

Constrained Optimalities in Query Personalization*
Georgia Koutrika
University of Athens

Hellas

koutrika@di.uoa.gr

Yannis Ioannidis
University of Athens

Hellas

yannis@di.uoa.gr

ABSTRACT
Personalization is a powerful mechanism that helps users to cope
with the abundance of information on the Web. Database query
personalization achieves this by dynamically constructing queries
that return results of high interest to the user. This, however, may
conflict with other constraints on the query execution time and/or
result size that may be imposed by the search context, such as the
device used, the network connection, etc. For example, if the user
is accessing information using a mobile phone, then it is desirable
to construct a personalized query that executes quickly and
returns a handful of answers. Constrained Query Personalization
(CQP) is an integrated approach to database query answering that
dynamically takes into account the queries issued, the user’s
interest in the results, response time, and result size in order to
build personalized queries. In this paper, we introduce CQP as a
family of constrained optimization problems, where each time one
of the parameters of concern is optimized while the others remain
within the bounds of range constraints. Taking into account some
key (exact or approximate) properties of these parameters, we
map CQP to a state search problem and provide several
algorithms for the discovery of optimal solutions. Experimental
results demonstrate the effectiveness of the proposed techniques
and the appropriateness of the overall approach.

1. INTRODUCTION
Personalization has come about as a result of a long evolutionary
process accelerated by the rapid development of the Web. Such a
communication tool has enabled people with varied goals and
characteristics to access an ever-growing amount of information.
Emergence of hand-held electronic devices, such as palmtops and
cellular phones, has increased the possibilities for information
access from anywhere and anytime. Under these conditions, it is
very difficult for users to find the information they need. As a
solution to this problem, researchers from different communities
have developed personalization systems, which adapt their
behavior to the goals, interests, and other characteristics of their
users as individuals or members of particular groups.

Query personalization [12, 13, 14] affects system behavior by
dynamically enhancing a query with related preferences stored in
* Partially supported by the Information Society Technologies (IST) Program of the
European Commission as part of the DELOS Network of Excellence on Digital
Libraries (Contract G038-507618) and by a grant from Microsoft

a user profile with the purpose of providing personalized answers.
In principle, query personalization is an optimization problem:
given a query q posed by a user u, its goal is to identify the parts
of the profile of u that, when combined with q, would maximize
the interest of u in the results of q. In practice, this problem
statement may lead to unrealistic solutions, since maximum
interest is achieved by incorporating all preferences of u into q,
but the resulting “over-personalized” query is likely to be very
expensive or have an empty answer. Taking into account
execution time and result size leads to a redefinition of query
personalization as a constrained optimization problem, where
constraints are expressed as an upper bound on execution time of
the final query and/or a lower or upper (top-k) bound on its result
size. Furthermore, under this more general point of view, one
realizes that query personalization does not necessarily imply
optimization of user interest, but could also be, for example,
optimization of execution time under constraints on user interest.

The family of constrained optimization problems that arise in the
spirit discussed above is referred to as Constrained Query
Personalization (CQP). Depending on the parameter being
optimized and the constraints placed on the others, different
answers will be delivered even to the same user issuing the same
query. Each time the correct CQP problem is determined by
several real-time factors comprising the search context, such as
the device used, the network connection, or even some transient
user requirements of the moment, as in the example below.

Example: Al is registered with a web-based service providing
tourist information for various places. The system responds to his
requests by taking into account a profile of his personal
preferences that it maintains as well as the search context at the
time of the request. While planning his trip to Pisa, Al looks for
general information on the city using his laptop in his office with
a high-speed Internet connection, which allows the system to
execute expensive queries and provide extensive results that
match his profile perfectly. When Al is in Pisa, he may ask for a
few local restaurants using his palmtop while walking in the old
town. In this case, the search context is different: he is using a
device with limited display capabilities and a low-bandwidth
network connection. The system should quickly return a short and
easily browsable answer with, say, three restaurants that are of
Al’s general liking.

In this paper, we study Constrained Query Personalization in the
context of database queries. Our contributions are the following:

− We generalize earlier concepts of query personalization and
introduce the CQP family of related optimization problems with
constraints. (Mapping the search context onto the appropriate
CQP problem is a policy issue and is not addressed here.)
− We formulate CQP as a state-space search problem. Each
personalized query that is a potential solution is a state in a space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

73

(a node in a graph), characterized by degree of interest, execution
cost, and result size. Transitions (edges) arrange states in partial
orders based on each of the aforementioned query parameters.
− We devise state-space search algorithms that take advantage of
these partial orders to solve CQP problems efficiently.
− We demonstrate the effectiveness of our approach through
experimental results that evaluate the algorithms proposed with
respect to several important features.
To the best of our knowledge, this is the first effort on a realistic
and comprehensive approach to query personalization through its
integration with aspects of query optimization.

2. RELATED WORK
Personalization is a very broad research area that includes
methods such as information filtering and recommender systems
[8]. Query personalization techniques have been proposed both by
the IR [13, 14] and database communities [12]. The key
difference of the present work lies in considering not only user
interest in personalized results, but also execution time and result
size of personalized queries, in order to identify the most
appropriate one overall to execute. From earlier work [12], we
have adopted the model for preferences stored in user profiles.

Query optimization is a well-established area within databases,
studying the problem of execution-cost minimization of a given
query [11, 15] by choosing the right execution plan. Traditional
query optimization techniques do not lend themselves to solving
CQP problems, as the latter take into account multiple query
parameters at the same time. Multidimensional query optimization
[3] finds a plan (rather than a query as in CQP) that is optimal wrt
one criterion and satisfies range constraints wrt other criteria (the
term is also used for some OLAP optimization, which is not
relevant here). More importantly, for CQP problems, syntactic
modifications to a state (query) have known implications
(increase/decrease) on its degree of interest, cost, and size. The
resulting syntax-based partial orders are taken advantage of by the
special algorithms presented here for effective CQP. Execution-
cost estimation is a common task of both areas, but again the
accuracy requirements on the cost models are quite different,
hence, one can afford to use a much less detailed cost model in
CQP than the one found in a typical query optimizer.

Answering top-K queries is also related to CQP but only at a
superficial level. Both deal with bounds on the query result size,
but the former is concerned with returning a pre-specified number
of tuples in the query answer [1, 2, 6], while CQP only places
bounds on that number.

Interestingly, each of the three areas above addresses exactly one
query parameter: user interest in the answer, execution cost, or
result size, respectively. CQP is an integrated approach to query
answering that dynamically takes into account all three together.

Another class of problems is related to CQP: knapsack problems
[9]. However, even the most general, multi-constrained knapsack
problem (Integer Programming with positive coefficients) deals
with summation both in the objective and the constraints and
assumes non-negative integer coefficients. CQP problems may
include different (even nonlinear) functions anywhere and have
more general coefficients. This, in conjunction with the particular
properties of CQP mentioned above, i.e. syntax-based partial

orders, makes knapsack algorithms not appropriate in this context.

Finally, given the formulation of CQP as state-space optimization
several well-known algorithms are potentially applicable: genetic
algorithms [5], simulated annealing [10], tabu search [4], etc.
These are generic approaches, however, that do not take into
account the problem’s particularities or special properties, as
mentioned above for CQP problems.

3. USER PREFERENCE MODEL
Any personalization effort requires a model for the representation
of preferences in user profiles. In this work, we have adopted a
slight simplification of an existing user preference model for
relational databases [12], whose basic constituents are described
below. For our examples, we consider the following relations,
which comprise a subset of a database schema about movies:

MOVIE(mid, title, year, duration, did)
DIRECTOR(did, name), GENRE(mid, genre)

A user’s preferences over a database’s contents are expressed on
top of the personalization graph. This is a directed graph G(V, E)
that is an extension of the database schema graph. Nodes in V are
(a) relation nodes, one for each relation in the schema, (b)
attribute nodes, one for each attribute of each relation in the
schema, and (c) value nodes, one for each value that is of any
interest to this user. Edges in E are (a) selection edges, from an
attribute node to a value node representing a potential selection
condition, and (b) join edges, from an attribute node to another
attribute node representing a potential join condition between
these attributes.

Atomic Preferences: Preferences are stored in profiles at the
level of atomic query elements (atomic selection and joins, edges
in G). An atomic preference for a condition q is expressed by the
degree of interest (doi) in q, doi(q), which is a real number in the
range [0, 1]. doi=0 indicates lack of any interest in the condition,
while doi=1 indicates extreme (‘must-have’) interest. Atomic
selection preferences indicate user interest in the values of
attributes. Atomic join preferences indicate to what degree
related entities are mutually influenced by preferences. These are
directed, in the sense that they indicate how preferences on the
right-hand-side join relation influences the left-hand-side join
relation. Figure 1 shows an example user profile.

p1: doi(GENRE.genre=‘musical’) = 0.5

p2: doi(MOVIE.mid = GENRE.mid) = 0.9

p3: doi(MOVIE.did = DIRECTOR.did) = 1.0

p4: doi(DIRECTOR.name = ‘W. Allen’) = 0.8

Figure 1. An example user profile
Implicit Preferences: By composing atomic user preferences on
conditions (edges) that are adjacent in the personalization graph,
one obtains implicit preferences, i.e. preferences on complex
query elements that are conjunctions of atomic ones (directed
acyclic paths in G). In particular, if p is an implicit preference
containing m atomic preferences pi, then p = p1 ∧ … ∧ pm. For
example, preferences p3 and p4 are composed into the following
implicit preference for movies directed by W. Allen:

MOVIE.did = DIRECTOR.did and DIRECTOR.name = ‘W. Allen’

The degree of interest in an implicit preference p is a function f⊗
of the degrees of interest in the constituent atomic ones:

doi(p) = f⊗(doi(p1), …, doi(pm)) (1)

Function f⊗ must be non-increasing as the length of the

74

corresponding directed path increases:
f⊗(d1, … dm) ≤ min({d1, … dm}), where di = doi(pi) (2)

Conjunctions of Preferences: The degree of interest in multiple
non-adjacent (atomic or implicit) preferences being satisfied
together is another function r of the constituent dois. That is, for
the conjunction of a set of preferences Px = {pi | i = 1… L}, it is

doi(Px) = r(doi(p1), …, doi(pL)) (3)

Clearly, the doi in a set of multiple preferences being satisfied
together must increase as more preferences are added to the set:

Px ⊆ Py ⇒ doi(Px) ≤ doi(Py) (4)

The results of a personalized query should be ranked by function r
based on the preferences that they satisfy in a profile.

4. CONSTRAINED QUERY
PERSONALIZATION
4.1 Problem Description
A query Q is characterized by an execution cost, cost(Q), and a
result size, size(Q). A personalized query is also characterized by
a degree of interest, doi(Q). In the sequel, we collectively refer to
these as query parameters. Given a query Q and a user profile U,
let P be the set of selection preferences extracted from U and
related to Q. A personalized query Qx is a combination of Q and a
subset Px of P and is denoted Qx:= Q ∧ Px. The objective of query
personalization is to build a personalized query QU that is optimal
with respect to one query parameter and satisfies constraints on
the others. Query personalization is, therefore, optimization under
constraints. We use the term Constrained Query Personalization
(CQP) to collectively refer to several optimization problems that
may be defined as different instantiations of this broad
description. Not all conceivable optimization problems, however,
are meaningful within the CQP family. This is due to the
following properties of the query parameters involved in CQP:

doi: By definition, query personalization aims at producing
results interesting to a user. Therefore, the doi parameter
must be maximized or satisfy a lower bound.

cost: By nature, execution cost must be minimized or satisfy an
upper bound.

size: By definition, query personalization aims at smaller
responses. On the other hand, empty answers are always
undesirable. Hence, the size parameter must always satisfy
a lower bound (default is 1) and possibly an upper one.

Table 1 shows all possible CQP problems that may be conceived.

Table 1. CQP problems
Problem doi cost size

1 MAX - smin ≤ size ≤ smax
2 MAX cost ≤ cmax -
3 MAX cost ≤ cmax smin ≤ size ≤ smax
4 - MIN smin ≤ size ≤ smax
5 doi ≥ dmin MIN -
6 doi ≥ dmin MIN smin ≤ size ≤ smax

Based on the above, for Problems 1-3, the optimal personalized
query QU must satisfy the following:

doi(QU) = MAX{doi(QX) | Qx = Q ∧ Px, Px ⊆ P, Qx satisfies CQP constraints}

Accordingly, for Problems 4-6, it must satisfy the following:

cost(QU)=MIN{cost(QX) | Qx = Q ∧ Px, Px ⊆ P, Qx satisfies CQP constraints}

At query time, the decision on which CQP problem to solve
depends on factors comprising the search context. For example, in
the scenario where Al uses his palmtop while walking in Pisa, low
bandwidth and user mobility pose an upper limit to system
response time and result size. Under these conditions, Problem 3
appears most appropriate, seeking a personalized query with
optimal doi that remains within specific bounds on the other
parameters. The particular bounds can be derived based on
statistics kept by the system or provided by the user on the spot,
e.g., if Al requests up to three restaurants, this implies smax=3.

4.2 System Architecture
Figure 2 presents the general architecture of a CQP system. The
modules in grey color are the traditional parts of a relational
database system. We discuss the remaining CQP modules below.

Parameter
Estimation

DatabaseUser Models

Personalized
Query

Construction

Preference
Space (P)

CQP State
Space Search

Query
Optimization

Query
Execution

Figure 2. CQP system architecture

Preference Space: Given a query Q and a user profile U, it
determines the set P of atomic and implicit selection preferences
that are extracted from U and are related to Q.

Parameter Estimation: It provides estimations on the parameters
of personalized queries produced by integrating preferences of a
subset of P into the original query Q.

CQP State Space Search: This is the main system module. It
examines possible personalized queries and identifies the optimal
one with respect to the parameter being optimized and the
constraints provided for the others. For this purpose, it employs a
search strategy for examining the space of personalized queries.

Personalized Query Construction: After ‘CQP State Space
Search’ has selected the optimal subset of preferences to be
integrated into Q, this module does the actual modification of the
query. Among several possible query rewritings one could use to
personalize a query with a set of preferences, we have adopted the
one illustrated below with an example: Consider a user, whose
profile is shown in Figure 1, issuing a query about movies:

select title from MOVIE

Assume that the following preferences have been selected by the
system for inclusion in the query:

MOVIE.did = DIRECTOR.did and DIRECTOR.name = ‘W. Allen’
MOVIE.mid = GENRE.did and GENRE.genre = ‘musical’

First, a set of sub-queries is constructed, each one separately
integrating one of these preferences into the original query1.
Q1: select title from MOVIE M, DIRECTOR D
 where M.did = D.did and D.name = ‘W. Allen’
Q2: select title from MOVIE M, GENRE G
 where M.mid=G.mid and G.genre=‘musical’

1 There are various cases where multiple preferences can be effectively combined

into one sub-query, but investigating the details of this is beyond the scope of this
paper.

75

The final query is built as the union of these sub-queries:
select title from Q1 Union All Q2
group by title having count(*)= 2

Finally, the resulting query is passed on the query optimizer of the
underlying database system, where it is executed. The results of
this query may be ranked based on their degree of interest.

4.3 Parameter Estimation
In this subsection, we discuss issues of query parameter
estimation only to the level required by the forthcoming
description of algorithms. More details on estimation formulas
used in our experiments are given in Section 7.1. Recall that a
personalized query Qx is a combination of a query Q and a set of
preferences Px = {pi | i = 1… L} ⊆ P, i.e. Qx = Q ∧ Px. We are
concerned with queries of conjunctions of preferences
implemented as unions of sub-queries followed by a
groupby/having clause (as in the example above).

Degree of interest: Naturally, the doi of Qx is the doi in the
conjunction of the participating preferences (Formula (3)):

doi(Qx) = r(doi(p1), …, doi(pL)) (5)

Cost: Traditionally, the execution cost of a query is estimated by
the database query optimizer. During query personalization,
however, we cannot afford to invoke the optimizer for each of the
(potentially exponential in number) personalized queries tested.
Moreover, duplication of classical query optimization techniques
at this stage makes query personalization expensive and is
actually meaningless as CQP has more relaxed accuracy
requirements on cost estimates. On these grounds, we have
adopted an approximate cost model for personalized queries of
the form discussed in Section 4.2, based on two assumptions: (a)
the cost of groupby/having is negligible; (b) the cost of a union
of disjoint sub-queries qi equals to the sum of individual costs of
qi’s; hence, for Qx the following holds:

cost(Qx) = cost(∪(qi)) = Σcost(qi) (6)

Although not always valid, (6) has proved to be sufficient for the
level of accuracy needed in CQP. (In Section 7.1, we discuss how
we have estimated the cost of individual sub-queries in our
experiments.) Note that, from (6), we derive the following:

Px ⊆ Py ⇒ cost(Q ∧ Px) ≤ cost(Q ∧ Py) (7)

This is similar to (4), but differs from it in that, in contrast to the
degree of interest, cost does depend on the initial query Q.

Size: Clearly, the following holds:
Px ⊆ Py ⇒ size(Q ∧ Px) ≥ size(Q ∧ Py) (8)

Formulas (4), (7), and (8) define useful partial orders, which are
exploited by CQP algorithms presented in this paper. We observe
that: (a) for the preference model we adopted [12], the partial
orders do not depend on any assumptions far from reality
(Formula 4); (b) preference inclusion always implies result-set
inclusion (Formula 8); and (c) it implies cost dominance (Formula
7) under the near-accurate assumptions above. The latter is
sufficient for monotonicity of personalized query cost wrt
individual preference costs, for typical single-query optimizers.
Consequently, nothing else affects the algorithms described here,
which take advantage of these partial orders. In addition, from (4),
(7), and (8), it is clear that incremental computation of query
parameters is possible.

In the rest of the paper, for notational convenience, parameters of
query Q ∧ Px are often referred to as parameters of Px, e.g., for
query Qx, cost(Px) refers to cost(Q ∧ Px), doi(pi) refers to doi(qi), etc.

4.4 Preference Space
Given a query Q and a user profile U, this module determines the
set P of selection preferences extracted from U and related to Q.
The latter refers to syntactic relationships, i.e. preferences whose
paths on the personalization graph are attached to a relation
included in Q. For example, the preferences of the example in
Section 4.2 are related to the query on movies.

To facilitate some of the CQP state-space search algorithms, we
associate with P three vectors of pointers, each one capturing
preference order according to one of the CQP parameters (K is the
number of preferences in P):

D = {di | i ∈ [1…K], doi(pdi) ≥ doi(pdi+1) }

C = {ci | i ∈ [1…K], cost(Q ∧ pci) ≥ cost(Q ∧ pci+1) }

S = {si | i ∈ [1…K], size(Q ∧ psi) ≤ size(Q ∧ psi+1) }

Consider P = {p1, p2, p3} with parameter values given in Table 2.
Then, its vectors are: D = {2, 3, 1}, C = {3, 1, 2}, S = {2, 1, 3}.

Table 2. Parameter values for P = {p1, p2, p3}
preference doi cost size

p1 0.5 10 3
p2 0.8 5 2
p3 0.7 12 10

The preference space algorithm is given in Figure 3. Its inputs are
a query Q, a profile U, and CQP constraints. It outputs the set P, its
vectors D, C, and S, and the cardinality K of P. It takes advantage
of the fact that the doi in a preference is a non-increasing function
of the length of the corresponding path (Section 3), and performs
a best-first traversal of the personalization graph corresponding to
U [12] to extract preferences in decreasing order of doi.

Preference Space Algorithm
Input: query Q, profile U, CQP constraints

Output: P, D, C, S, K
1. P := {}; D := {}; C := {}; S:= {}; K := 0; QP := {};
2. For each atomic preference pi in U syntactically related to Q
2.1. If Q∧pi satisfies CQP constraints then QP:= add(QP, pi) fi
 end for
3. While QP not empty
3.1. Get head p from QP;
3.2. If Q ∧ p satisfies CQP constraints then
3.2.1. If p is selection then
 P := P ∪ {p}; K := K+1; D := D ∪ {K};

C := addrank(C, p, K); S := addrank(S, p, K);
 else /* p is a join preference */
3.2.2. For each atomic preference pi in U adjacent to p
 If Q∧(p∧pi) satisfies CQP constraints and p∧pi is acyclic

then QP:= add(QP, p∧pi) fi
 end for
 fi
3.3. else exit fi
 wend

Figure 3. Preference Space Algorithm
The algorithm keeps a queue QP of candidate preferences in
decreasing order of doi. In each round, it picks from QP the
preference p with the highest doi. If p is selection, then it is added
at the tail of P. D is updated by inserting K, the cardinality of P, at
its tail (since preferences are added in P in decreasing order of

76

doi). Accordingly, addrank(C, p, K) (resp., addrank(S, p, K))
procedure adds K into C (resp., S) in the appropriate place, taking
into account the cost (resp., size) of p. If p is join, then for each
atomic preference pi adjacent to p in the personalization graph, a
new preference p ∧ pi is generated and inserted into QP. At
various points, the algorithm takes into account the CQP
constraints to prune down preferences that can never lead to
successful personalized queries. The details of such optimizations
are omitted for lack of space.

5. STATE SPACE SEARCH
CQP problems have similar formulation, query parameter
properties and partial orders derivable from syntactic
transformations of personalized queries. These correspondences
enable us to treat them in a very similar way. Therefore, for
presentation purposes, the discussion below is focused on one
CQP problem, i.e. problem 2 in Table 1. Required adaptations so
as to handle all types of CQP problems are discussed in Section 6.

5.1 State Space
Each solution to a combinatorial optimization problem can be
thought of as a state in a space, i.e. a node in the graph that
includes all such solutions. Each state has a feature associated
with it, which is given by some problem-specific feature function.
The states that can be reached in one move from a state S are
called the neighbors of S. We model a CQP problem as a state
space search problem, as follows.

States. Each state in a CQP problem corresponds to a query built
by integrating a set of preferences from the user profile into the
initial query, i.e. Qx:= Q ∧ Px, where Px ⊆ P. In the sequel, we will
interchangeably use Qx and Px to refer to a state. Query parameters
comprise the features of the corresponding state.

Transitions. The neighbors of a state are determined by a set of
transitions. Transitions are based on transformation rules that are
applied on one state and produce a neighbor one. We define two
categories of transitions, cost-based and doi-based. Each category
creates a different state space (same nodes, different edges).
Taking advantage of Formulas (4), (7), and (8), all transitions are
based on syntactic modifications to a state with known
implications (increase/decrease) on state parameters. This
property of transitions actually enables algorithms to work with
the pointer vectors, D, C, and S instead of P.

5.2 State Space Search Algorithms
The number of all possible subsets of P is exponential. So is the
number of potential personalized queries defined based on Q and
U. Thus, the complexity of an exhaustive CQP algorithm is O(2K).
Following subsections provide several precise and heuristic
algorithms that improve to varying degrees upon this.

5.2.1 Algorithms on the Cost State Space
Consider the cost vector C of P. Each Cx ⊆ C is also ordered and
corresponds to a state in the cost state space. We define the
following cost-based transitions:
Horizontal (Cx) := Cy such that

Cy := Cx ∪ {ci+1}, i = max({k| k s.t. ck ∈ Cx }) and ci+1 ∈ C

In words, the Horizontal neighbor of a state Cx is derived by

inserting the preference from C that immediately follows the
lowest cost preference of Cx. Based on formulas (4), and (7),
neighbor Cy has higher cost and higher degree of interest than Cx.

Vertical(Cx) :=
{Ci | Ci := (Cx − {ci}) ∪ {ci+1}, ci+1 ∈ C, ci+1 ∉ Cx, and

cost(Ci) ≥ cost(Ci+1), ∀ci ∈ Cx }

Vertical neighbors of a state Cx are derived by replacing a
preference in Cx by its successor from C provided that the latter is
not already in Cx. Vertical neighbors are ordered in decreasing cost.

PROPOSITION 1. The destination of a transition from a source state
Cx is also a state in the space.

DEFINITION 1. Nodes with the same number of preferences belong
to a group with group size equal to the number of preferences.

Table 3. States of a graph
Group Size States

1 c1 c2 c3 c4
2 c1c2 c1c3 c2c3 c1c4 c2c4 c3c4
3 c1c2c3 c1c2c4 c2c3c4 c1c3c4
4 c1c2c3c4

Assume C = {c1, c2, c3, c4}. The set of possible states is given in
Table 3 (the initial query is omitted). Figure 4 shows the cost state
space based on the transitions above. Vertical transitions are
depicted in dashed lines, and Horizontal ones in solid lines. For
instance, Horizontal(c1c3) = c1c3c4 and Vertical(c1c3) = {c1c4, c2c3}.

c1

c2

c3

c4

c1c2

c1c3

c1c4

c2c4

c3c4

c2c3

c1c2c3

c1c2c4

c1c3c4

c2c3c4

c1c2c3c4

Figure 4. A Cost State Space

OBSERVATION 1. Both types of transitions are based on syntactic
changes to a state that have known implications
(increase/decrease) on state parameters. This generates syntax-
based partial orders of states, which are exploited by the
algorithms described below.

Table 4. Cost-based transitions
 Transition cost doi
Vertical ↓ -
Horizontal ↑ ↑

As Table 4 illustrates Horizontal moves towards nodes of higher
doi and higher cost. Vertical moves towards nodes of lower cost
and unknown doi. Consequently, one can devise algorithms that
work with the cost vector C, and are roughly built around this
idea: Horizontal transitions can be applied up to the point where
the cost of a node produced does not satisfy the cost constraint.
Vertical moves are applied until the cost of a node produced
satisfies the cost constraint.

Algorithm C-BOUNDARIES. The first algorithm is based on the
idea of finding a set of nodes that are not reachable from each
other and satisfy the cost constraint, while their parents do not.
These nodes are called boundaries. Boundaries on every group
form a virtual borderline that partitions the cost state space into
two sets of nodes: those satisfying the cost constraint, and those
not. Then, the solution to the CQP problem under consideration is

77

a node of maximum doi belonging to the first set.

Algorithm C-BOUNDARIES implements this idea in two phases. In
the first phase, it searches for boundaries in every group, starting
from the group of size 1. Search within a group is performed
using Vertical transitions. From all boundaries found in one group,
the algorithm moves to their Horizontal neighbors in the next
group. From these new nodes, the algorithm starts searching for
boundaries in their group. If no boundary is found in a group, this
phase of the algorithm ends. In the second phase, the algorithm
searches among the nodes below the boundaries to find the one
with the best doi. In what follows, we give a set of propositions
and a theorem that prove the correctness of the algorithm. Proofs
are omitted due to space considerations.

PROPOSITION 2. All Vertical predecessors of a boundary do not
satisfy the cost constraint.

PROPOSITION 3. All Vertical predecessors of a Horizontal neighbor of
a boundary do not satisfy the cost constraint.

Based on the above, the following proposition can be proved.

PROPOSITION 4. By mapping boundaries of a group to their
Horizontal neighbors in the next group, all nodes satisfying the
cost constraint in the latter group, if any, are reached through
Vertical transitions from the new nodes.

PROPOSITION 5. If there is no boundary in one group, then there are
no boundaries in all groups of greater size either.

Based on the above, the following theorems can be proved.

THEOREM 1. The first phase of C-BOUNDARIES finds all boundaries.

THEOREM 2. Algorithm C-BOUNDARIES finds the optimal solution
wrt a cost constraint, provided that one exists, i.e. it is correct.

The algorithm is provided in Figure 5. Its inputs are the query Q,
the set of preferences P, its cardinality K, its cost vector C, and an
upper cost bound cmax (the CQP constraint), and it generates a set
of preferences PU to be integrated into Q. The first phase of the
algorithm is implemented by FINDBOUNDARY, and the second one
by C_FINDMAXDOI. Note that the algorithm does not actually store
the part of graph visited, hence, conserving memory.

FINDBOUNDARY constructs the set of boundaries, Boundaries, based
on the input upper cost bound cmax. This set is ordered in
decreasing group size. Based on OBSERVATION 1, each ck in C may
be represented by its index k, and each Cx ⊆ C by the set of indices
R of its member preferences. FINDBOUNDARY searches for
boundaries in a breadth-first fashion, i.e. it finds boundaries in
one group of states and then proceeds with boundaries in the next
group. For this purpose, a queue RQ is used that maintains
candidate nodes not yet examined. At each iteration, the first
element R of RQ is obtained. At this point, the cost of the state
corresponding to R is calculated (cost(R, C, P)). If this cost is
lower than cmax, then R becomes a boundary (push(Boundaries, R)),
and R’s Horizontal neighbor is placed at the tail of RQ. If this cost
is higher than cmax, then each Vertical neighbor of R is placed at the
head of RQ. In this way, we first examine all states belonging to
the same group and then proceed to the next group’s states. If no
boundaries are found in a group, then RQ becomes empty and
FINDBOUNDARY stops.

Figure 6 shows an example of executing FINDBOUNDARY (note that

all possible Vertical moves are shown in dashed lines for
presentation reasons). For cmax=185, its output is {{1}, {1, 3}, {2,
3, 4}, {2, 4, 5}}, which corresponds to {c1, c1c3, c2c3c4, c2c4c5}.

Algorithm C-BOUNDARIES
Input: Q, P, K, C, cmax

Output: PU, MaxDoi
1. Boundaries := FINDBOUNDARY(Q, C, P, cmax);
2. PU := C_FINDMAXDOI(Boundaries, C, K, P, MaxDoi);

function FINDBOUNDARY
Input: Q, C, P, cmax

Output: Boundaries
1. R := {1}; Boundaries:= {};
2. Enqueue(RQ, R);
3. While RQ ≠{}
3.1. R :=Dequeue(RQ);
3.2. If cost(Q, R, C, P) ≤ cmax then
3.2.1. Boundaries:= push(Boundaries, R);
3.2.2. R’:= Horizontal(R);
3.2.3. If R’≠{} then Enqueue(RQ, R’) fi
 else
3.2.4 VR:= Vertical(R);
3.2.5 For each R’ in VR
 If prune(R’) = FALSE then Enqueue(RQ, R’) fi
 end for
 fi
 wend

function C_FINDMAXDOI
Input: Boundaries, C, K, P
Output: PU, MaxDoi
1. MaxDoi:= 0; PU := {};
2. KR := K; BestExpectedDoi := doi(P);
3. For each R in Boundaries
3.1. If count(R) < KR then
3.1.1 BestExpectedDoi := doi({pi | pi ∈ P, i ∈ [1 … KR]});
3.1.2. If MaxDoi > BestExpectedDoi then exit fi;
 fi
3.2. KR := count(R); PX:= {}; Used={};
3.3. For i:= KR to 1
3.3.1. k:= R[i];
3.3.2. m0 := min({C[j] | j ≥ k, j ≤ K } − Used); Used = Used ∪ {m0};
3.3.3. PX:= PX ∪ {pm0};
 end for
3.4. If doi(PX) > MaxDoi then MaxDoi := doi(PX); PU := PX fi
 end for

Figure 5. Algorithm C-BOUNDARIES
A couple of issues need to be taken into account during the
traversal of the state space. The first one arises from not storing
any part of the graph visited except for boundaries found. While
leading to memory savings, this policy creates the risk of visiting
parts of the graph previously seen. Another issue concerns visiting
nodes below some boundary. For example, consider the graph of
Figure 4. Assume the algorithm visits node c1c2 followed by c1c3.
The latter has Vertical neighbors, c1c4 and c2c3. The algorithm
classifies c1c4 as a boundary. As a result, its Vertical neighbors
need not be visited. The algorithm proceeds with c2c3. However,
all Vertical neighbors of this node are below the boundary
previously found and, hence, need not be visited either. Moreover,
by visiting these nodes, the algorithm will find a new boundary,
c2c5. However, this one lies below boundary c1c4, i.e. it is
reachable from the latter. This is in conflict with the definition of
boundaries. Based on the above, we have implemented a method,
prune(.), for pruning parts of the graph either because they have

78

already been visited or because they are below boundaries found.
The details are skipped for space reasons.

C_FINDMAXDOI searches below each boundary R found during the
first phase for the node PX, which may correspond to the boundary
or some node below it, with the maximum doi. The boundaries are
considered in order of decreasing group size. The output of this
phase is PU which is the node with the best doi (MaxDoi) among all
PX’s encountered. In order to avoid examining all boundaries,
BestExpectedDoi is used, which is an estimate of the best possible
doi expected from groups not yet examined. As groups are
considered in decreasing group size, BestExpectedDoi is the best
doi expected by the largest group not yet considered. If
BestExpectedDoi becomes worse than the best doi so far, MaxDoi,
the algorithm stops.

Interestingly, in order to find node PX given a boundary R,
C_FINDMAXDOI does not make use of degrees of interest. Recall
that each k stored in R, corresponds to ck in C; ck (C[k] in the
algorithm) stores a pointer m0 in P. Therefore, for each k stored in
R, the algorithm replaces ck with cj in C (k ≤ j ≤ K) that has the
minimum m0. m0 points at pm0, which is the preference with the
best doi. These preferences constitute the best local solution PX.

c1

c2

c3

c4

c1c2

c1c3

c1c4

c1c5

c1c2c3

c1c2c4

c1c3c4

c1c2c3c4c5

120

80

60

40

c5

30
c2c5

c3c5

c4c5

c2c3

c2c4

c3c4

c1c2c5

c1c3c5

c1c4c5

c2c4c5

c3c4c5

c2c3c5

c1c2c3c4

c1c2c3c5

c1c2c4c5

c1c3c4c5

c2c3c4c5

4

200

180

160

150

110

90

70

140

120

100

240

230

210

190

150

260

130

220

180

170

290

270

250

210

300
1

3

2

6

7

8

330

5

c2c3c4

Figure 6. Example for C-BOUNDARIES (cmax=185)

A last point concerns function cost(Q, R, C, P). Each time it
computes the cost of a node that is slightly different from a
previous one. Since Formula (6) permits incremental cost
computation, cost(.) has been implemented in this way. Costs that
may be re-used are cached. This technique is used in all
algorithms proposed. Note that the initial query Q is an input to
this function, since the cost of a state depends upon Q.

Algorithm C-MAXBOUNDS. Observing the behavior and output
of C-BOUNDARIES, it is clear that the set of boundaries found is a
superset of those required for finding an optimal solution. One
reason is that the algorithm generates boundaries on each group.
As a result, boundaries in one group may be supersets of
boundaries in groups searched earlier. For example, the output of
FINDBOUNDARY in Figure 6 should not contain c1, since this is a
subset of c1c3, and, hence, has a lower doi than the latter. Thus,
consideration of c1 will never lead to better solutions than c1c3.
Observing Figure 6, we discover another problem: FINDBOUNDARY
classifies c2c4c5 as a boundary and then discovers boundary c2c3c4,
which is, however, above the former. Obviously, c2c4c5 has been
wrongly identified as a boundary. If c2c3c4 was found first, then
c2c4c5 would not have been visited in the first place.

To remedy these problems, C-MAXBOUNDS tries to build maximal
boundaries such that none is subset of or reachable by another. It
is a two-phase algorithm with the second phase being
implemented in the same way as previously. In the first phase, the

algorithm considers preferences in C one at a time. In each round,
it starts from a state in the space that corresponds to the most
expensive preference ck in C not yet examined, and tries to build
maximal boundaries that contain this preference. For this purpose,
FINDMAXBOUND is called which treats the input node as a “seed”.
In order to generate a maximal boundary from a “seed” node,
FINDMAXBOUND applies horizontal transitions up to the point
where the cost of a node produced does not satisfy the cost
constraint. The last node in this sequence that satisfies the
constraint is a maximal boundary. Then, FINDMAXBOUND
searches among Vertical neighbors of this node. The top-most ones
that satisfy the constraint are used as new seeds and the whole
process is repeated as long as there are meaningful transitions to
perform. If FINDMAXBOUND returns a maximal boundary that
includes all preferences following ck in C, then the first phase of
the algorithm ends, since any subsequent boundaries will be
subsets of that boundary.

In order to build maximal boundaries, the philosophy of the
algorithm is to insert as many preferences as possible into a given
set of preferences before storing it as a maximal boundary. For
this purpose, it uses a slightly different Horizontal.

Horizontal2(Cx) :=
{Ci | Ci:= Cx ∪ {ci}, ci ∈ C, ci ∉ Cx

and cost(Ci) ≥ cost(Ci+1), ∀ci ∈ C }

Horizontal2 neighbors are ordered in decreasing cost. In Figure 8,
Horizontal2(c2) = {c1c2, c2c3, c2c4, c2c5}.

Algorithm C-MAXBOUNDS
Input: Q, P, K, C, cmax

Output: PU, MaxDoi
1. MaxBounds:= {}; LastSolutionSize :=0;
2. k :=1;
3. While k + LastSolutionSize ≤ K
3.1. R := {k};
3.2. MaxBounds:= FINDMAXBOUND(Q, k, R, C, MaxBounds, cmax);
3.3. LastSolutionSize:= count(head(MaxBounds)); k:= k +1;
 wend
4. PU := C_FINDMAXDOI(MaxBounds, C, K, P, MaxDoi);

function FINDMAXBOUND
Input: Q, index k, Node R, C, MaxBounds, cmax

Output: MaxBounds
1. Enqueue(RQ, R);
2. While RQ ≠{}
2.1. R :=Dequeue(RQ); R0 := R;
2.2. HR:= Horizontal2(R);
2.3. While HR ≠ {}
2.3.1. For each R’ in HR
2.3.2. If cost(Q, R’, C, P) ≤ cmax then R := R’; exit for fi
 end for
2.3.3. HR:= Horizontal2(R);
 wend
2.4. If R ≠ R0 then MaxBounds:= push(MaxBounds, R) fi
2.5. VR:= Vertical(R);
 For each R’ in VR
 If R’ ∩ { k } = {} then exit for fi
 If prune(R’) = FALSE then Enqueue(RQ, R’) fi
 end for
 wend

Figure 7. Algorithm C-MAXBOUNDS
The algorithm is presented in Figure 7. Its inputs are the query Q,
the set P, its cardinality K, its vector C, and the upper cost bound

79

cmax. It generates the set of preferences PU to be integrated into Q.
Note that the second phase of the algorithm is implemented by
C_FINDMAXDOI as described earlier. Subsequently, we describe
only the first phase in more detail. As in the case of C-
BOUNDARIES, based on OBSERVATION 1, each ck in C may be
represented by its index k, and each Cx ⊆ C by the set of indices R
of its member preferences. In each round, the algorithm starts
with R containing an index k to the most expensive preference in
C not yet examined. R is passed to FINDMAXBOUND, which
constructs a set of maximal boundaries including (the index to) ck.
MaxBounds is the set of all maximal boundaries found by
successive calls of FINDMAXBOUND, and is ordered in decreasing
group size. If FINDMAXBOUND returns a maximal boundary that
includes all preferences in C not yet examined, then the first phase
of the algorithm ends. For this purpose, LastSolutionSize is the
largest group size found in MaxBounds. If k+LastSolutionSize is
greater than K, then the first phase terminates.

FINDMAXBOUND maintains a queue RQ of nodes not yet examined.
This initially contains the node provided as input to the function.
In each round, the first element R of RQ is obtained, and its
Horizontal2 neighbors are examined. If there is one that satisfies
the cost constraint, then FINDMAXBOUND examines the Horizontal2
neighbors of that node. This process is repeated as long as a
neighbor that satisfies the cost constraint is found. At the end, if
the resulting node is different from the node initially obtained
from RQ, the former becomes a maximal boundary. The Vertical
nodes of this node, provided that they subsume the node used as
input to the function, are inserted in RQ.

Figure 8 shows an example of the first phase of C-MAXBOUNDS.
The output for cmax=185 is {c1c3, c2c3c4}, a strict subset of
FINDBOUNDARY’s solution, depicted in Figure 6.

c1

c2

c3

c4

c1c2

c1c3

c1c4

c1c5

c1c2c3

c1c2c4

c1c2c3c4c5

120

80

60

40

c5

30
c2c5

c3c5

c4c5

c2c3

c2c4

c3c4

c1c2c5

c1c4c5

c2c4c5

c3c4c5

c2c3c5

c1c2c3c4

c1c2c3c5

c1c2c4c5

c1c3c4c5

c2c3c4c5

200

180

160

150

110

90

70

140

120

100

240

230

210

190

150

260

130

220

180

170

290

270

250

210

300
1

3
5

330

c2c3c4

2

4c1c3c4

6
c1c3c5

7

8

9

Figure 8. Example for C-MaxBounds (cmax=185)

5.2.2 Algorithms on the Doi State Space
Consider the doi vector D of P. Each Dx ⊆ D is also ordered and
corresponds to a state in the doi state space. Then, by replacing C
with D in the definitions of transitions in the previous section, we
obtain a set of doi-based transitions, and a similar doi-based state
space. As Table 5 shows, doi-based Horizontal moves towards
nodes of greater doi and higher cost, and Vertical moves towards
nodes of lower doi and unknown cost.

Table 5. Doi-based transitions
 Transition cost doi
Vertical - ↓
Horizontal ↑ ↑

The algorithms that we propose for the doi-based space follow a
similar philosophy to the previous ones, i.e. Horizontal transitions
are applied up to the point that the cost of a node produced does

not satisfy the cost constraint. Vertical transitions are applied until
the cost of the resulting node satisfies the constraint.

Algorithm D-MAXDOI. It is a two-phase algorithm following an
approach similar to C-BOUNDARIES, thus we will only provide a
sketch of its functionality. The algorithm is described in Figure 9.

Algorithm D-MAXDOI
Input: Q, P, K, cmax

Output: PU, MaxDoi
1. Solutions := FINDOPTIMAL(Q, P, cmax);
2. PU := D_FINDMAXDOI(Solutions, K, P, MaxDoi);

function FINDOPTIMAL
Input: Q, P, cmax

Output: Solutions
1. R := {1}; Solutions:= {};
2. Enqueue(RQ, R);
3. While RQ ≠{}
3.1. R :=Dequeue(RQ);
3.2. If cost(Q, R, P) ≤ cmax then
3.2.1. R’:= Horizontal(R);
3.2.2. While cost(Q, R’, P) ≤ cmax
 R := R’; R’:= Horizontal(R);
 wend
3.2.3. Solutions:= push(Solutions, R);
 fi
3.3. VR:= Vertical(R’);
3.4. For each R’’ in VR
 If prune(R’’) = FALSE then Enqueue(RQ, R’’) fi
 end for
 wend

function D_FINDMAXDOI
Input: Solutions, K, P
Output: PU, MaxDoi
1. MaxDoi:= 0; PU := {};
2. KR := K; BestExpectedDoi := doi(P);
3. For each R in Solutions
3.1. If count(R) < KR then
3.1.1 BestExpectedDoi := doi({pi | pi ∈ P, i ∈ [1 … KR]});
3.1.2. If MaxDoi > BestExpectedDoi then exit fi;
 fi
3.2. If doi(R) > MaxDoi then

MaxDoi:= doi(R); PU:={pi | pi ∈ P, ∀i ∈ R} fi
 end for

Figure 9. Algorithm D-MaxDoi
Its inputs are the query Q, the set P, its cardinality K, and the upper
cost bound cmax. It generates the set of preferences PU to be
integrated into Q. In the first phase, FINDOPTIMAL builds a set of
possible CQP solutions, namely Solutions. The basic idea is the
following. There is a queue RQ keeping nodes not yet examined.
It initially contains the node corresponding to the most interesting
preference. In each round, a node is picked from the queue, and
Horizontal transitions are applied up to the point where the cost of
a node produced does not satisfy the cost constraint. The last node
in this sequence that satisfies the constraint is a possible solution
to the CQP problem and is inserted into Solutions. Its Horizontal
successor, which does not satisfy the cost constraint, is then
considered. That node’s Vertical neighbors are added into RQ.
During the second phase, D_FINDMAXDOI searches among
Solutions for the optimal one following a philosophy similar to
C_FINDMAXDOI. Its implementation is though simpler as Figure 9
shows. Note that this algorithm, as well as the rest of the

80

algorithms of this subsection, works with R, which is a set of
indexes, such that each k in R corresponds to a preference pk in P.
The following theorem may be proved in a similar way as
THEOREM 2.

THEOREM 3. The algorithm D-MAXDOI finds the optimal solution
wrt a cost constraint, provided that one exists, i.e. it is correct.

A possible advantage of working with doi based transitions is that
Preference Space needs not produce C thus saving time. This is
investigated in the experiments.

Algorithm D-SINGLEMAXDOI. This algorithm is based on the
same idea as C-MAXBOUNDS, i.e. it follows a greedy approach
trying to build maximal sets of preferences. A basic difference is
that it has only one phase, during which, it keeps track of the best
so far solution, PU, which has degree of interest MaxDoi.
Furthermore, it keeps BestExpectedDoi that is the best degree
expected from the part of the graph not yet examined. If the
maximum degree of interest so far, MaxDoi, is higher than the best
expected degree, no more staes should be examined. The
algorithm is given in Figure 10.

Algorithm D-SINGLEMAXDOI
Input: Q, P, K, cmax

Output: PU, MaxDoi
1. MaxDoi:= 0; BestExpectedDoi := doi(P);
2. k := 1;
3. While MaxDoi ≤ BestExpectedDoi
3.1. R := { k };
3.2. Enqueue(RQ, R);
3.3. While RQ ≠{}
3.3.1. R :=Dequeue(RQ); R0 := R; HR:= Horizontal2(R);
3.3.2. While HR ≠ {}
 For each R’ in HR
 If cost(Q, R’, P) ≤ cmax then R := R’; exit for; fi
 end for
 HR:= Horizontal2(R);
 wend
3.3.3. If doi(R)> MaxDoi then

MaxDoi:= doi(R); PU:={pi | pi ∈ P, ∀i ∈ R} fi
3.3.4. VR:= Vertical(R);
3.3.5. For each R’ in VR
 If R’ ∩ { k } = {} then exit for fi
 If prune(R’) = FALSE then Enqueue(RQ, R’) fi
 end for
 wend
3.4. BestExpectedDoi := doi({pj| pj ∈ P, j ∈ [k … K]}); k:= k +1;
 wend

Figure 10. Algorithm D-SINGLEMAXDOI
Algorithm D-HEURDOI. This algorithm is built on the same idea
as the previous one. Its differences lie in the use of heuristics for
reducing the number of states examined. The basic idea is the
following: in each round, the algorithm picks the most expensive
preference pk in P not yet examined. Then, these steps are
followed. (a) Its Horizontal2 neighbors are successively examined.
If one of them satisfies the cost constraint, then it becomes the
current node and the same procedure is repeated for this node. At
the end, if the degree of interest of the current node is greater than
the maximum degree of interest so far, MaxDoi, the current node
becomes the best solution known. (b) Heuristics are used for
obtaining possibly better solutions than the current one: we
remove the cheapest preference from the current node. The
resulting node becomes the current one. We perform the same

process for this node as in step (a). This step is repeated until the
current node is reduced to the initial preference pk in P.

Algorithm D-HEURDOI
Input: Q, P, cmax

Output: PU, MaxDoi
1. MaxDoi:= 0; BestExpectedDoi := doi(P); k :=1;
2. While MaxDoi ≤ BestExpectedDoi
2.1. Rx := {k}; HR:= Horizontal2(R);
2.2. While HR ≠ {}
2.2.1. For each R’ in HR
 If cost(Q, R’, P) ≤ cmax then R := R’; exit for fi
 end for
2.2.2. HR:= Horizontal2(R);
 wend
2.3. if doi(R)> MaxDoi then

MaxDoi:= doi(R); PU:={pi | pi ∈ P, ∀i ∈ R} fi
2.4. KR := count(R);
2.5. For k:= KR to 2
2.5.1. R’:= { R[j] | ∀j < k }; HR:= Horizontal2(R’);
2.5.2. While HR ≠ {}
 For each R’’ in HR, R’’ ≠ R’
 If cost(Q, R’’, P) ≤ cmax then R’ := R’’; exit for fi
 end for
 HR:= Horizontal2(R’);
 wend
2.5.3. if doi(R’)> MaxDoi then

MaxDoi:= doi(R’); PU:={pi | pi ∈ P, ∀i ∈ R’} fi
 end for
2.6. BestExpectedDoi := doi({pj| pj ∈ P, j ∈ [k … K]}); k:= k +1;
 wend

Figure 11. Algorithm D-HEURDOI

6. OTHER CQP PROBLEMS
As indicated earlier, all CQP problems presented in Table 1 are
quite similar to each other, both in terms of their formulation but
also in terms of characteristic properties of the query parameters
that are involved in them. In particular, formulas (4), (7), and (8),
lead to very similar partial orders for each parameter that can be
derived based on purely syntactic transformations of personalized
queries. Hence, for all problems in Table 1, it is essentially the
same kind of state spaces that are available for search with
analogous states and transitions. Moreover, given the particular
approaches to estimation of these parameters that we have chosen,
incremental computation of their values is available in all cases.
Therefore, all algorithms presented in Section 5 are applicable in
all CQP problems. The only adaptation that is required in each
case is making the appropriate choice of the direction of
Horizontal and Vertical transitions. This is influenced by three
factors: whether the CQP problem requires minimization or
maximization; whether the parameter of concern increases or
decreases with the group size; and whether the CQP constraints
are in the form of an upper or a lower bound. For every case, the
appropriate choice for Horizontal and Vertical direction generates
the same search problem as before.
As an example, consider Problem 1, where doi is optimized again,
but this time there are both upper and lower bound constraints on
the result size. In this case, we use vector S as the main
representation form of the states in the search space, containing
preferences in order of result size. Horizontal transitions move
towards states of smaller result size and of higher degree of
interest. Vertical transitions move towards states of larger size,

81

without knowing how degrees of interest change. Essentially,
taking into account the properties of result size, we have reversed
the direction of the two categories of transitions compared to
Problem 2 so that the search must follow exactly the same moves
as before; hence, we can employ the algorithms of subsection
5.2.1. If both an upper and a lower bound for size exist, then a
slight enhancement is required. In particular, two lists of
boundaries are generated by all algorithms. In the first phase, the
algorithm first finds a boundary corresponding to the upper limit.
This is added to the first list, UpBoundaries. Then, instead of
searching for the next upper boundary, it continues searching in
the same group, as if the first boundary were not found, until a
second boundary corresponding to the lower bound is found, if
such exists. This is kept in a second list, LowBoundaries. In this
way, pairs of boundaries are produced. In the second phase, the
algorithm checks the nodes between the upper and lower
boundaries in order to find the one with the best doi.
As another, more general example, consider Problem 3, where doi
is maximized under constraints on both cost and size. In this case,
we may use either one of the algorithms, on the size or the cost
space. Assume that in the first phase, we use the algorithm
searching the cost state space. In the second phase, the algorithm
keeps track of the solution with the currently maximum degree of
interest that also satisfies the cost constraint. If a solution is found
that also satisfies the size constraints, then this becomes the
current optimal solution. The algorithm stops when no solution
with better degree of interest can be found.

7. EXPERIMENTAL RESULTS
We have implemented the algorithms described above on top of
Oracle 9i and have conducted experiments to compare their
efficiency and effectiveness. Our data was from the Internet
Movies Database [7]. We adopted the evaluation setting of [12],
which is not repeated for lack of space. It includes a broad range
of doi values, doi-value deviations, queries, etc. We only discuss
the experimental results for the CQP algorithms of Section 5.2;
similar results were obtained for the other CQP problems as well.

7.1 Implementation Issues and Setup
In our experiments, we have used the following formulas for the
estimation of the key parameters of a personalized query.
Degree of Interest. For the doi of an implicit preference p, we
have chosen multiplication as the function f⊗ in Formula (1) [12]:

doi(p) = doi(p1) × … × doi(pm). (9)

For the doi of a conjunction of preferences, we have used the
following function [12]:

doi(Px) = 1 – Π(1- doi(pi))
∀pi∈ Px

(10)

Note that both formulas can be incrementally computed.

Execution Cost. For the execution cost of a personalized query,
we have used formula (6), repeated here for convenience:

cost(Qx) = cost(∪(qi)) = Σ cost(qi)
 qi∈ Qx

For simplicity of exposition, we have made the following
assumptions for each sub-query qi: (a) cost(qi) is measured in
terms of I/O only; (b) there is enough memory to store all data
required by a query until its completion; (c) there are no indexes
used. Based on the above, execution cost is simply the cost of

reading from disk all required data once. Hence, the execution
cost of a sub-query qi on relations Ri1,… RiN, is estimated as

cost(qi) = b × Σ blocks(Rij)
 Rij∈ qi

(11)

where blocks(Rij) is the number of blocks of relation Rij, and b is
the time to read a single block from disk into memory. For our
experiments, we have considered b = 1ms.

7.2 Comparison of Algorithms
We have compared the algorithms described above on their
memory requirements, execution times, and quality of solution
found. Two parameters affect their behavior: (a) the number of
preferences K extracted from the profile and used by a CQP
algorithm and (b) the upper bound cmax on the execution time. We
have experimented with values of K in [10, 40] and values of cmax
from 10% to 100% of the execution time of the query that
incorporates all K preferences into the original query (Supreme
Cost), which is the most expensive query based on our cost
assumptions. As defaults, we have used a constant cmax=400ms
and K =20. Each result shown below represents the average of 200
different experiment runs (20 profiles × 10 queries) with the same
characteristics.

7.2.1 Execution Times
Figure 12(a) presents execution times of the CQP algorithms
discussed earlier, as a function of K. Naturally, all algorithms
have growing execution times with K, but they can be clearly
partitioned into two classes. In the first class are D-MAXDOI and
D-SINGLEMAXDOI, whose poor behavior is due to their use of doi-
based transitions: while Horizontal transitions move them towards
states of greater interest and cost, Vertical transitions are “blind”
with respect to execution cost, resulting in unevenly larger parts
of the search space being explored as K increases. Although being
cost-based, C-BOUNDARIES also exhibits poor performance for
higher K primarily due to its producing a large superset of the
Boundaries actually required to find the optimal solution. In the
second class are C-MAXBOUNDS and D-HEURDOI. Both use
heuristics to avoid the pitfalls of the others and explore a small
part of the search space, showing excellent performance.

In principle, in addition to the time required by the CQP
algorithms to run, one should take into account the time taken by
the ‘Preference Space’ module as well (Figure 2) to create all K
preferences to be investigated. Figure 12(b) presents this for a
range of values of K for two different algorithms: D_PrefSelTime
producing preferences ordered only on doi (useful for doi-based
CQP algorithms), and C_PrefSelTime, producing preferences
ordered both on doi and cost (useful for cost-based CQP
algorithms). Clearly, for all practical purposes and all cases, the
time required by the ‘Preference Space’ module is negligible
compared to that of the CQP algorithms and can be ignored.

Figure 12(c) presents execution times of CQP algorithms for
different values of cmax, while Figure 12(d) zooms in on the fastest
algorithms to distinguish among them. For all algorithms,
execution time grows up to about cmax=50% of the Supreme Cost
and then shrinks as cmax moves to 100%. The reason is that, for
low cmax, all algorithms stay primarily within groups of small size,
where cost remains low. Thus, few Horizontal transitions are
performed. As cmax increases, more Horizontal and Vertical
transitions are performed and more groups and states within them

82

are explored. Maximum time is reached at about cmax=50% of
Supreme Cost, beyond which the number of Vertical transitions
taken decreases, as algorithms search within groups of large size
only, bringing execution time down again. The only practical
methods remain C-MAXBOUNDS and D-HEURDOI, with the latter
being extremely efficient and almost unaffected by cmax.

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40
Number of preferences K

C
Q

P
O

pt
im

iz
at

io
n

Ti
m

e
(s

)

D_MaxDoi
D_SingleMaxDoi
C_Boundaries
C_MaxBounds
D_HeurDoi

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

10 20 30 40
Number of preferences K

Pr
ef

. S
el

ec
tio

n
Ti

m
e

(s
)

C_PrefSelTime
D_PrefSelTime

0

200

400

600

800

1000

1200

1400

10 20 30 40 50 60 70 80 90 100

% Supreme Cost

C
Q

P
O

pt
im

iz
at

io
n

Ti
m

e
(s

)

D_MaxDoi
D_SingleMaxDoi
C_Boundaries
C_MaxBounds
D_HeurDoi

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

% Supreme Cost

C
Q

P
O

pt
im

iz
at

io
n

Ti
m

e
(s

) C_Boundaries
C_MaxBounds
D_HeurDoi

Figure 12. Execution times of algorithms

7.2.2 Memory Requirements
We have measured the maximum memory used by a CQP
algorithm during its execution. Figure 13(a) and (b) present these
measurements for different values of K and cmax, respectively. The

memory requirements of all algorithms are commensurate with
their execution costs for the exactly same reasons. D-MAXDOI and
D-SINGLEMAXDOI are memory-hungry, C-BOUNDARIES is better
but deteriorates relatively quickly with K, while C-MAXBOUNDS
and D-HEURDOI have very low memory consumption and remain
essentially unaffected by K. With respect to cmax, the diagrams are
very similar to those for memory requirements for the same
reasons analyzed there. Overall, we observe that even the worst
algorithms have rather small memory requirements, so this is not
an issue of concern for CQP.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40

Number of preferences K

M
em

or
y

R
eq

ui
re

m
en

ts
 (K

B
yt

es
)

D_SingleMaxDoi
D_MaxDoi
C_Boundaries
C_MaxBounds
D_HeurDoi

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

% Supreme Cost

M
em

or
y

R
eq

ui
re

m
en

ts
 (K

B
yt

es
) D_SingleMaxDoi

D_MaxDoi
C_Boundaries
C_MaxBounds
D_HeurDoi

Figure 13. Memory requirements of the algorithms

7.2.3 Quality of Solution
Given that C-BOUNDARIES and D-MAXDOI are the only provably
correct CQP algorithms, it is critical to experimentally evaluate
the remaining, heuristic algorithms based on the doi of the
solutions they find. For this, we use the difference

Quality = doioptimal - doifound

where doioptimal is the degree of interest of the optimal solution
(found by D-MAXDOI), and doifound is the degree of interest of the
solution found by a heuristic CQP algorithm. Figure 14(a) and (b)
compare CQP algorithms on Quality for different values of K and
cmax, respectively. Based on both figures, we may conclude that all
heuristic algorithms produce solutions of the highest quality, with
miniscule differences from their deterministic counterparts. (Note
that y-axes represent scalars multiplied by 107). Hence, in
combination with their execution times, C-MAXBOUNDS and D-
MAXDOI appear as excellent choices for CQP problems.

Note that, even for the lowest values of K or cmax, where there is
some observable difference in quality among the algorithms, this
is quite small. This is partly due to the model adopted for the doi
of conjunctive preferences (Formula (10)), whose output value
increases rapidly as more preferences are taken into account,
which is the case when either K or cmax increases. Using a different
model for conjunctive preferences would still exhibit the same

(a)

(b)

(a)

(b)

(d)

(c)

83

growing trends but might have resulted in larger differences
among approaches.

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40

Number of preferences K

D
iff

er
en

ce
 in

 q
ua

lit
y

(1
0-7

) D_HeurDoi
C_MaxBounds
D_SingleMaxDoi

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

% Supreme Cost

D
iff

er
en

ce
 in

 Q
ua

lit
y

(1
0-7

) D_HeurDoi
D_SingleMaxDoi
C_MaxBounds

Figure 14. Comparison of solutions of algorithms

7.3 Personalized Query Cost Prediction
As a last aspect of our experimental effort, it is interesting to
validate the simplified query cost model that we have adopted
(Sections 4 and 7). Figure 15 shows that the costs returned by our
formulas are very close to the actual observed ones when queries
were executed, thus strengthening the usability of our approach.

0

20

40

60

80

100

120

140

160

10 20 30 40

Number of preferences K

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Estimated Query Exec.Time

Real Query Exec.Time

Figure 15. Cost Evaluation

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have generalized earlier concepts of query
personalization and have introduced Constrained Query
Personalization (CQP) as a family of related optimization
problems with constraints. We have formulated CQP as a state-
space search problem and have devised state-space search

algorithms that take advantage of particular characteristics of the
CQP problems. Finally, we have demonstrated the effectiveness
of our approach through experimental results that evaluate the
algorithms proposed with respect to several important features. In
ongoing work, we are concerned with policies mapping the search
context onto the appropriate CQP problem. In that spirit, we are
particularly interested in integrating CQP with location-based
services so that richer forms of CQP may be devised. Finally, we
are interested in studying query personalization as a multi-
objective constrained optimization problem, where more than one
query parameter may be optimized simultaneously.

9. REFERENCES
[1] Bruno, N., Chaudhuri, S., Gravano, L. Top- k Selection

Queries over Relational Databases: Mapping Strategies and
Performance Evaluation. ACM TODS, 27(2), 153-187, 2002.

[2] Chaudhuri, S., Gravano, L. Evaluating Top-k Selection
Queries. Proc. of the 25th Int’l Conf. On VLDB, 1999.

[3] Ganguly, S., Hasan, W., Krishnamurthy, R. Query
Optimization for Parallel Execution. Proc. Of the ACM Int’l
Conf. On Management of Data, SIGMOD, 1992.

[4] Glover F. Tabu Search - Part I. ORSA Journal on
Computing, Vol. 1, pp. 190-206, 1989.

[5] Goldberg D. Genetic Algorithms in Search and Machine
Learning. Reading, Addison Wesley, 1989.

[6] Ilyas, I., Aref, W. G., Elmagarmid, A. Supporting top-k join
queries in relational databases. VLDB J. 13(3): 2004.

[7] Internet Movies Database. Available at www.imdb.com.
[8] Karypis, G. Evaluation of Item-Based Top-N Recommen-

dation Algorithms. Proc. of CIKM, 247-254, 2001.
[9] Kellerer, H., Pferschy, U., Pisinger, D. Knapsack Problems.

Springer-Verlag, 2003.
[10] Kirkpatrick, Gelatt, C. D., Vecchi, M. P. Optimization by

Simulated Annealing, Science 220, 4598, 671-680, 1983.
[11] Kossmann, D., Stocker, K. Iterative Dynamic Programming:

A New Class of Query Optimization Algorithms. ACM
TODS, 25(1), 2000, 43–82.

[12] Koutrika, G. Ioannidis, Y. Personalization of Queries in
Database systems. Proc. of ICDE, 2004.

[13] Liu F., Yu C., Meng W. Personalized Web Search by Map-
ping User Queries to Categories. Proc. of CIKM, 2002.

[14] Pitkow, J., Schutze, H., et al. Personalized Search. Comm. of
the ACM, 45(9), 2002.

[15] Selinger, P.G., Astrahan, M.M., Lorie, R.A., Price, T. G.
Access Path Selection in a Relational Database Management
System. Proc. of SIGMOD, 1979.

(a)

(b)

84

