
Understanding Schemas�R. J. Millery Y. E. Ioannidisz R. RamakrishnanxDept. Computer Sciences, Univ. Wisconsin1210 W. Dayton St., Madison, WI 53706 USAfrmiller, yannis, raghug@cs.wisc.eduAbstractBefore the problem of schema integration and trans-lation can be adequately addressed, a precise under-standing of schemas is needed. We present an anal-ysis of the notion of schema as used by existing in-tegration methodologies. We show how inherent am-biguities and imprecision in traditional de�nitions ofschema can hamper the development of formal schemaintegration methodologies. Speci�cally, traditional no-tions of schema contain data in the form of metadata,as well as super
uous structuring information that isnot semantically meaningful. We argue that it is im-portant to cleanly separate structural information fromdata, and remove from consideration artifacts of a spe-ci�c data model or design methodology. To this end,we introduce the notion of a schema intension to cap-ture the semantic content of a schema.1 A Closer look at SchemasCurrent work on schema integration uses the notionof schema as de�ned by a speci�c data model or designmethodology. These notions vary in such areas as thekinds of structural associations (and constraints) thatmay be expressed, in the way constraints are groupedto form data model constructs, and in the forms ofnames that may be associated with schema constructs.The choice of a data model or design methodology,as well as the view of metadata, may impact whatconstitutes a schema.The rich semantic models (favored within the sche-ma integration community) provide a plethora of con-structs that permit the same information to be rep-�Appeared in: Research Issues in Data Engineering: Inter-operability in Multidatabase Systems, 1993.yPartially supported by NSF Grant IRI-9157368.zPartially supported by NSF Grants IRI-9113736 and IRI-9157368 (PYI Award) and by grants fromDEC, HP, andAT&T.xPartially supported by a David and Lucile Packard Founda-tion Fellowship in Science and Engineering, by the NSF undera PYI Award and under grant IRI-9011563, and by grants fromDEC, Tandem, and Xerox.

resented in di�erent constructs of the data model. Inaddressing the problem of schema integration it is im-portant to understand when a choice of construct ina given schema (for example, modeling information asan entity or a relationship) conveys semantic informa-tion and when a choice is arbitrary. In the formercase, the choice of construct should be used in reason-ing about a schema. In the latter, the choice is anartifact of the data model or of the freedom in repre-sentation allowed by the data model. This dichotomyis fundamental to the problem of schema integrationand it is one that has been largely ignored in existingintegration methodologies.Also inherent to the problem of understanding andde�ning schemas is the fact that traditional schemasmay include data in the form of names for struc-tures within the schema. In Figure 1, three relationalschemas are shown for stock information.1 All threeschemas intuitively model similar information. Yet in-formation that is captured by data in the �rst schema(as values in a speci�c schema instance) is expressedwithin the schema itself (as either names of tables ornames of attributes) in the second and third schemas.Examples such as this are not uncommon since namesfor entities often capture some intuitive semantic in-formation. 2Indeed, it is not just the names of entities that maybe viewed as data. Statistics about tables, access pat-terns, and even comments about units of quantities(e.g., whether prices are in dollars or francs) are formsof metadata that may be viewed as data. In fact, anyinformation within a traditional database catalog maybe viewed as data.Schema design methodologies in
uence what data1Variations of this same example have been used in [1, 5].2Other researchers have recognized that schemas often con-tain data in the form of names for schema constructs. However,work has been focused on providing second order reasoning ca-pabilities over names of schema constructs [1, 5, 8]. In contrast,our goal is to understand formally what data is being repre-sented by a schema, not to address language requirements orallow queries over metadata.



Stock Schema I

Stock
Price

Stock Schema III
Stock

Price

CoA

CoB

CoC

Stock Schema II

CoA CoB CoC

COMPANY DATE

DATE

DATEFigure 1: Three stock schemas. Table names arein italics, key attributes are capitalized.is seen as metadata and de�ne (implicitly perhaps) acommon view of precisely what comprises a schema.Many integration methodologies have taken advantageof this fact to simplify the problem of integration.The focus is on merging structures within the vari-ous schemas making incremental, rather than funda-mental, changes to the structures themselves [2, 3, 6,and others]. The assumption is that a common designmethodology will ensure that the structures chosento represent similar information in di�erent schemasare inherently compatible. As a result the semanticsimplied by the choice of a certain structure is rarelycaptured explicitly within these methodologies otherthan by the goal of changing the initial schemas aslittle as possible.2 Rede�nition of SchemaGiven the above concerns, a de�nition of schemathat is appropriate for the task of schema integrationis needed. This de�nition should capture the informa-tion about how data is related together or structuredand should clearly separate structuring informationfrom the data and the metadata that form parts oftraditional notions of schema.We will refer to what has traditionally been calleda schema (that is, a schema, expressed within a givendata model) as a schema extension. Schema exten-sions carry with them all the ambiguity and impre-cision that has been explored in the previous sectionand may include data in the form of names for con-structs. A schema intension, on the other hand, isde�ned to be a \pure" data structure. A schema in-tension serves to structure information that in a tra-ditional schema extension may be expressed as bothmetadata and data. To ensure that a schema intensionis a \pure" data structure, constructs within a schemaintension are referred to by tokens with no semanticcontent.We present a simple, intuitive formalism for cap-turing the essence of schema intensions called schemaintension graphs (SIGs). We present only the features

of SIGs necessary to present the example of Section3 (SIGs are fully de�ned in [7]). The notion of aschema intension is independent of the speci�c modelwe present below. Our exposition will therefore focuson the use of this model in demonstrating the princi-ples underlying the analysis of schemas using schemaintensions.The formalismwe present uses annotated binary re-lations expressed over domains represented by nodesin a graph. An annotated binary relation is a mathe-matical relation constrained to satisfy certain proper-ties. The set of properties allowed will determine, to alarge extent, the power of this formalism in expressingstructural information. Our proposal uses only four,rather natural properties. Speci�cally, an annotatedbinary relation may be classi�ed as being total, sur-jective, injective or functional, or any combination ofthese properties. If r is a binary relation de�ned ontwo sets A and B, denoted r : A �B, the inverse of ris de�ned as r� : B � A where (b; a) 2 r� if and onlyif (a; b) 2 r. If r and s are two binary relations suchthat r : A $ B and s : B $ C , their composition isde�ned by s�r : A$ C where (a; c) 2 s�r if and onlyif there exists an element b 2 B such that (a; b) 2 rand (b; c) 2 s. A binary relation r : A�B is said to betotal, denoted r : A��j B, if for all a 2 A, there existssome b 2 B such that (a; b) 2 r. Similarly, r is said tobe surjective, denoted r : A��j B, if its inverse r� is to-tal. A binary relation r : A�B is functional, denotedr : A�!B, if whenever (a; b1) 2 r and (a; b2) 2 r thenb1 = b2, so an element a uniquely determines a sin-gle element b. Finally, a binary relation r is injective,denoted r : A �B, if r� is functional. Note that allfour properties are independent in that no subset ofthe properties expressed on a binary relation betweenarbitrary sets A and B logically implies any propertynot in that subset.Let � be an in�nite set of symbols that will serveas labels. Let T be a �nite set of abstract types. Eachtype � 2 T is an in�nite set of symbols. All types arepairwise disjoint and disjoint from the set of labels �.A schema intension graph (SIG) is a graph G = (N;E)de�ned by two �nite sets N and E. Let M � � be a�nite set of symbols andM� be the closure ofM under�nite products and sums. Then N �M� and N �M .For X 2 N , if X 2M then X is called a simple node,otherwise X is a constructed node. Each simple nodeis assigned a (not necessarily unique) type, � (X) 2 T .Each element e 2 E is a labeled edge between twonodes of N , where �(e) 2 �. An edge e is denotede : X � Y indicating it is an edge between nodes Xand Y . The set E contains special projection edges



from each product node X � Y , p1 : X � Y �X andp2 : X�Y �Y . An annotation of a SIG G = (N;E) isa function A whose domain is the set of simple pathsin G where A(e) � ff; i; s; tg.An instance of a SIG G = (N;E) is a function =whose domain is the sets N and E. For each simplenode X 2 N , =(X) is a �nite subset of � (X). Foreach product node X � Y 2 N , =(X � Y ) is the fullcross product of the sets =(X) and =(Y ). For eachsum node X+Y 2 N , =(X+Y ) is the disjoint sum ofthe sets =(X) and =(Y ). For each edge e : X�Y 2 E,=(e) is a binary relation over =(X) and =(Y ) (i.e., asubset of the cross product of =(X) and =(Y )). Aninstance of a projection edge p : X � Y � X is con-strained so that ((x1; y); x2) 2 =(p) i� x1 = x2. Foran annotation function A, a valid instance of (G;A)is an instance that assigns a total (respectively func-tional, surjective or injective) binary relation to eachpath where t 2 A(e) (respectively f; s; or i 2 A(e)).3 Expressing Schema IntensionsIn this section, we present an example (using theschemas of Figure 1) of how the SIG formalism canbe used to capture the essential structuring proper-ties of schema extensions and to reason about all datarepresented by a schema extension.In describing the intension of a given schema exten-sion, di�erent nodes must be assigned to each subsetof an abstract type that can act in a di�erent struc-tural role. Restrictions on the values of these nodes(including equality of nodes) are then captured by an-notations on edges of the SIG. In Schema I of Figure1, the three abstract types �, �, and � represent com-pany values, date values and price values, respectively.There is a single node for each of these types, C, D andP, each corresponding to a column of the stock table.The �nal grouping of data, the stock table itself, isnot semantically signi�cant in this example and is notassigned an abstract type or node.Existing integration approaches provide mecha-nisms for expressing and integrating data that is struc-tured by the schema extension. It is the data capturedwithin the schema extension that is often omitted.Hence, this metadata must also be typed and groupedinto nodes. In Schema I of Figure 1, the table nameand attribute names are labels, rather than data. InSchema III, however, the three attribute names, CoA,CoB and CoC are all values of the abstract type �(company values). These attribute names are assignedto a node C 0. The Date column is assigned the ab-stract type � (date values) and node D0. The remain-ing three columns are all assigned the abstract type

� (price values). To simplify the example we assign asingle node P 0 to represent all three columns of pricevalues. In a full development of this example separatenodes would be assigned to these columns. However,because the three columns play the same structuralrole, this simpli�cation can be made without loss ofgenerality.Given an assignment of all data to typed nodes,annotated binary relations capturing relevant struc-turing information can be derived. A formalizationof this derivation process would include, for example,rules to express the constraint that the node for a re-lational table name and the nodes for key attributesof the table together functionally determine the nodeof each nonkey attribute. Inference rules allow anno-tated binary relations to be combined and simpli�ed.(Derivation rules for classes of the relational modeland inference rules on SIGs are presented elsewhere[7].) In the following we focus on the intuition behindthe derivation of annotated binary relations.
C x D

D

P
p1 p2

f

SIG I SIG III

C

p1’ p2’

f’
P’

D’

C’ x D’

C’Figure 2: The SIGs for Schemas I and III.The structure on nodes implied by the stock tableof Schema I can be captured by SIG I of Figure 2. Theedges p1 and p2 are the projections from C �D of Cand D values respectively. The surjective functionaledge f expresses the constraint that a company anddata value determine a single price, and that everyprice value is associated with at least one company,date pair. This edge is not total since every value inthe cross-product of company and date values is notguaranteed to appear in a valid instance of SchemaI. However, every company value is associated withsome price, so the additional constraint that p1 � f� issurjective must be added. Similarly, p2 � f� must besurjective.The structure on nodes implied by the stock tableof Schema III can be captured by SIG III of Figure 2.Again, the edges p01 and p02 are projections. The edgef 0 expresses the constraint that a date value togetherwith an attribute name (a company value) determinesa single price. Again, every price is associated withat least one company, date pair so the edge f 0 is sur-jective. However, unlike in Schema I, the structureof Schema III ensures that every company has a price



recorded for every date (assuming null values are notallowed). Hence, edge f 0 is also total. As with SchemaI, the structure of the relational table ensures that ev-ery company is associated with some price value andevery data is associated with some price. These con-straints are again captured by requiring that p01 � f 0�and p02 � f 0� be surjective.SIGs I and III are isomorphic except for the totalannotation on f 0 in SIG III. Schema III is thereforemore restrictive than Schema I in that the set of validinstances of this schema will be a strict subset of theset of valid instances of Schema I. Continuing this casestudy, a SIG for Schema II may be derived. This SIGwould be identical to that of Schema I. This corre-sponds to our natural intuition that these two schemashave the same \information capacity" and can expressthe same set of instances.We conclude with a �nal note on modeling inheri-tance. Many authors have stressed the importance ofmodeling generalization and specialization when deal-ing with semantic heterogeneity. Specialization ex-presses the constraint that one set of instances or ob-jects is a subset of another. Generalization expressesthe constraint that one set is the (disjoint) union oftwo or more other sets. Our approach deals naturallywith such constructs using annotated binary relationsthat may possibly be constrained to be a subset of theidentity relation. Generalization is modeled as a to-tal, surjective, injective function (a bijection) betweena node and the union of other nodes. Specialization ismodeled as a total, injective function from one nodeinto another.Specialization is often modeled using inclusion de-pendencies within the relational model. While spaceprohibits the development of a full example using gen-eralization or specialization, the stock example may besimply extended with a few inclusion dependencies.In Schema II of Figure 1, a two-way inclusion depen-dency between the date columns in each of the threerelational tables would ensure that all companies havestock prices recorded for the same dates. Within theschema intension, this information could be expressedby an annotated binary relation and combined withthe functional dependency information to produce thetotal, surjective, function: f : C �D�!j j P . It is theseinclusion dependencies that are required to ensure thatthe second and third schemas have the same informa-tion capacity.4 Future WorkWe are currently expanding the use of this foun-dation in developing a sound, comprehensive integra-

tion methodology. Speci�cally, we are examining rulesand heuristics that are appropriate for the derivationof schema intensions from existing schema extensionsand ways in which these rules may be combined withinteractive tools. We believe that the use of schemaintensions o�ers an opportunity for increased automa-tion and formalization of schema integration. To meetthis expectation, the derivation of schema intensionsmust be based on a formal notion of equivalence. Weare exploring the application of existing work on rela-tive information capacity to schema intensions [4].Once schema intensions are derived, formal reason-ing about their equivalence is possible. We are ex-amining whether a set of inference rules over schemaintensions that is not only sound (produces logicallyvalid inferences) but complete (produces all inferencesthat are sound) may be developed. We have shownthis problem to be incomplete in general [7]. However,there are interesting subsets of schema intensions (ofpractical importance) for which a complete set of in-ference rules may be given. These rules may be usedto formally establish the equivalence of schema inten-sions.References[1] T. Barsalou and D. Gangopadhyay. M(DM): An OpenFramework for Interoperation of Multimodel Multi-database Systems. In Data Eng., pages 218{227, 1992.[2] C. Batini, M. Lenzerini, and S. B. Navathe. A Compar-ative Analysis of Methodologies for Database SchemaIntegration. ACM Computing Surveys, 18(4):323{364,Dec. 1986.[3] J. Biskup and B. Convent. A Formal View IntegrationMethod. In SIGMOD, pages 398{407, 1986.[4] R. Hull. Relative Information Capacity of Simple Re-lational Database Schemata. SIAM Journal of Com-puting, 15(3):856{886, Aug. 1986.[5] R. Krishnamurthy, W. Litwin, and W. Kent. Lan-guage Features for Interoperability of Databases withSchematic Discrepancies. In SIGMOD, pages 40{49,1991.[6] J. Larson, S. B. Navathe, and R. Elmasri. A Theory ofAttribute Equivalence in Databases with Applicationto Schema Integration. IEEE Trans. on Software Eng.,15(4):449{463, Apr. 1989.[7] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan.Foundations of Schema Translation. Submitted for pub-lication, 1992.[8] K. A. Ross. Relations with Relation Names as Argu-ments: Algebra and Calculus. In PODS, pages 346{353, 1992.


