Understanding Schemas*

R. J. Miller Y. E. Ioannidis* R. Ramakrishnan®
Dept. Computer Sciences, Univ. Wisconsin
1210 W. Dayton St., Madison, WI 53706 USA

{rmiller, yannis, raghu}@cs.wisc.edu

Abstract

Before the problem of schema integration and trans-
lation can be adequately addressed, a precise under-
standing of schemas is needed. We present an anal-
ysis of the notion of schema as used by existing in-
tegration methodologies. We show how inherent am-
biguities and imprecision in traditional definitions of
schema can hamper the development of formal schema
wntegration methodologies. Specifically, traditional no-
tions of schema contain data in the form of metadata,
as well as superfluous structuring information that is
not semantically meaningful. We argue that it s im-
portant to cleanly separate structural information from
data, and remove from consideration artifacts of a spe-
cific data model or design methodology. To this end,
we introduce the notion of a schema intension to cap-
ture the semantic content of a schema.

1 A Closer look at Schemas

Current work on schema integration uses the notion
of schema as defined by a specific data model or design
methodology. These notions vary in such areas as the
kinds of structural associations (and constraints) that
may be expressed, in the way constraints are grouped
to form data model constructs, and in the forms of
names that may be associated with schema constructs.
The choice of a data model or design methodology,
as well as the view of metadata, may impact what
constitutes a schema.

The rich semantic models (favored within the sche-
ma integration community) provide a plethora of con-
structs that permit the same information to be rep-

*Appeared in: Research Issues in Data Engineering: Inter-
operability in Multidatabase Systems, 1993.

tPartially supported by NSF Grant IRI-9157368.

+Partially supported by NSF Grants IRI-9113736 and IRI-
9157368 (PYI Award) and by grants from DEC, HP, and AT&T.

§Partially supported by a David and Lucile Packard Founda-
tion Fellowship in Science and Engineering, by the NSF under
a PYI Award and under grant IRI-9011563, and by grants from
DEC, Tandem, and Xerox.

resented in different constructs of the data model. In
addressing the problem of schema integration it is im-
portant to understand when a choice of construct in
a given schema (for example, modeling information as
an entity or a relationship) conveys semantic informa-
tion and when a choice is arbitrary. In the former
case, the choice of construct should be used in reason-
ing about a schema. In the latter, the choice is an
artifact of the data model or of the freedom in repre-
sentation allowed by the data model. This dichotomy
is fundamental to the problem of schema integration
and 1t is one that has been largely ignored in existing
integration methodologies.

Also inherent to the problem of understanding and
defining schemas is the fact that traditional schemas
may include data in the form of names for struc-
tures within the schema. In Figure 1, three relational
schemas are shown for stock information.! All three
schemas intuitively model similar information. Yet in-
formation that is captured by data in the first schema
(as values in a specific schema instance) is expressed
within the schema itself (as either names of tables or
names of attributes) in the second and third schemas.
Examples such as this are not uncommon since names
for entities often capture some intuitive semantic in-
formation. 2

Indeed, it is not just the names of entities that may
be viewed as data. Statistics about tables; access pat-
terns, and even comments about units of quantities
(e.g., whether prices are in dollars or francs) are forms
of metadata that may be viewed as data. In fact, any
information within a traditional database catalog may
be viewed as data.

Schema design methodologies influence what data

IVariations of this same example have been used in [1, 5].

20ther researchers have recognized that schemas often con-
tain data in the form of names for schema constructs. However,
work has been focused on providing second order reasoning ca-
pabilities over names of schema constructs [1, 5, 8]. In contrast,
our goal is to understand formally what data is being repre-
sented by a schema, not to address language requirements or
allow queries over metadata.



Stock Schema |

k Sch 1
COMPANY DATE Price Stock Schema
Sock DATE Price

L e T

Stock Schemall |l

Sock DATE CoA CoB Coc C©oB l:l:|
| I o B

Figure 1: Three stock schemas. Table names are
in italics, key attributes are capitalized.

is seen as metadata and define (implicitly perhaps) a
common view of precisely what comprises a schema.
Many integration methodologies have taken advantage
of this fact to simplify the problem of integration.
The focus is on merging structures within the vari-
ous schemas making incremental, rather than funda-
mental, changes to the structures themselves [2, 3, 6,
and others]. The assumption is that a common design
methodology will ensure that the structures chosen
to represent similar information in different schemas
are inherently compatible. As a result the semantics
implied by the choice of a certain structure is rarely
captured explicitly within these methodologies other
than by the goal of changing the initial schemas as
little as possible.

2 Redefinition of Schema

Given the above concerns, a definition of schema
that is appropriate for the task of schema integration
is needed. This definition should capture the informa-
tion about how data is related together or structured
and should clearly separate structuring information
from the data and the metadata that form parts of
traditional notions of schema.

We will refer to what has traditionally been called
a schema (that is, a schema, expressed within a given
data model) as a schema extension. Schema exten-
sions carry with them all the ambiguity and impre-
cision that has been explored in the previous section
and may include data in the form of names for con-
structs. A schema intension, on the other hand, is
defined to be a “pure” data structure. A schema in-
tension serves to structure information that in a tra-
ditional schema extension may be expressed as both
metadata and data. To ensure that a schema intension
is a “pure” data structure, constructs within a schema
intension are referred to by tokens with no semantic
content.

We present a simple, intuitive formalism for cap-
turing the essence of schema intensions called schema
intension graphs (SIGs). We present only the features

of SIGs necessary to present the example of Section
3 (SIGs are fully defined in [7]). The notion of a
schema intension is independent of the specific model
we present below. Our exposition will therefore focus
on the use of this model in demonstrating the princi-
ples underlying the analysis of schemas using schema
intensions.

The formalism we present uses annotated binary re-
lations expressed over domains represented by nodes
in a graph. An annotated binary relation is a mathe-
matical relation constrained to satisfy certain proper-
ties. The set of properties allowed will determine, to a
large extent, the power of this formalism in expressing
structural information. Qur proposal uses only four,
rather natural properties. Specifically, an annotated
binary relation may be classified as being total, sur-
jective, injective or functional, or any combination of
these properties. If r is a binary relation defined on
two sets A and B, denoted r : A — B, the inverse of r
is defined as r° : B — A where (b,a) € r° if and only
if (a,b) € r. If r and s are two binary relations such
that r : A «— B and s : B «— (' | their composition is
defined by sor : A — C where (a,c¢) € sor if and only
if there exists an element b € B such that (a,b) € r
and (b,¢) € s. A binary relation r : A— B is said to be
total, denoted r : A4— B, if for all a € A, there exists
some b € B such that (a,b) € r. Similarly, r is said to
be surjective, denoted r : A—} B, if its inverse 7° is to-
tal. A binary relation r : A — B is functional, denoted
r: A—B, if whenever (a,b1) € r and (a, b3) € r then
b1 = by, so an element a uniquely determines a sin-
gle element b. Finally, a binary relation r is injective,
denoted r : A——B, if r° 1s functional. Note that all
four properties are independent in that no subset of
the properties expressed on a binary relation between
arbitrary sets A and B logically implies any property
not in that subset.

Let A be an infinite set of symbols that will serve
as labels. Let 7 be a finite set of abstract types. Each
type 7 € T is an infinite set of symbols. All types are
pairwise disjoint and disjoint from the set of labels A.
A schema intension graph (SIG)is a graph G = (N, E)
defined by two finite sets N and E. Let M C A be a
finite set of symbols and M* be the closure of M under
finite products and sums. Then N C M* and N D M.
For X € N,if X € M then X 1s called a simple node,
otherwise X is a constructed node. Each simple node
is assigned a (not necessarily unique) type, 7(X) € 7.
Each element e € E is a labeled edge between two
nodes of N, where A(e) € A. An edge e is denoted
e : X — Y indicating 1t is an edge between nodes X
and Y. The set E contains special projection edges



from each product node X x Y, p; : X xY — X and
p2 1 X xY =Y. An annotation of a SIG G = (N, F) is
a function A whose domain is the set of simple paths
in G where A(e) C {f,i,s,t}.

An instance of a SIG G = (N, E) is a function &
whose domain is the sets N and E. For each simple
node X € N, ¥(X) is a finite subset of 7(X). For
each product node X xY € N, $(X x Y) is the full
cross product of the sets $(X) and (V). For each
sum node X +Y € N, J(X +7Y) is the digjoint sum of
the sets $(X) and (V). Foreach edgee: X-Y € E|
S(e) is a binary relation over (X)) and (YY) (i.e., a
subset of the cross product of F(X) and F(Y)). An
instance of a projection edge p: X x Y — X is con-
strained so that ((z1,y),22) € S(p) iff 21 = 25. For
an annotation function A, a valid instance of (G, .A)
is an instance that assigns a total (respectively func-
tional, surjective or injective) binary relation to each
path where ¢ € A(e) (respectively f, s, or i € A(e)).

3 Expressing Schema Intensions

In this section, we present an example (using the
schemas of Figure 1) of how the SIG formalism can
be used to capture the essential structuring proper-
ties of schema extensions and to reason about all data
represented by a schema extension.

In describing the intension of a given schema exten-
sion, different nodes must be assigned to each subset
of an abstract type that can act in a different struc-
tural role. Restrictions on the values of these nodes
(including equality of nodes) are then captured by an-
notations on edges of the SIG. In Schema I of Figure
1, the three abstract types k, §, and 7 represent com-
pany values, date values and price values, respectively.
There is a single node for each of these types, C, D and
P, each corresponding to a column of the stock table.
The final grouping of data, the stock table itself, is
not semantically significant in this example and is not
assigned an abstract type or node.

Existing integration approaches provide mecha-
nisms for expressing and integrating data that is struc-
tured by the schema extension. It is the data captured
within the schema extension that is often omitted.
Hence, this metadata must also be typed and grouped
into nodes. In Schema I of Figure 1, the table name
and attribute names are labels, rather than data. In
Schema I1II, however, the three attribute names, CoA,
CoB and CoC are all values of the abstract type &
(company values). These attribute names are assigned
to a node C’. The Date column is assigned the ab-
stract type é (date values) and node D'. The remain-
ing three columns are all assigned the abstract type

7 (price values). To simplify the example we assign a
single node P’ to represent all three columns of price
values. In a full development of this example separate
nodes would be assigned to these columns. However,
because the three columns play the same structural
role, this simplification can be made without loss of
generality.

Given an assignment of all data to typed nodes,
annotated binary relations capturing relevant struc-
turing information can be derived. A formalization
of this derivation process would include, for example,
rules to express the constraint that the node for a re-
lational table name and the nodes for key attributes
of the table together functionally determine the node
of each nonkey attribute. Inference rules allow anno-
tated binary relations to be combined and simplified.
(Derivation rules for classes of the relational model
and inference rules on SIGs are presented elsewhere
[7].) In the following we focus on the intuition behind
the derivation of annotated binary relations.

f fr
CxD —+= P (CxD _p
pL " T p2 pl?%x < p2 ]
C D C D’
SIG I SIGIII

Figure 2: The SIGs for Schemas I and III.

The structure on nodes implied by the stock table
of Schema I can be captured by SIG I of Figure 2. The
edges p1 and py are the projections from C' x D of '
and D values respectively. The surjective functional
edge f expresses the constraint that a company and
data value determine a single price, and that every
price value is associated with at least one company,
date pair. This edge is not total since every value in
the cross-product of company and date values is not
guaranteed to appear in a valid instance of Schema
I. However, every company value is associated with
some price, so the additional constraint that p; o f° is
surjective must be added. Similarly, ps o f° must be
surjective.

The structure on nodes implied by the stock table
of Schema III can be captured by SIG III of Figure 2.
Again, the edges p| and ph are projections. The edge
/! expresses the constraint that a date value together
with an attribute name (a company value) determines
a single price. Again, every price is associated with
at least one company, date pair so the edge f’ is sur-
jective. However, unlike in Schema I, the structure
of Schema III ensures that every company has a price



recorded for every date (assuming null values are not
allowed). Hence, edge f’ is also total. As with Schema
I, the structure of the relational table ensures that ev-
ery company is associated with some price value and
every data is associated with some price. These con-
straints are again captured by requiring that p} o f’°
and ph o f'° be surjective.

SIGs I and IIT are isomorphic except for the total
annotation on f’ in SIG III. Schema III is therefore
more restrictive than Schema I in that the set of valid
instances of this schema will be a strict subset of the
set of valid instances of Schema I. Continuing this case
study, a SIG for Schema IT may be derived. This SIG
would be identical to that of Schema I. This corre-
sponds to our natural intuition that these two schemas
have the same “information capacity” and can express
the same set of instances.

We conclude with a final note on modeling inheri-
tance. Many authors have stressed the importance of
modeling generalization and specialization when deal-
ing with semantic heterogeneity. Specialization ex-
presses the constraint that one set of instances or ob-
jects is a subset of another. Generalization expresses
the constraint that one set is the (disjoint) union of
two or more other sets. Our approach deals naturally
with such constructs using annotated binary relations
that may possibly be constrained to be a subset of the
identity relation. Generalization is modeled as a to-
tal, surjective, injective function (a bijection) between
a node and the union of other nodes. Specialization is
modeled as a total, injective function from one node
into another.

Specialization is often modeled using inclusion de-
pendencies within the relational model. While space
prohibits the development of a full example using gen-
eralization or specialization, the stock example may be
simply extended with a few inclusion dependencies.
In Schema IT of Figure 1, a two-way inclusion depen-
dency between the date columns in each of the three
relational tables would ensure that all companies have
stock prices recorded for the same dates. Within the
schema intension, this information could be expressed
by an annotated binary relation and combined with
the functional dependency information to produce the
total, surjective, function: f: C' x D+ P. Tt is these
inclusion dependencies that are required to ensure that
the second and third schemas have the same informa-
tion capacity.

4 Future Work

We are currently expanding the use of this foun-
dation in developing a sound, comprehensive integra-

tion methodology. Specifically, we are examining rules
and heuristics that are appropriate for the derivation
of schema intensions from existing schema extensions
and ways in which these rules may be combined with
interactive tools. We believe that the use of schema
intensions offers an opportunity for increased automa-
tion and formalization of schema integration. To meet
this expectation, the derivation of schema intensions
must be based on a formal notion of equivalence. We
are exploring the application of existing work on rela-
tive information capacity to schema intensions [4].

Once schema intensions are derived, formal reason-
ing about their equivalence is possible. We are ex-
amining whether a set of inference rules over schema
intensions that is not only sound (produces logically
valid inferences) but complete (produces all inferences
that are sound) may be developed. We have shown
this problem to be incomplete in general [7]. However,
there are interesting subsets of schema intensions (of
practical importance) for which a complete set of in-
ference rules may be given. These rules may be used
to formally establish the equivalence of schema inten-
sions.

References

[1] T. Barsalou and D. Gangopadhyay. M(DM): An Open
Framework for Interoperation of Multimodel Multi-
database Systems. In Data Eng., pages 218-227, 1992.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A Compar-
ative Analysis of Methodologies for Database Schema
Integration. ACM Computing Surveys, 18(4):323-364,
Dec. 1986.

[3] J. Biskup and B. Convent. A Formal View Integration
Method. In SIGMOD, pages 398407, 1986.

[4] R. Hull. Relative Information Capacity of Simple Re-
lational Database Schemata. SIAM Journal of Com-
puting, 15(3):856-886, Aug. 1986.

[5] R. Krishnamurthy, W. Litwin, and W. Kent. Lan-
guage Features for Interoperability of Databases with
Schematic Discrepancies. In SIGMOD, pages 40-49,
1991.

[6] J. Larson, S. B. Navathe, and R. Elmasri. A Theory of
Attribute Equivalence in Databases with Application
to Schema Integration. IFEFE Trans. on Software Eng.,
15(4):449-463, Apr. 1989.

[7] R. J. Miller, Y. E. Toannidis, and R. Ramakrishnan.
Foundations of Schema Translation. Submitted for pub-
lication, 1992.

[8] K. A. Ross. Relations with Relation Names as Argu-

ments: Algebra and Calculus. In PODS, pages 346—
353, 1992.



