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Abstract

Query optimizers of future database management sys-
tems are likely to face large access plan spaces i their
task. Exhaustively searching such access plan spaces 1s
unacceptable. We propose a query optinmuzation algo-
nthm based on simulated annealing, which is a proba-
bilistic hull climbing algonthm. We show the specific
formulation of the algorithm for the case of opumizing
complex non-recursive queries that anse in the study of
hinear recursion. The query answer s explcitly
represented and mampulated within the closed semuring
of hnear relational operators. The optiumization algo-
nithm 1s applied to a state space that 1s constructed from
the equivalent algebraic forms of the query answer. A
prototype of the simulated annealing algorithm has been
built and few expeniments have been performed for a
limited class of relational operators. Our initial exper-
ence is that, in general, the algorithm converges to pro-
cessing strategies that are very close to the optimal.
Moreover, the traditional processing strategies (e.g., the
semu-naive evaluation) have been found to be, 1n gen-
eral, suboptimal.
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1. INTRODUCTION

The key to the success of a Database Manage-
ment System (DBMS), especially of one based on the
relational model [Codd70], is the effectiveness of the
query opumuzation module of the system. The input to
this module is some mtemal representation of an ad-hoc
query. Its purpose is to select the most efficient algo-
nthm (access plan) in order to access the relevant data
and answer the query.

Query optimization has been an active area of
research ever since the beginning of the development of
relational DBMSs. Various query optimization algo-
nthms have been developed as part of the research pro-
jects of INGRES [Ston76, Wong76,Ko00180] and Sys-
tem R [Astr76, Blas76, Seh79, Mack86b]. Theoretical
approaches to query optimization have also been
employed, attempting to apply general theorems to help
the query optimizer in its task [Aho79,Rose80]. Query
optimization algorithms in a distnbuted DBMS environ-
ment have received considerable attention as well
[Epst78, Bern81,Mack86a). A good survey on query
optimization and other related 1ssues can be found in the
survey article by Jarke and Koch [Jark84] and the book
by Kim, Remer, and Batory [Kim86).

Most of the exising work on query optimization
has focused on optimizing conjunctive queries The
demand for such queries mn current database applica-
tions is hugher than for queries that also involve disjunc-
nons. In terms of relational algebra [Codd70], the three
relational operators that have received almost the
exclustve attention of researchers are projection, selec-
tion, and join. To the best of our knowledge, the prob-
lem of optimizing union, a necessary relational operator
for disjunctive quenes, has not been addressed by any
previous study.

The unit of optimization mn most of the existing
DBMS:s 1s a single query. Each query involves a small
number of relations (e.g., less than 10). Hence, even
though the number of alternative access plans to answer
a query grows exponentially with the number of the
relations 1n the query, this number 1s relatively small
So, most of the existing query optimizers perform an
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the si1ze of that space.

Several aspects of the picture presented above
change when one studies query optimization in systems
that are geared towards some of the newest database

application domains, such as artficial intelhigence (e.g.,
expert databage svstems [Kers86a Kers86h] and deduc-
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tive database systems [Gall78,Gali84]) The most
important of these changes are 1dentified below.

. The number of relations expected to participate in
a query increases significantly [Kns86].

. The unit of opmmzauon changes from a single
query W a sét of querics  In oiher words, the
opumizer tries to optimize the execution of
several quenes together, possibly taking advan-
tage of common tasks that have to be performed
by more than one query. This type of opumiza-
tion 1s referred to as global opamuzation
[Gran81, Sell86).

. Quenes may become recursive. Recursive
queries are, in general, equivalent to the union of
an arbitrary number of nonrecursive queries. In
general, the number of nonrecursive quenes to
which a recursive one 1s equivalent depends on
the contents of the database, and it can be arbi-
tranily large, independent of the simplicity of the
recursive query.

Each of the above three points leads to the same
conclusion. the space of access plans that the query
opumizer has to face in future DBMSs 1s larger by
several orders of magnitude than the one currently faced
mm conventional systems. The validity of this observa-
tion 1s obvious. We have already mentioned that the
number of alternative access plans for a query 1s an
exponential function of the number of relatons m the
query. Hence, small increases in the number of rela-
tions 1n a query, € g., by one order of magmtude, result
1n large increases 1n the size of the access plan space.
When performing global optimization, the state space
increases at a rate higher than linear in the number of
quenies. This 1s because the opumizer does both nter-
query and intraquery optimization, trying to identify
common subexpressions or other common characterns-
tics 1n the participating quenes that can speed up execu-
tion 1f they are taken nto account. Finally, the number
of nonrecursive quenes that are equivalent to a recur-
sive one 1s arbitranly large. These nonrecursive queries
share several common subexpressions, since each 1s
equivalent to repeatedly applying the same query
several umes. Hence, the size of the resulung access
plan space can be arbitranily large as well.

The above discussion leads to the conclusion that
exhaustive search of the access plan space 1s no longer
plausible for query optimizatton In the past, a hmited
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number of approaches have been employed to deal with
large access plan spaces For queries with a large
number of relations, Krishnamurthy, Boral, and Zamolo
have devised an optmization algonthm that 1s quadratic
mn the number of participating relations [Kris86) Their
approach 1s to look only at a small, carefully selected
part of the complete access plan space Based on some
assumptions about the form of the cost function associ-
ated with each access plan, they have devised an
efficient algorithm that most of the time gives a solution
close to optimal and "always avoids the worst execu-
tions” [Kns86] In global optumization, heuristic search
algonthms, suchas A* [Rich83], are employed to avoid
searching the entire search space [Gran81, Sell86]
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that are applicable when the set of optimized quenes 1s
of some specific form [Sell86]. To the best of our
knowledge, no query optimization algorithms for recur-
sion have existed until now.

In this paper, we present a probabilistic algorithm
for query optimization which 13 suitable for large access
plan spaces. The algonthm 1s based on the Simulated
Annealing process, which has been used for various
other opumization problems, especially problems
related to global routing and cell placement for VLSI
chip design [Kirk83] Simulated annealing 1s a proba-
bilistic Wll climbing algonthm. Hill chimbing algo-
nthms are greedy algornithms Therefore, their outcome
18 in general suboptimal. A hill chmbing algorithm has
been used for query optimization in the SDD-1 project
[Bern81]. The SDD-1 algonthm incorporated several
enhancements, 1.e., heunstics that help overcome the
greediness of the algorithm. To the best of our
knowledge, the algorithm presented 1n this paper 1s the
first probabilistic algonithm to be used 1n query optimi-
zation. Simulated annealing 1s especially well suited to
opumization problems with large search spaces and
with cost functions that manifest a large number of local
mumma If the number of local mimima 1s small, then a
greedy approach 1s probably adequate. Hence, for con-
ventional query optimization, sumulated annealing 1s
mapproprniate This 1s not the case, however, when
DBMSs are used 1in new application domams. Simu-
lated annealing appears to be a promising approach to
face the new challenges of the optimizer, as created by
the large size of the access plan space.

Simulated annealing 1s applicable to any type of
query optimization, 1 ¢ , opumization of quenes mnvolv-
ing many relations, global optimization, and recursive
query opuumization In this paper, however, we concen-
trate on some aspects of recursive query optimization
In particular, we assume that the number of non-
recursive queries that are equivalent to the recursive one
18 known 1n advance. Hence, the query that 1s optim-
1zed 1s actually non-recursive One can think of two
reasons why such an approach 1s still useful 1n address-
Ing recursive query optimization



e Some recursive queries are bounded, 1.¢., they are
equivalent to a fixed fimte number of non-
recursive queries mdependent of the database
contents [Ioan86¢c, Naug86a, Sagi86]

. For unbounded recursive quenes, the number of
necessary non-recursive quenes can be estmated
using statisucs maintamned by the system on the
database contents. Optumization can be based on
this estimate.

In the sequel, we will continue using the term recursive
for the quenes we are mterested 1n, although for the
application of the proposed algonthm only a relevant
non-recursive query (possibly some imtial finite part of
the recursive one) will be optimized.

Recent studies companng the performance of
various algonthms that have been devised for recursive
query processing indicate that no particular algonthm is
umversally optmal, 1e., for all database instances
[Banc86b, Banc86¢, Vald86,Ioan86a]. Hence, query
optimization for recursive quenes becomes necessary.
There have been several studies on improving the exe-
cution cost of recursive queries that are of some specific
form [loan86c, Banc86a, Naug86, Sagi86]. These stu-
dies, however, do not address the general optumization
problem of finding the optumal access plan to answer a
given query. This last problem 1s the one addressed 1n
this paper

Ths paper 1s organized as follows. In Section 2,
we descnibe an algebraic model for the study of recur-
si0n as introduced 1n [Ioan86b] We also formulate the
opumization problem n the context of that algebraic
model. Most of that section 1s taken from [loan86a). In
Section 3, we present some general results that allow us
to somewhat reduce the size of the access plan space
that the simulated annealing algonthm has to explore
Section 4 1s devoted to describing optimization by simu-
lated annealing in general terms In Section S, the
specifics of applying simulated annealing to recursive
query optimization are given. We give the exact formu-
lation of the algonthm as well as some prehminary
expenmental results produced by a prototype imple-
mentation of the algorithm. Section 6 discusses the
strong and weak points of the particular formulation of
simulated annealing given in this paper and suggests
some improvements Finally, Section 7 gives the sum-
mary and ndicates several directions for future
research.

2. OPERATOR MODEL

In this paper, we use the following canomcal
example for recursion Consider a database with a
stored relation father with schema father(fath,son).
Using father n the followmng two Hom clauses
[Gall78], we define the virtual relation ancestor with
schema ancestor(anc,desc):

"

ancestor (x,z) A father (z,y) — ancestor (x.y),

father (x y) — ancestor (x,y).

The first Homn clause 1s recursive 1n the sense that the
relation ancestor appears on both the qualificatton and
the consequent. Answenng quenies on recursively
defined relations, such as ancestor above, 1s the prob-
lem 1n which we are interested.

For the purpose of this paper, we concentrate on
linear and immediate recursion. This means that we
have a single recursive Horn clause, and that the recur-
sive relation appears 1n the antecedent only once Such
a recursive function-free Homn clause will have the fol-
lowing form:

PENAQic™A  24Qc™) - Pe*), (1)

where for each 1, x® 1s a subset of some fixed set of
vanables {x,,x,, ..,x, }, P 1s a virtual relation, and {Q, ]
1s a fixed set of stored relations As analyzed in
(Ioan86b), the problem of recursion can be defined m
operator form as follows. A recursive Horn clause,
such as the one shown above, may be considered as
some relational operator A, apphied on some relation P,
to produce more tuples for the same relation So, it can
be written as AP cP, where A 1s an operator that maps
relations over a fixed set of domains into relatons over
the same set of domains The relations 1n {Q, ]} are the
parameters of A. If we employ this approach, we are
able to define operauons on relauonal operators as fol-
lows. Mulaplication of operators 1s defined by

(A *B)P =A(BP),
and addition 1s defined by

(A+B)P =AP UBP,
For notational convenience, we omit the operator *.
Identity (1P = P), and null (OP = &, @ the empty set)
are defined m obvious ways. The n-th power of an
operator A 1s inductively defined as:

A%=1, A =A+A™1 = A" 1A

The algebraic structure thus obtaned 1s a closed semir-
ing [Aho74].

Having established an algebraic framework, the
problem of immediate recursion can now be stated as
follows Assume that we have a recursive Horn clause
that can be represented by the operator A , so that

AP cP
Also, there exists some stored relattion Q, which 1s
erther stored or produced by some other set of Hom
clauses not involving P, so that

QgcP.
Then, the mimmmal relation defined by the given set of
Hom clauses can be found as the solution to the equa-
tion

P=APuUQ 2



Presumably, the solution 1s a function of Q; we can
wnite P =B Q, and the problem becomes one of finding
operator B. Manipulation of (2) results 1n the elimmna-
tion of Q, so that we have an equation of operators only.
In thus pure operator form, the recursion problem can be
restated as follows: Given some operator A, find
another one B satisfying:

(@ 1+AB=B,and

(b) B is muumal with respect to (a), 1e. for all other
C sausfying (a), it1sB < C.

The solution to the above equation (a), under constraint
(b), was shown 1n [Toan86b] to be equal to

A’ =Y At
k=0

The operator A® 1s called the transifive closure of A,
which taking 1nto account the defimtions of + and *, can

also be written as
A*=hm(1+A). A3)
kpoe

Since A does not contain any functions, for every finite
relation Q there exists some N (depending on Q), such
that

N
A'Q=FAQ=(1+ANQ.
k=0

Thus says the fortunate and somewhat obvious fact that,
when dealing wath finite relations (which 1s the case 1n a
database environment), only a finite number of the
terms of the sum are needed to produce the complete
answer., Hence, A" 1s an operator that maps fimte rela-
tions to finite relations.

We mentioned above that the mmimal solution of
(2) 1s of the fom P =A" Q. 'Iherefone.anyqueryon
relation P can be transformed to a query on A® Q. F
example, the query P(c,..)?, which asks for the tuples
omeathavemeconstamc i the first column p,, will
be the query G, ... A° Q, which 1s a query on base rela-
tions. For the remainder of this paper, the stored rela-
uon Q 1s ignored. The forthcoming analysis and
description of the vanous algonthms 1s 1n terms of com-
putng A®.

3. STRATEGY SPACE

Consxder a linear operator A and 1ts transitive clo-
sure A* A strategy to compute A® 15 a sequence of
multplications and additions of simpler algebraic
expressions (operators) formmng A° . Let S be the set of
all the equivalent algebraic forms of A®. Each member
s of § has an associated cost c(s). The goal of any
opumization algorithm 1s to find the member sq of §,
such that

c(sg)= l‘ng\ c(s).

Whenever the cardinality of § 1s large, performing an
exhaustive search 1s impossible,
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Certain algebraic expressions are members of S
independent of the form of A itself. For example, ZA

1S always a member of § by definibon. Dependmg on
the form of A, however addinonal algebraic expres-
snonsmaybeequaltoA and hence be members of §
Infact,thelargermenumberofspecmlpmpemesA
has, the larger S becomes. For example, assume that
A =B C (B, C two operators) andB;C =CB. In that

case, A* can be wntten as A" = Y B* C*, which 1s

k=0
therefore a legitimate strategy to compute A" .

An example of such a strategy 1s the counting
algonithm that has been proposed by Bancilhon et. al
[Banc86a). and generalized by Sacca and Zamolo
[Sacc86). In the original proposal this algorthm is
applied to a specific Horn clause, namely the same gen-
eration cousin example-

SG(wz) AP (W x)AP2(zy) 5 SG(xy) (4)

Basically, counting computes the transiuve closure of
P, and P,, stoning for each tuple produced the level of
iteration 1n which 1t was generated. It then proceeds to
match tuples that were generated in the same 1teration
for the final result.

The relational operator A apphed on SG in (4) 1s
a muluphication of two joins, one having P, as a param-
eter and another having P, as a parameter (for clanty,
we do not specify the join columns and we omit the pro-
Jections at the end):

A =(P; a)}(P3 b2). &)
The key observation 1s that the two joins, (P, <) and
(P2 >4), commute with each other. Hence, A® can be

wntien as A* = T.B* C*. Counting has been shown to

k=0
outperform several other algonthms m many cases
[Banc86b, Banc86c]. So, 1t 1s almost always advanta-
geous to have this strategy n the state space S .

Not all query optimizers will explore the com-
plete solution space. Which part of S 1s worth explor-
g 1s the implementor’s decision The smaller the
explored space 1s, the higher the probabihity that the
optimum 1s missed, and the faster the ophmization algo-
nthm runs

Notice that 1n this formulation, we consider stra-
tegies that differ only 1n their algebraic (syntactic) form
For the purposes of this paper, we have 1gnored several
parameters of the optmization problem; 1 ¢, the possi-
bility of the existence of a variety of storage structures
through which a relation may be accessed, the vanety of
algonithms available to execute a jomn between two rela-
tions, and the possibility of executing some operators 1n
parallel The strategy space 1s formed simply by the
syntactically varying forms of the transitive closure A*
of some operator A A query optimizer 1s expected to



take these parameters mto account as in conventional
query optimization.

The question that arises is whether considenng all
these strategies 1s of any worth. The presence of a stra-
tegy in the space considered is justified only if there 1s
some probability that the cost of the strategy 1s the glo-
bal optimum of the cost function defined on the strategy
space. Although the relauve cost of a strategy 1s, 1n
general, database dependent, there 1s a limited number
of cases for which the suboptimahty of a strategy 1s
provable by purely syntactic means, 1e¢., independent of
the database Any strategy that can be proved to be
suboptimal, (1.e, there 1s always another strategy with
cost no higher than the cost of the first strategy), can be
removed from the considered strategy space. Clearly, 1t
18 1n one’s best interest to idenufy as many such stra-
tegies as possible so that the size of the strategy space 1s
minmmized.

Bancilhon has used the term duplicate-free stra-
tegy for strategies such that no two operators are multi-
plied with each other more than once [Banc85] He has
also proved that duplicate-free strategies are subo;
timal Using this criterion, he has shown that (1 +A)",
which corresponds to the nawve evaluation, 1s not
duplicate-free and, therefore, not cost effective
Bancilhon’s suboptimality critenion 1s extended as fol-
lows

Definition 3.1: A strategy 1s repention-free if 1t
forms each algebraic expression exactly once

Notce that a duplicate-free strategy 1s repetiion-
free also However the reverse 1s not true. For exam-
ple, producing both A (A A) and (A A)A 1n a strategy
1s not repetiion-free even though it 1s duplicate-free
Clearly, a strategy that 1s not repetition-free 1s not cost
effective since 1t includes redundant computation Iden-
tfying non-repetition-free strategies and removing them
from the strategy space considered 1s highly desirable
Theorem 3 1 provides a result in this direction.

Theorem 3.1: Consider two algebraic expres-
m
sions B and C, such that B =A" and C = YA* Con-

=1
sider a strategy that involves the multphicaon B C  If
ne{k,~k 1<;l<m} then the strategy 1s not
repetition-free

Proof: Let B = A" with n=k,~k, for some
1<y ,/<m. Muluplying B with C produces the sum of
all the powers of A of the form A"**, 1sism  For =/,
operator A"** = A¥ ™4+ = gAY gets produced, which has
already been formed before as part of C. Therefore,
muluplying B and C prohibits the strategy from being
repetiton-free

Example 3.1: Consider the following formula,
which corresponds to the naive evaluation of [Banc85]
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A=m(1+A)Y = (1+A)(1+A)

k—pae
Its mefficiency follows directly from Theorem 31
Naive evaluation 1s not repetition-free, because A 1s
multiplied with (1+A), which corresponds to the
values n=1, k,=0 and k=1 mn the statement of the
theorem.

Although there 1s a unique algebraic expression
equal to A® associated with each evaluation of A*, the
opposite does not hold. There 1s certain algonthmic
information lost when a strategy 1s *‘flattened out’’ to an
algebraic expression. In particular, whether a repeated
subexpression 1s computed only once or not cannot be
decided from the algebraic expression alone For exam-
ple, consider the expression A2+ (A2)A There 1s no
indication of whether A2 1s computed once or twice
For this reason, a strategy 1s represented by a directed
acyclic graph, whose leaves are the primiive operators
involved 1n the computation of A*, and the other nodes
are multphcations and additsions applied on their chil-
dren. In the examples that follow, the edges of the
graphs always have top to bottom direction. Nouice that
a strategy 1s, 1n general, a graph and not a tree, since the
same expression may appear 1 multiple places in A"
Unless otherwise specified, we assume that each expres-
sion 1s computed only once.

Exam?le 3.2: The graphs in Figure 3 1 represent
the states Y A* and (1+A)? respectively Also, the

k=0

algebraic expression A2+ (4%)A may correspond to
anl of the graphs in Figure 3 2, depending on whether
A*1s computed once or twice

N
ARVAY

Figure 3.1 Strategies corresponding to 1 + A + A?
and (1+A)?

*
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Figure 3.2, Two different strategies corresponding
toA2+ (AD)A.

Definition 3.2: The depth of a strategy 1s the
depth of its comresponding graph, 1e., the maximum
path-length 1n the graph,

Nouce that all the graphs corresponding to a sin-

gle algebraic expression have the same depth., Hence,
depth 1s well defined for an algebraic expression also.

Example 3.3: The algebraic expression 1+ A has
depth 1, whereas A B + C D has depth 2 (see Figure
33)

T~

————

+

+ t/ \t
1 \\A / B / D
Figure33 1+ A ofdepth 1and A B + C D of depth 2.

For the remainder of this paper, a strategy 1s identified
with 1ts graph Occasionally, if this does not cause any
confusion, the corresponding algebraic expression 1is
used.

In the following two sections, a simulated anneal-
ing algonthm for the optimization of the computation of
A" 15 described

4. OPTIMIZATION BY SIMULATED ANNEAL-
ING

Simulated annealing 1s a Monte Carlo opumiza-
tion techmque proposed by Kirkpatrick, Gelatt, and
Vecchh for complex problems that involve many
degrees of freedom [Kirk83). Such problems are
modeled by a state space, where each state corresponds
to a solution to the problem A cost is associated with
each state, and the goal 1s to find the state associated
with the globally mimmum cost. For complex problems
with very large state space, exhaustive exploraton of all
the states 1s impractical Probabilisic hill climbing
algonthms, such as simulated annealing, attempt to find
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the global mmmum by traversing only part of the state
space They move from state to state allowing both
downhill and uphill moves, 1.e , moves that reduce and
moves that increase the cost of the state respectively
The purpose of the latter kind of moves 1s to allow the
algonithm to escape from local mimima 1t may occasion-
ally encounter. For example, consider the one dimen-
sional function of Figure 4.1, States S, and §, are local
mimma, whereas §3 1s the global mmimum A proba-
bilistic hill climbing algorithm works 1n such a way that,
even if at any pomt finds itself in state S, with high
probability it chmbs up again to eventually terminate 1n
S3.

Figure 4.1 Local and global minima.

In simulated annealing the uphill moves are con-
trolled by a parameter T, the temperature The higher T
15 the higher the probability an uphill move 1s taken As
time passes, T decreases, and at the end, when the sys-
tem 1s ‘‘frozen’’ (T = (), the probability of making an
uphill move 1s neghgible. This algorithm simulates the
annealing process of growing a crystal n a fimd by
melting the flmd (high T') and then slowly decreasing T
until the crystal 1s formed At the end of the process,
the fluud 1s at 1ts lowest energy state In optimizing by
simulated annealing, the cost function plays the role of
the energy in the physical phenomenon The analogy
between the physical process of annealing and simu-
lated annealing 1s drawn 1n Table 4 1.

Annealin Simulated Annealin
Time

Temperature
Cost Function

Energy
Crystal Formation State

Table41 Analogy of Annealing and
Simulated Annealing

Simulated annealing works as follows Consider a
state space S, (A for Annealing), and a function
N,:S4 = Po(S4)", such that for a state s, Ny (s) 1s the
set of netghbors of s n S4. Also, consider a cost func-
tion ¢4 S, —» R that associates a cost with each state 1n
S, Visualizing the state space as the set of nodes in a

t For a set S,, us powerset Po(S,) s defined as follows
Po(Sa) = (T TCS,)



directed graph, N,(s) represents the edges emanating
from the state (node) s. The state space 1s assumed to
be strongly connected, 1.e, there exists a path from any
node to any other node. Algonthm 4 1 shows the basic
structure of simulated annealing

There are two major loops 1n Algonthm 41 In
the 1nner loop, the temperature T 1s kept constant as the
algonthm explores part of the state space Downhill
moves are always accepted, but uphill moves are
accepted with some probability less than 1  After some
form of equlibrium 1s reached, the temperature 1s
reduced (function reduce), and the inner loop 1s entered
again The whole process stops when the freezing point
1s reached. Each nteration of the outer loop, which 1s
done at a constant temperature, 1s called a stage

Many theoretical investigations have been per-
formed on the behavior of the simulated annealing algo-
nthm [Rome84, Rome85, Haje85] It has been shown
that, under certain conditions satisfied by the way the
next state 1s ‘‘randomly’’ chosen (step 1 1n Algonthm
4 1) and the way the temperature 1s reduced (step 2 in
Algonithm 4 1), as T approaches 0, the algonthm con-
verges to a state s, such that ¢,(s) 15 the global
minimum of ¢,. Hence, the ongmnal optimizauon goal
1s achieved

S. SIMULATED ANNEALING FOR RECUR-
SION

§.1. Algorithm Formulation

Simulated annealing has been apphied to a great
variety of opumization problems, often with substantial
success. The major field of its application seems to be
VLSI design, 1n particular standard cell placement and
global routing [Rome84, Sech86a] VLSI design had
been 1dentified as a potential apphication of simulated
annealing as early as its onginal proposal in [Kirk83]
However, simulated annealing has been applhed to other
areas also, such as pattern recogmtion [AckI8S] In

S =30
T =T
while (not_yet_frozen) do

addition, several experimental studies have been con-
ducted with simulated annealing applied to more trad:-
tional optimization problems, in particular graph parti-
tioming, graph coloring, number parttioning, and the
traveling salesman problem [Arag84]

The successful application of simulated annealing
on this great vanety of optimization problems, together
with 1ts theoretical foundation and its elegant simplicity,
has been the pnmary motivation to devise a simulated
annealing algonthm for recursive query optimization
We have used the algebraic model of Section 2 for this
purpose, any other model, however, would be equally
appropniate. Although the structure of the simulated
annealing algorithm 1s problem-independent, some
parameters of the algorithm depend on the particular
problem concerned. These are the state space S,, the
neighbor’s set for each state s 1n §4 (given by the func-
tion N, (s)), and the cost function ¢, . The definitions of
these parameters for recursive query optimzation are
given m this secton In addition, some parameters of
the algonithm are implementation-dependent (and some-
what problem-dependent also); these are specified in the
next section, which discusses the implementation of the
algorithm

o State space

Each strategy that computes A® 1s a state 1n the
state space S,. According to Section 2, a strategy 1s a
graph. Therefore, the state space 1s a graph whose
nodes are graphs Since, for any specific computation,
f}; 1s a finite operator, only finite sums of the form

Y A* are considered For example, Y A* and (1 +A)Y
k=0 k=0

are two distinct states in the state space As a continua-
tion of the discussion in Secthon 1 we want to
emphasize that esttmating N accurately 1s a very impor-
tant and dafficult problem It 1s, however, a problem
orthogonal to the development of the optimization algo-
nthm That 1s why, for the purposes of this paper, we
assume that N 1s given.

while (not_yet_in_equilibrium) do

s’ = random state in N, (s);

Ac =cs(s")-cals)

if (Ac SO)thens =5";
if (Ac > 0) then s = s* with probability e T,

T =reduce (T);
return(s);

(step 1)

R

—

(step 2)

Algonthm 4.1. Simulated Annealing



Following on the discussion in Section 3, the state
space can be enhanced according to any special proper-
hes A has, or it can be made smaller by applying
Theorem 3.1 or other similar results. Needless to say,
the state space can also be pruned down heuristically by
removing strategies that are hkely to be subopumal.
Elimmnation of states, however, has to be done with
great caution, because the reduced state space has to
remain strongly connected. Otherwise, the optimal state
may not be reachable from the initial state.

o Neighboring states

For each state seS,, the set of its neighbors
N4 (s) 15 determined by the properties of multphication
and additon within the closed seminng of the linear
relational operators. In particular, s” is a neighbor of s,
1€, s’eN,(s)), if s’ can be produced by applying one
of the following transformations to a single node in the
graph of 5.

Associativity of +: For three operators A, B, and
C.A +B)+C =A+(B +C)(seeFxgmeS 1).

/N\=/\
VANVAN

Figure 5.1. State transformation by associatvity of +.

Assoctanwity of *: For three A.B, and
C,(A*B)*C =A *(B *C)(seeFigureS.Z).

\=/\
VANAN

Figure 52 State transformation by associativity of *

Commutanvity of +: For two operators A and B,
A +B =B + A (see Figure 5.3).

N\ =\

Figure 5.3. State transformation by commutativity of +.
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Dustribunivity of * over + For three operators
A,B,and C,A(B +C)=A B +A C (see Figure 5 4)

and (B +C)A BA+CA

/\/)/\

Figure 5.4. State transformation by distributivity
of * over +.

Distrnibutivity of * over + with 1, the multiplicative
udentity: For two operators A and B,
AB+1)=AB +A 5.5)
B+DA= B A+A.

ARE
AN

Figure 5.5. State transformation by distributivity of *
over + with 1 the multiplicative 1dentity.

(see  Figure and

+

Each property 1n the definition of a closed semur-
g [Aho74] corresponds to a transformation, as out-
lined above. There are a few notable exceptions to that
Namely, there are no transformations corresponding to
the properties that 0 1s the additive identity
(A+0=0+A =A), 1 1s the muluphcative identity
(A*sl=1+A=A), 0 18 an annihilator
(A*0=0+A=0), and + 15 idempotent (A +A =A)
The first three are excluded because they create stra-
tegies that are equivalent to strategies already 1n S,
The last one 1s excluded because 1t creates strategies
(states) that are not repettion-free Its exclusion
reduces the state space size by removing states that are
known to be subopumal. For example, the state
(1+A)" 1s not considered, since the 1dempotency of +
1s not a transformation (e g (1 +A)2=1+4 +A +4?

o Cost function
Since the problem addressed 1s one of database
query opumization, the cost function ¢, 1s the cost of

applying the individual operators on the operand rela-
tions In a real system, this 1s an esumate produced with



the help of statistics kept by the system about the data-
base

Modeling the cost ¢4 of applying relational
operators on relations may be done at many levels of
detail. In this sense, the choice of the cost function ¢,
1S implementation-dependent also. Producing an accu-
rate model 1s a difficult problem, even for the case of

regular query optumization
[Wong76, Seh79,Jark84, Mack86b). Since it does not
affect the applicability or the performance of the simu-
lated annealing algonthm, our description remains gen-
eral and assumes that ¢, is given. In fact, ¢4 could be
an arbitrary cost function, completely unrelated to rela-
tional operator costs. The optimization problem would
still be well defined by the state space S, and the neigh-
bors function N4, and simulated annealing would still
be applicable.

5.2. Algorithm Implementation

We have xmplemenled simulated annealing for
the optimization of A* usmgmestatcspaceandnelgh-
bor function. The implementation was done in Franz
LISP [Wile83], under the Unix 4.3 operating system on
a VAX 11/780. LISP was chosen over C, which would
be the other obvious choice 1n our environment, because
of the graph form of the states and LISP’s ability to
manage lists (and therefore graphs) efficiently and
elegantly. The cost function c, 1s a simple model of the
1/O cost of database operations. Join (with projection)
and union are the only operations modeled. The cost of
a join 1s the product of the sizes of the two relations plus
some additional hinear terms to read the relations and
wnte the result. The cost of a union is the sum of the
sizes of the two relations to read them plus the size of
the result to write 1t out.

It has already been mentioned that there are some
parameters of the simulated annealing algorithm that are
iumplementation-dependent. These are the instial state
5¢, the mtal temperature T, the freezing criterion, the
equbbrium criterson, the way the next state 1s randomly
chosen, and the way the temperature 1s reduced from
stage to stage (the reduce routine 1n Algorithm 4.1). In
the current implementation they have been chosen as
follows*

o Initial state So

From the theoretical analysis of the simulated
anneahing algonthm, 1t has been shown that the effec-
tiveness of the algorithm in finding the global mimimum
state 1s independent of the choice of the mitial state
[Rome84, Rome85, Haje85]. Moreover, this has been
venified by many expenmental studies with simulating
annealing algonithms {Arag84, Sech86a). Since any -
tial state 1s as good as any other, we chose the state that
corresponds to the semi-nave evaluation [Banc85] as
the 1mtial state 1n our implementation For example,
assuming that only the first two powers of A are to be
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computed, that 1s 1+ A + A2, the imual state 15 shown

e /\
/ \

Figure 5.6. Imtal state to compute EA“.
k=0

o Initial temperature

Choosing the appropnate muial temperature T 15
much more crucial than choosing the imtial state. T,
has to be considerably high so that the system 1s rela-
tively “‘hot’’ 1n the beginning and allows many uphill
moves 10 be accepted. For the range of expenments
performed, the 1mtial temperature was chosen to be
twice the cost of the mtial state:

To =2 Ca (So).

The factor 2 was chosen based on the expenence of
applying simulated annealing on other domams
[Sech86b].

o Freezing criterion

There is a great variety of freezing cntena pro-
posed in the hiterature. Most of them are a combination
of tests venfyng that the system 1s at a low temperature
and that the system does not change state often, 1.e., that
1t has converged to its final state. In the current imple-
mentation, the criterion used 13 a combmation of the
ones given in [Arag84] and [Sech86a] and consists of
two parts. First, the temperature has to be below 1
(T s1); second, the value of ¢, at the final state has to be
the same for four consecutive stages.

¢ Equilibrium criterion

In all the implementations of simulated annealing
that we are aware of, every stage consists of a specific
number of iterations through the inner loop. This
number may be mdependent of the temperature of the
stage [Arag84], or it may get larger as the temperature
decreases [Sech86a). The advantage of having more
state transitions during the later stages of the execution
has been theoretically justified as well [Mitr85] We
have chosen to have a constant number of iterations
through the 1nner loop, independent of the temperature



This number 18 equal to epoch_factor *epoch, where
epoch_factor 1 an arbitrary factor (chosen to be 16 1n
our experiments), and epoch 1s the number of neighbors
of the imual solution (both the terminology and formu-
lation are from [Arag84]).

¢ Choosing the next transition

At any point in the execution, the next state 1s
chosen from the set of the curreat state’s neighbors
according to some transiion probabiity matrix R :
Sax S, —»[01}. In general, R must have some
specific stochastic properties for the algorithm to con-
verge (it has to be reversible [Haje85]). In our imple-
mentation, each neighbor of the current state has equal
probablity to be chosen as the next state. 1e.,

1
INA(s)1  of s’eN,(s)

R(ss)= 0

o Reducing the temperature T’

Many cooling schedules have been proposed for
the simulated annealing process. We distinguish two of
them. Specifically, Hajek [Haje85] proposes reducing
the temperature according to the formula

d

L= e+

In the above, k 1s the current stage number (it represents
time also), and d is some constant for which he gives a
sufficient value for the algorithm to converge to the glo-
bal mmmmum. Unfortunately, from a practical point of
view, this 1s not a desirable schedule; 1t 18 very slow.
For this reason, another schedule has been proposed that
reduces the temperature according to the formula

Toew = UToiq) Toug-

The function o takes values between 0 and 1. In
[Rome84, Sech86a] o. ranges over time (that 1s, 1t
depends on T,y,). It 1s smaller in the beginning (cooling
the system fast), then 1t nses up to higher values (slow-
ing down the cooling process), and eventually 1t
becomes small again to drive the system down to a
minimum without any uphill moves. To the contrary, 1n
[Arag84] 1t 1s suggested that a should not change, but
should remain constant at a relatively hagh value (in the
range of 0.9 to 0.95). We have experimented with both
a constant ¢=0.95 and a vanant o. modified according to
Table 5 1.

ToTS o
> T080]
4 085
8 090
oo 0.95

Table 5.1 Factor to reduce the emperature.
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5.3. Experiments with Simulated Annealing

Due to ume constramnts, we have performed a
very small number of experiments with the system. We
have usestmall examples with three and seven terms of

A’ 1e, TA*, N=3 or N=7. In all the expenments, A
k=0

was the operator corresponding to the ancestor Horn
clause:

ancestor (x,z) A father (z,y) — ancestor (x,y)

The size of father was always one page. This
represents an unfavorable situation for simulated
annealing for the following reasons:

L The state space is relatively small
e A has asimple form
e  The size of the relations are small

We have already mentioned that simulated
annealing 1s mappropnate for small state spaces due to
the overhead involved 1n the execution of the optimiza-
tion algonithm 1tself In addition, the more complex the
optimized operator the greater the vanety of plans gen-
erated, and therefore the larger the solution space 1s
Finally, with small relations one cannot expect
significant vanations 1n the cost of the various states,
and this causes problems to simulated annealing (see
Section 6),

Table 5.2 shows the results of the expenments.
e_s stands for epoch_scale. Column c,,,, gives the cost
of the semi-naive evaluation, column ¢, gives the
lowest cost state the algonthm went through, column
Cum Z1ves the cost of the state to which the algonthm
converged, and column c,, gives the actual optimum

Also, column Stages gives the total number of stages
the aigomhm needed to converge.
es | N [ To| I. | Stages | Coemu | Clow | Cim | Copr
16 | 3 | 24 | 044 | 39 12 6 6 6
16| 7|72]|063] 65 36 18 | 21 | 18
32| 7172 063] 65 36 21 | 21 | 18

Table 5 2. Experimental results

Although 1t 1s premature to draw any general conclu-
stons from such a hmited range of experiments, we can
say that the results have been encouraging For the case
with N=3, the algonthm always found the mimmum
cost state, which incidentally s the smart algonthm of
{loan86a). For the case with N=7, the algorithm did not
always find the global mmmum. It d:d, however, con-
verge to a state with a cost that was close to the global
mimmum and much smaller than the cost of the onignal
state Further expenimentation 1s defimitely needed to
venfy the general applicability of the algonthm to
recursive query optimization



6. CRITIQUE

There are a few pomts 1n the above formulation
where there 18 room for improvement. The first one 15
that, given a state s, {N,(s)l 1s small. That 1s, the
transformations described in Section 51 for changing
states give a relatively small number of neighbors to
cach state. This has the implication that the paths
between states tend to be long, and the algorithm takes
many steps to traverse them. A solution 1s to allow the
algonthm to perform many transformations at once (as a
single move), thereby putting direct transihons among
more states than now. We expect that this will reduce
the number of stages the algorithm needs to converge
sigruficantly. It 18 not obvious what the optimal number
of combined transformations 18. This 1S an 1ssue that we
plan to investigate n the future.

The solution proposed to the first problem affects
the second one also. That 1s, the cost change (Ac 1n
Algonthm 4.1) when making a transition 1s usually
small relatively to the total cost. For example, changing
the order of two jons (by applying associativity of mul-
tiplication) cannot significantly affect the total cost of
the whole computation of A", if the latter contans
many terms. Hence, even at very high temperatures the
system does not undergo drastic changes in terms of its
cost It has been experimentally venfied that a small
range of Ac 1s most of the ume disastrous for the effec-
tiveness of the algorithm [Sech86b]. Combining several
transformations mto one state transiion may give the
desired range to Ac and allow the algonithm to perform
better.

Finally, the way the next state 1s chosen 1n the
current implementation also causes problems. Many
transformations move between states with the same
cost. For example, applying commutattvity of + leaves
the cost of the state unchanged. This tends to create
several plateaux 1n the state space. The system tends to
wander n these plateaux for a long ime without making
progress, going neither downhill nor uphill. Since every
applicable transformation 1s equally likely, the majority
of the transitions are of this form, with no change 1n the
cost. The proposed solution 1s to give higher probability
to transitions that do affect the cost than to those that do
not. This has to be applied with great caution, however,
since paths to efficient states may go through several
cost-indifferent  transiions before making any
significant progress. Nevertheless, this disciminative
treatment of neighbors has been used elsewhere with
great effeciveness [Sech86a).

7. CONCLUSIONS

Simulated annealing 1s a probabilistic algorthm,
good for optimization problems that involve large solu-
uon spaces Each solution represents a state in the
search space, and each state has an associated cost. The
goal 1s to find the state with the mmmmum cost.
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We have adopted simulated annealing to perform
query opumization for complex quenes that anse 1n the
study of linear recursion The state space defimition has
been based on the algebraic structure of relational
operators. Each state represents a different algebraic
expression for the query answer. The cost of the state 1s
the total 1/O cost of the operations 1n the corresponding
algebraic expression

We have implemented a prototype of the algo-
nthm mn LISP and have performed a hmited number of
small expenments. Our mitial experience 1s that, in
general, the algonthm converges to processing stra-
tegies that are very close to the optimal. Moreover, the
tradittonal processing strategies, such as the semi-naive
evaluation, have been found to be, 1n general, subop-
timal,

The scale of the experiments performed 1s far
from complete. We mtend to expeniment with a larger
variety of operators, larger relations, and deeper recur-
sions (1e., more terms m A*). We also intend to modify
our imual design and implementation of the algonthm
according to the pomnts raised in Section 6. The man
18sues to be examined 1n this direction are the following:

. Multiple transformations per transition.

° Different transition probabilities from one state to
its neighbors.

. Special transformations according to the proper-
ties of the operators involved.
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