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AbStllUtt 

Quay optimlzas of future da&base manage!ment sys- 
temsarelikelytofkelargeaccessplanspac4Xmthelf 
task.Exhaustivelysearchmgsuchaccessplanspaces~s 
u118cotp8Mt Wvw=aqucryopturuzationW 
nthm based on shulured annedmg, which is a proba- 
b&s& brJJ climbmg algcr&n. We show the speuk 
formulation of the algorithm for the case of optunlxmg 
complex non-lecufslve quCaiei3 that arlse 111 the study of 
hear recursion. ‘Ihe query answer IS expllcltly 
repnsented and mampulated w&m the closed semmng 
of lmear relational operators. The optunlzation alg* 
nthm~sapphedtoastatespacethatIsconstructedkom 
the eqmvalent algebraz forms of the query answm. A 
pmotype of the sum&ted anneahng algorithm has been 
bmlt and few experunents have been performed for a 
llmlted class of lelahonal m. Our in&al experl- 
alccisthat,mgalclal*thealgorithmconvagestopo- 
cessings&ategiesthatareveryclcsetotheoptimal. 
Maeova, the mdltlonal m==q st=wt= (e.g.. hf2 
semwudve evahutton) have been found to be, m gen- 
eral, subopcunal. 

1. INTRODUCTION 
ThekeytothesuccessofaIMabaseManage- 

mm System (DBMS), especmUy of one based on the 
rclahmal model [Codd70], is the effmveness of the 

ophnlmbmoduleofthesystem. Thelnputto 
EiLd* is some mtanal reprwentahon of an ad-hoc 
query. Its purpose is to seAa3 tbc most e&lent algo- 
nthm(accessplan)in&torrccesstherelevantdata 
andanswerthequeay. 

QuayoptM&lmhasbeenanactlveareaof 
fesarch evcz smce the bcgimmg of the development of 
r&tonal DBMSs. Various query optunticn algo- 
nthmshavebeendevelopedaspartoftheresearchpro- 
jxts of lNGRBS [Ston76,Wong76,Kooll)o] and Sys- 
tem R [Ash76, Blas76, Selr79, Mack&Sb]. Theorehcal 
appmads to quay ogormzatiar have also been 
employed, attempting to apply general theorems to help 
the query opthhcr in its task [Aho79,Ro&30]. Query 
ophmuatim algdhms in a distnbuted DBMS enwon- 
meat have received considerable attention as well 
[Epst78,Bern81,~1. A good sun’ey on quay 
optunizaharandotherrelatedlssuescanbefoundmthe 
sumey title by Jake and Koch [JarkMl and the book 
by Km, Remer, and Batoty CKim861. 

Most of the existmg work on query opmmzahon 
has focused on optimizing conjunctive quenes The 
demand for such quaies m cunent database apphca- 
hens is h@er than for Quarts that also Uh’Oh’e dBJUnC- 

hOnS.~tamsOfx&hOIAdalgcbra[Codd701,thethr~ 
dational opcmors that have recened almost the 
exclusive attentmn of researchas are proJectton, selec- 
hon. and Jam. To thei best of our lolowledge, the prob- 
lem of ophmuung umon, a m rekihordoperator 
for LsJunctrve queries, has not been addnzssed by any 
prenous study. 

The unit of optimoo m most of the exaung 
DBMSs IS a smgle query. Each quay mvolves a small 
number of relahons (e.g., less than 10). Hence, even 
though the number of altematwe access plans to answer 
a query grows exponentrally with the number of the 
felauons m the quay, dus number 1s relattvely small 
So, most of the exShng query opvntzets perform an 
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exhaushve search over the space of alternanve access 
plans, and whenever posstble, use heurtshcs to reduce 
theslxeofthatspace. 

Several aspects of the prctum presented above 
change when one studies query opumtxatton in systems 
that are geartd towards some of the newest database 
apphcatton domams, such as arhficral mtelhgence (e.g., 
txptrt database systems fKer&a, Kers86bl and deduc- 
we databast systems [GalI78,Gall84]) The most 
important of these changes are rdentrfied below. 
l The number of relahons expected to parnctpate tn 

aquery mcmases slgntticantly [Kns86l. 
0 The at of opunuxahon changes f&an a smgle 

query to a set of quertes In other words, the 
ophmtxer tries to optimii the executron of 
stveral quem together, possrbly takmg advan- 
tageofcommontasksthathavetobeperfWned 
bymorethanonequery. Thrstypeofopttmrxa- 
hon ls referred to as global opluwat~on 
[Gran81,SelI86]. 

l Quenes may become recurswe. Recurswe 

querres are, in general, equrvalent to the unton of 
an arbmary number of nonmcursrve queries. In 
general, the number of nonrecursrve quertes to 
whtch a recurstve one 1s equtvalent depends on 
thecontentsofthedambase,anditcanbearb~- 
tranly large, mdependent of the sunphcity of the 
recursive query. 
Eachoftbeabovetbreepomtsleadstothesame 

conclusion. the space of access plans that the query 
opumtxer has to face in future DBMSs rs larger by 
several orders of magnitude than the one currently faced 
in convenhonal systems. The valnhty of thts observa- 
hon 1s obvious. We have already menhoned that the 
number of alternatrve access plans for a query 1s an 
exponenaal functton of the number of relahons m the 
query. Hence, small mcmases m the number of rela- 
uons m a query, e g.. by one order of magmtude, result 
m Iarge mcreases mthesKeoftheaccessplanspace. 
When perfonnmg global optunixatron, the state space 
mcreases at a rate higher than lmear m the number of 
quenes. Thts 1s because the opumixer does both mter- 
query and mtraquery optumxatron, hying to idenhfy 
common subexpresstons or other common characterrs- 
ucs in the parucipatmg quertes that can speed up execu- 
uon tf they are taken mto account. Finally, the number 
of nonrecursive queues that are eqtuvalent to a recur- 
slve one 1s arbitranly large. Iltese nonrecursive quertes 
share several common subexlnesstons, smce each 1s 
equivalent to repeatedly applymg the same query 
several hmes. Hence, the stze of the E!Nlhng access 
plan space can be arbitranly large as well. 

Tbe above discussion leads to the conclusion that 
exhausave search of the access plan space 1s no longer 
plausible for query optmuxahon In the past, a lumted 

number of approaches have been employed to deal with 
largeaCcesSplanspacea Forqueneswnhalarge 
number of n9attons, Knshnamurthy, Boral, and ZIIUO~O 
have devised an optumxatton algorithm that rs quadmnc 
m the number of pamcipatmg r&IhOnS fKns86J Then 
approach 1s to look only at a small, carefully selected 
put of the complete access plan space Based on some 
aSSUmphOnS about tht fOt?‘tt Of the cost fUnCuOn asw- 

attd with each access plan, they have &vtsed an 
efficient atgonthm that most of tht time gtvts a soluhon 
close to ophmal and “always avoids the worst execu- 
hens” [Kns86] In global optuntxation, httmshc search 
algortthms. such as A l [Rtch83]. are employed to avoid 
searching the enure search space [Gran81, Sell86] 
Stlhs has also proposed several less general techmques 
that art apphcable when the set of optrmtxed querres 1s 
of some speafic form [SeW]. To the best of our 
knowledge, no query ophmtion algmthms for recur- 
son have existed tmtd now. 

In this paper, we present a @abthstrc algornhm 
for query optuntxaaon which IS suitable for large u 
plan spaces. The algorithm 1s besed on the Smduzed 
Anneufu~g pmcess, whtch has been used for various 
other optunrxatton problems, especrally problems 
related to global routmg and cell placement for VLSI 
chip destgn [K&83] Stmulated anneahng IS a proba- 
bthstrc hrll chmbzng algonthm. Htll chmbmg algo- 
nthms art greedy algonthms Therefore, tbetr outcome 
I m gentral suboptmal. A hrll chmbmg algorithm has 
been used for query opumixahon rn the SDD-1 prolect 
Pem81]. The SDD-I algor&m mcorporaW several 
duncements, i.e., htunstics that help overcome the 
greedma of the algorithm. To the best of our 
knowledge, the algorithm presented m tlus paper 1s the 
first probabthshc a&W&m to be used in query Ophmi- 
xahon. Simulated annealmg 1s especrally well sued to 
optmzauon problems wnh large search spaces and 
wrth cost funchons that mamfest a hugt number of local 
mmma If tht number of local mmuna is small, then a 
greedy appmch IS probably adequate. Hence, for con- 
venhonal query Ophmlzahott, snnuhued anneahng 1s 
mapprqmtt Thls 1s net the c8sc, howtver. when 
DBMSs are used m ntw apphcatton domams. Sunu- 
lated annealmg appears to be a pronnsmg approach to 
face the new challenges of the optuntzer, as created by 
thtlargtslxtoftheaccessplanspace. 

Smdated anneahng 1s apphcable to any type of 
query opttmtxatron. i t , optuntxahon of quenes mvolv- 
mg many relahons, global optuntxatton, and recursive 
query optnnlzatlon In thts paper, however, we concen- 
trate on some aspects of recursivt query optuntzatton 
In pattrcular, we assume that the number of non- 
tecursivt quertes that are eqtuvalent to the recursive one 
IS known in advance. Hence, the query that 1s opnm- 
md 1s actually non-recursive One can thmk of two 
masons why such an approach 1s sull useful m address- 
mg rfmrsivt query opumrzahon 
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l Some recurslve quents are bounded, te., they are 
eqmvalent to a fixed iimte number of non- 
recurswe q-es mdependent of the database 
contents @m86c,Nau@%, Sag1861 

l For rnbounded recurswe q-es, the number of 
necessary non-recursive quenes can be estunated 
usmg stahshcs mamtamed by the system on the 
datahase contents. Ophnuzahon can be based on 
thlsesmlate. 

In the sequel, we wdl conhnue usmg the term recurswe 
for the quezzs we are m&rested m, altbougb for tbe 
apphcahon of the pmposed algorithm only a relevant 
non-recurslvc queay (possi%ly some m&al iimte part of 
the recmve one) will be ophmized. 

Recent sh&es comparmg the performance of 
various algonthms that have been dewed for recurswe 
query processing mdicate that no parhcuhu algorithm is 
universally optmul, le., fm all database instances 
lBanc86b,Banc86c,Vald86,1~86a]. Hence, query 
ophmmhon for recursive queries becomes m. 
There have been several taudtes on lmpmvmg the exe 
cuhon cost of recwsIvc queries that are of some spec& 
form [Ioan86c,Banc86a,Nau@36,Sag&J. These stu- 
dues, however, do not address the geamal ophmlzabon 
problemoffindmgtbeophmalaccessplantoanswera 
gwenquery. Tiuslastproblematheoneaddressedm 
thus paper 

Thu paper 1s w as follows. In Sechon 2, 
we descnbe an algebnuc model for the study of recur- 
slon as mtroduced m C~XU&%] We also fommlate the 
ophnuxahon problem m tbe context of that alga 
model. Most of tbat sechon 1s taken fkom [Ioanffi]. In 
Se&on 3, we present some geak2al results that allow us 
tosomewbatreducetheslzeoftbeacctssplanspace 
that the slmulated anneahng algorltllm has to explore 
Sechon 4 1s devoted to descnbmg ophmtz&on by sunu- 
bed annealmg m @mend terms h &chon 5, the 
specifics of applymg simulated annealmg to recutslve 
query ophnuzahon are given. We gVIe the exact formU- 
lahon of the algontbm as well as some prebminary 
experunental results produced by a prototype imple- 
mentahon of the algorithm. Sechon 6 dscuSSeS dre 
strong and weak pomts of tbe parucular formulahon of 
sunulated annealmg flven m tlus paper and suggests 
some unprovements Fmally, Sechon 7 gives the sum- 
mary and m&cates seveml duechons for future 
research. 

2. OPERATOR MODEL 
In this paper, we use the followmg canom& 

example for zecuriuon Cons&zadah&asew&a 
stored relahon father with schema fatber(fathson). 
Using fatber m the followmg two Horn clauses 
[Gal178], we &fine the vutual relahon ancestor with 
schema ancestor(anc,desc): 

ancestor (x J) A father (2 y ) -$ anceistor (x y ), 

father (x y ) + aneedor (x y ). 
ThetirstHanclause~srecurswemthesezuethatrhe 
dahon mestor appears on both the quabficahon and 
the conseq~t. Answenng queues on recursively 
defined ~~~OIIS, such as ancestor above, IS the pmb- 
lem m whlcb we ~RZ mkrested. 

For the purpose of this paper, we concentrate on 
iineur and unmedwfe recursion. Tlus means that we 
have a smgle rtcurslve Horn clause, and that the recur- 
me relahon appears m the antecedent only once Such 
a recursive funchon-free Horn clause will have the fol- 
lowmg form: 

where for each I, z(‘) lsasubsetofsomeiixedsetof 
vanables (x I~z, ..$, ) , P 1s a vutual rekthon, and (Q , ) 
IS a fkd set Of stared febhons AS analyzed m 
~oan86bl. the pr0bk.m of recursion can be defined m 
opuatm form as follows. A TdcuIslve Horn clause, 
suchastheonesbownabove,maybeconsideXedas 
someIe~opemtorA,appbedonsomerelahonP, 
toproducemofet@esforthesameFelahon So,itcan 
bewrmenasAPsP,whereA lsanopemtorthatmaps 
R%IOIW over a fixed set Of dOmam~ mto Ekthons over 
tbesamesetofdomams Tberelahonsm (Q,) arethe 
parametersofA. IfweemploytJusappmach,weare 
abk to define opemhons on relahonal operators as fol- 
lows. h4uihp&catron of operators 1s defined by 

(A l B)P =A(BP), 
and u&non IS detined by 

(A+B)P =AP uBP. 
For notahonal convemence, we onut the operator *. 
Idenhty (1P = P), and null (OP = 0.0 the empty set) 
are detined m obvious ways. The n-th power of an 
opemtorA amdwhvelydefinedas: 

A"= 1, A" =AeA"“ =A"-'+A 

Ike algebraic shucta thus obtamed IS a closed semir- 
lng rAllo741. 

Havmg estabhshed an algebmc framework, the 
problem of Immc&ate recursion can now be stated as 
follows Assume that we have a recursive Horn clause 
thatcanberepresentedbytheoperatorA,sotbat 

AP r;P 
Also, there exsts some stored dahon Q, which 1s 
eaber stored or produced by some other set of Horn 
clauses not mvolvmg P, so that 

Q sp. 
Then, the mmunal relation defined by the pven set of 
Hanclausescanbefoundasthesolutiontotheequa- 
hon 

P=APuQ (2) 
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Resumably. the solutton 1s a functton of Q; we can 
wnteP=BQ,andtheproblembecomesoneoffindmg 
opaator B. Man~pulaaon of (2) results m the ehmma- 
bon of Q, so that we have an equatrat of operators only. 
Inthrspureopemtorfam,therecurstonproblemcanbe 
restated as follows’ Gwen some opemtor A, find 
anotheroneB sahs@mg: 
(a) l+AB =B,and 
(b) B ismuumalWlthrespectto(a),le.foratlother 

C satu@mg(a).rttsB SC. 
The solution to the above equation (a), under constramt 
(b),wasshownm&3an86b]tobeequalto 

A’ = zAk 
k-0 

‘Ihe opmtor A’ I called the rransthve closwg of A, 
whschtahngmtoaccountdredefinlaonsof+and*,can 
alsobewnttenas 

A’ E~~(I +A)k (3) 
Smce A doea not umtam any functtons, for every fimte 
relatmnQthereexrstssomeN(dependmgonQ),such 
that 

A’Q=;AQ=(I+A)NQ. 
CIO 

Thus says the fortunate and somewhat obvmus fact that, 
when dealmg with fimte relahons (whtch 1s the case m a 
dambase envuonment), only a finite number of the 
terms of the sum are needed to produce the complete 
answer. Hence, A’ IS an operator that maps fimte rela- 
hons to fimte lelahons. 

We menhoned above that the mmunal solutton of 
(2)rsoftheformP=A’Q. llterefae,anyqueryon 
relattonPcanbetransformedtoaqueryonA*Q. For 
example, the query P(c ,. .)7, whtch asks for the tuples 
0fPthathavetheconstantc mthe6rstcolumnpl,wrll 
be the query q, If A’Q,whtchrsaqueryonbaserela- 
hens. For the mmainder of this paper, the stored rela- 
honQ~~gnod. Thefonhcommganalysisand 
descnptton of the various algonthms IS m terms ofcom- 
puhngA’. 

3. STRATEGY SPACE 
Consider a linear operator A and rts hansihve clo- 

sure A’ AsrrukgytocomputeA’tsasequenceof 
mulhphcattons and tittons of simpler algebnuc 
expresstons (operators) formmg A l . Let S be the set of 
all the equivalent algebratc forms of A’. Each member 
s of s has an assocrated cost c(s). The goal of any 
optmuxahon algorithm ts to find the member se of S. 
such that 

c(so)= 5 c(s). 

Whenever the cardmality of S 1s large, performing an 
exhaushve search IS Impossrble. 

Cattun algebnuc expresstons are members of S 
mdepemknt of the form of A itself. For example, CA 

JS always a member of S by defimhon. Dependm~~kn 
the form of A, however, ahonal algebnuc expres- 
stonsmaybeequaltoA’,andhencebemembersofS 
Infkt,thelargerthenumberofspectalpropertresA 
has, the largtx S becomes. For example, assume that 
A=BC (B,C hvooperators)andBC=CB. Inthat 
case,A’ canbewnuenasA’=~BkCk,whrchrs 

therefore a legmmate strategy to cc$kk A’. 
An example of such a strategy 1s the counting 

algorrthmthathasbeenpropo&byBanctlhonetal 
lJh&a]. and generaked by Sacca and Earn010 
[Sacc86]. In the ongmal pmposal thts algorithm 1s 
apphed to a spec& Horn clause, namely the same gen- 
txatm cousm example 

SG(W~)*P~(~,~)~P~(Z,Y)-)SC(X,Y) (4) 

Basdly, counhng computes the transmve closure of 
P, and P2, stmng for each tuple ptoduced the level of 
nerahon m whtch rt was generated. It then proce&s to 
match tuples that were generated m the same iteration 
for the final result. 

The rebhonal operator A appkd on SC m (4) 1s 
a mulhphcahon of two pins, one havmg P 1 as a param- 
eter and another havmg P2 as a parameter (for clarity, 
we do not speafy the pm columns and we omit the pro- 
phons at the end) 

A = (PI w)(P2 ~1. (5) 

The key observahon 1s that the two lams, (P, w) and 
(P2 w), commute wtth each other. Hence, A’ an be 

wnttenasA* = gBk Cc. Countmg has been shown to 
k4 

outpe&rm several other algonthms m many cases 
l&mcMb,BancMc]. So, tt IS almost always advanta- 
geoustohavedusstrategymthestatespaceS. 

Not all query optimtxers ~111 explore the com- 
plete soluhon space. Which part of S 1s worth explor- 
mg is the implementor’s decision The smaller the 
explored space IS, the htgher the probabtltty that the 
optunum IS missed, and the faster the ophmtzahon algo- 
nthm runs 

Nohce that m this formulation, we cons&r sun- 
tepes that dtffer only in theta algebratc (syntactrc) form 
For the pmposes of this paper, we have ignored several 
parameters of the opummhon problem; i e , the possi- 
hlity of the exsteace of a variety of storage structures 
through whtch a relatmn may be accessed, the variety of 
algonthms avatlable to execute a horn between two rela- 
hens, and the possrbrlrty of execuung some operators m 
parallel The strategy space IS formed sunply by the 
syntacttcally varymg forms of the transmve closure A’ 
of some operator A A query optunlzer IS expected to 
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take these parameters Into account as m conventtonal 
query ophmlzahon. 

The queshon that arms is whether constdermg all 
these strategm 1.9 of any worth. The presence of a stra- 
tegymthespaceconsl&~is~edonlyIf~Is 
some probabtltty that the cost of the strategy ts the glo- 
bal ophmum of the cost functton defined on the strategy 
space. Although the relattve cost of a strategy IS, m 
general, database dependent, there 1s a lmuted number 
of cases for whtch the suboptnnahty of a strategy IS 
provable by purely syntacuc means, I e., mdependent of 
tlledambase Anystrategythatcanbeprovedtobe 
suboptmal, (i.e. there 1s always another strategy with 
cost no higher than the cost of the first strategy), can be 
removed from the consrdered strategy space. Clearly, it 
1s m one’s best mterest to tdenhfy as many such stra- 
tegles as possrble so that the stxe of the strategy space IS 
minnntxed. 

Banctlhon has used the term duplmte-fice s?ra- 
tegy for strategtes such that no two opera&s are multt- 
phed with each other more than once [Banc85] He has 
also proved that duphcate-free strategtes are subo 
hmal Usmg thts cntenon, he has shown that (1 +A s 
which corresponds to the )I(UVC evuluutron, IS no; 
duphcate-free and, therefore, not cost effechve 
Bancrlhon’s SUbOph~ty crttenon 1s extended as fol- 
lows 

Definition 3.1: A strategy is repentron-free If it 
forms each algebraic expressron exactly once 

Nohce that a dupbcatefiee strategy 1s repeuhon- 
free also However the reverse fs not hue. For exam- 
ple. producing both A (A A ) and (A A )A m a strategy 
1s not RpZhhOn-free even though it 1s dupltcatefke 
Clearly, a strategy that is not RpehhOn-fRx2 IS not cost 
effechve smce it includes redundant computatton Iden- 
hfymgnon-repeahOdreestrategm andremovmgthem 
from the strategy space constdemd 1s htghly destrable 
Theorem 3 1 provides a result in thts khan. 

Theorem 3.1: Consuler two alg-c expres- 
s~onsB andC,suchthatB=A”andC=m” Con- 

/=1 
stdera strategy that mvolves the IIWlhphCahOII B C If 
nE(k,-kj lSjJJ4m) then the strategy 1s not 
repehhon-Ike 

PlWOfZLetB = A” with n=k,-k,, for some 
15~ JSm . Mulhplymg B with C produces the sum of 
allthepowersofA ofthefonnAA4’, 145~1 Forr=f, 
operator A “* = A b-** = Ah gets produced, whzh has 
ahrady been formed before as part of C. Therefore, 
mdhplylng B and C prohtbrts the strategy from bemg 
repehhon-free 

Example 3.1: Cons&r the followmg formula, 
which corresponds to the nave eVabhOn of [Banc851 

A’ =/z(l +A)‘= (1 +A)(1 +A) 

Its mefficiency follows dtrectly from Thearem 3 1 
Nave evaluahon is not repehhmdiee, because A 1s 
dhpkd with (1 +A), whtch correqonds to the 
values n=l, A,=0 and A,=1 in the statement of the 
theorem. 

Although thae 1s a unique algebmc expression 
equal to A’ assoaated with each evaluatron of A l , the 
opposte does not hold There 1s certam algonthmtc 
mformauon lost when a strategy 1s “flattened out” to an 
algebmc expressta In parttcular, whether a repeated 
subexpnsssmn B computed only once or not cannot be 
decrded fnm the algebratc expmsston alone For exam- 
ple, cons&r the expresston A 2 + (A 2)A There 1s no 
mdatmn of whether A2 IS computed once or twice 
Forthrsreason.astrategyrsrepresentedbyadrrected 
acychcgraph,whoseleavesarethe pnIIUhVeOpX'atoIS 
mvolved m the computatron of A’, and the other nodes 
are multtphcattons and titrons apphed on thetr chll- 
dren. In the examples that follow, the edges of the 
graphs always have top to bottom duechOn. Nohce that 
a smegy D, m general, a graph and not a tree, smce ?e 
same expresston may appear m mulhple places m A 
Unless otherwtse spectfied, we assume that each expres- 
sion is computed only once. 

Example 3.2: The graphs m Figure 3 1 represent 
the states xAk and (l+A)2 respecttvely Also, the 

algebratc k&?sston A2 + (A ?A may correspond to 
an 

P 
of the graphs m Ftgure 3 2, dependmg on whether 

A tscomputedonceorhvtce 
* 

+ / \ 

* + 
\ / 

+ 

(Iv\ A 
1 A 

Fqure 3.1 Strategms correspondmg to 1 + A + A2 
and(1 +A)2 
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Figure 3.2. Two dtfferent strategres conespondmg 
toA2+(A3A. 

Definition 3.2: The depth of a strategy 1s the 
depth of its umespondmg graph, le., the maxunum 
parh-length m the graph. 

Nohce that all the graphs correspondmg to a sm- 
gle algebrarc expressron have the same depth. Hence, 
depth 1s well defined for an algebrarc expresston also. 

Example 3.3: The algebmc expresston 1 + A has 
depth l,whereasAB+CD hasdepth2(seeFtgure 
3 3) 

+ 

i\ 
1 A 

/j /\, 

Frgure33 l+AofdepthlandAE+CDofdepth2. 

For the remamder of thus paper, a strategy is ulentrlied 
with its graph Occasmnally. If thus does not cause any 
confusion, the correspondmg algebrarc expressron 1s 
Used. 

In the followmg two secttons, a nmulated anneal- 
mg algorrthm for the ophmrxahon of the computation of 
A rsdescrrbed 

4. OPTIMIZATION BY SIMULATED ANNEAL- 
ING 

Srmulated anneahng IS a Monte Carlo optrmrxa- 
uon technique proposed by Kukpatnck, Gelatt, and 
Vecclu for complex problems that mvolve many 
degrees of freedom -31. Such problems are 
modeled by a state space, where each state corresponds 
to a solution to the problem A cost 1s assocuned wnh 
each state, and the goal 1s to find the state assoctated 
wnh the globally mmlfnum cost. For complex problems 
with very large state space, exhaustive explorahon of all 
the states 1s rmpractrcal Probabrhsuc ml1 clunbmg 
algonthms, such as srmulated annealmg, attempt to find 

the global mmunum by traversmg only part of the state 
space They move from state to state allowmg both 
downhrll and uphtll moves, I.e. moves that reduce and 
moves that Increase the cost of the state respectrvely 
Thep\aposeofthelanerlundofmoveststoallowthe 
algonthm to escape horn local mmuna rt may occasron- 
ally encounter. For example, consrder the one dunen- 
sronalfunctronofFrgure4.1. StatesS1andS2arelocal 
mrmma, whereas Ss 1s the global mmtmum A proba- 
btlrstrc hill chmbmg algorithm works m such a way that, 
even If at any pomt finds rtself m state S2. with high 
probabthty rt chmbs up agarn to eventually termmate m 
83. 

Wgure 4.1 Iocal and global muuma 

In sunulated anneahng the uphrll moves are con- 
trolled by a parameter T, the temperature The higher T 
1s the higher the probabrhty an uphdl move 1s taken As 
hme passes, T decrease s, and at the end, when the sys- 
tem IS “frozen” (T = 0). the probabrhty of malang an 
uphdl move IS neghgrble. Thus algonthm sunulatcs the 
anneahng process of growmg a crystal m a flurd by 
meltmg the flmd (Iugh T) and then slowly decrcasmg T 
unhl the crystal 1s formed At the end of the process, 
the fluid IS at rts lowest energy state In optunrzmg by 
sunulated annealmg, the cost funcuon plays the role of 
the energy 111 the phystcal phenomenon ‘Ihe analogy 
between the physrcal process of annealmg and sunu- 
lated anne.almg is dtawn m Table 4 1. 

Table 4 1 Analogy of Annealmg and 
Stmulated Annealmg 

Simulated annealmg works as follows Consider a 
state space SA (A for Anneahng), and a function 
NA:S~ +Po(SA)trsuchthatforastates.NA(r)rsthe 
set of neighbors of s m S, . Also, consrder a cost func- 
hon cA * SA -+ R that associates a cost with each state in 
S, Vrsualrxmg the state space as the set of nodes m a 

+ For . set s,. Its poweract Po(S,) ts delined as follows 
PO($) = (7. Ts.74) 
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dmcted graph, NA(s) represents the edges emanatmg ad&uon, several expertmental studtes have been con- 
from the state (node) s. The state space IS assumed to ducted wnh simulated anneahng applied to more tradt- 
be strongly connected, 1.e. there extsts a path horn any honal optuntxatron problems, III parucular graph paru- 
node to any other node. Algornhm 4 1 shows the basic hOrUng, graph coloring. number partrhonmg, and the 
structure of simulated anneahng travehng salesman problem [AraglM] 

There are two mayor loops tn Algonthm 4 1 In 
the mner loop, the temperature T 1s kept constant as the 
algonthm explores part of the state space Downhtll 
moves are always accepted, but uphtll moves are 
accepted wrth some probabtltty less than 1 After some 
form of eqmlrbnum 1s reached, the temperature 1s 
reduced (functton re&ce), and the umer loop 1s entered 
agam The whole process stops when the freezmg point 
1s reached. Each neratton of the outer loop, which 1s 
done at a constant temperature, IS called a s&age 

Many thmcai inveshgahons have been per- 
formed on the behavtor of the sunulated anneahng algo- 
nthm [Rome&&Romeil5,Haje85] It has been shown 
that, under ceruun condrtions sahsfied by the way the 
next state 1s “randomly” chosen (step 1 m Algonthm 
4 1) and the way the temperature 1s reduced (step 2 m 
Algorithm 4 1). as T appnwrches 0, the algonthm con- 
verges to a state s, such that c,,(s) 1s the global 
minunum of cA. Hence, the ortgmal ophmtzatton goal 
IS achieved 

The successful apphcauon of sunulated annealmg 
on thts great vartety of ophmtzatron problems, together 
with its theOEhcal foundahon and its elegant srmphctty, 
has been the prunary motrvahon to &Vlse a SMdakd 

anneahng algorithm for recursive query optuntzatton 
We have used the algebratc model of Sechon 2 for thus 
purpose, any other model, however, would be equally 
approlmate. Although the structure of the sunulated 
annealmg algonthm ts problem-independent, some 
parameters of the algonthm depend on the parttcular 
problem concerned. These are the state space $4, the 
netghbor’s set for each state s tn S4 (given by the func- 
hon N,,(s)), and the cost functron cA . The defintttons of 
these parametfxs for recurstve query optunuation are 
gwen m this SeChOII In addttmn, some parameters of 
the algonthm are implementattondependent (and some- 
what problemdependent also); these are specltied in the 
next sechon. which dtscusses the unplementahon of the 
algornbm 
0 State space 

5. SIMULATED ANNEALING FOR RECUR- 
SION 

5.1. Algorithm Formulation 

Simulated anneahng has been applied to a great 
vanety of optlnuzatton problems, often With substanual 
success. The mayor field of its applicatton seems to be 
VLSI destgn, m pamcular standard cell placement and 
global rouhng [Rome-&$Sechffi] VLSI design had 
been tdenttfied as a potenual appltcatron of sunulated 
anneahng as early as us ongmal proposal rn Ktrk831 
However, sunulated annealmg has been apphed to other 
areas also, such as pattern tecognihon lAckl851 In 

Each strategy that computes A’ IS a state m the 
state space S,,. Accordmg to Sechon 2, a strategy is a 
graph. Therefore, the state space 1s a graph whose 
nodes am graphs Smce, for any spectfic computatton, 
AN* 1s a fimte operator, only firute ;ums of the form 
XA’ are consulered For example, CA’ and (1 + A r” 
CdJ Cdl 
are two &stmct states tn the state space As a contmua- 
hon of the dlscusston in Sectton 1 we want to 
emphasrze that esttmatmg N accurately 1s a very unpor- 
tam and drfcult problem It ts, however, a problem 
orthogonal to the development of the optuntxatton algo- 
nthm That IS why, for the purposes of this paper, we 
assume that N 1s gwen. 

s=sO; 
T-To; 
while (notyetJ?om~ do _ whik (not~un~eq~i~~ do 

s” ran&m stae inN,(s); 
AC = c&?-CA(s); 
if(Ac sO)thens=s’; 

k 

if(Ac >O)thens=s’withptyer; 

T = redwe (T); 
return(s); 

Algorithm 4.1. Simulated Annahng 

(step 1) 

(step 2) 
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Folbwmgontiledlscussionmsechon3,tbestate 
SpCCC4UlbC-~tOllll~SpCClalpropa- 
tlesA lU&orltcanbemadesmallerbyapplymg 
‘lleaem 3.101 otber sundar results. Needless to say, 
thestatespacecanakobepnmeddownkm&al.lyby 
lwlovmg StrategieB tbat are llkely to be subophmal. 
Elmnation of states, bowever, has to be done wltb 
greatcaution,becausetbereducedstatespacebasto 
rwllalll strongly connected. otherwise, the ophmal state 
may not be reachable from the inihal state. 
l Nelghborlng states 

For each state s&T,, , tbe set of its nclghbors 
NA(s)~de&mmedbytbeproperhesofmulhpbcation 
andaddlhonwltluntbeclosedsemirmgoftbelmear 
xtdahonalopcsators. Inparhcular,s’isanerghbarofs, 
1 e., siNA(s if s’ um be pmduced by applying one 
of tbe followmg transfonnahons to a single node in dre 
g@lOfS. 

Assoclatlvuyqf+:FortllreeopemtasA,B,and 
C,(A +B)+C =A +(B +C)(seeFlgute5.1). 

+ + 

/\ = A 
+ c A + I\ 

/\ 
A B 

/\ 
B c 

Figure 5.1. State transformation by associahvity of +. 
Assoczan~fyqf*:Forthn~opemtmsA,B,and 

C,(A +B) l C =A + (B * C)(seeFigureiS2). 
+ * 

/\ = A. 
c A I . 

/\ 
A B 

/\ 
B c 

Figure 5 2 State transfannation by assocuthvlty of l 

Commurat~vuyof+:Forhvoopem&rsA andB, 
A +B =B +A (seeFigu1e53). 

+ + 

/\ = /\* 
A l? B 

Figm 5.3. State hansfonnahon by commuWvity of +. 

Dmibutwy of * over + For tluee operators 
A.B, and C. A (B +C)=A B +A C (see Frgure 54) 
and(B +C)A =BA +CA 

l + 

A+ = /\ 
A A 

B 
/j(\, 

c A B 

Figure 5.4. State Wormahon by mbuhv@ 
of l over+. 

Dimbutiviry of + over + wth 1, the tdhphCiNtVe 
ldmttty: For two openton A and B, 
A(B+l)=AB+A (see ml= 5.5) and 
(B+l)A=BA+A. 

. + 

/\ = /- 
A i\ / 

B 1 A 
.d 

B 

Figure 5.5. state lransformahon by dlstriihvtty of l 

over + wth 1 the multiphcahve Idenhty. 

Each properly m the defimhon of a closed semlr- 
mg [Ah0741 cormspcnds to a tranSfmhOn. a~ out- 
lmed above. Then are a few notable excephons to that 
Namely, tbere a~ no transfamahons correspondmg to 
the propedm that 0 1s the ad&hve Idenhty 
(A + 0=0+ A =A). 1 IS the mulhphcahve ldenhty 
(A*l=l*A=A), 0 1s an anmlulator 
(A l O=O*A =O), and + 1s ldempotent (A +A =A) 
The tint three are excluded because they create stra- 
teg~es that are equwalent to strategies already m S, 
The last one 1s excluded because it creates strategies 
(states) tbat are not repehhon-free Its exclusion 
reduces the state space sue by removmg states that are 
known to be subophmaL For example, the state 
(1 +A)N IS not considered, since the ~dempotency of + 
Isnotatransf~hon(eg (l+AP=l+A +A +A2> 
. cost function 

Smcc the problem addressed 1s one of database 
query ophmuzahon, the cost fWhOn cA 1s the COst of 
applymg the m&vldual operators on the operand rela- 
hens In a real system, tlus 1s an cshmatc produced with 
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Modelmg the cost CA of applymg relational 
opeMorsonrehukmsmaybedoneatmanylevelsof 
detail. Inthissense,thechokeofthecostfunctionC~ 
Is ImplementatiaMqendent also. Roducmg an 8ccu- 
me model 1s a diflicult problem, even for the case of 
regular 
lWong76, Seh79.JA~iLk86b]. Smce~~ 
affect the appllcabihty or the perfi3mmnce of the sunu- 
latedannealmgalgonthm,ourdcscn;gtionremainsgen- 
eralandassumesthatc,, isgiven. Infact,cA couldbe 
an arbitrary cmt filnctlon, completely unl&ted to rela- 
hod operator costs. The optimmmn problem would 
stdlbewellde&dbythestatespaceS,, andtheneigh- 
hors funchon N,, and sum&ted amualing would shll 
be appltcable. 

52. dugoritilm lmpkmentatiofl 

We have implemented sunulated anneakg for 
theqhmuatmnofA* usingthestatespaceandmqh- 
bar funchon. l’be implanartahon was done in Franz 
LISP rWik.831, under the Unix 4.3 opemting system on 
a VAX 11/780. LISP was chosen over C, wh1191 would 
betheotherobvmuschoicemourenvronment,bccause 
ofthegraphfomlofthestatesandLISp’sabilityto 
manage hsts (and the&ore graphs) effiaently and 
elegantly. Tbe cost fun&n CA 18 a sunple model of the 
Ii0 cost of database operations. Join (with projection) 
andwuonaretheoolyoperabonsmodelerd. Thecostof 
apmIsthepfoductofthe~ofthetwore~~plus 
someaddlhonallmeartermstoreadtherelatkmand 
wntetheresult. Tbecostofaunionisthesumofthe 
slzesoftbehvofelatmnstoreadthemplusthesizeof 
the result to wnte It out, 

Ithasalreadybeenmenhonedthatthereacesome 
parameters of the simulated annealmg algonthm that are 
unplementahondependent. These = the in&l state 
sgl the mhal tmpesahue TO. the fieenng cmrion, fhe 
equhbruun cntenon, the way the next state 1s randomly 
chosen,andthewayrhetempemtureoreducedfrom 
stage to stage (the re&ce rouhne m Algorithm 4.1). In 
the current unplemenmon they have been chosim as 
follows 
.Init&tl !mte so 

From the theomml analysts of the simulated 
annealmg algorithm,, it has been shown that the effec- 
hVenesS OfthedgOnthminfiWhgthCghkddIUm~ 
statelsmdeqendentofthecholceofthelmtiafstate 
lRom&4,RomeU, HaJeM]. mvva, tlus has been 
vmfied by many expenmental stucbes ~Ktdl sunulahng 
anneaImg algonrhms [Arag84, Sechffil. Smce my m- 
halstatelsasgoodasanyothcr~wechosethestatethat 
tzzmqonds to the sem-nave evaluahon lBanc85j as 
the uuhal state m our unplementahon For exmple, 
assuming that only the !bst two powers of A are to be 

+ + 

C!!’ \ 
A 1 

l3gurc5.6. Imhalstatetocompute ;A’. 
kd 

l Initial temperature 
tBoosmgtbcappropnatemttaltemperaaueT,,Is 

much more crucial than choosmg the uuual state. To 
hastobeconsidesablyhighsothllttbesysmlsrela- 
hvdy “hot” III the begmnmg and allows many uphdl 
moves to be accepd For the range of expenments 
pfOllllCd,thCllUtUlltUllperatllreWaSChOSe4ltObe 

twlceIhecustoftbelmhalstate 
To = 2 cA (so). 

Thefactot2waschosentmedontheexlmenccof 
applying simulated allnadmg on other domalns 
[Sech86b]. 
.Fhuingcriterioa 

llmisagmtvarietyoffieezmgcntempro- 
posedinthehteratme. Mostofthemareacombmatmn 
oftestsvenfymgthatthesystemrsatalowtemperature 
and that the system does not change state often, i.e., that 
It has converged to its final state. In the cutrent imple 
mentatiaa,tbeuit&onusedIsacombmatmnofthe 
ones glvm in [Anlg&q and [Sech86a] and uulslsts of 
hvopluts. Fiit#thete!mperatllrehastobebelow1 
~~l);sacondthevahteofcA atthefinalstatehastobe 
thesameforfoul consecutive stages. 
0 Equilibrium criterion 

In all the implementations of smudated annealing 
thatweareawareof,evefystageconsMsofaspectic 
number of Mations through the mner loop. Tbls 
number may be u&pen&t of the temperature of Ibe 
stage [Arag84], or It may get large8 as the temperature 
decmses [Sechffi]. The advantage of havmg more 
state UZUNihofU during the by stages Of the eXeC~t10fl 
has been theommlly just&d as well lMM351 We 
have chosen to have a constant number of iterations 
through the mnef loop, mdependent of the temperature 
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‘Ills number IS equal to epoc~J’tor *epoch, where 
epochJi.actor IS an arbttmy factor (chosen to be 16 m 
our expenments), and epoch IS the number of neighbors 
of the lnlttal solution (both the termmology and formu- 
lauon are from [An@%]). 
l Choosing the next transition 

At any pomt m the executton, the next state 1s 
chosen fmm the set of the current state’s nerghbors 
accordmg to some transttton probabtltty matnx R : 
SA x SA + [OJ]. In general, R must have some 
specllic stochashc pItq@ha for the algorithm to con- 
verge (It has to be reversible [Hajc851). In our unple- 
mentahon, each nerghbor of the current state has equal 
probabtltty to be chosen as the next state. I c., 

t 

1 
IN,(s)1 lf S’EN*(S) 

R(ssS?= 
0 

l Reducing the temperature T 
Many cooltng schedules have be431 propmcd for 

the simulatedanlK!ahgprocess. wedistlnguishtwoof 
them. Specrfically, HaJek [Haje85] propo~ reducmg 
tbetemperatureaccordmgtotheformula 

Tk = d 
log W) 

In the above, A 1s the current stage number (It represents 
tune also), and d is some constant for whrch he grves a 
sufticient value for the algorithm to converge to the glo- 
bal mimmum. Unfortunately, from a pracncal pomt of 
view, ths I not a desrrable schedule, tt IS very slow. 
Forthrsteason,anotherschedulehasbeenproposedthat 
reducesthetemperatumaccordmgtotheformula 

Tnew = WodTeu. 
The function a takes values between 0 and 1. In 
[RomelM,Sech&ia] a ranges over hme (that 1s. rt 
depends on TM). It ts smaller m the beguuung (coohng 
the system fast), then tt rises up to htgher values (slow- 
mg down the coohng process), and eventually it 
becomessmallagamtodrivethesystemdowntoa 
muumum without any uphtll moves. To the contrary, m 
[Arag84] rt IS suggested that a should not change, but 
should remam constant at a nlattvely htgh value (m the 
range of 0.9 to 0.95). We have expenmented with both 
a constant a.=O.95 and a vanant a mod&d accordmg to 
Table 5 1. 

Table 5.1 Factor to reduce the w. 

5.3. Experiments with Simulated Annealing 
Due to tune constramts, we have performed a 

very small number of experunents with the system. We 
have used;mall examples with three and seven terms of 
A’,le., xAk,N=30rN=7. Inalltheexpenments,A 

k-0 
was the operator conespondmg to the ancestor Horn 
clause: 

ancestor (XJ) A father (2 y) -9 ancestor (x y) 

The sm of father was always one page. This 
represents an unfavorable srtuatton for sun&ted 
allneallng for the followlng masons’ 
0 The state space. is relattvely small 
l A hasasimpleform 
a Tbestxeofthen&uionsaresmall 

We have already mumoned that sunulated 
anne!almg 1s mappmpmte for small state spaces due to 
the overhead mvolved m the exCCUhOn of the optimrxa- 
hon a&Or&m l&elf In addmat, the mom complex the 
ciptlmlxed operator the gl-cam the variety of plans gen- 
eaated, and therefore the larger the solution space is 
Fmally, wnh small relatrons one cannot expect 
qnificant vanahons m the cost of the various states, 
and thts causes problems to snnulated annealmg (see 
!kChOn 6). 

Table 5.2 shows the results of the expenments. 
e-s stands for epoch-scale. Column c,, gtves the cost 
of the semi-narve evaluation, column ch gtves the 
lowest cost state the algorithm went through, column 
chm gtves the cost of the state to which the algorithm 
converged, and column c,,,,, grves the actual ophmum 
Also column S 
the aigoruhm n et3 

es gves the total number of stages 
ed to converge. 

e-s N To T, SW= hUU cbw clam cop 

16 3 24 044 39 12 6 6 6 
7 

:4 7 
72 063 65 36 18 21 18 
72 063 65 36 21 21 18 

Table 5 2. Expenmental results 
Although tt 1s premature to draw any general conclu- 
sons from such a hmlted range of experrments, we can 
say that the results have been encouragmg Fortbecase 
wuh N=3, the algonthm always found the muumum 
cost state, whtch m&anally 1s the smart algorithm of 
[Ioan86a]. For the cats wtth N=7, the algorithm drd not 
always find the global muumum. It dtd, however, con- 
verge to a state wtth a cost that was close to the global 
muumum and much smaller than the cost of the ongmal 
state Further expenmentatton 1s definitely needed to 
venfy the general apphcabthty of the algoruhm to 
nmrswe query opttmtxatton 
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Q.CRlTIQUE 

There are a few pomts m the above formulaaon 
whese then IS MOUI for unpxuvement. The iirst one 1s 
that, gwen a state s, INA(s)l IS small. lliat IS, the 
transfonnatmns described m Secuon 5 1 for changmg 
states give a relaUvely small number of netghbors to 
each state. This has the tmplzatton that the paths 
between states tend to be long, and the algortthm takes 
manystepstotravcrsethem. Asolutton~stoallowthe 
algorithm to perfam many transfmons at once (as a 
single move), the&y putting duect uansmons among 
morestatesthannow. Weexpectthattitifeduce 
the number of stages the algorithm needs to converge 
sQndkantly. It 0 mt obvmus what the optimal number 
of combmed transformaho~ 18. ThmIsanusuethatwe 
plan to investigate m the future. 

The soluhon propos& to the ftrst probkm affects 
thesecondonealso. ThatIs,thecostchange(Ac m 
Algorithm 4.1) when makmg a trans&on Is usually 
small dauvely to the total cost. For exampk, changmg 
the order of twojoms (by applymg assocu&vQ of mul- 
tiphaon) cannot s~gmficantl~ affect the total cost of 
the whole computatmn of A , d the latter contams 
many tems. Hence, even at very tigh temperatures the 
system does not undergo dmshc changes m terms of its 
cost It has been expenmentally ventied that a small 
range of AC 1s most of the tune titrous for the effec- 
uveness of the algorithm [Sech&%]. Combmmg several 
transfonnatmns mto one state tmnslhon may p;lve the 
desired range to AC and allow the algorithm to perform 
better. 

Fmally,thewaythenextstateIschosenmthe 
current unplementatmn also causes problems. Many 
hansfonnahons move between states wth the same 
cost. For example, applymg commutauv~ty of + leaves 
thecostofthestateunchanged. ~tendstocreate 
sevend j2hxmx m the state space. The system tends to 
wander m these plateaux for a long tune wthout makmg 
progress, gomg ne&er downhdl nor uphill. Smce every 
apphcable transfonnahon 1s equally hkely, the ma~onty 
of the transitions are of ttus form, with m change m the 
cost. The pmposed soluhon 1s to gwe tugher probabdtty 
totrans1tlonsthatdotiectthecostthantothosethatdo 
not. This has to be apphed with great cauhon, however, 
smce paths to e&lent states may go through seved 
cost-1ndlffmt traJlslhOns before malung w 
slgruficant prognzss. Nevertheless. this Qscnmmatwe 
txeatment of nelghbas has been used elsewhere with 
great effecuveness [Sechffi]. 

7. CONCLUSIONS 
Simulated anneahng 1s a probabrllshc algonthm, 

good for optumzauon problems that involve large solu- 
tion spaces Each soluuon repnsents a state in the 
search space, and each state has an assocmted cost. The 
goal IS to find the state with the mmlmum cost. 

We have adopted simulated anneahng to perform 
query ophmuahon for complex quene.s that anse in the 
study of lmear recursmn The state space defimtmn has 
been based on the algebnuc strucbue of fdahonal 
operators. Each state represents a mmnt algebnuc 
e.xpress1On for the query aIlswe& The cost of the state ls 
the total I/O cost of the operatmns m the conespondmg 
algebmc expresslon 

We have unpkmented a pototype of the algo- 
rithm m LISP and have performed a lunlted number of 
small expenments. Our mmal expenem 1s that, in 
general, the algorithm converge8 to proce8smg stm- 
tegles that are very close to the optimal. Mmver, the 
IradIhond processmg strategy& such as the sent-nruve 
evaluatmn, have been found to be, m general, subop- 
hd. 

Thescakoftheexpenmcntsperformedtsfar 
from compkte. We mtend to expenment with a larger 
vanety of operators, larger relauons, and deeper recur- 
slons(Ie.,more@msmA’). Wealsomtendtomochfy 
our mmal design and lmplementauon of the algonthm 
tuzordmgtothepomtsnusedmSectmn6. ‘Ibemam 
issues to be exammed m this dmzictmn are the followmg: 
0 hddttple hmSformahoIIS per tran~~h~& 

l Dtiferent tWISlhOn pmbabilms from one state to 

its neighbors. 
l Sped transfarmatmns accordmg to the proper- 

hes of the operators mvolved. 
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