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Abstract

When we, humans, talk to each other we have no trouble

disambiguating what another person means, although our

statements are almost never meticulously specified down

to the very last detail. We ‘fill in the gaps’ using our

common-sense knowledge about the world. We present a

powerful mechanism that allows users of object-oriented

database systems to specify certain types of ad-hoc queries

in a manner closer to the way we pose questions to

each other. Specifically, the system accepts as input

queries with incomplete, and therefore ambiguous, path

expressions. From them, it generates queries with fully-

specified path expressions that are consistent with those

given as input and capture what the user most hkely meant

by them. Tlus is achieved by mapping the problem of path

expression disambiguation to an optimal path computation

(in the transitive closure sense) over a directed graph that

represents the schema, Our method works by exploiting

the semantics of the kinds of relationships in the schema

and requires no special knowledge about the contents of

the underlying database, 1.e., it is domain independent.

In a limited set of experiments with human subjects, the

proposed mechanism was very successful in disambiguating

incomplete path expressions.

1 INTRODUCTION

Given the question

‘What are the courses

humans have no difficulty

‘What are the courses

of

of zhe Arts department? ) ,

in interpreting it as meaning

taught by faculty

the Arts department ?‘ .

In a typical university setting, however, there are a myr-

iad of other options of courses that are associated with

the Arts department, some of them mildly plausible,

some frankly ludicrous. For example, the options
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‘ courses taken by students i.n the Arts dept ‘ ,

‘ courses taken by students taking courses

taught by faculty of the Arts dept’ ,

‘ courses taught by TAs taking courses

taught by faculty of the Arts dept’

are all vahd associations between the Arts department

and a set of courses Techrncally, the question ‘What

are the courses of the Arts department ?‘ 1s un-

derspecified, and hence has a number of possible inter-

pret ations. As humans, however, we know exactly what

the question means. In everyday life, we ‘fill in the gaps’

in the specification of the question using our common-

sense knowledge about teaching assistants, universities,

and student life with absolutely no difficulty.

Supporting user interfaces with similar functionality

in database management systems (DBMSS) has become

increasingly important in recent years for several rea-

sons, The need to expand the user base of DBMSS

much beyond its current constituency (mostly database-

literate people) requires that users can interact with

a system with as little technical knowledge as possi-

ble, possibly without even knowing the schema of the

database. Also, many current and future applications

of DBMSS, e g., scientific computing and decision sup-

port, require user interactions based on many ad-hoc

queries, instead of the more conventional invocations

of pre-compiled and stored application programs. Fi-

nally, the size of schemas continuously grows and the

complexity of the desired queries follows along, so that

remembering the database schema and writing queries

become impossible and tedious, respectively. The com-

bination of these three trends places a great demand for

ad-hoc query interfaces that accept incompletely spec-

ified queries with minimal conformance to the schema,

which are then completed by the system, benefiting both

naive and expert users.

This paper introduces a mechanism with the above

functionality for path expressions in object-oriented

(00) query languages. Incorporating the proposed

technique inside an 00DBMS will allow users to pose

queries with incomplete (and therefore ambiguous) path

expressions. In response, for each path expression, users

will be presented with a (hopefully singleton) set of

fully-specified path expressions and asked to approve

some subset of it. Each presented path expression

will be consistent with the original incomplete one

and a likely completion based on the semantics of the

relationships in it. A database query flow diagram
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enhanced with the above mechanism is shown in

Figure 1, where the path expression completion module

introduces a loop between the user and the path

expression evaluator.

USER Front
Parser

— Path ExpressIon Query
End Evaluator Evaluator

incou ?lete

path expre Sslorls Dat absse
expresa~

Completion Module

Figure 1: Flow of Queries/Path Expressions

The proposed approach is domain independent, I.e.,

it uses no knowledge on the real-world semantics of the

data in any specific database. Instead, it exploits the

semantics of the various kinds of relationships supported

by the 00 data model, and is therefore applicable on

any schema with no need for additional information.

2 DATA MODEL AND QUERY

PRIMITIVES

In this section, we describe some generic modeling and

querying primitives that are important to our work.

These appear in many semantic and 00 systems, so

the techniques developed are widely applicable.

2.1 The Data Model

Real-world entities are modeled by objects. Objects

are grouped together in classes, which capture the

objects’ common properties. The przmzttve classes of

Integers, Reals, Character Strtngs, and Booleans are

system-provided and are denoted by I, R, C, and B,

respective y. All other classes are user-defined. Binary

relationships of various kinds describe the connections

between objects in the schema classes. Schemas are

represented as directed graphs: each class is a node in

the graph (a circle for primitive classes and a rectangle

for others), and each relationship is an edge between

two nodes. Each relationship has a name, which if

unspecified, is equal to the name of its target class.

Although not necessary for the techniques developed,

in this paper, we assume that for every relationship

in a schema its inverse is present as well. Figure 2

shows a simple schema representing information about

students, professors, departments, and universities.

(For simplicity, inverse relationships are not shown.)

In presenting our methodology in this paper, we deal

with five major kinds of relationships between classes.

An I~a relationship connects a SUOCIW to a $’!JpeWa$3.

Its inverse is a May-Be relationship. The semantics are

that all objects in the subclass are also instances of

the superclass (inclusion) and that the subclass inherits

.-.
I — Has-Part——— —___ —_____

—> ls-Associated-Wih

Figure 2: A Simple Schema

all the relationships of the superclass (specialization).

The subclass may refine (redefine) these relationships

and possibly define its own additional relationships.

Multiple inheritance is allowed. Examples are student

Isa person and person May-Be student.

Likewise, a Has-Part relationship connects a super-

part class to a subpart class. Its inverse is an Is-Part-Of

relationship. The semantics are that objects of the su-

perpart class structurally contatn objects of the subpart

class. Examples are university Has-Part department and

department Is-Part-Of university.

Finally, an Is-Associated- With relationship connects

two classes whose objects are mutually related in some

form that is irrelevant to their structure. Its inverse is

an Is-A ssoctated- Wtth relationship as well. Examples

are student Is-Associated- With course and course Zs-

Associated- Wath student.

2.2 Path Expressions in Queries

2.2.1 Path Expressions

A path expression corresponds to a path in the schema

graph. It starts at a class, called the path expression

root (which cannot be a primitive class), and contin-

ues traversing relationships. For each relationship tra-

versed, the path expression contains a connector symbol

corresponding to the kind of the relationship and the

relationship name. Isaj May-Be, Has-Partj Is-Part-Of,

and Is-Associated- With relationships use the connector

symbols @>, <@, $>, <$, and ., respectively.

Path expressions are the primary mechanism in 00

query languages for specifying object relationships, and

have the following semantics. When evaluated, a path

expression results in all objects reachable from each

~kj~c+ in ~L. pa+L .xpr.==ion rod, Svrn.e BamPle ~ath

expressions in the schema of Figure 2 together with their

meaning follow:
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student .take. teacher

(teachers of courses taken by students)

student $>person. ssn

(SOC. sec. numsofpersons whoare students)

departrnent.stud ent$>person.name

(names of persons who are students of departments)

In essence, a path expression is a very simple query of

the functional form discussed in the introduction whose

answer is a set of objects related in some way with

a:lother set of objects (those in the path expression

root). The focus of this paper is on queries of this

special form, so henceforth, the term ‘query’ means

simply a path expression. The techniques we develop,

however, are easily applicable to general queries since

path expressions are a central feature of these.

2.2.2 Incomplete Path Expressions

A.s mentioned in Section 1, one would like to avoid

having to explicitly specify long path expressions. To

this end, we introduce one additional connector symbol,

- While all other connectors are matched by a single

edge in the schema graph when interpreting a path

expression, - may be matched by an arbitrarily long

path whose two ends are those specified on the two

s: des of - A path expression having at least one

instance of the - symbol is called incomplete, otherwise

it is called complete. For ease of exposition and without

loss of generality, in this paper, we concentrate on path

expressions that have only one inst ante of - and no

other connectors. The general case is treated in [17].

Consider the path expression < = s - N, where s is a

class and N is the name of at least one relationship in

the schema. A complete path expression @ on a schema

is consistent with ~ if its root is s and its last relationship

name is N. The semantics of & are that it is equivalent

ts the optimal complete path expression(s) that is

(are) consistent with <, where optimality is related to

intuitiveness and cognitive plausibility and is formally

defined in Section 3. If there are many such optimal

expressions, the user must choose one. In principle,

there is an infinite number of path expressions that

are consistent with a given incomplete one, since cycles

in schemas can be traversed multiple times. Humans,

however, do not think circularly unless a circularity is

explicitly stated [6, 8, 11]. For this reason, cyclic path

expressions are ignored when looking for the optimal

path expressions that are consistent with (.

For example, for the schema in Figure 2, the names of

all teaching-assistants (class ta for short) may be cap-

tured by the incomplete path expression ta - name

This is equivalent to both

ta@>grad@>stude nt@>person. name

ta@>in.structor@ >teacher@> employee @>person. name

which are the optimal path expressions consistent with

the given incomplete one, since both of them have the

intended meaning. Note that path expressions

ta@>grad@>student. take. student@ >person. name

(names of students taking courses with TAs)

ta@>grad@>student. take. name

(names of courses taken by TAs)

ta@>instructor@ >teacher. teach .name

(names of courses taught by TAs)

ta@>grad@>studen t.department.name

(names of departments of TAs)

also share their two ends with the incomplete path

expression above, but are obviously not as intuitive as

those denoting the names of teaching assistants.

3 PROBLEM FORMULATION

Given an incomplete path expression ~, let V denote

the set of all valid acyclic path expressions that, are

consistent with &. Our problem is to determine the

subset VOPt ~ T that contains the optimal (cognitively

most plausible) path expressions related to <. We map

this problem to an optimal path computation over a

labeled directed graph. To simplify the description

of the mapping and subsequent algorithms, without

loss of generality, we assume that path expressions are

always between classes (nodes) in a schema graph, or

equivalently that all relationships have their default

name, We begin with a brief, generic, outline of

optimal path computation problems, and then describe

the details of this mapping.

3.1 Optimal Path Computations

Much work has been done on the problem of computing

several properties that are specified over the set of paths

in a labeled directed graph [1, 4, 15, 23]. Examples

of such properties include shortest path, most reliable

path, and bill of materials. Their computation is termed

a path computation. Most path computation studies

use a path algebra formalism introduced by Carre [4].

Below, we present a version of the formalism that is

applicable to our problem.

There is a label associated with each edge and each

path in the graph. The label of a path is computed as a

function, called CON (for concatenate), of the sequence

of labels of the edges in the path. In addition, a path set

P is also associated with a label set, which is computed

as a function, called AGG (for aggregate), of the labels of

the paths in P. Informally, the CON function computes

the value of the desired property of a path, while the

AGG function selects the path(s) having optimal values

of that property. Formally, the above is achieved by

defining AGG as a unary function’ on path-label sets,

1 For most common problems, AGG is based on a total order

over the labels and therefore always returns a singleton set. Then,

it can be defined as a binary function on labels, like CON.
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and CON as a binary function on path labelsz that has

an identity denoted by @. These satisfy the following

properties (LI, Lz, L3 are labels and .C1, ,CZ, .C3 are label

sets):

1.

2.

3.

4.

Associativity of CON:

CON(LI,CON(LZ, L3))=CON(CON(L1 , LZ),L3)

‘Associativity’ of AGG:

AGG(.CI U AGG(ZZ U L3))=

AGG(AGG(LI U L2) U Ls)

Fixpoint of AGG on singletons:

AGG({LI}) = {Ll}

Identity label for CON:

CON(O, Ll) = CON(Ll, @) = LI

For example, in the shortest path problem, CON is +

over the nonnegative reals, AGG is ‘rein’, and @ is 0,

while in the most reliable path problem, CON is * over

the numbers between O and 1, AGG is ‘max’, and @ is

1. It is straightforward to verify that these satisfy the

above properties.

In principle, path computations must examine all

paths in a graph, which is very expensive and also

creates termination problems for cyclic graphs. To avoid

examining all paths and to ignore cyclic paths, existing

path computation algorithms require the following

additional two properties [1, 4, 15, 23]:

!5.

6.

@ is annihilator of AGG:

AGG (Ll U {(3}) = {~}

‘Distributivity’ of AGG over CON:

AGG({CON(_Ll, L3))CoN(L2, L3)})=

CON(AGG({LI, L2}),L3)

The problem of generating plausible completions of

incomplete path expressions can be mapped to an

optimal path computation over a labeled graph. This is

detailed in the following subsections, which explain the

graph on which the path computation is performed and

the corresponding AGG and CON functions.

3.2 The Graph

The path computation graph is the schema graph. The

label on each edge is a pair of the connector denoting the

kind of the corresponding relationship and the semantic

length of the relationship, which is a measure of how

far apart (semantically) the classes at its two ends are,

The concept of semantic length is closely related to

the notion of semantic distance between two concepts

in psychology and cognitive science. We define the

semantic length of Isa and May-Be relationships to

2By extenting our notation, we allow the arguments of CON

to be label sets as well. In that case, CON is applied on each pair

of labels from the input set(s) separately.

be O and that of the remaining relationships to be 1.

For example, ;n Figure 2, the Has-Part relationship

from department to professor (whose name is professor)

has label [$>, 1] In what follows, we use the terms

‘connector’ and ‘relationship kind’ indistinguishably.

3.3 The CON Function

Given a path, the CON function should return a label

for it that captures the meaning of the relationship

connecting the classes at its two ends and its semantic

distance. CON computes the connector in this label

based solely on the connectors of its input labels via a

binary function CONC on connectors, and computes the

semantic length separately,

3.3.1 Composing Connectors

Based on the above description, the connectors of the

labels that may appear on the edges of the graph are

all in the set X’ = {Q>, <Cl, $>, <$, .}. We

introduce a CONC function under which X’ is not

closed, i.e., the result of CONC on two members of

E’ may be a connector outside of Z’. The additional

connectors necessary are called secondary to distinguish

them from the prtmary connectors of V and represent

kinds of additional (indirect) relationships that may

hold between two classes, as discussed below.

A Shares-SubParts- Wzth (resp Shares-SuperParts-

W2th) relationship indicates that the two participating

classes are related via Has-Part (resp. Is-Part-Oj)

relationships with a third class capturing the fact that

their objects may contain (resp. be contained in)

common objects. The inverses of both relationships

are of the same kind. The Shares-SubParts- Wtth

relationship is denoted by .,9B, while the Shares-

SuperParts- With relationship by .Sp. For example,

engine Has-Part screw

}
+

screw Is-Part- Of chassis

engine Shares-SubParts- Wtth chassis,

motor Is-Part- Of assembly 1+’
assembly Has-Part shaft

motor Shares-SuperParts- With shaft.

An Is-Indirectly-Associated- Wzth relationship indi-

cates that the two participating classes are related via

some arbitrary sequence of relationships in some way

other than sharing. Such relationships capture essen-

tially a looser form of an association. They are denoted
1>

. . For example, in Figure 2,

dept Is-Associated- With student ~

student Is-Associated- With course 1
dept Is-Indirectly-Associated- Wzth course,

which essentially captures the fact that each department

(dept for short) is indirectly associated with the courses

taken by its students.

Finally, excluding Isa and May-Be, each of the

remaining primary and secondary relationships that

we have discussed has a Posstbly version. Such a
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relationship from class A to class B indicates that

objects of A may or may not be rel;ted to objects

of B. Posstbly relationships are denoted by placing

a k immediately after the connector symbol for the

corresponding plain relationship, e.g., the Posstbly-Has-

Par-t relationship is denoted by $>*. For example,

course Is-Associated-Wath teacher

teacher May-Be professor }
=+’

course Posstbly-Is-Associated- Wzth professor,

which captures the fact that a course maybe taught by

a professor, but not necessarily.

Let X“ be the set of connectors denoting the kinds

of all the secondary relationships introduced above. If

X = X’ U )2”, then we define the function CON, so that

2 is closed under CONC, The definition of CONC is

shown in Table 1, where the value of CONC(r, c) is the

table entry at row r and column c. The construction of

Input a> <c! $> <$ . SB SP . .

Q> Q?> <cl $> <$ . SB SF . .

<@ <Q <cl <$* .* SB* S.U* ..*

$> $> $>* $? SB . . SB . . ..

<$ <$ <$* .SP <$ . . . . SP . .

.* . . . . . . . . . . . .

SE .SB sB* . . SB . . . . . . . .

SP SP .$ p* SP . . . . .. . . . .

. . . . ..* . . . . . . . . . . . .

Table 1: The Function CONC

this CON. function was based on the semantics of each

relationship kind and intuitive evidence on the meaning

of their combinations [8]. For example, If A Has-Part

B and B Has-Part C, then A Has-Part C, or if D Is-

Associated- Wzth E and E May-Be F, then D Posszbly-

Is-Associated- With F. For the sake of conciseness, the

above table does not include the rows and columns for

the Posszbly connectors. The missing entries essentially

generate three more tables like the one above (one for

the case where only the first argument of CON. is a

Possibly connector, one for the case where only the

second one is, and one for the case where both of

them are). All three tables are identical and may be

derived from the one above by replacing each entry by

its Posszbly version. In other words, once any of the

arguments of CON. is a Possibly connector, the result

will alwaya be a Posmbly connector.

3.3.2 Adding Semantic Lengths

As defined in Section 3.2, the semantic length of

a path is a measure of the semantic distance of

the concepts at its two ends. In our context, the

basis for this distance is the database schema graph.

The actual length of a path is clearly different from

its semantic length. For example, a long chain

of contiguous Part-Of connectors 1s equivalent to a

single Part- Of connector; the two should have identical

semantic lengths, The semantic length that we study

is calculated based on a generalization of the above

example plus some additional considerations reflecting

cognitive plausibility. This is better understood by the

following (conceptual) path restructuring. (Below, a

maximal path with certain properties is one that cannot

be extended any further and maintain these properties.)

1. Any maximal contiguous series of one of the @>,

<@, $>, and <$ connectors is replaced by a

single edge with the same connector These are the

connectors on which CONC is idempotent.

2. In the result path of step 1, the first (or last) edge of

any maximal contiguous series of interchanged @>

and < @ connectors is removed.

The semantic length of a path is defined as the actual

length of the path generated after step 2 above 3

Note that this is consistent with the definition of

semantic length for single edges given in Section 3.2.

Further, it essentially captures that multiple @> (or

<@, $>, <$) relationships do not affect the semantic

length (step 1), and that @> and <@ relationships

contribute to the semantic length only when they are

interchanged (step 2). The . relationships contribute

their actual length. For example, the semantic length

of ‘teacher. teach .student. department$>pro fessor’ is 4,

while that of’ stuff@> employee< @teacher< @instructor

< @teachmg-asst@> grad@ >student’ is 2.

3.4 The AGG Function

Given a set of path labels, the AGG function should

return the optimal ones, i.e., those that indicate a

stronger relationship between classes. AGG compares

labels primarily on connectors and secondarily on

semantic lengths (if one of the connectors is not more

preferable than the others). We discuss the two types

of comparisons separately.

3.4.1 Primary Ordering of Labels based on

Connectors

As mentioned above, each path is associated with a

connector in ~ obtained by repeatedly applying CON.

to the ordered sequence of connectors in the path

Based on cognitive science and psychology studies of

semantic relations [5, 6, 9, 20, 27], we construct a partial

order of importance/strength of these connectors. The

partial order is named better-than, denoted by +, and

shown in Figure 3 with arrows from the worse to the

31n reality, in order for the semantic length of a path to be

computed as part of the CON function, the label of a path must

have two additional parts that contain the connectors of the first

and last edge of the path. These would not affect anything

else, but are necessary for the computation of semantic length.

Because of the simplicity of the semantic length concept and to

not overload notation, we have ignored this subtlety and have

presented labels as connector-semant{c length pairs.
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better connector. Two connectors with a nontrivial

path between them in Figure 3 are called comparable;

otherwise, they are incomparable. Note that every

connector is incomparable to itself, inverse connectors

are incomparable, and every connector IS incomparable

with its Possably version.

@> <62

ix.. ..*
Figure 3: The Partial Order + for Connectors

Clearly, there may be alternative orderings that are

also plausible. We focused our attention to the one

above because of its basis on cognitive and psychological

evidence [20, 27], and because It gave the best results

compared to other reasonable alternatives in a limited

set of experiments that we conducted.

The above partial order is used m the computation

of AGG as follows. For two labels [cl, ~1], [C2, ~z], if

c1 < C2, then AGG({[c1, ~1], [cz, ~z]}) = [cl, ~l].

3.4.2 Secondary Ordering of Labels based

on Semantic Lengths

Cognitive Science studies support that ‘[concepts with

greater semantic distance between them are considered

less plausible by humans than corresponding concepts

with a lesser semantic distance” [9]. We have captured

semantic distance by the semantzc length of a path,

Thus, for labels with connectors that are pairwise in-

comparable in <, AGG operates based on a compari-

son of their semantic length Specifically, for two labels

[cl, ~1], [CZ, ~z] such that c1 + C~ and cz # c1, if ~1 < tz,

then AGG({[c1, ~1], [C2, ~z]}) = [cl, ~l]. In the above, <

is the natural total order on integers.

3.5 Properties of AGG and CON

One may easily verify that our CON and AGG satisfy

properties 1-5 of Section 3.1:

1. CON is Associative. Thus, CON may be applied on

the labels of the edges in a path in any order.

2.

3.

4.

5.

AGG is ‘Associative’. Thusl AGG may be applied

individually on each pair of labels in a label set.

AGG leaves singleton sets unchanged,

CON has [Cl> ,0] as its identity.

AGG has [Cl> ,0] as an annihilator, Thus, cyclic

paths can be ignored as per the desired semantics.

Finally, in addition to the above, AGG and CON satisfy

the following property

7 CON is monotonic with respect to AGG, i.e., for any

two labels L1, L2,

AGG({LI,CON(LI, L2)})={LI} or

AGG({LI,CON(LI, L2)})={LI,CON(LI, L2)},

Thus, extending a path can never improve its label

with respect to AGG, so certain branch-and-bound

type of optimizations can be applied when traversing

a schema graph.

Property 7 is relevant only because we are interested in

path computations between two given points; otherwise,

it would be useless.

IJnfortunately, property 6 of Section 3.1 (’distribu-

tivity’ of AGG over CON) IS not satisfied. This im-

plies that certain techniques regarding common sub-

paths used by traditional transitive closure algorithms

cannot be applied in our case. This is further discussed

when our algorithm is presented in Section 4,

4 COMPLETION ALGORITHM

Based on the above path computation formulation,

we have developed and implemented an algorithm to

generate completions of incomplete path expressions.

The algorithm performs a depth-first traversal of the

schema graph and includes features that take advantage

of the properties of AGG and CON discussed in

Section 3.5, and also others that are beyond the

path computation formulation and address specific

characteristics of completing path expressions.

As a reference, we present below a depth-first search

algorlthm for a traditional path computation problem,

where AGG and CON satisfy properties 1-6 of Section

3.1 and also the monotonicity propert y 7 of Section 3.5.

Its input is the source and target nodes S and T and its

output (as is common in the literature) is the optimal

label(s) of paths from S to T. This may not be” the

only such algorithm, but is sufficient for our purposes.

The fact that we can use depth-first search for path

computations is due to properties 1-4. The effect of the

remainmg properties is discussed after the algorithm.

The algorithm uses local variables u, u to denote

nodes and 1., lZY to respectively denote the labels of

paths from S to z and the label of the edge (z, y), for

arbitrary nodes z, y. It also uses the following global

variables:

143



children [v]

visited [v]

best[v]

The set of children of v Each set is sorted

m the order of best-to-worst label of the

edge from ~ to help in branch-and-bound.

A flag equal to false if t) maybe (revisited

and true otherwise. It is initialized to

false for all nodes.

The set of optimal labels of paths that have

been explored from S to v. It is initialized

to 0,

The algorithm is given below in the form of the ‘traverse’

routine, which should be called initially with arguments

S and @ (identity of CON):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
(lo)
(11)
(12)

(13)

proc traverse(v,iu )

begin

visited [v] := true;

if T E children[v]

then best[T] :=

AGG({CON(lU,lU~)} U best[T]) fi

for each u E children[v]-{T} do

lU := CON(lU,lUU),

if visited [u] =false A

AGG({iu}u best[T]) # best[T] A

AGG({iU}U best[u]) # best[u]

then best[u] := AGG({lU}U best[u]),

traverse(u,lu ) fi

od

visited[v] := false

end

Algorithm 1: Depth-First Search for Traditional

Path Computation Problems

Lines (7), (8), and (9) test properties 5 (acyclicity),

7 (monotonicity), and 6 ( ‘distributivit y’), respectively.

Note that if T is a child of v, it is explored out of order

with respect to the other chddren of v so that a complete

path may be discovered as early as possible, thus

potentially blocking useless paths through the other

children. For traditional problems, e.g., shortest path,

each entry in besto will always be singleton (or empty),

because AGG is based on a total order. Other than

that, Algorithm 1 is exactly what would be necessary.

Below, we first discuss the ways in which we enhanced

this algorithm for our purposes, and then conclude with

the end result.

4.1 Non-’dktributivity’ of AGG over CON

Consider two paths between S and T that share a sub-

path from some node u to T. Assume that the first path

has been explored by ‘traverse’ and u is visited through

the second path. The ‘distributivity’ property of AGG

over CON (property 6 in Section 3 1) permits the op-

timization that the subpath from u to T is reexamined

only if the label of the second path from S to T 1s bet-

ter than or incomparable but dlstmct from the label of

the first path This is achieved by line (9) of Algorithm

1. Unfortunately, the CON and AGG functions given

in Sections 3.3 and 3.4 do not satisfy ‘dlstributlwty’ for

all inputs. Although the condition of line (9) may be

satisfied, not exploring the path from u to T a second

time 1s not always correct and plausible answers may

be lost. In order to be as efficient as possible, our algo-

rithm for path expression completion does not simply

remove line (9), but enhances it so that it only blocks

subpath exploration when this is safe. This is achieved

via the use of cautzon sets for (the connector parts of)

labels. The caution set of a label LI is the set of all

labels Lz for which Lz < LI and there exists some label

L3 such that CON(L1 ,L3) and CON(L2 .L3) are incom-

parable, i.e., that AGG({coN(~l,~3), coN(~2,~3)}) 2

CON(AGG({L1 )L2}))L3). Caution sets are used in the

following condition, which replaces the original one in

line (9):

( AGG({lU} U best[u]) # best[u] V

caution[la] o best[u] # 0] ).

4.2 Need for Path Expressions

Clearly, given an incomplete path expression, returning

simply the label(s) of the optimal consistent path

expression(s) is not satisfactory; the path expression(s)

themselves are needed. Thus, Algorithm 1 is modified

in several places to handle paths: its input includes

one more parameter that signifies the path from S to

v explored currently, a list of the currently optimal

paths from S to T is maintained, and the path to

u via v is constructed. Most important though are

changes in lines (8) and (9), the latter being orthogonal

to the one above dealing with caution sets. Before, if

lU was already in best [T] or best [u], u was not visited

again since the path label was the only interesting item.

When interested in the actual path though, u must be

reexplored in that case. Thus, line (8) and the original

part of hne (9) are respectively replaced by

lU E AGG({lU } U best[T]), and

lU ~ AGG({lU } U best[u]).

4.3 Inheritance Semantics

It is interesting to note that, with one exception, the

path computation formulation of Section 3 captures

the traditional semantics of inheritance that other

systems support. Given the expression ~ = s - iV, if

there is an Isa path from class s to a class t with a

relationship named N, that path will have the strongest
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possible label and will be accepted as a completion of

&. Similarly, multiple inheritance will result in multiple

incomparable completions, which in our scheme will

be resolved by the user. Thus, a system based on

our formulation will behave like any other system that

supports inheritance, except for one case of multiple

inheritance, where all other systems accept a standard

resolution mechanism, whereas in our case, the user

must be involved in the loop. Specifically, consider

. Isa N

A
————*-———*—————.__...___#4---.1
s ‘1 “2 “j-l “j ‘k

Figure 4: The Inheritance Semantics Criterion

Figure 4 and its two path expressions

41 = s @>m @~m . . . @% IPI N, and
$2 = s @>nl @>nz . . . @>nJ . . . @>nk 42 N,

where s is an arbitrary path expression, N and n%, 1 <

i < k, are relationship (class) names, and 41 and ~2

are arbitrary connectors except C!>. Then, based on

the traditional inheritance semantics employed by all

systems, @l should be deemed preferable to *Z, and

the root of s should inherit N from nj and not its

superclass nk. When such a case arises, path expression

Vh is said to preempt path expression 42, and the two of

them are said to satisfy the conditions of the Inheritance

Semantics Criterion. No path computation formulation

can capture this criterion in terms of CON and AGG,

because it is applicable only on full path expressions and

not on arbitrary paths. To provide the same semantics

as other systems, we enhance Algorithm 1 so that it can

deal with this special case. Specifically, when complete

paths are found (line (2)), the algorithm checks to see if

there are paths that satisfy this criterion, in which case

the appropriate preemptive action is taken.

4.4 Accepting Multiple Semantic Lengths

Our description of AGG in Section 3.4 compares

semantic lengths strictly as numbers, where even a

difference of 1 may result in rejecting paths. To

allow more flexibility in treating semantic lengths, our

algorithm uses a generalization of the original AGG

function, denoted by AGG*. Its difference is that, given

a set of labels with incomparable connectors, its output

contains all labels whose semantic lengths are among

the E lowest semantic lengths in the set, where E is a

parameter that may be varied (E z 1).

4.5 The Enhanced Algorithm

Our algorithm for completions of path expressions is

given below (Algorithm 2). It is Algorithm 1 modified

as discussed in the previous subsections, It additionally

uses the local variables pz, p$v to respectively denote

paths from S to z and the edge from x to y, for arbitrary

nodes z,y. It also uses the following global variables:

caution[i] It is the caution set of label 1.

paths It is the set of optimal paths currently

found from S to T. It is initialized to 0.

Finally, it uses a procedure ‘concat’ that concatenates

two paths, and a procedure ‘update’ that updates the

‘paths’ set when a new complete path is found that

is not worse than earlier paths and also applies the

Inheritance Semantics criterion. The algorithm is given

again in the form of the ‘traverse’ routine, which should

be called initially with arguments S, ~, and S.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(lo)
(11)

(12)

(13)

(14)

(15)

proc traverse(v,lv ,pv)

begin

visited[v] := true;

if T E children [v]

then best[T] :=

AGG* ({ CON(L ,lv~)} U best[T]);

update(paths) fi

for each u E children[v]-{T} do

lU := CON(1. ,i.~); p~ := concat(p~ ,PWJ);

if visited [u] =false A

1. c AGG* ({L } U best[T]) A

(/u E AGG*({lU } U best[u]) V

caution[/U] n best[u] # 0])
then best[u] := AGG* ({1. }U best[u]);

traverse(u,lu ,pti) fi

od

visited [v] := false

end

Algorithm 2: Depth-First Search for Path

Expression Completion

5 PRELIMINARY EXPERIMENTS

As mentioned in Section 1, the mechanism presented

in this paper should be beneficial to both naive and

knowledgeable users. In this section, we present

the results of some preliminary experiments on a

knowledgeable subject using a large, real-life, schema

in the Moose data model and path expressions in the

Fox query language [26]. These have been designed to

serve the needs of a desktop Experiment Management

System under development at the Univ. of Wisconsin -

Madison [13]. Moose includes all the relationship kinds

discussed in Section 2 plus additional ones, so the actual

experiment dealt with more complex CON and

functions that captured the additional richness.

AGG
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The goal of this experiment was to obtain some indi-

cation of the degree to which our mechanism can expe-

dite querying by schema designers and database admin-

istrators, i.e., if It can be effectively used as a shorthand

query formulation mechamsm. We first present the met-

rics of effectiveness and overall methodology that were

used in this experiment, and then the results.

5.1 Measures of Effectiveness

Let U be the set of complete path expressions meant

by a user specifying an incomplete path expression,

and S be the set of path expressions returned by

the system. U may include more than one path

expression in cases where the user consciously presents

an incomplete path expression that 1s ambiguous. These

two sets determine two important parameters of the

effectiveness of information retrieval systems, recall and

preciston [24]. Recall is defined as the proportion of

relevant answers that are retrieved, i.e., IU n Sj/]Ul.

Precision is defined as the proportion of retrieved

answers that are relevant, i.e., IU n S]/]S1. An ideal

system has recall and precision values equal to 100 ‘?ZO.

Clearly, one way of achieving a high recall rate is to

retrieve all possible answers, but that will usually imply

a very low precision rate. In general, there is an inherent

trade-off between the two parameters that shifts as the

number of answers returned by the system changes.

5.2 Experimental Methodology

We conducted the experiment on a Moose schema

that captures the structure of the input parameters to

CUPID, a large Fortran program used to simulate plant

growth [22]. This schema was designed by a scientist in

the Soil Sciences department of the Univ. of Wisconsin

- Madison, who served as the human subject of this

experiment as well. By the nature of experimental

science, path expressions between, almost any pair of

classes on that schema are perfectly reasonable for

queries. Given the large size of the schema (92 user-

defined classes and 364 relationships), the formulation

of ad-hoc queries is clearly a non-trivial task, even for

the schema designer.

The experiment was conducted as follows. The

schema designer was asked to propose ten ad-hoc in-

complete path expressions on the schema diagram. For

each of them, he specified the set U. of complete path

expression(s) that he had in mind when formulating the

incomplete one. Each incomplete path expression was

then given as input to our algorithm, which produced

the set S of path expression(s) that it derived as most

plausible. In a very small number of cases, the schema

designer thought that some path expression in S – U.

was indeed natural and equally

U., although he had overlooked

such cases, we combined these

plausible with those in

it in the beginning. In

path expressions with
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those in U. to obtain the final set U that was used for

the calculation of recall and precision.

In addition to applying the standard algorithm

on these incomplete path expressions, we also con-

ducted (manually) a second experiment that used some

domain-specific knowledge. Specifically, the schema de-

signer specified that certain classes in the schema should

never be a part of the completion of any incomplete

path expression (they were auxiliary classes connected

to a plethora of other classes but without much inherent

semantic content). This allowed us to test the poten-

tial of domain-specific knowledge in further improving

the effectiveness of the domain-independent approach

presented in this paper.

5.3 Results

The results of the experiments are shown in Figures 5

and 6. The x-axis represents the value of the E param-

eter indicating the number of lowest semantic lengths

maintained in the answer, while the y-axis represents

the average of recall and precision, respectively, over

ten incomplete path expressions. Overall, the system

performed remarkably well in terms of being able to

select the ‘correct’ path expression(s) among all those

that were consistent with a given incomplete one. In

particular, an average of over 500 acyclic path expres-

sions are consistent with each incomplete path expres-

sion, whereas on the average, only 2-3 of them are re-

turned by the algorithm when E= 1.

The average recall of the system was at 90% and

remained unaffected by changes in E. That is,

increasing S did not affect S n U (all additional path

expressions, with higher semantic length, were not

plausible) This indicates that semantic length does

indeed capture strength of relationships verifying earlier

observations [9]. On the average, 10% of all path

expressions meant by the user were not returned by the

algorithm. Most of them appeared to belong in special

cases that are unlikely to be captured by a generic

algorithm like the one presented here but would need

some domain-specific knowledge beyond the limited

forms with which we experimented.

As expected, the average precision of the system

dropped dramatically (from 100% to 55%) as E in-

creased, due to the resulting increases of S’. Remarkably,

for E=l, precision was at 100%, i.e., all path expres-

sions returned by the algorithm with the least semantic

length were indeed meant by the user. This justifies our

use of the specific CON and AGG functions, including

the choice of < and the semantic length criterion.

Figure 6 also indicates that even a small amount

of domain knowledge of the form mentioned above

can dramatically improve the precision of the system.

Many useless path expressions were blocked due to such

knowledge, so that precision dropped to only 93% as E

increased instead of 55’% Note that the type of domam
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knowledge that was used was only helpful in removing

path expressions from the algorithm’s output and not

adding ones, This is why only precision is affected while

recall remains unchanged.

We should mention that the average length of path

expressions returned as an answer by the system was

about 15. Clearly, specifying path expressions that

traverse that many relationships is not a trivial task

even for the schema designer. As the experiments

show, our system does provide a convenient and effective

shorthand mechanism to address a real problem,

5.4 Efficiency of Traversal

Given the size of the schema for CUPID, which is

realistic for many database applications, the response

time of the completion algorithm is an important issue.

Independent of the effectiveness of the algorithm in

finding the appropriate complete path expressions, a

user should not wait too long for them. In the

experiments with the CUPID schema designer, we

looked into the number of recursive calls performed

by the algorithm and their cost for each of the ten

tested incomplete path expressions. Each recursive

call corresponds to an exploration of a class node in

the schema and takes on the average 0.17 msecs on a

DecStation 5000/25 with 16M of memory.

Figure 7 plots the response time (y-axis) of the algo-

rithm for each of the ten incomplete path expressions (x-

axis), ordered in increasing processing complexity (for

present ation reasons), when E = 5. Clearly, there is a

large variance among the response times of processing

different expressions, with some of them requiring al-

most no time, and on the average requiring 6.29 sees.

Overall, however, even the most expensive expressions

can be processed in almost real-time (14.45 sees) so that

the user receives all the benefits of automatic comple-

tion without becoming impatient on the keyboard.

5.5 Summary of Results

The above experiment is by no means exhaustive. A

comprehensive study should be performed with many

schemas, users, and queries to precisely determine the

effectiveness and efficiency of the proposed techniques.

Nevertheless, the limited set of results obtained do in-

dicate that our approach has potential. In addition,

several interesting observations have been made, which

should be helpful in designing a more complete al-

gorithm, most notably that even restricted forms of

domain-specific knowledge (which are easy to incorpo-

rate in a system) are very beneficial.

6 RELATED WORK

We have not been able to find any work that has a

direct bearing on ours. There is some similarity with
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research on DBMS user-interfaces and on common-sense

reasoning, which we outline below.

6.1 Database User-Interfaces

Many user-interfaces have been proposed in the database

literature with goals similar to ours, i.e., (i) allowing

users with minimal knowledge about the schema to pose

queries on the database and (ii) helping users in spec-

ifying very long queries Natural language interfaces

hide the schema from users, while menu-driven and

schema-based graphical interfaces guide users through

the schema [2, 14, 16]. In both cases, users do not need

to know the schema and are protected from makmg

many errors when formulating queries. There are sev-

eral drawbacks to these approaches, however. In gen-

eral, natural language interfaces are far from being ro-

bust, except on very specific domains, and it is unclear

If they will ever be preferred compared to more styl-

ized languages and interfaces. Also, menu-driven and

schema-based graphical interfaces do reveal the schema

to users (which may not always be appreciated by them)

and, as a side-effect, may have problems in dealing with

very large schemas. Finally, most of the benefits of all

such interfaces are with respect to the first goal above;

for the most part, formulation of very long queries re-

mains a tedious task

Our work serves both goals above. It can be

incorporated in any of the aforementioned types of

interfaces, and in some sense tries to bridge the gap

between natural language and more formal, stylized,

interfaces. The system must reveal a small part

of the interface to users, i e , the classes and some

relationship names, but not the specific structure of the

relationships, which represents the bulk of the schema

complexity This is nothing more than what the other

approaches require as well. Further, path expressions

only need to include their two end points (and optionally

some intermediate points), thus relieving users from

tedious typing, dragging, or clicking. In principle, it is

apphcable to arbitrarily large schemas and it is domain

independent

Identifying the intended meaning of a user query is

also an Important issue in systems that provide coop-

erative query answers [7, 10, 12, 21]. In such systems,

queries are syntactically correct and the goal is to use

mostly domain-dependent knowledge to modify them so

that the resulting answer is more informative, more suc-

cinct, clardies user mlssuppositions or misconceptions,

and takes into account the user’s interests. We deal with

a very different problem, where queries are syntactically

incorrect (incomplete) and the goal is to correct them

based on domain-mdependent schema information, and

therefore the developed techniques are very different as

well.

Finally, our problem is very similar to identifying a

unique join query connecting a given set of attributes in

relational systems that operate under the universal rela-

tion model [18, 19]. A basic foundation of such systems

is the relatzonshzp uniqueness assumption, which states

that there is a umque relationship among a given set of

attributes that is implied by users when no explicit at-

tribute connections are given. (Other connections must

be explicitly specdied.) These systems make some addi-

tional assumptions on the underlying database instance

(e.g., the umversal instance assumption) and then use

various types of dependencies that are specified in the

schema to identify a unique, most natural, relationship.

In disambiguating incomplete path expressions, we es-

sentially make the relationship uniqueness assumption

as well, but none of the instance-based assumptions

(which are not always realistic). We also use seman-

tic information that is available m richer data models,

which is at a higher level than common dependencies

As a result, the developed approach is quite different

from those proposed in universal relation systems.

6.2 Common-Sense Reasoning

A significant body of work in Artificial Intelligence is

in the field of object hierarchies and common-sense

reasoning. Various attempts have been pubhshed to

formalize the mathematics of object hierarchies. Most

of them concentrate on dealing with defensible links, and

hence non-monotonic inferences [25], while others have

been concerned with approximate reasoning [3], Due to

the different emphasis (DBMS schemas do not contain

defensible links), the above work is orthogonal to ours.

Finally, there has been some work on constructing

plausible inferences from pairs of adj scent relation-

ships [8], which is similar to our notion of the CON

function. This research uses a larger set of relationships

than what Moose supports and is more oriented to var-

ious actions in English. It is only concerned with pairs

of relationships, however, and does not attempt to make

inferences on arbitrarily long series of them.

7 CONCLUSIONS

We have presented a domain-independent approach to

generating plausible completions of recomplete path ex-

pressions by mapping the problem to a path computa-

tion over the schema graph. The associated algorithm

is a modification of existing path computation algo-

rithms to deal with some peculiarities of this problem

We have also performed a very preliminary set of ex-

periments on human subjects, which indicates that the

proposed approach is both effective and efficient. The

overall methodology can be generally applied to any se-

mantically rich data model, by specifying appropriate

CON and AGG functions on the kinds of relationships

supported by the model. We should emphasize that

although we have focused on a single - connector in

path expressions, in general, our approach deals with
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an arbitrary number of them [1 i’], Given the increas-

ing demand for flexible user-interfaces by both naive

and knowledgeable users, we believe that the presented

work is a promising first step in the right direction.

Our current and future work includes several interest-

ing issues that have arisen. First, we plan to conduct a

comprehensive experiment with several human subjects,

realistic queries, and large schemas, to solidlfy the ev-

idence on the effectiveness of the presented approach.

Second, we have already demonstrated that even sim-

ple forms of database-specific knowledge, when avail-

able, can improve the results. Studying several such

forms of knowledge is also part of our plans. Moreover,

the introduction of learning techniques based on user

feedback is a promising mechanism to acquire arbitrary

domain-specific and even user-specific knowledge that

will be useful. Third, various psychological studies have

indicated that when confronted with two homonymous

concepts of widely differing sizes, humans tend to prefer

the more specific or focused concept of the two, e.g., ‘the

courses I take’ are preferred over ‘the courses offered by

my department’. We would like to investigate how such

information can be incorporated into path-labels and

used to discriminate between path expressions. Finally,

although the CON and AGG functions discussed in this

paper were chosen among ten and twenty correspond-

ing alternatives, respectively, and gave very promising

results, there is still room for further investigation of

such functions that could be superior.
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