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ABSTRACT
Scheduling data processing workflows (dataflows) on the cloud is a
very complex and challenging task. It is essentially an optimization
problem, very similar to query optimization, that is characteristi-
cally different from traditional problems in two aspects: Its space
of alternative schedules is very rich, due to various optimization
opportunities that cloud computing offers; its optimization crite-
rion is at least two-dimensional, with monetary cost of using the
cloud being at least as important as query completion time. In this
paper, we study scheduling of dataflows that involve arbitrary data
processing operators in the context of three different problems: 1)
minimize completion time given a fixed budget, 2) minimize mon-
etary cost given a deadline, and 3) find trade-offs between com-
pletion time and monetary cost without any a-priori constraints.
We formulate these problems and present an approximate optimiza-
tion framework to address them that uses resource elasticity in the
cloud. To investigate the effectiveness of our approach, we incor-
porate the devised framework into a prototype system for dataflow
evaluation and instantiate it with several greedy, probabilistic, and
exhaustive search algorithms. Finally, through several experiments
that we have conducted with the prototype elastic optimizer on nu-
merous scientific and synthetic dataflows, we identify several inter-
esting general characteristics of the space of alternative schedules
as well as the advantages and disadvantages of the various search
algorithms. The overall results are quite promising and indicate the
effectiveness of our approach.
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1. INTRODUCTION
Complex on-demand data retrieval and processing is a character-

istic of several applications and combines the notions of querying
& search, information filtering & retrieval, data transformation &
analysis, and other data manipulations. Such rich tasks are typically
represented by data processing graphs, having arbitrary data oper-
ators as nodes and their producer-consumer interactions as edges.
Suppose a user wants to find the names and images of authors of
ACM publications. This could be expressed in SQL as follows:
SELECT UNIQUE auth.name, img.image
FROM AuthorDB auth, ImageBD img
WHERE auth.pub="ACM" AND auth.name=face(img.image)
Function face() detects the face of the person in a particular
image and returns her name. The SQL query is optimized [18]
and transformed into an execution plan, represented as a dataflow
graph. In a distributed environment, the optimizer must decide,
among others, where each node of the plan will be executed. This
level of optimization is called scheduling. Scheduling the process-
ing nodes of a dataflow graph onto a set of available machines is a
well-known NP-complete problem, even in its simplest form [13]
[25]. Traditionally, the only criterion to optimize is the completion
time or makespan of the dataflow and many heuristic scheduling
algorithms have been proposed for that problem [19].

Recently, cloud computing has attracted much attention from the
research community [1]. Thanks to virtualization, it has evolved
over the years from a paradigm of basic IT infrastructures used
for a specific purpose (Ad-Hoc Clusters), to Grid computing [10],
and finally to several paradigms of resource provisioning services:
depending on the particular needs, infrastructures (IaaS), platforms
(PaaS), and software (SaaS) can be provided as services [12].

One of the differences between Ad-Hoc Clusters and Clouds
under the Infrastructure as a Service (IaaS) paradigm, is the cost
model of resources. Ad-Hoc Clusters represent a fixed capital in-
vestment made up-front and relatively small operational cost paid
over time. On the other hand, Clouds are characterized by elasticity
and offer their users the ability to lease resources only for as long as
needed, based on a per quantum pricing scheme, e.g. one hour [2].
Together with the lack of any up-front cost, this represents a major
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benefit of Clouds over Ad-Hoc Clusters. The ability to use compu-
tational resources that are available on demand challenges the way
we implement algorithms and systems. Execution of dataflows can
now be elastic, providing several choices of price-to-performance
ratio and making the optimization problem of dataflow scheduling
at least two dimensional.

To illustrate the complexity of this task, we use the example of
dataflow graph in Fig. 1. Nodes represent data processing opera-

A

B

C

100...

Figure 1: A split (A), compute(B), and merge(C) dataflow.

tions (operators) and edges represent producer-consumer relation-
ships. Assume that the execution time of A and C is 1 hour and the
execution time of each B is 10 minutes. Also assume that a pric-
ing scheme of charging the use of a machine per hour is employed
by the Cloud. Consider two possible schedules for this dataflow:
Schedule 1: execute all operators in one virtual host.

First A is executed, then 100 Bs, and finally C. The time re-
quired for the dataflow to complete is the sum of the execution
times of all operators: 60 + 10 · 100 + 60 = 1120 minutes or
18.6 hours. Since there is only one host involved, the cost for this
schedule corresponds to 19 hours of use. Schedule 2: execute each
operator in a different virtual host. First, A is executed and the data
produced is transferred to the hosts that execute B. All Bs are ex-
ecuted in parallel and their data is transferred to one host, which
executes C. Assuming that the data transfer time is negligible, the
completion time is only 60+10+60 = 130 minutes or 2 hours and
10 minutes. However, the cost for this schedule is huge and corre-
sponds to 102 hours of resource usage. All hours will be charged
for all virtual hosts. Schedule 2 will run about 9 times faster than
Schedule 1 but will cost 5 times more.�

The number, nature, and temporal & monetary costs of available
schedules depend on many parameters, such as the dataflow char-
acteristics (execution time of operators, amount of data generated,
etc.), the cloud pricing scheme (quantum length and price), the net-
work bandwidth, and more. The choice of how much parallelism
to use or, equivalently, the optimal trade-off between completion
time and money spent, depends on the needs of the particular user
concerned. For example, a user may have budget constraints but be
relaxed about completion time; another user may have a strict dead-
line but no concern about money; finally, a third user may have no
a-priori constraints but wants to choose herself the best trade-off
after having been shown all choices.

In this work, we make the following contributions:

• We model the scheduling of dataflows on the cloud as a 2D
optimization problem between time and money, which is
mostly ignored until now.

• We study the space of alternative schedules that arise from
that model and investigate the time-money trade-off these
provide for different types of dataflows and cloud environ-
ments.

• We propose several greedy, probabilistic, and exhaustive op-
timization algorithms to explore the space of alternative sched-
ules.

• We present the results of several experiments and draw var-
ious interesting insights on the trade-offs available and the
effectiveness of all algorithms in exploring these trade-offs.

The remainder of the paper is organized as follows. In Section
2, 3, 4, and 5, we formulate the problem of dataflow scheduling in
the context of ADP [30], a prototype dataflow evaluation system,
which has served as our experimental testbed in this work. In Sec-
tion 6, we present our approach along with different optimization
algorithms that we use. In Section 7, we present the results of the
experimental evaluation. In Section 8, we present an overview of
the related work and finally, in Section 9, we conclude and present
some future directions.

2. PROBLEM FORMULATION
User requests take the form of queries in some high-level lan-

guage (e.g. SQL, Hive [28], etc.). In principle, optimization could
proceed in one giant step, examining all execution plans that could
answer the original query and choosing the one that is optimal and
satisfies the required constraints. Alternatively, given the size of the
alternatives space, optimization could proceed in multiple smaller
steps, each one operating at some level and making assumptions
about the levels below. This is in analogy to query optimization
and execution in traditional databases but with the following dif-
ferences: operators may represent arbitrary operations on data with
unknown semantics, algebraic properties, and performance charac-
teristics, and are not restricted to come from a well-known fixed
set of operators (e.g., those of relational algebra); optimality may
be subject to QoS or other constraints and may be based on multi-
ple diverse relevant criteria, e.g., monetary cost of resources, stale-
ness of data, etc., and not just solely on performance; the resources
available for the execution of a data processing graph are flexible
and reservable on demand and are not fixed a-priori. These dif-
ferences make dataflow optimization essentially a new challenging
problem; they also generate the need for run-time mechanisms that
are not usually available. Our optimization process introduced in
[30] has three different layers of abstractions described below.

Operator Graphs: Their nodes are data operators and their (di-
rected) edges are operator interactions in the form of producing
and consuming data. Operators encapsulate data processing algo-
rithms and may be custom-made by end users. At this abstraction
layer, of great importance are algebraic equivalences that operators
satisfy. These include typical algebraic transformations, e.g., as-
sociativity, commutativity, or distributivity, (de)compositions, i.e.,
operators being abstractions of whole operator graphs that involve
compositions, aggregations, and other interactions of more specific
operators, and partitions, i.e., operators being amenable to replica-
tion and parallel processing by each replica of part of the original
input, in conjunction with some pre- and post-processing operators.

Concrete Operator Graphs: These are similar to operator
graphs but their nodes are concrete operators, i.e., software com-
ponents that implement operators in a particular way and carry
all necessary details for their execution. At this layer, capturing
an operator’s available implementation(s) is the critical informa-
tion. In general, there may be multiple concrete operators imple-
menting an operator, e.g., a low-memory but expensive version
and a high-memory but fast one; a multi-threaded version and a
single-threaded one; or two totally different but logically equiv-
alent implementations of the same operator. An example from
databases is the join operator, which has multiple implementa-
tions: nested− loops join has low memory consumption but long
execution time; hash-join uses more memory but has short execu-
tion time.
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Execution Plans: These are similar to concrete operator graphs,
but their nodes are concrete operators that have been allocated re-
sources for execution and have all their parameters set. At this
layer, the assignment of concrete operators to containers is per-
formed. The crucial information here is the resources needed to
execute the operators, e.g., CPU and memory. This paper presents
the modeling and a methodology for this stage of optimization.
The statistics needed are assumed to be known, calculated either
by mathematical formulas or by historical data.

A dataflow is represented as a directed acyclic graph (DAG)
graph(ops, flows). Nodes (ops) correspond to arbitrary concrete
operators and edges (flows) correspond to data transferred be-
tween them. An operator in ops is modeled as
op(time, cpu,memory, behavior) where time is the execution
time of the operator & cpu is its average CPU utilization measured
as a percentage of the host CPU power when executed in isolation
(without the presence of other operators), memory is the maxi-
mum memory required for the effective execution of the operator,
and behavior is a flag that is equal to either pipeline (PL) or store-
and-forward (S&F). If behavior is equal to S&F, all inputs to the
operator must be available before execution; if it is equal to PL,
execution can start as soon as some input is available. Two typi-
cal examples from databases are sort and select operators: sort is
S&F and select is PL. We assume that each operator has a uniform
resource consumption during its execution (cpu, memory, and
behavior do not change). A flow between two operators, producer
and consumer, is modeled as flow(producer, consumer, data),
where data is the size of the data transferred.

The container is the abstraction of the host, virtual or physical,
encapsulating the resources provided by the underlying infrastruc-
ture. Containers are responsible for supervising operators and pro-
viding the necessary context for executing them. A container is
described by its CPU, its available memory, and its network band-
width: cont(cpu,memory, network).

A schedule SG of a dataflow graph G is an assignment of its
operators into containers schedule(assigns). An individual op-
erator assignment is modeled as: assign(op, cont, start, end)
where start and end are the start and end time of the operator
correspondingly, executed in the presence of other operators.

Time t(SG) and money m(SG) costs are the completion time
and the monetary cost of a schedule SG of a dataflow graph G.
The following two sections define the way we model and calculate
the time and money costs of a schedule.

The cloud is a provider of virtual hosts (containers). We model
only the compute service of the cloud and not the storage service.
Assuming that the storage service is not used as temporary space, a
particular dataflow G will read and write the same amount of data
for any schedule SG of operators into containers. So the cost of
reading the input and writing the output is the same.

In the rest of the paper, we use the “.” notation to denote a prop-
erty, e.g., the running time of an operator A is denoted as A.time.
Indifferent values are denoted by “−”, e.g., assign(op, cont,−,−).

3. TIME MODELING
To calculate the completion time of a schedule executed over

a set of containers, several aspects of operator execution must be
modeled. This is an issue for any distributed system and our par-
ticular approaches do not depend on having a Cloud underneath
or any other architecture. In this section we present the approach
adapted in our work, inspired by or taken from earlier works.

There are two types of temporal constraints, those implied by the
dataflow graph and those imposed by the execution environment.
The dataflow graph implies constraints based on the inter-operator

dependencies captured by its edges, but also by the nature of the
operators themselves. An S&F operator cannot be executed until
all its inputs are available, while a PL operator must wait for all
inputs produced by S&F operators. This raises an important issue
especially when the two operators are in different containers and
introduce network costs. We describe our approach to model the
various cases in Section 3.1.

The execution environment constraints are due to resource limi-
tations when multiple operators use them concurrently. In that re-
spect, we categorize container resources as time-shared and space-
shared [11]. Time-shared resources can be used by multiple oper-
ators concurrently at very low overhead. Concurrent use of space-
shared resources, however, implies high overheads beyond con-
tainer limits of resources. We consider memory as the only space-
shared resource, whereas CPU and network as time-shared
resources. Constraints are imposed only by space-shared resources:
in every container, at any given moment, memory must be sufficient
for the execution of the running operators. On the other hand, CPU
requires particular treatment. We describe our approach to model
CPU overloading in Section 3.2.

3.1 Network Cost
Two issues must be addressed regarding network cost: handling

of S&F and handling of PL operators. The network communication
is modeled with special operators that perform data transferring
(dt). These operators are injected between the operators of a flow
flow(producer, consumer, data), if producer and
consumer are assigned to different containers. Always two dt
operators are injected, one attached after the producer and one at-
tached before the consumer. If the operator is S&F (Fig. 2), the
dt operator creates a new node in the dataflow graph. On the other

TimeContainer X

A

Data
Transfer

Network

dt

CPU
100%

Figure 2: An S&F operator with a data transfer operator at-
tached.

hand, if the operator is PL (Fig. 3), the functionality of the dt opera-
tor is injected into the operator itself without changing the dataflow
graph. Fig. 3A illustrates the actual execution of the pipeline op-

Figure 3: PL operator A intermixed with data transfer opera-
tor dt (A) and the modeling of the operator (B)

erator A intermixed with the dt operator and Fig. 3B illustrates
the modeling of A. The execution time is increased and the CPU
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utilization is decreased. For simplicity, we assume that the initial
output delay is 0. In the transformed graph, all network commu-
nication is performed by PL operators, no matter what the initial
nodes were.

Store-and-Forward: Let A be an S&F operator that belongs to
dataflow G defined as A(−,−,−, S&F ) with assign(A,X,−,−).
For every operator B with flow(A,B,DA→B) and
assign(B,Y,−,−), if X �= Y insert in G a data transfer operator
node dt between A and B as follows: remove flow(A,B,DA→B),
insert flow(A, dt,DA→B), flow(dt,B,DA→B), and
assign(dt,X,−,−). The execution time of dt is as follows:

dt.time =
DA→B

min(X.network, Y.network)
(1)

dt(time,DTCPU , DTMEM , PL)

with DTCPU and DTMEM being fixed system-wide values for the
CPU utilization and memory requirements of data transfer opera-
tors. The same method is followed for all operators C
flow(C,A,DC→A), whose outputs are consumed by A.

Pipeline: Consider two connected PL operators A and B (Fig.
3). We assume that the execution time of both operators is fully
overlapped. Let A and B be two connected pipeline operators that
belong to dataflow graph G with flow(A,B,DA→B). Let the as-
signments of A and B be assign(A,X,−,−) and
assign(B,Y,−,−) correspondingly, with X �= Y . Using Eq.
1, the running time is:

T = max(A.time+ dt.time,B.time+ dt.time)

The new properties of operator A will be:

A(T,
A.time ∗ A.cpu+ dt.time ∗DTCPU

T
,−,−)

The memory and behavior of A will not change. The new prop-
erties of B are calculated in a similar way. The same technique is
applied on all connected PL operators.

3.2 Operator Overlap
Two or more operators assigned to the same container share con-

tainer resources. A particular problem arises with the CPU when
overlapping operators require at some point more than 100% uti-
lization together. For example consider Fig. 4 with the three over-
lapping operators A, B, and C. Given the assumption of uni-
form resource consumption by operators, the regions between those
thresholds have uniform CPU utilization. There is a problem in
region X, where the total CPU requirements are higher than the
container’s capacity. This is addressed by uniformly extending the

A

X

110%

Time

B

C
CPU

60%
80%

Figure 4: Operator A, B, and C executing in the same container.
At region X the overall CPU utilization exceeds 100% and as
a result the operators will get a fraction of the processor and
their duration will stretch by 10% during that region.

length of region X and, therefore, the overall execution time of all
operators by reducing their CPU utilization within X .

More specifically, let G be a dataflow graph and C a container.
Let OP = {opj} the set of operators assigned to C and R = {ri}
the set of time regions formed by the beginning and endings of
operators (in order of i). Let time(ri) and cpu(ri) be the duration
and CPU utilization of region ri. Based on the above, the following
holds:

cpu(ri) =

|OP |∑
j=1

(opj).cpu ∗ δ(opj , ri, C)

with

δ(opj , ri, C) =

{
1, if opj active in ri in C
0, otherwise

The duration of ri is calculated as follows:

time(ri) =

{
time(ti), if cpu(ti) ≤ 1
time(ti) ∗ cpu(ti), otherwise

The scaling of region ri affects the duration of all operators in
OP that are active in ri. The same technique used for CPU sharing
is applied for network sharing as well.

4. MONEY MODELING
Cloud providers lease computing resources that are typically

charged based on a per time quantum pricing scheme. This quan-
tum is typically one hour although recently other alternatives seem
to appear as well [2]. The minimum monetary cost m(SG)min

of executing a dataflow graph G in a cloud environment given a
schedule SG and the cloud pricing scheme (quantum time Qt and
cost Qm of leasing a container for Qt) is a challenging task. In this
work we employ an approximation. On each container, we slice
time into windows of length Qt starting from the first operator of
the schedule. The financial cost is then a simple count of the time-
windows that have at least one operator running, multiplied by Qm.

m(SG) = Qm ∗ (
|C|∑
i=1

|W |∑
j=1

ε(ci, wj))

with C = {ci} being the set of containers, W = {wj} being the
set of time-windows, and

ε(ci, wj) =

{
1, if at least one operator is active in wj in ci
0, otherwise

The fragmentation f(SG) of a schedule SG is the time during
which the resources are not being used but are charged for.

f(SG) = Qt ∗
|C|∑
i=1

|W |∑
j=1

(ε(ci, wj)− τ (ci, wj))

with τ (c, w) being the fraction of time that operators are active
in the container ci during time window wj . It is easily proved
that limQt→0 f(SG) = 0 for any given dataflow. That is that
if cloud resources are charged for exactly the time being used,
there is no fragmentation overhead. In Fig. 5 we show a plan
with four operators. The monetary cost is 5 ∗ Qm. There are
three quanta not fully used. The fragmentation of the schedule is
5 ∗Qt − (1 + 1

4
+ 1

4
+ 1 + 1

2
) ∗Qt = 2 ∗Qt. �

5. SCHEDULING PROBLEMS
As mentioned earlier, the space of solutions is two dimensional.

The solutions that belong to the skyline (Pareto curve) [24] rep-
resent trade-offs between time and money. We define two types
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Time

Container X

A

B
Time

Container Y

dt1

dt2

Cloud Time Quantums

2 12 Time

Figure 5: Financial cost of a scheduling plan. Operators A and
B are assigned to different containers. The time is sliced into 3
time-windows and 5 quanta are leased during the execution.

of optimization problems: constrained and skyline. All problems
are illustrated in Fig. 6. The constrained problems are (C1) find
the fastest plan within a pre-specified financial budget (Fig. 6A)
and (C2) find the cheapest plan within a pre-specified deadline(Fig.
6B). Those problems are symmetric and are essentially

Figure 6: The three optimization problems: constraints (A and
B) and skyline (C). The chosen plans are shown with an arrow.

one-dimensional optimization problems, only under constraints on
the other dimension. In the skyline problem (SK), no constraints
are specified a-priori. Several solutions are proposed that are on the
skyline of the time/money space and the one with the best trade-off
between time and money is chosen after optimization. In Fig. 6C,
skyline optimization will return all the Pareto optimal solutions,
and the relevant user will choose the one the user thinks best.

The above skyline shape can be captured by a metric called
Dataflow Elasticity as follows:

E =
(Tmax − Tmin)/Tmax

(Mmax −Mmin)/Mmax

with Tmin and Tmax being the min and max values in the time di-
mension of the skyline of schedules. Likewise, Mmin and Mmax

are the min and max values in the money dimension. This met-
ric expresses the acceleration of the completion time when pay-
ing more money [31]. For dataflows with high elasticity, a small
amount of money makes a great difference in time (i.e. is worth
paying for completion time). On the other hand, paying more does
not have a significant impact on completion time for low elasticity
dataflows. For them, it is worth paying, say, 50% less to lose only
10% in completion time!

6. SCHEDULING ALGORITHMS
Independent of the particular type of optimization problem solved,

essentially the same algorithms can be used to search the space of

alternatives and find the optimal one(s). We propose a family of
algorithms that follow a nested loop approach. The outer loop calls
the inner optimizer several times, with different upper bounds on
the number of parallel containers to be used in the schedule and
stops when the optimality criterion doesn’t improve much after a
particular number of consecutive iterations.

The degree of parallelism PG of a dataflow G is an important
predictor of performance. It captures the maximum number of
concurrent running operators, when the computation has infinite
resources. Assume the number of containers and the network band-
width to be infinite. Satisfying only the constraints implied by the
dataflow, an approximation of PG is the maximum number of op-
erators whose execution overlap.

The inner loop, optimizes on either time or money under a con-
straint on the other. We use a suite of greedy and probabilistic local
search algorithms for the inner loop that are presented in the fol-
lowing subsections.

6.1 Outer Loop Algorithm
We have implemented one generic nested loop optimizer (Alg.

1) that solves any of the constrained or skyline problems, depend-
ing on the values of its parameters. The parameters of Alg. 1 are:

Algorithm 1 Nested Loop Optimizer

Input:
G: The dataflow graph
CONST: Solution constraints
FILTER: Solution space filter
LIMIT: Container limit sequence generator
STOP: Stopping condition
OPT: Lower level optimizer

Output:
space: The space of solutions

1: space← �
2: while LIMIT.hasNext() and STOP.continue() do
3: limit← LIMIT.getNext()
4: next← OPT(G, limit, CONST)
5: space← FILTER(space ∪ {next})
6: STOP.addFeedback(next)
7: LIMIT.addFeedback(next)
8: end while
9: return space

1) The dataflow graph G as defined in Section 2. 2) CONST is
a boolean routine returning whether or not a schedule is satisfying
the constraints. If CONST returns always true (time < ∞ &
money < ∞) is enough to express the lack of constraints used in
the skyline problem. 3) FILTER is a routine that is applied on
a set of schedules and returns a reduced set, removing the sched-
ules that are dominated by others, according to time, money, or
both (skyline). 4) LIMIT is a generator of container limits. In
its simplest form, it just has to generate limits up to the total num-
ber of operators in the dataflow. However, in most cases, this is a
very loose upper bound. 5) STOP is a boolean routine determin-
ing whether or not to stop the exploration based on some of many
possible criteria. The simplest way is to call the lower level sequen-
tially for all limits generated by LIMIT . Another possibility is to
end the exploration when the difference between the values of the
OPT parameter for a specified number of consecutive schedules
is below a particular threshold. Finally, OPT is a single-objective
optimizer that tries to optimally assign the operators to containers,
minimizing either the time or the money related to the schedule.
Below we outline how some of the parameters of Alg. 1 are instan-
tiated for each of the three optimization problems defined above.
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Problem C1: CONST checks whether or not a schedule is cov-
ered by the given financial budget. FILTER returns only the
fastest schedule. LIMIT generates at most 20 container limits
splitting equally the [1, PG] range. Condition STOP is the last
five schedules to not differ significantly with respect to completion
time. Using linear regression, we compute the line in the time/it-
eration space using the five last iterations. If the slope of that line
is less than 0.1 the exploration stops. OPT minimizes completion
time having a budget limitation as constraint.

Problem C2: CONST checks whether or not a schedule is
within the given time limit. FILTER return only the cheapest
schedule. LIMIT is the same as in Problem C1. STOP is cal-
culated in the same way as in C1 but the line is computed on the
money/iteration space. OPT minimizes money having the time
limitation as constraint.

Problem SK: CONST accepts any schedule. FILTER re-
turns the skyline of solutions. LIMIT is the same as C1 and the
STOP condition is always false. OPT can be any algorithm de-
scribed in the following subsections. The size of the skyline is at
most the number of container limits produced by LIMIT .

In the following subsections we define the various algorithms we
have explored with respect to OPT .

6.2 Greedy Scheduling Algorithms
We have implemented several greedy scheduling algorithms [17]

using different heuristics. In Alg. 2, we present the generic greedy
algorithm. Only two routines have to be defined: NEXT returns

Algorithm 2 Generic Greedy (GG)

Input:
G: The dataflow graph
C: The maximum number of parallel containers to use
CONST: Solution constraints
NEXT: Next operator to assign
ASSIGN: Container the next operator is assigned to

Output:
SG: The schedule of G with at most C containers

1: SG.assigns← �
2: ready ←{operators in G that has no dependencies}
3: while ready �= � do
4: n← NEXT(ready)
5: candidates← {containers that assignment of n satisfy CONST}
6: if candidates = � then
7: return ERROR
8: end if
9: c← ASSIGN(n, candidates)

10: ready ← ready − {n}
11: ready ← ready+{operators in G that constraints no longer exist}
12: SG.assigns← SG.assigns+ {assign(n, c,−,−)}
13: end while
14: return SG

the next operator to be assigned choosing from a set of operators
ready for that and ASSIGN returns the container where the next
operator will be assigned to. An operator is a candidate for as-
signment as soon as it has no dependencies to other operators as
follows: By default, operators that have no inputs, have no depen-
dencies. An S&F operator is a candidate as soon as all of its inputs
are available. A PL operator is a candidate as soon as all of its
inputs come from PL or from terminated S&F operators.

We define four greedy algorithms: G-BRT balances container
utilization, G-MNT minimizes network traffic, G-MPT minimizes
completion time, and G-MPM minimizes monetary cost. In par-
ticular, at every step, G-BRT assigns the operator with maximum
running time to the container that will minimize the standard devi-

ation of the utilization of the containers in the schedule. The latter
is the summation of the execution time of the operators assigned to
the container. G-MNT assigns the operator with the maximum out-
put size to the container that minimizes the data transferred through
the network. G-MPT assigns the operator with the maximum ex-
ecution time to the container that minimizes completion time. Fi-
nally, G-MPM assigns the operator with the maximum output size
to the container that minimizes monetary cost.

6.3 Local Search Scheduling Algorithms
The local search method we use is simulated annealing [14]. We

implemented a generic simulated annealing that requires the defi-
nition of only three routines: INIT specifies the initial schedule
from which the search begin, COST returns the value of the opti-
mization parameter for a particular schedule, and NEIGHBOR
returns a neighbor of a particular schedule. We do not accept neigh-
bors that do not satisfy the constraints.

We define the following algorithms: SA-MPT begins with a ran-
dom assignment and the COST routine returns the completion
time of a particular schedule, SA-MPT2 begins with the output of
G-MPT as its initial state and has the same COST routine as SA-
MPT, SA-MPM begins with a random assignment and the COST
routine returns the money of a particular schedule, and SA-MPM2
begins with the output of G-MPM as its initial state and has the
same COST routine as SA-MPM. All algorithms produce a ran-
dom neighbor by assigning a random operator to another container
also chosen randomly. More sophisticated methods of choosing
neighbors are left for future work.

6.4 Schedule Duration Estimation
Alg. 3 is in the heart of all algorithms described. Given any

(partial) schedule of operators, this algorithm estimates when and
for how long every operator will run. Thus, the completion time
and monetary cost is estimated for the whole schedule.

Algorithm 3 Schedule Duration Estimation (SDE)
Input:

G: The dataflow graph
SG: A (partial) schedule(assigns)

Output:
SG: The schedule with calculated start and end for all ops in SG

1: ready←�
2: time← 0
3: G←G + {data transfer ops before & after S&F operators if needed}
4: queued← {ops in G that have no dependencies}
5: for all operators A in queued that satisfy memory constraints do
6: ready ← ready + {assign(A,−, time,−)}
7: end for
8: while ready �=� do
9: next_event← find_next_event(ready)

10: terminated← forward_in_time(next_event, ready)
11: time ← next_event
12: for all operators A in terminated do
13: SG ← SG + {assign(A,−,−, time)}
14: end for
15: ready ← ready − terminated
16: queued← queued + {ops in G that constraints no longer exist}
17: for all ops A in queued that satisfy memory constraints do
18: ready ← ready + {assign(A,−, time,−)}
19: end for
20: end while
21: return SG

Routine find_next_event returns the time-stamp when first
termination of operator occurs assuming uniform behavior. The
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Table 1: Lattice Dataflows
H-B: 500-1 11-3 9-4 7-7 5-21 3-498
Size: 500 485 426 457 485 500

forward_in_time routine simulates the execution of all opera-
tors in ready until the time-stamp computed by
find_next_event, and returns the ones that have terminated.

7. EXPERIMENTAL EVALUATION
In this section, we describe the overall setup of our experimen-

tation effort and the results we have obtained from it. Although we
have experimented with all three optimization problems, we only
present the results of the one on skyline optimization, i.e., with no
budget or deadline constraints, as it is the most challenging. Similar
things hold for all parameters influencing our experiments, where
only the most interesting or characteristic results are discussed, the
rest offering not much additional insight.

7.1 Experimental Setup
The experiments conducted are characterized by four elements:
Execution Environment: In our experiments, we have realisti-

cally assumed that all containers are identical, i.e., they have the
same resources (cpu, memory, and network). In particular, we have
assumed containers with one CPU and total memory and maximum
network bandwidth equal to 1.0.

Dataflow Graph Structure: We examine four families of
dataflows: Montage [16] (Fig. 7A), Ligo [8] (Fig. 7B), Cybershake
[7] (Fig. 7C), and Lattice (Fig. 8A). The first three are abstractions
of actual dataflows that are used in real applications: Montage is
used by NASA to generate custom mosaics of the sky, Ligo is used
by the Laser Interferometer Gravitational-wave Observatory to ana-
lyze galactic binary systems, and Cybershake is used by the South-
ern California Earthquake Center to characterize earthquakes.

If we observe the time behavior of the workloads, we can iden-
tify phases of high and low parallelism. Parallelism is reduced
when operators collect or distribute data from a lot of other op-
erators (bottlenecks) or when an increased amount of data is to be
transferred. Montage experiences a phase with the highest amount
of parallelism, while it has several bottleneck operators. Ligo has
more evenly distributed phases of parallelism and moderate num-
ber of bottleneck operators. Cybershake has two high parallelism
phases and just four bottleneck operators, while it transfers large
data volumes. Lattice, by design, provides us with a choice of
parallelism and bottlenecks. Lattice is a purely synthetic dataflow
family that we have designed generalizing the typical Map-Reduce
dataflow (such as that of Fig. 1). Specific Lattice dataflows have a
certain height (H) and branching factor (B) and are denoted as H-B
Lattice. For example, Fig. 8B shows the 5-2 Lattice.

We have experimented with several sizes of dataflow graphs,
from 5 to approximately 500 operators. Here we present the results
of the largest graphs (500 operators) as they are the most challeng-
ing. The nature of the results for smaller graphs has been similar.
Montage, Ligo, and Cybershake dataflows have been produced by
the Pegasus dataflow generator [4]. Lattice dataflows have been
handcrafted in several forms according to the H-B parameters and
are shown in Table 1.

Operator Types: In our experiments, we have indicated the val-
ues of operator properties as percentages of the corresponding pa-
rameters of container resources. For example, an operator having
memory needs equal to 0.4 uses 40% of a container’s memory. Fur-
thermore, execution times are given as percentages of the cloud’s
time quantum and so are data sizes (inputs/outputs of operators),

Figure 7: Montage(A), Ligo(B), and Cybershake(C) dataflows.

Figure 8: Lattice - general dataflow graph (A) and an example
with H = 5 and B = 2 (B).

Table 2: Lattice Operator Properties
Property Values
time 0.2, 0.4, 0.6, 0.8, 1.0
cpu 0.4, 0.45, 0.5, 0.55, 0.6
memory 0.05, 0.1, 0.15, 0.2, 0.25
data 0.2, 0.4, 0.6, 0.8, 1.0

taking into account the network speed. For example, an execution
time of 0.5 indicates that the operator requires half of a time quan-
tum to complete its execution (say, 30 minutes according to the
predominant Amazon cost model). Likewise, an output of size 0.2
requires one fifth of a time quantum to be transferred through the
network if needed. This way, the output data size is in inverse cor-
relation with network speed. Money is measured as described in
Section 4.

We have used synthetic workloads based on Montage, Ligo, and
Cybershake dataflows as defined in [4]. Since our intention was
to study data intensive workloads, we scaled up the specified run
times and operator output sizes by a factor of 50 and 1000 respec-
tively; run time to output size ratio was increased by 20. We also
set operator memory to 10% of the container capacity, since they
were not specified by the original benchmarks. The properties of
operators in Lattice are chosen with uniform probability from the
corresponding sets of values shown in Table 2.

Data transfer CPU utilization is DTCPU = 0.05 and mem-
ory needs DTMEM = 0.001 (defined in Section 2). We experi-
mented with changing the output by a factor of 1

0.64
, 1

2.56
, 1

40.96
,

and 1
10485.76

. We have used dataflows with all operators being S&F
and all being PL.
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Figure 10: Time/Money skylines of S&F 500-1 Lattice with dif-
ferent output sizes (log-log scale).

Schedule Optimization Algorithms: For the outer loop of our
Nested Loops Optimizer (Alg. 1), the numbers of available con-
tainers examined have been 10, 30, 50, 70, 90, 110, 130, and 150.

For the inner loop, we have experimented with all algorithms de-
scribed in Section 6: greedy (G-BRT, G-MNT, G-MPT, G-MPM)
and simulated annealing (SA-MPT, SA-MPT2, SA-MPM,
SA-MPM2). In addition, we have also run experiments with a ran-
dom schedule generator to explore the time/money space of solu-
tions and gain insights into the nature of the optimization problem
at hand. The next subsection presents the findings of exactly that
experiment, whereas the following one those with the actual opti-
mization algorithms.

7.2 Time/Money Space Exploration
The random schedule generator used for this experiment pro-

duces 10,000 (almost) random schedules for each dataflow studied.
The details of the algorithm are omitted due to lack of space. Be-
low we analyze how the time/money space is affected by various
characteristics of the dataflow optimized or the execution environ-
ment.

Output Data Size: In Fig. 9, we show the skylines for various
output data sizes of two Lattice dataflows (3-498 and 7-7) and in
Fig. 12 we show the skylines of Ligo, Montage, and Cybershake.
The key observation is that, for a particular dataflow graph G, in
general, the elasticity metric EG increases as the output size de-
creases. Also, for small output, elasticity is greater for high degree
of parallelism (E3−498

small > E7−7
small). In some cases the output size

does not affect the elasticity too much (Lattice 7-7 in Fig. 9 and
Ligo in Fig. 12).

The elasticity metric is almost undefined (E3−498
small ≈ 0

0
) for 3-

498 Lattice dataflow with large output. This is also the case for all
outputs in 500-1 Lattice dataflow shown in Fig. 10. This means that
there is no time/money trade-off, consequently, the fastest schedule
is also the cheapest one.

In Fig. 11, we plot entire solution spaces (not just the skylines),
for the same dataflow graphs but only for the smallest ( 1

10485.76
)

and largest ( 1
0.64

) outputs. For small outputs, the more containers
we use, the faster the schedules run in general, i.e., time and money
are anti-correlated and true elasticity is present. For large outputs,
in the extreme case, they are correlated and the fastest schedule is
also the cheapest. We also observe that, for large outputs, some-
times the solution space is not continuous. This happens because
when the memory is not sufficient, the operator execution is de-

layed. For large outputs, the data transfer operators are long run-
ning, so their delay adds significant delay in the whole dataflow.

In Fig. 12, we show the skylines of Ligo, Montage, and Cyber-
shake. We observe that ELigo

small > EMontage
small > ECybershake

small , i.e.,
elasticity is analogous to the amount of parallelism exhibited by the
dataflow structure, where Ligo has more parallelism than Montage,
which has more than Cybershake.

Multi-processing vs. Uni-processing: Our model allows mul-
tiple operators to run concurrently in the same container. The sky-
lines of Lattice dataflows produced with multi- and uni-processing
are shown in Fig. 13. Schedules produced under uni-processing
are slower and more expensive than those produced under multi-
processing for small output sizes while not differing much for large
output sizes. The main reason for this is under-utilization of the
container when running one operator at a time. Domination of the
network usage time over the processing time for large outputs ex-
plains the fact that the skylines do not differ much.

Cloud Time Quantum: We have also experimented with the
cloud time quantum size. In Fig. 14, we show the skyline of Lattice
dataflows for quantum size 0 and 1 using multi- and uni-processing.
We observe that the cloud quantum time affects the fastest sched-
ules (many containers) more than the slowest (few containers). This
was expected since, in general, the more containers we use, the
higher fragmentation we have. In Fig. 14, we also observe that, un-
der uni-processing, elasticity is very high (E7−7

small ≈ Tmax−Tmin
0

)
so, the fastest and slowest schedule cost the same. Hence, for these
specific cases, the optimization problem becomes one dimensional.

Pipeline vs. Store-&-Forward: In Fig. 15, we observe that the
500-1 Lattice dataflow with PL operators has some elasticity, while
that with S&F operators does not. Furthermore, the schedules of
the former are faster and some of them cheaper. On the other hand,
the schedules for the 7-7 Lattice dataflow with PL operators are in
general slower and more expensive than for that with S&F opera-
tors. This has two explanations: 1) due to PL operator execution
overlapping, all are stretched in time to reach the one with the max-
imum execution time and 2) due to data transfer overlapping with
processing, the space-shared resources (memory) consumed by PL
operators are occupied for a longer period of time. This also ex-
plains the fact that for large number of containers, the 7-7 Lattice
dataflows schedules are faster than S&F because more memory is
available. Two connected PL operators assigned to the same con-
tainer will be executed faster than two S&F with the same function-
ality, but when are assigned to different containers, this may not be
the case.

General conclusions: Based on the above discussion, one can
draw the following interesting conclusions regarding the time/money
space of alternative schedules:

1. There is correlation between an operator’s completion time
and the time spent on data transfer. For large values of time

data
completion time is anti-correlated with monetary cost and the
level of elasticity is high. On the other hand, for small values,
time is correlated to money and there is limited elasticity, so
solving a one-dimensional optimization problem is enough.
For example, linear dataflows with S&F operators are not
elastic while those with PL are.

2. Multi-processing, in general, produces faster and cheaper
plans than uni-processing.

3. Pipelining should be used with caution, since it can add a
significant overhead in both completion time and money.

4. Fragmentation of resources causes significant increases in
monetary costs, especially when using many containers.
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Figure 9: Time/Money skylines of S&F Lattice dataflows with different output sizes (log-log scale).
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Figure 11: Time/Money of S&F Lattice dataflows with small ( 1
10485.76

) and large ( 1
0.64

) output size using different numbers of
available containers.

5. Different types of elasticity exist for different types of
dataflows. Some dataflows are more elastic than others, and
some are not elastic at all.

7.3 Schedule Optimization
In Fig. 16, we present the schedules produced by the subsequent

invocations of the algorithms against Montage with S&F opera-
tors and small output. We see that there is elasticity between time
and money. It is clear that the time decreases when the number
of parallel containers increases. Money tends to increase with the
number of containers but not strictly. There are two different rea-
sons for this: First, availability of a number of containers does not
imply use of all of them in the schedule obtained; the schedule’s
actual maximum parallelism may be less than the number of avail-
able containers or the schedule identified by the optimization algo-
rithms as optimal may have not used all the available parallelism.
The number of available containers is just an upper limit. Second,
due to the quantized pricing policy, the average usage of quanta is
better and the produced schedule more compact.

In Fig. 17, we show the time/money space of Montage and the
skylines produced by various algorithms. Interestingly, when these
skylines are merged together, the overall skyline has schedules from
different algorithms. Schedules given by SA-MPM give cheap
schedules, SA-MPT give solutions faster than SA-MPM but more
expensive, and G-BRT give the fastest and most expensive solu-
tions. It appears that one size does not fit all. We also observe
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Figure 17: Time/Money by different algorithms for Montage
dataflow with small output (log-log scale).

that G-MNT (minimize network traffic) gives solutions similar to
G-MPM using only a small number of containers. Algorithm SA-
MPT starts with a random assignment and the solution it finds is
very close to the one produced by the greedy G-MPT. Algorithms
G-MPM and SA-MPM2 do not provide trade-offs. This happens
because all operators are S&F and thus, the cheapest schedule is
always the one using a single container. On the other hand, SA-
MPM, starting with a random schedule, give elasticity.
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Figure 12: Time/Money skylines of Ligo, Montage, and Cybershake dataflows using different output sizes (log-log scale).
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Figure 13: Uni-processing vs. multi-processing skylines of S&F Lattice dataflows (log-log scale).
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tice dataflows.

In Fig. 18, we show the running time of the different algorithms
for several types of S&F Lattice dataflows with small output.
Clearly, the level of parallelism afforded by the dataflow graph af-
fects the running time of the algorithms, some more (e.g., G-MPT,
SA-MPT2) than others (e.g., G-BRT, SA-MPT). Since, G-BRT uni-
formly distributes the operators into containers, the expected num-
ber of containers used is near to those available. Naturally, this
algorithm is near the worst case among all greedy algorithms.

General conclusions: In summary, the following are the key ob-
servations on the behavior of the various optimization algorithms:

1. Different optimization algorithms tend to explore different
areas of the time/money space, some of them generating sky-
line schedules that exhibit interesting trade-offs that no other

algorithm does. This raises a meta question of choosing the
optimal optimization algorithm depending on the user needs,
which is left for future work.

2. Sophisticated search methods, such as simulated annealing,
do not seem to improve significantly the schedules produced
by greedy algorithms, while they require much more time to
execute. The space of alternatives is huge and more study
need to be done in finding ways of exploring the solution
space efficiently. For large dataflows, greedy algorithms ap-
pear to be the right choice.

8. RELATED WORK
Typically, some middleware is used to execute user-defined code

in distributed environments. The Condor/DAGMan/Stork [20] set
is the state-of-the-art technology of High Performance Computing.
Nevertheless, Condor was designed to harvest CPU cycles on idle
machines; running data intensive workflows with DAGMan is very
inefficient [26]. Many systems use DAGMan as middleware, like
Pegasus [6] and GridDB [21]. Proposals for extensions of Condor
to deal with data intensive scientific workflows do exist [26], but to
the best of our knowledge, they have not been materialized yet. In
[9] is presented a case study of executing the Montage dataflow on
the cloud examining the trade-offs of different dataflow execution
modes and provisioning plans for cloud resources.

Hadoop is a platform that follows the Map-Reduce [5] paradigm
to achieve fault tolerance and massive parallelism. Several high-
lever query languages have been developed on top of Hadoop, e.g.,
PigLatin [22] and Hive [28] (used by Facebook), and the same
holds for several applications, e.g., Mahout [3], a platform for large-
scale machine learning. The dataflow graphs used in Map-Reduce
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Figure 15: Time/Money store and forward vs. pipeline for different dataflows and outputs (log-log scale).

are relatively restricted, as they are mostly Lattice 3-N dataflows,
for some N, and this reduces opportunities for optimization.

Dryad [15] is a commercial middleware by Microsoft that has a
more general architecture than Map-Reduce since it can parallelize
any dataflow. Its schedule optimization, however, relies heavily on
hints requiring knowledge of node proximity, which are generally
not available in a cloud environment. It also deals with job migra-
tion by instantiating another copy of a job and not by moving the
job to another machine. This might be acceptable when optimizing
solely time but not when the financial cost of allocating additional
containers matters.

Nefeli [29] is a cloud gateway that uses hints for efficient execu-
tion of workloads. It uses the cloud at a lower level than our work,
being aware of the physical resources and the actual locations of the
virtual machines. This information may not be generally available,
however, especially in commercial clouds.

There are also several efforts that move in the same direction
as our work but try to solve simpler versions of the problem. Ex-
amples include a particle swarm optimization of general dataflows
having a single-dimensional weighted average parameter of several
metrics as the optimization criterion [23] and a heuristic optimiza-
tion of independent tasks (no dependencies) having the number of
machines that should be allocated to maximize speedup as the op-
timization crieterion given a predefined budget[27].

Finally, at the foundational level, we have followed a parallelism
and resource-sharing model for optimal scheduling of relational
operators of query execution plans with time and space-shared re-
sources [11] and have generalized it to arbitrary operators.

In summary, we capitalize on the elasticity of clouds and produce

multiple schedules, enabling the user to select the desired trade-
off. To the best of our knowledge, no dataflow processing system
deals with the concept of elasticity or two-dimensional time/space
optimization, which constitute our key novelties.

9. CONCLUSIONS & FUTURE WORK
We have presented a framework for three different problems of

dataflow schedule optimization on the Cloud, for a two-dimensional
optimality criterion of time and money, and a methodology to solve
these problems. Experimental results have revealed interesting in-
sights on the space of alternatives that needs to be explored, on the
different levels of elasticity offered by different cases of dataflow
structures, operator characteristics, and other parameters, and on
the effectiveness and efficiency of several optimization algorithms.

The methodology proposed is used in the final step of the opti-
mization of the ADP system and all the parameters are instantiated
automatically using functions or statistics collected during previous
executions. It can also be used separately, however, helping cloud
service providers in advising consumers on choosing the appropri-
ate time/money trade-offs.

Our plans for future work move in several directions. We intend
to study the concept of elasticity further and identify its sensitivity
to different workloads and environment characteristics, as well as
the ability of optimization algorithms to exploit it. We also plan to
evaluate the model itself on how good is in predicting the real work-
load. Furthermore, we plan to investigate the problem of scalabil-
ity using adaptive and incremental schedule generation techniques.
Finally, we intend to compare our approach with the optimization
methods of other distributed computing systems such as Hadoop.
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Figure 16: Time & Money as a function of the number of containers for different algorithms on the Montage dataflow for small
output.
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