. 1−to−many absence preferences are integrated as
if they were presence ones. Hence, two sets of sub-queries are formed: a set of sub-
queries involving presence and 1−to−1 absence preferences, Qs, and a set of sub-
queries involving 1−to−many absence preferences, Qa. We consider both sets ordered
in increasing selectivity, and we use simple histograms to obtain this information.

Personalization of Queries Based on User Preferences 15

PPA (In: Q, preferences PK, criterion for L, Out: personalized results)
Begin
1. R := {}; Pactive := PK; MEDI := r

+(Pactive); Build QS; Build Qa

2. Foreach qi ∈ QS
2.1. If other preferences in QS, Qa do not satisfy criterion for L then

2.1.1. output tuples from R and stop
 end if

2.2. execute qi

2.3. Foreach t returned by qi, t ∉ R
2.3.1. execute Qi

s(t)
2.3.2. PSatisfied:={prefs satisfied by t in results by qi and Qi

s }
2.3.3. execute Q1

a(t)
2.3.4. ASatisfied :={preferences satisfied by t in results by Q1

a }
2.3.5. PrefsSatisfied:=PSatisfied ∪ ASatisfied;
2.3.6. PrefsNotSatisfied := PK - PrefsSatisfied
2.3.7. If t satisfies the criterion for L then

 calculate dt;
 R := add(R, t, PrefsSatisfied, PrefsNotSatisfied, dt)
 end if
 end for

2.4. output all t ∈ R not yet output with dt ≥ MEDI
2.5. Pactive := Pactive − {preferences in qi }; MEDI := r+(Pactive)

 End for

3. Foreach qi ∈ Qa
3.1. If rest of preferences in Qa do not satisfy criterion for L then

3.1.1. output tuples from R and stop
 end if

3.2. execute qi

3.3. Foreach t returned by qi, t ∉ R
3.3.1. execute Qi

a(t); IdsA:= add(IdsA, t)
3.3.2. PrefsSatisfied :={prefs satisfied by t in results by Qi

a }
3.3.3. PrefsNotSatisfied := PK - PrefsSatisfied
3.3.4. If t satisfies the criterion for L then

 calculate dt;
 R := add(R, t, PrefsSatisfied, PrefsNotSatisfied, dt)
 end if
 end for

3.4. output all t ∈ R not yet output with dt ≥ MEDI
3.5. Pactive := Pactive − {preferences in qi }; MEDI := r+(Pactive)

 end for
4. If preferences in queries in Qa satisfy the criterion for L then

4.1. execute Q

4.2. Foreach t returned by Q, t ∉ R, t ∉ IdsA
4.2.1. PrefsSatisfied := {all 1-n absence queries}
4.2.2. If t satisfies the criterion for L then

 calculate dt;
 R := add(R, t, PrefsSatisfied, PrefsNotSatisfied, dt)
 end if
 end for
5. output remaining tuples from R
End

Fig. 6. Algorithm PPA

16 Georgia Koutrika , Yannis Ioannidis

Sub-queries are executed sequentially starting from the queries in Qs. A tuple id
returned by a sub-query may satisfy one or more preferences, depending on its
frequency in the results. For each tuple id, we check whether it is also returned by
other sub-queries, thus it satisfies more preferences. We assemble all occurrences of a
tuple id and record the preferences satisfied, their number, and the degree of interest
in this tuple. A tuple that satisfies the criterion on L, is output based on evidence that
no coming tuple could have a degree of interest greater than the degree of the former.

The algorithm is called PPA and is provided in Fig. 6. Its inputs are: the initial
query Q, the set of preferences selected from the previous step of query
personalization, and an explicit or implicit specification for L. Results of Q that satisfy
at least L preferences are accumulated in a list R ordered in decreasing degree of
interest. From there, tuples are progressively output when their degree of interest is
greater than the degree of any future tuple.

More specifically, consider the two sets of sub-queries formed:
− Each sub-query qi ∈ Qs identifies tuples that satisfy a presence or 1−to−1 absence

preference, and returns the tuple id t, the relation attribute and value satisfying the
corresponding preference and the associated positive degree of interest.

− Each sub-query qj ∈ Qa identifies tuples that do not satisfy a 1−to−many absence
preference, and returns the tuple id t, the relation attribute and value referred in the
corresponding preference and the associated negative degree of interest.
First, queries in Qs are sequentially executed. For each distinct tuple id t returned

by a query qi ∈ Qs, we check whether t is also returned by queries following qi in Qs.
For this purpose, a parameterized query Qis(t) that is the union of these queries is
executed with input parameter the tuple id t. Each occurrence of t in the results
returned by Qis(t) and qi satisfies some (presence or 1−to−1 absence) preference.
The relation attribute − value pair returned in each occurrence of t describes the
preference satisfied. From them, we build the set of presence or 1−to−1 absence
preferences satisfied by t, PSatisfied. In addition, for the same tuple id t, a
parameterized query Q1a(t) that is the union of all queries qj ∈ Qa is executed. Each
occurrence of t in the results of this query corresponds to a 1− to−many absence
preference that is not satisfied. Since the set of 1− to−many absence preferences is
known, we can easily find which of them are satisfied by t. This is the set ASatisfied.

Thus, the preferences satisfied by t are the set PrefsSatisfied := PSatisfied ∪
ASatisfied. The set of preferences not satisfied is easily found: PrefsNotSatisfied := PK
−{PSatisfied ∪ ASatisfied}. Then, the degree of interest dt in it may be calculated using
any ranking function for positive, negative or mixed combinations of preferences.

Parameter L may be specified explicitly or implicitly by providing a minimum
degree of interest in the results. If t satisfies the criterion on L, then a result tuple is
produced with the following elements:

{t, PrefsSatisfied, PrefsNotSatisfied, dt}.
This is placed in the list of results R.
When all queries in Qs have been executed, queries in Qa are sequentially executed

following the same logic as before. For each distinct tuple id t returned by a query qi
∈ Qa, if not already in R, a parameterized query that is the union of all queries

Personalization of Queries Based on User Preferences 17

following qi in Qa is executed. A tuple {t, PrefsSatisfied, PrefsNotSatisfied, dt} is
constructed and placed in the list of results if it satisfies the criterion on L. In addition,
the algorithm keeps a list IdsA of all tuple ids returned by absence queries. At the end,
any tuple of the initial query Q with id not in this list is also part of the results returned
by the algorithm.

The list of results, R, is ordered in decreasing degree of interest. A tuple from this
list may be output based on evidence that no coming tuple could have a degree of
interest greater than the degree of the former. Such evidence is provided in the form
of a maximum estimated degree of interest (MEDI) that any unseen result can achieve.
This is the degree of interest of the maximal set of preferences that may be satisfied at
each point of the algorithm. Initially, this is the whole set of preferences. When the
algorithm proceeds with the next sub-query in sequence, the preferences involved in
the previous one are not applicable any more, thus they are removed from this set of
preferences.

Tuples in R whose degree of interest becomes greater than or equal to MEDI are
output. However, they are not removed from R. In this way, the algorithm always
knows which tuples have already been encountered and does not create duplicates.
Since R is ordered in decreasing degree of interest, there is a pointer to the first tuple
there not output yet. As tuples are progressively output this pointer moves towards the
bottom of the list.

The algorithm terminates when the preferences involved in the remaining sub-
queries do not suffice for satisfying the criterion on L, and it outputs any remaining
tuples in R.

6. Experimental Results

Experiments were conducted using a system implemented on top of Oracle 9i. Our
data comes from the Internet Movies Database [10] with information about over
340000 films. We conducted several experiments with various sets of profiles and
queries. We discuss results of experiments concerning (a) the appropriateness of the
described ranking functions, and (b) the benefits of query personalization.

We conducted an empirical evaluation of our approach with human subjects.
Almost half of them have a diploma in computer science, the rest of them being
simple users of computers. First, each user provided his preferences. Two trials were
conducted using a web-based client developed for this purpose.

In the first trial, all subjects were given a set of queries. Each user submitted these
queries twice in arbitrary order. Queries were executed once without personalization
and once with personalization. This was also performed arbitrarily. Our intention was
to let individuals judge the results unbiased by what happens to their query. In the
second trial, all users were asked to think of a specific need, e.g., to find a theatre to
go or a DVD to rent. Queries submitted by half of them were not changed, while
queries of the rest were personalized.

Each user was asked to electronically evaluate each tuple returned by a query, and
the overall answer to a query. We compared user interest in each tuple to the degree
of interest returned by the three positive ranking functions described earlier. Overall

18 Georgia Koutrika , Yannis Ioannidis

evaluation of the answer was performed by providing: (a) an estimation of the degree
of difficulty to find something interesting, if they found anything, (b) an estimation of
how well the answer covered their need, and (c) an overall score of the results.

Regarding ranking functions, our results indicated that the inflationary function is
not appropriate, because it approaches 1 very quickly, and when it is already close to
1, adding more preferences causes only slight changes to the degree calculated.
Almost half of our users followed a dominant philosophy when evaluating the results,
while the rest of them followed a reserved philosophy. These results are indicative as
to the appropriateness and intuitiveness of the described ranking functions, and have
shown that it may be possible to learn for each user the most appropriate ranking
function, and store this information in the user profile.

Regarding the effectiveness of personalized queries, experiments have shown that
the benefits of personalized search can be significant in terms of the effort required by
people -novices and experts alike- to find information.

7. Conclusions and Future Work

We have focused on query personalization and we have presented a preference model,
efficient query personalization algorithms, ranking functions, and experimental
results.

Personalized database information access opens the door to a new set of challenges
and opportunities for the future. Combining personal preferences with other aspects of
a query’s context that call for query customization, such as time of day, user location,
device used for querying, etc is certainly an outstanding research challenge in the near
future. Furthermore, since query personalization alters the search experience, the user
interface needs to provide a way to explain what the system is doing to personalize
the experience as well as to undo the personalization. Therefore, an interesting
research direction is towards design of user interfaces that allow users to control the
extent of the personalization, and can help alleviate inaccurate personalization. Other
interesting issues are the expression of preferences over a higher level model that may
be transparently mapped to an underlying database’s schema, and algorithms for
(semi-) automatic construction of user profiles.

8. References

[1] Agrawal, R., Wimmers, E. A Framework for Expressing and Combining Preferences. Proc.
of ACM SIGMOD, 2000.

[2] André E., Rist, T. From adaptive hypertext to personalized web companions. Comm. of the
ACM, 45(5), 43-46, 2002.

[3] Borzsonyi, S., Kossmann, D., Stocker, K. The Skyline Operator. Proc. of ICDE, 421–430,
2001.

[4] Bruno, N., Chaudhuri, S., Gravano, L. Top- k Selection Queries over Relational Databases:
Mapping Strategies and Performance Evaluation. ACM TODS, 27(2), 153-187, 2002.

[5] Chomicki, J. Preference Formulas in Relational Queries. ACM TODS, 28(4), 427–466,
2003.

Personalization of Queries Based on User Preferences 19

[6] Collins, A., Quillian, M. Retrieval Time from Semantic Memory. J. of Verbal Learning and
Verbal Behaviour, Vol 8, 240-247, 1969

[7] Fishburn, P. Preference Structures and Their Numerical Representations. Theor. Comput.
Sci. 217, 359–383, 1999.

[8] Hansson, S. O. Preference Logic. In Handbook of Philosophical Logic, D. Gabbay, Ed. Vol.
8, 2001.

[9] Ilyas, I., Shah, R. Aref, W., Vitter, J., Elmagarmid, A. Rank-aware Query Optimization.
Proc. of ACM SIGMOD, 2004.

[10] Internet Movies Database. Available at www.imdb.com
[11] Karypis, G. Evaluation of Item-Based Top-N Recommendation Algorithms. Proc. of

CIKM, 247-254, 2001.
[12] Kießling, W., Köstler, G.. Preference SQL-Design, Implementation, Experiences. Proc. of

VLDB, 2002.
[13] Kießling, W. Foundations of preferences in database systems. Proc. of. VLDB, 2002.
[14] Koutrika, G., Ioannidis, Y. Personalization of Queries in Database Systems. Proc. of

ICDE, 2004.
[15] Lacroix, M., Lavency, P. Preferences: Putting More Knowledge into Queries. Proc. of

VLDB, 217–225, 1987.
[16] Liu F., Yu C., Meng W. Personalized Web Search by Mapping User Queries to Categories.

Proc. of ACM CIKM, 558-565, 2002.
[17] Papadias, D., Tao, Y., Fu, G., Seeger, B. An Optimal and Progressive Algorithm for

Skyline Queries. Proc. of ACM SIGMOD, 467–478, 2003.
[18] Pitkow, J., Schutze, H., et al. Personalized Search. Comm. of the ACM, 45(9), 2002.
[19] Shahabi, C., Banaei-Kashani, F., Chen, Y., McLeod D. Yoda: An Accurate and Scalable

Web-based Recommendation System. Proc. of COOPIS, 2001.
[20] Wellman,M.P., Doyle, J. Preferential semantics for goals. Proc. of the National Conf. on

AI, 698–703, 1991.
[21] Zhu, L., Meng W. Learning-Based Top-N Selection Query Evaluation over Relational

Databases. Proc. of WAIM, 2004.

