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ABSTRACT 
Personalization is a powerful mechanism that helps users to cope 
with the abundance of information on the Web. Database query 
personalization achieves this by dynamically constructing queries 
that return results of high interest to the user. This, however, may 
conflict with other constraints on the query execution time and/or 
result size that may be imposed by the search context, such as the 
device used, the network connection, etc. For example, if the user 
is accessing information using a mobile phone, then it is desirable 
to construct a personalized query that executes quickly and 
returns a handful of answers. Constrained Query Personalization 
(CQP) is an integrated approach to database query answering that 
dynamically takes into account the queries issued, the user’s 
interest in the results, response time, and result size in order to 
build personalized queries. In this paper, we introduce CQP as a 
family of constrained optimization problems, where each time one 
of the parameters of concern is optimized while the others remain 
within the bounds of range constraints. Taking into account some 
key (exact or approximate) properties of these parameters, we 
map CQP to a state search problem and provide several 
algorithms for the discovery of optimal solutions. Experimental 
results demonstrate the effectiveness of the proposed techniques 
and the appropriateness of the overall approach. 

1. INTRODUCTION 
Personalization has come about as a result of a long evolutionary 
process accelerated by the rapid development of the Web.  Such a 
communication tool has enabled people with varied goals and 
characteristics to access an ever-growing amount of information.  
Emergence of hand-held electronic devices, such as palmtops and 
cellular phones, has increased the possibilities for information 
access from anywhere and anytime.  Under these conditions, it is 
very difficult for users to find the information they need.  As a 
solution to this problem, researchers from different communities 
have developed personalization systems, which adapt their 
behavior to the goals, interests, and other characteristics of their 
users as individuals or members of particular groups. 

Query personalization [12, 13, 14] affects system behavior by 
dynamically enhancing a query with related preferences stored in  
* Partially supported by the Information Society Technologies (IST) Program of the 
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a user profile with the purpose of providing personalized answers. 
In principle, query personalization is an optimization problem: 
given a query q posed by a user u, its goal is to identify the parts 
of the profile of u that, when combined with q, would maximize 
the interest of u in the results of q.  In practice, this problem 
statement may lead to unrealistic solutions, since maximum 
interest is achieved by incorporating all preferences of u into q, 
but the resulting “over-personalized” query is likely to be very 
expensive or have an empty answer. Taking into account 
execution time and result size leads to a redefinition of query 
personalization as a constrained optimization problem, where 
constraints are expressed as an upper bound on execution time of 
the final query and/or a lower or upper (top-k) bound on its result 
size.  Furthermore, under this more general point of view, one 
realizes that query personalization does not necessarily imply 
optimization of user interest, but could also be, for example, 
optimization of execution time under constraints on user interest. 

The family of constrained optimization problems that arise in the 
spirit discussed above is referred to as Constrained Query 
Personalization (CQP). Depending on the parameter being 
optimized and the constraints placed on the others, different 
answers will be delivered even to the same user issuing the same 
query. Each time the correct CQP problem is determined by 
several real-time factors comprising the search context, such as 
the device used, the network connection, or even some transient 
user requirements of the moment, as in the example below. 

Example: Al is registered with a web-based service providing 
tourist information for various places. The system responds to his 
requests by taking into account a profile of his personal 
preferences that it maintains as well as the search context at the 
time of the request. While planning his trip to Pisa, Al looks for 
general information on the city using his laptop in his office with 
a high-speed Internet connection, which allows the system to 
execute expensive queries and provide extensive results that 
match his profile perfectly. When Al is in Pisa, he may ask for a 
few local restaurants using his palmtop while walking in the old 
town. In this case, the search context is different: he is using a 
device with limited display capabilities and a low-bandwidth 
network connection. The system should quickly return a short and 
easily browsable answer with, say, three restaurants that are of 
Al’s general liking. 

In this paper, we study Constrained Query Personalization in the 
context of database queries. Our contributions are the following: 

− We generalize earlier concepts of query personalization and 
introduce the CQP family of related optimization problems with 
constraints. (Mapping the search context onto the appropriate 
CQP problem is a policy issue and is not addressed here.) 
− We formulate CQP as a state-space search problem.  Each 
personalized query that is a potential solution is a state in a space 
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(a node in a graph), characterized by degree of interest, execution 
cost, and result size.  Transitions (edges) arrange states in partial 
orders based on each of the aforementioned query parameters.    
− We devise state-space search algorithms that take advantage of 
these partial orders to solve CQP problems efficiently. 
− We demonstrate the effectiveness of our approach through 
experimental results that evaluate the algorithms proposed with 
respect to several important features. 
To the best of our knowledge, this is the first effort on a realistic 
and comprehensive approach to query personalization through its 
integration with aspects of query optimization.  

2. RELATED WORK 
Personalization is a very broad research area that includes 
methods such as information filtering and recommender systems 
[8]. Query personalization techniques have been proposed both by 
the IR [13, 14] and database communities [12]. The key 
difference of the present work lies in considering not only user 
interest in personalized results, but also execution time and result 
size of personalized queries, in order to identify the most 
appropriate one overall to execute.  From earlier work [12], we 
have adopted the model for preferences stored in user profiles. 

Query optimization is a well-established area within databases, 
studying the problem of execution-cost minimization of a given 
query [11, 15] by choosing the right execution plan.  Traditional 
query optimization techniques do not lend themselves to solving 
CQP problems, as the latter take into account multiple query 
parameters at the same time. Multidimensional query optimization 
[3] finds a plan (rather than a query as in CQP) that is optimal wrt 
one criterion and satisfies range constraints wrt other criteria (the 
term is also used for some OLAP optimization, which is not 
relevant here). More importantly, for CQP problems, syntactic 
modifications to a state (query) have known implications 
(increase/decrease) on its degree of interest, cost, and size. The 
resulting syntax-based partial orders are taken advantage of by the 
special algorithms presented here for effective CQP. Execution-
cost estimation is a common task of both areas, but again the 
accuracy requirements on the cost models are quite different, 
hence, one can afford to use a much less detailed cost model in 
CQP than the one found in a typical query optimizer. 

Answering top-K queries is also related to CQP but only at a 
superficial level.  Both deal with bounds on the query result size, 
but the former is concerned with returning a pre-specified number 
of tuples in the query answer [1, 2, 6], while CQP only places 
bounds on that number.   

Interestingly, each of the three areas above addresses exactly one 
query parameter: user interest in the answer, execution cost, or 
result size, respectively. CQP is an integrated approach to query 
answering that dynamically takes into account all three together. 

Another class of problems is related to CQP: knapsack problems 
[9]. However, even the most general, multi-constrained knapsack 
problem (Integer Programming with positive coefficients) deals 
with summation both in the objective and the constraints and 
assumes non-negative integer coefficients. CQP problems may 
include different (even nonlinear) functions anywhere and have 
more general coefficients. This, in conjunction with the particular 
properties of CQP mentioned above, i.e. syntax-based partial 

orders, makes knapsack algorithms not appropriate in this context. 

Finally, given the formulation of CQP as state-space optimization 
several well-known algorithms are potentially applicable: genetic 
algorithms [5], simulated annealing [10], tabu search [4], etc. 
These are generic approaches, however, that do not take into 
account the problem’s particularities or special properties, as 
mentioned above for CQP problems. 

3. USER PREFERENCE MODEL 
Any personalization effort requires a model for the representation 
of preferences in user profiles. In this work, we have adopted a 
slight simplification of an existing user preference model for 
relational databases [12], whose basic constituents are described 
below. For our examples, we consider the following relations, 
which comprise a subset of a database schema about movies: 

MOVIE(mid, title, year, duration, did)  
DIRECTOR(did, name), GENRE(mid, genre) 

A user’s preferences over a database’s contents are expressed on 
top of the personalization graph. This is a directed graph G(V, E) 
that is an extension of the database schema graph. Nodes in V are 
(a) relation nodes, one for each relation in the schema, (b) 
attribute nodes, one for each attribute of each relation in the 
schema, and (c) value nodes, one for each value that is of any 
interest to this user. Edges in E are (a) selection edges, from an 
attribute node to a value node representing a potential selection 
condition, and (b) join edges, from an attribute node to another 
attribute node representing a potential join condition between 
these attributes. 

Atomic Preferences: Preferences are stored in profiles at the 
level of atomic query elements (atomic selection and joins, edges 
in G). An atomic preference for a condition q is expressed by the 
degree of interest (doi) in q, doi(q), which is a real number in the 
range [0, 1]. doi=0 indicates lack of any interest in the condition, 
while doi=1 indicates extreme (‘must-have’) interest. Atomic 
selection preferences indicate user interest in the values of 
attributes.  Atomic join preferences indicate to what degree 
related entities are mutually influenced by preferences. These are 
directed, in the sense that they indicate how preferences on the 
right-hand-side join relation influences the left-hand-side join 
relation. Figure 1 shows an example user profile. 

p1:   doi(GENRE.genre=‘musical’) = 0.5 

p2:   doi(MOVIE.mid = GENRE.mid) = 0.9 

p3:   doi(MOVIE.did = DIRECTOR.did) = 1.0 

p4:   doi(DIRECTOR.name = ‘W. Allen’) = 0.8 

Figure 1. An example user profile 
Implicit Preferences: By composing atomic user preferences on 
conditions (edges) that are adjacent in the personalization graph, 
one obtains implicit preferences, i.e. preferences on complex 
query elements that are conjunctions of atomic ones (directed 
acyclic paths in G).  In particular, if p is an implicit preference 
containing m atomic preferences pi, then p = p1 ∧ … ∧ pm. For 
example, preferences p3 and p4 are composed into the following 
implicit preference for movies directed by W. Allen: 

MOVIE.did = DIRECTOR.did and DIRECTOR.name = ‘W. Allen’ 

The degree of interest in an implicit preference p is a function f⊗ 
of the degrees of interest in the constituent atomic ones: 

doi(p) = f⊗( doi(p1), …, doi(pm) ) (1)  

Function f⊗ must be non-increasing as the length of the 
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corresponding directed path increases: 
f⊗(d1, … dm) ≤ min({d1, … dm}),  where di = doi(pi) (2)  

Conjunctions of Preferences: The degree of interest in multiple 
non-adjacent (atomic or implicit) preferences being satisfied 
together is another function r of the constituent dois. That is, for 
the conjunction of a set of preferences Px = {pi | i = 1… L}, it is 

doi(Px) = r( doi(p1), …, doi(pL) ) (3)  

Clearly, the doi in a set of multiple preferences being satisfied 
together must increase as more preferences are added to the set: 

Px ⊆ Py ⇒ doi(Px) ≤ doi(Py) (4)  

The results of a personalized query should be ranked by function r 
based on the preferences that they satisfy in a profile. 

4. CONSTRAINED QUERY 
PERSONALIZATION 
4.1 Problem Description  
A query Q is characterized by an execution cost, cost(Q), and a 
result size, size(Q). A personalized query is also characterized by 
a degree of interest, doi(Q). In the sequel, we collectively refer to 
these as query parameters. Given a query Q and a user profile U, 
let P be the set of selection preferences extracted from U and 
related to Q. A personalized query Qx is a combination of Q and a 
subset Px of P and is denoted Qx:= Q ∧ Px. The objective of query 
personalization is to build a personalized query QU that is optimal 
with respect to one query parameter and satisfies constraints on 
the others. Query personalization is, therefore, optimization under 
constraints. We use the term Constrained Query Personalization 
(CQP) to collectively refer to several optimization problems that 
may be defined as different instantiations of this broad 
description. Not all conceivable optimization problems, however, 
are meaningful within the CQP family. This is due to the 
following properties of the query parameters involved in CQP: 

doi: By definition, query personalization aims at producing
results interesting to a user. Therefore, the doi parameter
must be maximized or satisfy a lower bound. 

cost: By nature, execution cost must be minimized or satisfy an 
upper bound. 

size: By definition, query personalization aims at smaller
responses. On the other hand, empty answers are always 
undesirable. Hence, the size parameter must always satisfy 
a lower bound (default is 1) and possibly an upper one. 

Table 1 shows all possible CQP problems that may be conceived.  

Table 1. CQP problems 
Problem doi cost size 

1 MAX - smin ≤  size ≤ smax 
2 MAX cost ≤ cmax - 
3 MAX cost ≤ cmax smin ≤  size ≤ smax 
4 - MIN smin ≤  size ≤ smax 
5 doi ≥ dmin MIN - 
6 doi ≥ dmin MIN smin ≤  size ≤ smax 

Based on the above, for Problems 1-3, the optimal personalized 
query QU must satisfy the following: 

doi(QU) = MAX{doi(QX)   | Qx =  Q ∧ Px,   Px ⊆ P, Qx satisfies CQP constraints} 

Accordingly, for Problems 4-6, it must satisfy the following: 

cost(QU)=MIN{cost(QX) | Qx = Q ∧ Px, Px ⊆ P, Qx satisfies CQP constraints} 

At query time, the decision on which CQP problem to solve 
depends on factors comprising the search context. For example, in 
the scenario where Al uses his palmtop while walking in Pisa, low 
bandwidth and user mobility pose an upper limit to system 
response time and result size. Under these conditions, Problem 3 
appears most appropriate, seeking a personalized query with 
optimal doi that remains within specific bounds on the other 
parameters. The particular bounds can be derived based on 
statistics kept by the system or provided by the user on the spot, 
e.g., if Al requests up to three restaurants, this implies smax=3. 

4.2 System Architecture 
Figure 2 presents the general architecture of a CQP system. The 
modules in grey color are the traditional parts of a relational 
database system. We discuss the remaining CQP modules below. 

Parameter 
Estimation

DatabaseUser Models

Personalized
Query

Construction 

Preference 
Space (P)

CQP State 
Space Search

Query
Optimization 

Query
Execution 

 
Figure 2. CQP system architecture 

Preference Space: Given a query Q and a user profile U, it 
determines the set P of atomic and implicit selection preferences 
that are extracted from U and are related to Q.  

Parameter Estimation: It provides estimations on the parameters 
of personalized queries produced by integrating preferences of a 
subset of P into the original query Q.  

CQP State Space Search: This is the main system module. It 
examines possible personalized queries and identifies the optimal 
one with respect to the parameter being optimized and the 
constraints provided for the others.  For this purpose, it employs a 
search strategy for examining the space of personalized queries.  

Personalized Query Construction: After ‘CQP State Space 
Search’ has selected the optimal subset of preferences to be 
integrated into Q, this module does the actual modification of the 
query. Among several possible query rewritings one could use to 
personalize a query with a set of preferences, we have adopted the 
one illustrated below with an example: Consider a user, whose 
profile is shown in Figure 1, issuing a query about movies: 

select title from   MOVIE  

Assume that the following preferences have been selected by the 
system for inclusion in the query: 

MOVIE.did = DIRECTOR.did and DIRECTOR.name = ‘W. Allen’ 
MOVIE.mid = GENRE.did and GENRE.genre = ‘musical’ 

First, a set of sub-queries is constructed, each one separately 
integrating one of these preferences into the original query1.  
Q1: select title from   MOVIE M, DIRECTOR D 
 where M.did = D.did and D.name = ‘W. Allen’ 
Q2: select title from   MOVIE M, GENRE G 
 where M.mid=G.mid and G.genre=‘musical’ 

                                                                 
1 There are various cases where multiple preferences can be effectively combined 

into one sub-query, but investigating the details of this is beyond the scope of this 
paper. 
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The final query is built as the union of these sub-queries: 
select title  from   Q1 Union All Q2  
group by title  having   count(*)= 2 

Finally, the resulting query is passed on the query optimizer of the 
underlying database system, where it is executed. The results of 
this query may be ranked based on their degree of interest. 

4.3 Parameter Estimation 
In this subsection, we discuss issues of query parameter 
estimation only to the level required by the forthcoming 
description of algorithms. More details on estimation formulas 
used in our experiments are given in Section 7.1. Recall that a 
personalized query Qx is a combination of a query Q and a set of 
preferences Px = {pi | i = 1… L} ⊆ P, i.e. Qx = Q ∧ Px. We are 
concerned with queries of conjunctions of preferences 
implemented as unions of sub-queries followed by a 
groupby/having clause (as in the example above). 

Degree of interest: Naturally, the doi of Qx is the doi in the 
conjunction of the participating preferences (Formula (3)): 

doi(Qx) = r( doi(p1), …, doi(pL) ) (5)  

Cost: Traditionally, the execution cost of a query is estimated by 
the database query optimizer. During query personalization, 
however, we cannot afford to invoke the optimizer for each of the 
(potentially exponential in number) personalized queries tested. 
Moreover, duplication of classical query optimization techniques 
at this stage makes query personalization expensive and is 
actually meaningless as CQP has more relaxed accuracy 
requirements on cost estimates. On these grounds, we have 
adopted an approximate cost model for personalized queries of 
the form discussed in Section 4.2, based on two assumptions: (a) 
the cost of groupby/having is negligible; (b) the cost of a union 
of disjoint sub-queries qi equals to the sum of individual costs of 
qi’s; hence, for Qx the following holds:  

cost(Qx) = cost(∪(qi)) = Σcost(qi) (6)  

Although not always valid, (6) has proved to be sufficient for the 
level of accuracy needed in CQP.  (In Section 7.1, we discuss how 
we have estimated the cost of individual sub-queries in our 
experiments.) Note that, from (6), we derive the following: 

Px ⊆ Py ⇒ cost(Q ∧ Px) ≤ cost(Q ∧ Py) (7)  

This is similar to (4), but differs from it in that, in contrast to the 
degree of interest, cost does depend on the initial query Q. 

Size: Clearly, the following holds: 
Px ⊆ Py ⇒ size(Q ∧ Px) ≥ size(Q ∧ Py) (8)  

Formulas (4), (7), and (8) define useful partial orders, which are 
exploited by CQP algorithms presented in this paper. We observe 
that: (a) for the preference model we adopted [12], the partial 
orders do not depend on any assumptions far from reality 
(Formula 4); (b) preference inclusion always implies result-set 
inclusion (Formula 8); and (c) it implies cost dominance (Formula 
7) under the near-accurate assumptions above. The latter is 
sufficient for monotonicity of personalized query cost wrt 
individual preference costs, for typical single-query optimizers. 
Consequently, nothing else affects the algorithms described here, 
which take advantage of these partial orders. In addition, from (4), 
(7), and (8), it is clear that incremental computation of query 
parameters is possible. 

In the rest of the paper, for notational convenience, parameters of 
query Q ∧ Px are often referred to as parameters of Px, e.g., for 
query Qx, cost(Px) refers to cost(Q ∧ Px), doi(pi) refers to doi(qi), etc. 

4.4 Preference Space 
Given a query Q and a user profile U, this module determines the 
set P of selection preferences extracted from U and related to Q. 
The latter refers to syntactic relationships, i.e. preferences whose 
paths on the personalization graph are attached to a relation 
included in Q. For example, the preferences of the example in 
Section 4.2 are related to the query on movies. 

To facilitate some of the CQP state-space search algorithms, we 
associate with P three vectors of pointers, each one capturing 
preference order according to one of the CQP parameters (K is the 
number of preferences in P): 

D = {di | i ∈ [1…K], doi(pdi) ≥ doi(pdi+1)  } 

C = {ci | i ∈ [1…K], cost(Q ∧ pci) ≥ cost(Q ∧ pci+1) } 

S = {si | i ∈ [1…K], size(Q ∧ psi) ≤ size(Q ∧ psi+1) } 

Consider P = {p1, p2, p3} with parameter values given in Table 2. 
Then, its vectors are: D = {2, 3, 1}, C = {3, 1, 2}, S = {2, 1, 3}. 

Table 2. Parameter values for P = {p1, p2, p3} 
preference  doi cost size 

p1 0.5 10 3 
p2 0.8 5 2 
p3 0.7 12 10 

The preference space algorithm is given in Figure 3. Its inputs are 
a query Q, a profile U, and CQP constraints. It outputs the set P, its 
vectors D, C, and S, and the cardinality K of P. It takes advantage 
of the fact that the doi in a preference is a non-increasing function 
of the length of the corresponding path (Section 3), and performs 
a best-first traversal of the personalization graph corresponding to 
U [12] to extract preferences in decreasing order of doi.  

Preference Space Algorithm 
Input:    query Q, profile U, CQP constraints 

Output: P, D, C, S, K 
1. P := {}; D := {}; C := {}; S:= {}; K := 0; QP := {}; 
2. For each atomic preference pi in U syntactically related to Q 
2.1. If Q∧pi satisfies CQP constraints then QP:= add(QP, pi) fi 
 end for 
3. While QP not empty 
3.1. Get head p from QP; 
3.2.  If Q ∧ p satisfies CQP constraints then 
3.2.1. If p is selection then  
 P := P ∪ {p}; K := K+1; D := D ∪ {K};   

C := addrank(C, p, K); S := addrank(S, p, K); 
 else  /* p is a join preference */ 
3.2.2. For each atomic preference pi in U adjacent to p 
 If Q∧(p∧pi) satisfies CQP constraints and p∧pi is acyclic

then QP:= add(QP, p∧pi) fi 
 end for 
 fi 
3.3. else exit fi 
 wend 

Figure 3. Preference Space Algorithm 
The algorithm keeps a queue QP of candidate preferences in 
decreasing order of doi. In each round, it picks from QP the 
preference p with the highest doi. If p is selection, then it is added 
at the tail of P. D is updated by inserting K, the cardinality of P, at 
its tail (since preferences are added in P in decreasing order of 
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doi). Accordingly, addrank(C, p, K) (resp., addrank(S, p, K)) 
procedure adds K into C (resp., S) in the appropriate place, taking 
into account the cost (resp., size) of p. If p is join, then for each 
atomic preference pi adjacent to p in the personalization graph, a 
new preference p ∧ pi is generated and inserted into QP. At 
various points, the algorithm takes into account the CQP 
constraints to prune down preferences that can never lead to 
successful personalized queries. The details of such optimizations 
are omitted for lack of space. 

5. STATE SPACE SEARCH  
CQP problems have similar formulation, query parameter 
properties and partial orders derivable from syntactic 
transformations of personalized queries. These correspondences 
enable us to treat them in a very similar way. Therefore, for 
presentation purposes, the discussion below is focused on one 
CQP problem, i.e. problem 2 in Table 1. Required adaptations so 
as to handle all types of CQP problems are discussed in Section 6. 

5.1 State Space  
Each solution to a combinatorial optimization problem can be 
thought of as a state in a space, i.e. a node in the graph that 
includes all such solutions. Each state has a feature associated 
with it, which is given by some problem-specific feature function. 
The states that can be reached in one move from a state S are 
called the neighbors of S. We model a CQP problem as a state 
space search problem, as follows.  

States. Each state in a CQP problem corresponds to a query built 
by integrating a set of preferences from the user profile into the 
initial query, i.e. Qx:= Q ∧ Px, where Px ⊆ P. In the sequel, we will 
interchangeably use Qx and Px to refer to a state. Query parameters 
comprise the features of the corresponding state.  

Transitions. The neighbors of a state are determined by a set of 
transitions. Transitions are based on transformation rules that are 
applied on one state and produce a neighbor one. We define two 
categories of transitions, cost-based and doi-based. Each category 
creates a different state space (same nodes, different edges). 
Taking advantage of Formulas (4), (7), and (8), all transitions are 
based on syntactic modifications to a state with known 
implications (increase/decrease) on state parameters. This 
property of transitions actually enables algorithms to work with 
the pointer vectors, D, C, and S instead of P.  

5.2 State Space Search Algorithms 
The number of all possible subsets of P is exponential. So is the 
number of potential personalized queries defined based on Q and 
U. Thus, the complexity of an exhaustive CQP algorithm is O(2K). 
Following subsections provide several precise and heuristic 
algorithms that improve to varying degrees upon this.  

5.2.1 Algorithms on the Cost State Space 
Consider the cost vector C of P. Each Cx ⊆ C is also ordered and 
corresponds to a state in the cost state space. We define the 
following cost-based transitions: 
Horizontal (Cx) := Cy such that  

Cy := Cx ∪ {ci+1}, i = max({k| k s.t. ck ∈ Cx }) and ci+1 ∈ C 

In words, the Horizontal neighbor of a state Cx is derived by 

inserting the preference from C that immediately follows the 
lowest cost preference of Cx. Based on formulas (4), and (7), 
neighbor Cy has higher cost and higher degree of interest than Cx.  

Vertical(Cx) :=  
{Ci | Ci := (Cx − {ci}) ∪ {ci+1}, ci+1 ∈ C, ci+1 ∉ Cx, and 

cost(Ci ) ≥ cost(Ci+1), ∀ci ∈ Cx } 

Vertical neighbors of a state Cx are derived by replacing a 
preference in Cx by its successor from C provided that the latter is 
not already in Cx. Vertical neighbors are ordered in decreasing cost.  

PROPOSITION 1. The destination of a transition from a source state 
Cx is also a state in the space. 

DEFINITION 1. Nodes with the same number of preferences belong 
to a group with group size equal to the number of preferences. 

Table 3. States of a graph 
Group Size States 

1 c1 c2 c3 c4   
2 c1c2 c1c3 c2c3 c1c4 c2c4 c3c4 
3 c1c2c3 c1c2c4 c2c3c4 c1c3c4   
4 c1c2c3c4     

Assume C = {c1, c2, c3, c4}. The set of possible states is given in 
Table 3 (the initial query is omitted). Figure 4 shows the cost state 
space based on the transitions above. Vertical transitions are 
depicted in dashed lines, and Horizontal ones in solid lines. For 
instance, Horizontal(c1c3) = c1c3c4 and Vertical(c1c3) = {c1c4, c2c3}. 

c1

c2

c3

c4

c1c2

c1c3

c1c4

c2c4

c3c4

c2c3

c1c2c3

c1c2c4

c1c3c4

c2c3c4

c1c2c3c4

 
Figure 4. A Cost State Space 

OBSERVATION 1. Both types of transitions are based on syntactic 
changes to a state that have known implications 
(increase/decrease) on state parameters. This generates syntax-
based partial orders of states, which are exploited by the 
algorithms described below. 

Table 4. Cost-based transitions 
 Transition  cost doi 
Vertical ↓ - 
Horizontal ↑ ↑ 

As Table 4 illustrates Horizontal moves towards nodes of higher 
doi and higher cost. Vertical moves towards nodes of lower cost 
and unknown doi. Consequently, one can devise algorithms that 
work with the cost vector C, and are roughly built around this 
idea: Horizontal transitions can be applied up to the point where 
the cost of a node produced does not satisfy the cost constraint. 
Vertical moves are applied until the cost of a node produced 
satisfies the cost constraint. 

Algorithm C-BOUNDARIES. The first algorithm is based on the 
idea of finding a set of nodes that are not reachable from each 
other and satisfy the cost constraint, while their parents do not. 
These nodes are called boundaries. Boundaries on every group 
form a virtual borderline that partitions the cost state space into 
two sets of nodes: those satisfying the cost constraint, and those 
not. Then, the solution to the CQP problem under consideration is 
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a node of maximum doi belonging to the first set.   

Algorithm C-BOUNDARIES implements this idea in two phases. In 
the first phase, it searches for boundaries in every group, starting 
from the group of size 1. Search within a group is performed 
using Vertical transitions. From all boundaries found in one group, 
the algorithm moves to their Horizontal neighbors in the next 
group. From these new nodes, the algorithm starts searching for 
boundaries in their group. If no boundary is found in a group, this 
phase of the algorithm ends. In the second phase, the algorithm 
searches among the nodes below the boundaries to find the one 
with the best doi. In what follows, we give a set of propositions 
and a theorem that prove the correctness of the algorithm. Proofs 
are omitted due to space considerations. 

PROPOSITION 2. All Vertical predecessors of a boundary do not 
satisfy the cost constraint. 

PROPOSITION 3. All Vertical predecessors of a Horizontal neighbor of 
a boundary do not satisfy the cost constraint. 

Based on the above, the following proposition can be proved. 

PROPOSITION 4. By mapping boundaries of a group to their 
Horizontal neighbors in the next group, all nodes satisfying the 
cost constraint in the latter group, if any, are reached through 
Vertical transitions from the new nodes. 

PROPOSITION 5. If there is no boundary in one group, then there are 
no boundaries in all groups of greater size either. 

Based on the above, the following theorems can be proved. 

THEOREM 1. The first phase of C-BOUNDARIES finds all boundaries. 

THEOREM 2. Algorithm C-BOUNDARIES finds the optimal solution 
wrt a cost constraint, provided that one exists, i.e. it is correct. 

The algorithm is provided in Figure 5. Its inputs are the query Q, 
the set of preferences P, its cardinality K, its cost vector C, and an 
upper cost bound cmax (the CQP constraint), and it generates a set 
of preferences PU to be integrated into Q. The first phase of the 
algorithm is implemented by FINDBOUNDARY, and the second one 
by C_FINDMAXDOI. Note that the algorithm does not actually store 
the part of graph visited, hence, conserving memory. 

FINDBOUNDARY constructs the set of boundaries, Boundaries, based 
on the input upper cost bound cmax. This set is ordered in 
decreasing group size. Based on OBSERVATION 1, each ck in C may 
be represented by its index k, and each Cx ⊆ C by the set of indices 
R of its member preferences. FINDBOUNDARY searches for 
boundaries in a breadth-first fashion, i.e. it finds boundaries in 
one group of states and then proceeds with boundaries in the next 
group. For this purpose, a queue RQ is used that maintains 
candidate nodes not yet examined. At each iteration, the first 
element R of RQ is obtained. At this point, the cost of the state 
corresponding to R is calculated (cost(R, C, P)). If this cost is 
lower than cmax, then R becomes a boundary (push(Boundaries, R)), 
and R’s Horizontal neighbor is placed at the tail of RQ. If this cost 
is higher than cmax, then each Vertical neighbor of R is placed at the 
head of RQ. In this way, we first examine all states belonging to 
the same group and then proceed to the next group’s states. If no 
boundaries are found in a group, then RQ becomes empty and 
FINDBOUNDARY stops.  

Figure 6 shows an example of executing FINDBOUNDARY (note that 

all possible Vertical moves are shown in dashed lines for 
presentation reasons). For cmax=185, its output is {{1}, {1, 3}, {2, 
3, 4}, {2, 4, 5}}, which corresponds to {c1, c1c3, c2c3c4, c2c4c5}.  

Algorithm C-BOUNDARIES  
Input: Q, P, K, C, cmax 

Output: PU, MaxDoi  
1. Boundaries := FINDBOUNDARY(Q, C, P, cmax); 
2. PU := C_FINDMAXDOI(Boundaries, C, K, P, MaxDoi); 

 

function FINDBOUNDARY 
Input: Q, C, P,  cmax 

Output: Boundaries 
1. R := {1}; Boundaries:= {}; 
2. Enqueue(RQ, R); 
3. While RQ ≠{} 
3.1. R :=Dequeue(RQ); 
3.2. If cost(Q, R, C, P) ≤ cmax  then 
3.2.1. Boundaries:= push(Boundaries, R); 
3.2.2. R’:= Horizontal(R); 
3.2.3. If R’≠{} then Enqueue(RQ, R’) fi 
 else 
3.2.4 VR:= Vertical(R); 
3.2.5 For each R’ in VR 
 If prune(R’) = FALSE then Enqueue(RQ, R’) fi 
 end for 
 fi 
 wend 

 

function C_FINDMAXDOI 
Input: Boundaries, C, K, P  
Output: PU, MaxDoi 
1. MaxDoi:= 0; PU := {};  
2. KR := K; BestExpectedDoi := doi(P);  
3.  For each R in Boundaries 
3.1.  If count(R) < KR then 
3.1.1 BestExpectedDoi := doi({pi | pi ∈ P, i ∈ [1 … KR]}); 
3.1.2. If MaxDoi > BestExpectedDoi then exit fi; 
 fi 
3.2. KR := count(R); PX:= {}; Used={}; 
3.3. For i:= KR to 1  
3.3.1. k:= R[i];  
3.3.2. m0 := min({C[j] | j ≥ k, j ≤ K } − Used); Used = Used ∪ {m0}; 
3.3.3. PX:= PX ∪ {pm0}; 
 end for 
3.4. If doi(PX) > MaxDoi then MaxDoi := doi(PX); PU := PX fi 
 end for 

Figure 5. Algorithm C-BOUNDARIES 
A couple of issues need to be taken into account during the 
traversal of the state space. The first one arises from not storing 
any part of the graph visited except for boundaries found. While 
leading to memory savings, this policy creates the risk of visiting 
parts of the graph previously seen. Another issue concerns visiting 
nodes below some boundary. For example, consider the graph of 
Figure 4. Assume the algorithm visits node c1c2 followed by c1c3. 
The latter has Vertical neighbors, c1c4 and c2c3. The algorithm 
classifies c1c4 as a boundary. As a result, its Vertical neighbors 
need not be visited. The algorithm proceeds with c2c3. However, 
all Vertical neighbors of this node are below the boundary 
previously found and, hence, need not be visited either. Moreover, 
by visiting these nodes, the algorithm will find a new boundary, 
c2c5. However, this one lies below boundary c1c4, i.e. it is 
reachable from the latter. This is in conflict with the definition of 
boundaries. Based on the above, we have implemented a method, 
prune(.), for pruning parts of the graph either because they have 
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already been visited or because they are below boundaries found. 
The details are skipped for space reasons. 

C_FINDMAXDOI searches below each boundary R found during the 
first phase for the node PX, which may correspond to the boundary 
or some node below it, with the maximum doi. The boundaries are 
considered in order of decreasing group size. The output of this 
phase is PU which is the node with the best doi (MaxDoi) among all 
PX’s encountered. In order to avoid examining all boundaries, 
BestExpectedDoi is used, which is an estimate of the best possible 
doi expected from groups not yet examined. As groups are 
considered in decreasing group size, BestExpectedDoi is the best 
doi expected by the largest group not yet considered. If 
BestExpectedDoi becomes worse than the best doi so far, MaxDoi, 
the algorithm stops. 

Interestingly, in order to find node PX given a boundary R, 
C_FINDMAXDOI does not make use of degrees of interest. Recall 
that each k stored in R, corresponds to ck in C; ck (C[k] in the 
algorithm) stores a pointer m0 in P. Therefore, for each k stored in 
R, the algorithm replaces ck with cj in C (k ≤ j ≤ K) that has the 
minimum m0. m0 points at pm0, which is the preference with the 
best doi. These preferences constitute the best local solution PX. 
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Figure 6. Example for C-BOUNDARIES (cmax=185) 

A last point concerns function cost(Q, R, C, P). Each time it 
computes the cost of a node that is slightly different from a 
previous one. Since Formula (6) permits incremental cost 
computation, cost(.) has been implemented in this way. Costs that 
may be re-used are cached. This technique is used in all 
algorithms proposed. Note that the initial query Q is an input to 
this function, since the cost of a state depends upon Q. 

Algorithm C-MAXBOUNDS. Observing the behavior and output 
of C-BOUNDARIES, it is clear that the set of boundaries found is a 
superset of those required for finding an optimal solution. One 
reason is that the algorithm generates boundaries on each group. 
As a result, boundaries in one group may be supersets of 
boundaries in groups searched earlier. For example, the output of 
FINDBOUNDARY in Figure 6 should not contain c1, since this is a 
subset of c1c3, and, hence, has a lower doi than the latter. Thus, 
consideration of c1 will never lead to better solutions than c1c3. 
Observing Figure 6, we discover another problem: FINDBOUNDARY 
classifies c2c4c5 as a boundary and then discovers boundary c2c3c4, 
which is, however, above the former. Obviously, c2c4c5 has been 
wrongly identified as a boundary. If c2c3c4 was found first, then 
c2c4c5 would not have been visited in the first place.  

To remedy these problems, C-MAXBOUNDS tries to build maximal 
boundaries such that none is subset of or reachable by another. It 
is a two-phase algorithm with the second phase being 
implemented in the same way as previously. In the first phase, the 

algorithm considers preferences in C one at a time. In each round, 
it starts from a state in the space that corresponds to the most 
expensive preference ck in C not yet examined, and tries to build 
maximal boundaries that contain this preference. For this purpose, 
FINDMAXBOUND is called which treats the input node as a “seed”.  
In order to generate a maximal boundary from a “seed” node, 
FINDMAXBOUND applies horizontal transitions up to the point 
where the cost of a node produced does not satisfy the cost 
constraint. The last node in this sequence that satisfies the 
constraint is a maximal boundary. Then, FINDMAXBOUND 
searches among Vertical neighbors of this node. The top-most ones 
that satisfy the constraint are used as new seeds and the whole 
process is repeated as long as there are meaningful transitions to 
perform. If FINDMAXBOUND returns a maximal boundary that 
includes all preferences following ck in C, then the first phase of 
the algorithm ends, since any subsequent boundaries will be 
subsets of that boundary.  

In order to build maximal boundaries, the philosophy of the 
algorithm is to insert as many preferences as possible into a given 
set of preferences before storing it as a maximal boundary. For 
this purpose, it uses a slightly different Horizontal. 

Horizontal2(Cx) :=  
{Ci | Ci:= Cx ∪ {ci}, ci ∈ C, ci ∉ Cx  

and cost(Ci ) ≥ cost(Ci+1), ∀ci ∈ C } 

Horizontal2 neighbors are ordered in decreasing cost. In Figure 8, 
Horizontal2(c2) = {c1c2, c2c3, c2c4, c2c5}.  

Algorithm C-MAXBOUNDS 
Input: Q, P, K, C, cmax 

Output: PU, MaxDoi  
1. MaxBounds:= {}; LastSolutionSize :=0; 
2. k :=1; 
3. While k +  LastSolutionSize ≤ K  
3.1. R := {k}; 
3.2. MaxBounds:= FINDMAXBOUND(Q, k, R, C, MaxBounds, cmax); 
3.3. LastSolutionSize:= count(head(MaxBounds)); k:= k +1; 
 wend 
4. PU := C_FINDMAXDOI(MaxBounds, C, K, P, MaxDoi); 

 
function FINDMAXBOUND 
Input: Q, index k, Node R, C, MaxBounds, cmax 

Output: MaxBounds 
1. Enqueue(RQ, R); 
2. While RQ ≠{} 
2.1. R :=Dequeue(RQ); R0 := R; 
2.2. HR:= Horizontal2(R); 
2.3. While HR ≠ {} 
2.3.1. For each R’ in HR 
2.3.2. If cost(Q, R’, C, P) ≤ cmax  then R := R’; exit for fi 
 end for 
2.3.3. HR:= Horizontal2(R); 
 wend 
2.4. If R ≠ R0 then MaxBounds:= push(MaxBounds, R) fi 
2.5. VR:= Vertical(R); 
 For each R’ in VR 
 If R’ ∩ { k } = {} then exit for fi 
 If prune(R’) = FALSE then Enqueue(RQ, R’) fi 
 end for 
 wend 

Figure 7. Algorithm C-MAXBOUNDS 
The algorithm is presented in Figure 7. Its inputs are the query Q, 
the set P, its cardinality K, its vector C, and the upper cost bound 
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cmax. It generates the set of preferences PU to be integrated into Q. 
Note that the second phase of the algorithm is implemented by 
C_FINDMAXDOI as described earlier. Subsequently, we describe 
only the first phase in more detail. As in the case of C-
BOUNDARIES, based on OBSERVATION 1, each ck in C may be 
represented by its index k, and each Cx ⊆ C by the set of indices R 
of its member preferences. In each round, the algorithm starts 
with R containing an index k to the most expensive preference in 
C not yet examined. R is passed to FINDMAXBOUND, which 
constructs a set of maximal boundaries including (the index to) ck. 
MaxBounds is the set of all maximal boundaries found by 
successive calls of FINDMAXBOUND, and is ordered in decreasing 
group size. If FINDMAXBOUND returns a maximal boundary that 
includes all preferences in C not yet examined, then the first phase 
of the algorithm ends. For this purpose, LastSolutionSize is the 
largest group size found in MaxBounds. If k+LastSolutionSize is 
greater than K, then the first phase terminates. 

FINDMAXBOUND maintains a queue RQ of nodes not yet examined. 
This initially contains the node provided as input to the function. 
In each round, the first element R of RQ is obtained, and its 
Horizontal2 neighbors are examined. If there is one that satisfies 
the cost constraint, then FINDMAXBOUND examines the Horizontal2 
neighbors of that node. This process is repeated as long as a 
neighbor that satisfies the cost constraint is found. At the end, if 
the resulting node is different from the node initially obtained 
from RQ, the former becomes a maximal boundary. The Vertical 
nodes of this node, provided that they subsume the node used as 
input to the function, are inserted in RQ. 

Figure 8 shows an example of the first phase of C-MAXBOUNDS. 
The output for cmax=185 is {c1c3, c2c3c4}, a strict subset of 
FINDBOUNDARY’s solution, depicted in Figure 6.  
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Figure 8. Example for C-MaxBounds (cmax=185) 

5.2.2 Algorithms on the Doi State Space 
Consider the doi vector D of P. Each Dx ⊆ D is also ordered and 
corresponds to a state in the doi state space. Then, by replacing C 
with D in the definitions of transitions in the previous section, we 
obtain a set of doi-based transitions, and a similar doi-based state 
space. As Table 5 shows, doi-based Horizontal moves towards 
nodes of greater doi and higher cost, and Vertical moves towards 
nodes of lower doi and unknown cost.  

Table 5. Doi-based transitions 
 Transition  cost doi 
Vertical - ↓ 
Horizontal ↑ ↑ 

The algorithms that we propose for the doi-based space follow a 
similar philosophy to the previous ones, i.e. Horizontal transitions 
are applied up to the point that the cost of a node produced does 

not satisfy the cost constraint. Vertical transitions are applied until 
the cost of the resulting node satisfies the constraint.  

Algorithm D-MAXDOI. It is a two-phase algorithm following an 
approach similar to C-BOUNDARIES, thus we will only provide a 
sketch of its functionality. The algorithm is described in Figure 9.  

Algorithm D-MAXDOI  
Input: Q, P, K, cmax 

Output: PU, MaxDoi  
1. Solutions := FINDOPTIMAL(Q, P, cmax); 
2. PU := D_FINDMAXDOI(Solutions, K, P, MaxDoi); 

 

function FINDOPTIMAL 
Input: Q, P, cmax 

Output: Solutions 
1. R := {1}; Solutions:= {}; 
2. Enqueue(RQ, R); 
3. While RQ ≠{} 
3.1. R :=Dequeue(RQ); 
3.2. If cost(Q, R, P) ≤ cmax then  
3.2.1. R’:= Horizontal(R); 
3.2.2. While cost(Q, R’, P) ≤ cmax   
 R := R’; R’:= Horizontal(R); 
 wend 
3.2.3. Solutions:= push(Solutions, R); 
 fi 
3.3. VR:= Vertical(R’); 
3.4. For each R’’ in VR 
 If prune(R’’) = FALSE then Enqueue(RQ, R’’) fi 
 end for 
 wend 

 

function D_FINDMAXDOI 
Input: Solutions, K, P  
Output: PU, MaxDoi 
1. MaxDoi:= 0; PU := {}; 
2. KR := K; BestExpectedDoi := doi(P); 
3.  For each R in Solutions 
3.1.  If count(R) < KR then 
3.1.1 BestExpectedDoi := doi({pi | pi ∈ P, i ∈ [1 … KR]}); 
3.1.2. If MaxDoi > BestExpectedDoi then exit fi; 
 fi 
3.2. If doi(R) > MaxDoi then  

MaxDoi:= doi(R); PU:={pi | pi ∈ P, ∀i ∈ R} fi 
 end for  

Figure 9. Algorithm D-MaxDoi 
Its inputs are the query Q, the set P, its cardinality K, and the upper 
cost bound cmax. It generates the set of preferences PU to be 
integrated into Q. In the first phase, FINDOPTIMAL builds a set of 
possible CQP solutions, namely Solutions. The basic idea is the 
following. There is a queue RQ keeping nodes not yet examined. 
It initially contains the node corresponding to the most interesting 
preference. In each round, a node is picked from the queue, and 
Horizontal transitions are applied up to the point where the cost of 
a node produced does not satisfy the cost constraint. The last node 
in this sequence that satisfies the constraint is a possible solution 
to the CQP problem and is inserted into Solutions. Its Horizontal 
successor, which does not satisfy the cost constraint, is then 
considered. That node’s Vertical neighbors are added into RQ. 
During the second phase, D_FINDMAXDOI searches among 
Solutions for the optimal one following a philosophy similar to 
C_FINDMAXDOI. Its implementation is though simpler as Figure 9 
shows. Note that this algorithm, as well as the rest of the 
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algorithms of this subsection, works with R, which is a set of 
indexes, such that each k in R corresponds to a preference pk in P. 
The following theorem may be proved in a similar way as 
THEOREM 2. 

THEOREM 3. The algorithm D-MAXDOI finds the optimal solution 
wrt a cost constraint, provided that one exists, i.e. it is correct. 

A possible advantage of working with doi based transitions is that 
Preference Space needs not produce C thus saving time. This is 
investigated in the experiments. 

Algorithm D-SINGLEMAXDOI. This algorithm is based on the 
same idea as C-MAXBOUNDS, i.e. it follows a greedy approach 
trying to build maximal sets of preferences. A basic difference is 
that it has only one phase, during which, it keeps track of the best 
so far solution, PU, which has degree of interest MaxDoi. 
Furthermore, it keeps BestExpectedDoi that is the best degree 
expected from the part of the graph not yet examined. If the 
maximum degree of interest so far, MaxDoi, is higher than the best 
expected degree, no more staes should be examined. The 
algorithm is given in Figure 10. 

Algorithm D-SINGLEMAXDOI 
Input: Q, P, K, cmax 

Output: PU, MaxDoi 
1. MaxDoi:= 0; BestExpectedDoi := doi(P); 
2. k := 1;  
3. While MaxDoi ≤  BestExpectedDoi 
3.1. R := { k }; 
3.2. Enqueue(RQ, R); 
3.3. While RQ ≠{} 
3.3.1. R :=Dequeue(RQ); R0 := R; HR:= Horizontal2(R); 
3.3.2. While HR ≠ {} 
 For each R’ in HR 
 If cost(Q, R’, P) ≤ cmax  then R := R’; exit for; fi 
 end for 
 HR:= Horizontal2(R); 
 wend 
3.3.3. If doi(R)> MaxDoi then  

MaxDoi:= doi(R); PU:={pi | pi ∈ P, ∀i ∈ R} fi 
3.3.4. VR:= Vertical(R); 
3.3.5. For each R’ in VR 
 If R’ ∩ { k } = {} then exit for fi 
 If prune(R’) = FALSE then Enqueue(RQ, R’) fi 
 end for 
 wend 
3.4. BestExpectedDoi := doi({pj| pj ∈ P, j ∈ [k … K]}); k:= k +1; 
 wend 

Figure 10. Algorithm D-SINGLEMAXDOI 
Algorithm D-HEURDOI. This algorithm is built on the same idea 
as the previous one. Its differences lie in the use of heuristics for 
reducing the number of states examined. The basic idea is the 
following: in each round, the algorithm picks the most expensive 
preference pk in P not yet examined. Then, these steps are 
followed. (a) Its Horizontal2 neighbors are successively examined. 
If one of them satisfies the cost constraint, then it becomes the 
current node and the same procedure is repeated for this node. At 
the end, if the degree of interest of the current node is greater than 
the maximum degree of interest so far, MaxDoi, the current node 
becomes the best solution known. (b) Heuristics are used for 
obtaining possibly better solutions than the current one: we 
remove the cheapest preference from the current node. The 
resulting node becomes the current one. We perform the same 

process for this node as in step (a). This step is repeated until the 
current node is reduced to the initial preference pk in P. 

Algorithm D-HEURDOI 
Input: Q, P, cmax 

Output: PU, MaxDoi 
1. MaxDoi:= 0; BestExpectedDoi := doi(P); k :=1; 
2. While MaxDoi ≤ BestExpectedDoi 
2.1. Rx := {k}; HR:= Horizontal2(R); 
2.2. While HR ≠ {} 
2.2.1. For each R’ in HR 
 If cost(Q, R’, P) ≤ cmax  then R := R’; exit for fi 
 end for 
2.2.2. HR:= Horizontal2(R); 
 wend 
2.3. if doi(R)> MaxDoi then  

MaxDoi:= doi(R); PU:={pi | pi ∈ P, ∀i ∈ R} fi 
2.4. KR := count(R);  
2.5. For k:= KR to 2  
2.5.1. R’:= { R[j] | ∀j < k }; HR:= Horizontal2(R’); 
2.5.2. While HR ≠ {} 
 For each R’’ in HR, R’’ ≠ R’ 
 If cost(Q, R’’, P) ≤ cmax  then R’ := R’’; exit for fi 
 end for 
 HR:= Horizontal2(R’); 
 wend 
2.5.3. if doi(R’)> MaxDoi then  

MaxDoi:= doi(R’); PU:={pi | pi ∈ P, ∀i ∈ R’} fi 
 end for 
2.6. BestExpectedDoi := doi({pj| pj ∈ P, j ∈ [k … K]}); k:= k +1; 
 wend 

Figure 11. Algorithm D-HEURDOI 

6. OTHER CQP PROBLEMS  
As indicated earlier, all CQP problems presented in Table 1 are 
quite similar to each other, both in terms of their formulation but 
also in terms of characteristic properties of the query parameters 
that are involved in them.  In particular, formulas (4), (7), and (8), 
lead to very similar partial orders for each parameter that can be 
derived based on purely syntactic transformations of personalized 
queries. Hence, for all problems in Table 1, it is essentially the 
same kind of state spaces that are available for search with 
analogous states and transitions. Moreover, given the particular 
approaches to estimation of these parameters that we have chosen, 
incremental computation of their values is available in all cases.  
Therefore, all algorithms presented in Section 5 are applicable in 
all CQP problems. The only adaptation that is required in each 
case is making the appropriate choice of the direction of 
Horizontal and Vertical transitions. This is influenced by three 
factors: whether the CQP problem requires minimization or 
maximization; whether the parameter of concern increases or 
decreases with the group size; and whether the CQP constraints 
are in the form of an upper or a lower bound.  For every case, the 
appropriate choice for Horizontal and Vertical direction generates 
the same search problem as before. 
As an example, consider Problem 1, where doi is optimized again, 
but this time there are both upper and lower bound constraints on 
the result size. In this case, we use vector S as the main 
representation form of the states in the search space, containing 
preferences in order of result size. Horizontal transitions move 
towards states of smaller result size and of higher degree of 
interest. Vertical transitions move towards states of larger size, 
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without knowing how degrees of interest change. Essentially, 
taking into account the properties of result size, we have reversed 
the direction of the two categories of transitions compared to 
Problem 2 so that the search must follow exactly the same moves 
as before; hence, we can employ the algorithms of subsection 
5.2.1. If both an upper and a lower bound for size exist, then a 
slight enhancement is required. In particular, two lists of 
boundaries are generated by all algorithms. In the first phase, the 
algorithm first finds a boundary corresponding to the upper limit. 
This is added to the first list, UpBoundaries. Then, instead of 
searching for the next upper boundary, it continues searching in 
the same group, as if the first boundary were not found, until a 
second boundary corresponding to the lower bound is found, if 
such exists. This is kept in a second list, LowBoundaries. In this 
way, pairs of boundaries are produced. In the second phase, the 
algorithm checks the nodes between the upper and lower 
boundaries in order to find the one with the best doi. 
As another, more general example, consider Problem 3, where doi 
is maximized under constraints on both cost and size.  In this case, 
we may use either one of the algorithms, on the size or the cost 
space. Assume that in the first phase, we use the algorithm 
searching the cost state space. In the second phase, the algorithm 
keeps track of the solution with the currently maximum degree of 
interest that also satisfies the cost constraint. If a solution is found 
that also satisfies the size constraints, then this becomes the 
current optimal solution. The algorithm stops when no solution 
with better degree of interest can be found. 

7. EXPERIMENTAL RESULTS 
We have implemented the algorithms described above on top of 
Oracle 9i and have conducted experiments to compare their 
efficiency and effectiveness. Our data was from the Internet 
Movies Database [7]. We adopted the evaluation setting of [12], 
which is not repeated for lack of space. It includes a broad range 
of doi values, doi-value deviations, queries, etc. We only discuss 
the experimental results for the CQP algorithms of Section 5.2; 
similar results were obtained for the other CQP problems as well. 

7.1 Implementation Issues and Setup 
In our experiments, we have used the following formulas for the 
estimation of the key parameters of a personalized query.  
Degree of Interest. For the doi of an implicit preference p, we 
have chosen multiplication as the function f⊗ in Formula (1) [12]: 

doi(p) = doi(p1) × … × doi(pm). (9)  

For the doi of a conjunction of preferences, we have used the 
following function [12]: 

doi(Px) = 1 – Π(1- doi(pi)) 
∀pi∈ Px 

(10)  

Note that both formulas can be incrementally computed. 

Execution Cost. For the execution cost of a personalized query, 
we have used formula (6), repeated here for convenience: 

cost(Qx) = cost(∪(qi)) =  Σ cost(qi) 
                                             qi∈ Qx 

For simplicity of exposition, we have made the following 
assumptions for each sub-query qi: (a) cost(qi) is measured in 
terms of I/O only; (b) there is enough memory to store all data 
required by a query until its completion; (c) there are no indexes 
used.  Based on the above, execution cost is simply the cost of 

reading from disk all required data once. Hence, the execution 
cost of a sub-query qi on relations Ri1,… RiN, is estimated as 

cost(qi) =  b ×  Σ  blocks(Rij) 
          Rij∈ qi  

(11)  

where blocks(Rij) is the number of blocks of relation Rij, and b is 
the time to read a single block from disk into memory. For our 
experiments, we have considered b = 1ms. 

7.2 Comparison of Algorithms 
We have compared the algorithms described above on their 
memory requirements, execution times, and quality of solution 
found. Two parameters affect their behavior: (a) the number of 
preferences K extracted from the profile and used by a CQP 
algorithm and (b) the upper bound cmax on the execution time.  We 
have experimented with values of K in [10, 40] and values of cmax 
from 10% to 100% of the execution time of the query that 
incorporates all K preferences into the original query (Supreme 
Cost), which is the most expensive query based on our cost 
assumptions. As defaults, we have used a constant cmax=400ms 
and K =20. Each result shown below represents the average of 200 
different experiment runs (20 profiles × 10 queries) with the same 
characteristics. 

7.2.1 Execution Times 
Figure 12(a) presents execution times of the CQP algorithms 
discussed earlier, as a function of K. Naturally, all algorithms 
have growing execution times with K, but they can be clearly 
partitioned into two classes. In the first class are D-MAXDOI and 
D-SINGLEMAXDOI, whose poor behavior is due to their use of doi-
based transitions: while Horizontal transitions move them towards 
states of greater interest and cost, Vertical transitions are “blind” 
with respect to execution cost, resulting in unevenly larger parts 
of the search space being explored as K increases. Although being 
cost-based, C-BOUNDARIES also exhibits poor performance for 
higher K primarily due to its producing a large superset of the 
Boundaries actually required to find the optimal solution. In the 
second class are C-MAXBOUNDS and D-HEURDOI. Both use 
heuristics to avoid the pitfalls of the others and explore a small 
part of the search space, showing excellent performance. 

In principle, in addition to the time required by the CQP 
algorithms to run, one should take into account the time taken by 
the ‘Preference Space’ module as well (Figure 2) to create all K 
preferences to be investigated. Figure 12(b) presents this for a 
range of values of K for two different algorithms: D_PrefSelTime 
producing preferences ordered only on doi (useful for doi-based 
CQP algorithms), and C_PrefSelTime, producing preferences 
ordered both on doi and cost (useful for cost-based CQP 
algorithms). Clearly, for all practical purposes and all cases, the 
time required by the ‘Preference Space’ module is negligible 
compared to that of the CQP algorithms and can be ignored. 

Figure 12(c) presents execution times of CQP algorithms for 
different values of cmax, while Figure 12(d) zooms in on the fastest 
algorithms to distinguish among them. For all algorithms, 
execution time grows up to about cmax=50% of the Supreme Cost 
and then shrinks as cmax moves to 100%. The reason is that, for 
low cmax, all algorithms stay primarily within groups of small size, 
where cost remains low. Thus, few Horizontal transitions are 
performed. As cmax increases, more Horizontal and Vertical 
transitions are performed and more groups and states within them 
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are explored. Maximum time is reached at about cmax=50% of 
Supreme Cost, beyond which the number of Vertical transitions 
taken decreases, as algorithms search within groups of large size 
only, bringing execution time down again. The only practical 
methods remain C-MAXBOUNDS and D-HEURDOI, with the latter 
being extremely efficient and almost unaffected by cmax. 
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Figure 12. Execution times of algorithms 

7.2.2 Memory Requirements 
We have measured the maximum memory used by a CQP 
algorithm during its execution. Figure 13(a) and (b) present these 
measurements for different values of K and cmax, respectively. The 

memory requirements of all algorithms are commensurate with 
their execution costs for the exactly same reasons. D-MAXDOI and 
D-SINGLEMAXDOI are memory-hungry, C-BOUNDARIES is better 
but deteriorates relatively quickly with K, while C-MAXBOUNDS 
and D-HEURDOI have very low memory consumption and remain 
essentially unaffected by K. With respect to cmax, the diagrams are 
very similar to those for memory requirements for the same 
reasons analyzed there. Overall, we observe that even the worst 
algorithms have rather small memory requirements, so this is not 
an issue of concern for CQP. 
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Figure 13. Memory requirements of the algorithms 

7.2.3 Quality of Solution 
Given that C-BOUNDARIES and D-MAXDOI are the only provably 
correct CQP algorithms, it is critical to experimentally evaluate 
the remaining, heuristic algorithms based on the doi of the 
solutions they find.  For this, we use the difference 

Quality = doioptimal - doifound 

where doioptimal is the degree of interest of the optimal solution 
(found by D-MAXDOI), and doifound is the degree of interest of the 
solution found by a heuristic CQP algorithm. Figure 14(a) and (b) 
compare CQP algorithms on Quality for different values of K and 
cmax, respectively. Based on both figures, we may conclude that all 
heuristic algorithms produce solutions of the highest quality, with 
miniscule differences from their deterministic counterparts. (Note 
that y-axes represent scalars multiplied by 107). Hence, in 
combination with their execution times, C-MAXBOUNDS and D-
MAXDOI appear as excellent choices for CQP problems. 

Note that, even for the lowest values of K or cmax, where there is 
some observable difference in quality among the algorithms, this 
is quite small. This is partly due to the model adopted for the doi 
of conjunctive preferences (Formula (10)), whose output value 
increases rapidly as more preferences are taken into account, 
which is the case when either K or cmax increases. Using a different 
model for conjunctive preferences would still exhibit the same 
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growing trends but might have resulted in larger differences 
among approaches.  
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Figure 14. Comparison of solutions of algorithms 

7.3 Personalized Query Cost Prediction 
As a last aspect of our experimental effort, it is interesting to 
validate the simplified query cost model that we have adopted 
(Sections 4 and 7). Figure 15 shows that the costs returned by our 
formulas are very close to the actual observed ones when queries 
were executed, thus strengthening the usability of our approach.  
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Figure 15. Cost Evaluation 

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we have generalized earlier concepts of query 
personalization and have introduced Constrained Query 
Personalization (CQP) as a family of related optimization 
problems with constraints. We have formulated CQP as a state-
space search problem and have devised state-space search 

algorithms that take advantage of particular characteristics of the 
CQP problems. Finally, we have demonstrated the effectiveness 
of our approach through experimental results that evaluate the 
algorithms proposed with respect to several important features. In 
ongoing work, we are concerned with policies mapping the search 
context onto the appropriate CQP problem. In that spirit, we are 
particularly interested in integrating CQP with location-based 
services so that richer forms of CQP may be devised.  Finally, we 
are interested in studying query personalization as a multi-
objective constrained optimization problem, where more than one 
query parameter may be optimized simultaneously. 
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