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Many current database systems use histograms to approxi-

mate the frequency distribution of values in the attributes

of relations and based on them estimate query result sizes

and access plan costs. In choosing among the various his-

tograms, one has to balance between two conflicting goals:

optimalit y, so that generated estimates have the least error,

and practicality, so that histograms can be constructed and

maintained efficiently. In this paper, we present both theo-

retical and experimental results on several issues related to

this trade-off. Our overall conclusion is that the most ef-

fective approach is to focus on the class of histograms that

accurately maintain the frequencies of a few attribute values

and assume the uniform distribution for the rest, and choose

for each relation the histogram in that class that is optimal

for a self-join query.

1 Introduction

Query optimizers of relational database systems decide

on the most efficient access plan for a given query

based on a variety of statistics on the contents of the

database relations that the system maintains. These

statistics usually take the form of approximations of

the distributions of data values in attributes of the

relations and, hence, represent an inaccurate picture

of the actual contents of the database. Since they are

used to estimate the values of several parameters of

interest to optimizers, e.g., intermediate result sizes,

the validity of the optimizer’s decisions may be affected

[22]. Earlier work has shown that errors in query

result size estimates may increase exponentially with

the number of joins [10], which in conjunction with

the increasing complexity of queries, demonstrates the
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critical importance of good-quality estimation.

Several techniques have been proposed m the litera-

ture to estimate query result sizes, most of them con-

tained in the extensive survey by Mannino, Chu, and

Sager [16] and elsewhere [4]. Those based on sampling

primarily operate at run-time [7, 8, 15] and compute

their estimates by collecting and possibly processing

random samples of the data. Sampling is quite expen-

sive and, therefore, its practicahty is questionable, espe-

cially since it is performed mostly at run time and op-

timizers need query result size estimations frequently.

Nevertheless, it often results in highly accurate esti-

mates even in a high-update environment and avoids

storing any statistical information in the database.

The techniques that do store information in the

database may be roughly classified as parametric and

non-parametric [4, 16]. In parametric techniques,

the actual value distribution is approximated by a

parameterized mathematical distribution. Although

requiring very little overhead, this approach is typically

inaccurate because real data does not usually follow any

known distribution. Non-parametric techniques can be

further subdivided into algebratc and hwtogram-based.

In algebraic techniques, the actual value distribution

is approximated with a polynomial, and thus problems

similar to those of parametric techniques arise. A

promising algebraic technique was recently proposed

calling for adaptively approximating the distribution

by a six-degree polynomial based on query feedbacks

[1]. Its advantages are that there is very little

overhead m maintaining the necessary reformation and

that the approximation adapts well to updates. It

suffers, however, in modeling distributions with many

peak frequencies and gives inaccurate answers in data

ranges that have been queried little. Probably the

most common technique used in practice (e.g , DB2,

Informix, Ingres) is maintaining histograms, where a

histogram contains the number of tuples in a relation

for each of several subfiets (buckets) of values in an

attribute. This is simple and relatively inexpensive,

but requires effort to calculate the necessary number

of buckets and also identify the attribute values that
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should be assigned to each bucket to achieve good

estimates. Addressing some of these issues related to

histograms is the topic ofthis paper.

Although histograms are used in many systems, their

formal properties have not been studied extensively,

To the best of our knowledge, earlier work deals with

histograms in the context of single operations, primarily

selectlon. Specifically, Piatetsky-Shapiro and Connell

dealt with the effect of histograms on reducing the error

for selection queries [21]. They studied two classes of

histograms. in an egui-width histogram, the number of

attribute values associated with each bucket is the same,

in an equ~-depth (or equi-hezght) histogram, the total

number of tuples having the attribute values associated

with each bucket is the same. Their mam result showed

that eq~~i-width histograms have a much higher worst-

case and average error for a variety of selection queries

than eclui-depth histograms. Muralikrishna and DeWitt

[19] extended the above work for multidimensional

histograms that are appropriate for multi-attribute

selection clueries Several other researchers have dealt

with “variable-width” histograms for selection queries,

where the buckets are chosen based on various criteria

[13, 18, 20]. The survey by Manmno, Chu, and Sager

[16] contains various references to work in the area of

statistics on choosing the appropriate number of buckets

in a histogram for sufficient error reduction. That work

deals primarily with selections as well. Histograms

for single-join queries have been minimally studied and

then again without emphasis on optimality [2, 14, 20].

Our on-going work 1s different from all the above in

that it deals with arbitrarily large Join and selection

queries and focuses on identifying optimal or close-

to-optimal histograms. In earlier efforts [9, 11], we

studied individual tree equality-join queries for which

the result size reaches some extreme, which essentially

represent worst cases of error. Under the assumption

that the frequency distributions of the relations of such

a query can be examined collectively as a whole when

constructing histograms, we showed that optimality

for error reduction is achieved by the class of ser?al

histograms, which we introduced,

Unfortunately, there is some difficulty m applying

our earlier results in practical systems. Specifically,

given an attribute of a relatlon, the optimal (serial)

histogram for this attribute depends on the query in

which the relation partlclpates, the number of relations

in the query, and their precise contents, This has two

implications” first, to identify the optimal histogram

(and verify that we are indeed dealing with the worst-

case), the necessary information mentioned above must

be derived, which essentially requires that the query be

executed once; second, the optimalit y of a histogram for

a relation’s attribute is sensitive to changes in the query

or the contents of the other query relatlons. In addition,

although these results allow us to avoid the worst case,

that case does not always arise in practice. Finally,

even if all necessary frequency information was available

for free, construction of the optimal serial histograms is

expensive,

In this paper, motivated by the above issues, we

investigate the trade-offs between histogram optimal-

it y and practicality, First, we show that if the result

size of a query does not reach an extreme, serial his-

tograms are not necessarily optimal, thus demonstrat-

ing the sensitivity of histogram optimality to changes in

the database contents. Second, we prove that serial his-

tograms are optimal on the average when the frequency

distributions of the relations of a query are individually

available but are examined in isolation, which is the

most common situation m practice. Most importantly,

the optimal histogram on a join attribute of a cluery rela-

tion is proved to be independent of the rest of the cluery

and of the contents of the remaining cluery relations,

and is equal to the optimal histogram for the cluery that

Joins the relation with itself on that attribute. Thus,

optimal histograms can be identified independently for

each relation, which is very critical for practical systems,

Third, we study the subclass of serial histograms that

accurately maintain the frequencies of some attribute

values and assume the uniform distribution for the rest,

and compare the optimal histogram in that class to the

overall optimal (serial) histogram, We show that the

histograms in this subclass are effective in error reduc-

tion and demonstrate that the optimal such histogram

can be constructed much more efficiently than the opti-

mal serial histogram. Fourth, we provide error formulas

that can be used by the database system to advise ad-

ministrators on the number of buckets required by a

histogram for tolerable errors. Finally, we present a set

of experimental results that show how the error in query

result size estimates is affected by the compromises that

we made for practicality, i ,e., using an easy-to-construct

but suboptimal class of histograms and concentrating on

the average case. These results demonstrate the effec-

tiveness of the overall approach.

2 Problem Formulation

2.1 Matrix Definitions

An (M x N)-matrm ~ whose entries are akl, 1 ~ lc <

M, 1 < 1 < N, is denoted by ~ = (a~~). The results

in this paper hold for matrices with non-negative real

entries. For database applications, all entries will be

non-negative integers. We occasionally use the terms

horizontal vector and uertzcal vector for matrices with

Ill = 1 and N = 1, respectively.

2.2 Problem Formulation

The focus of this paper is on tree function-free equality-

join (and equality-selection) queries. We often omit
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all qualifications and simply use ‘query’. Without loss

of generality, we assume that joins between relations

are on individual attributes. For example, if &, J?l

are relation names and a, b are attributes of both, we

do not deal with queries whose qualifications contain

(Ro.a = RI .a and RO.b = RI b). Also without loss of

generality, we only deal with chain join queries, i.e., ones

whose qualification is of the generic form

Q := (Ro.al = R1.al and R1. a2 = R2. a2 and

. . . and RN–~.UN = RN.UN),

where R., . . . . RN are relations and al, . . . . UN are ap-

propriate attributes. Generalizing the results presented

in this paper to arbitrary tree queries is straightfor-

ward. The required mathematical machinery becomes

hairier (tensors must be used) but its essence remains

unchanged. Finally, it is well known that a selection

can be considered as a special case of a join. For ex-

ample, if R. is singleton and al = c is its sole tu-

ple, then Q is equivalent to a query that contains the

selection RI .al = c. In fact, a multi-tuple relation

R. can be used to represent selections of the form

(R1.al=cl cm R1.al =C2 cm . . . cw R1.al=c~).

Hence, although in the rest of the paper we only men-

tion joins, our results are applicable to queries with this

type of selections as well,

Consider the above query Q and let Dj = {dij I I s

i < Lli for some integer llj } be the (finite) domain of

attribute aj, I ~ j ~ N. (Whether Dj contains all the

potential values that could appear in aj or only those

that actually appear at some point does not affect the

results below. ) Also, for convenience, let MO = kfjv+l =

1. Note that i < k does not imply dij < dkj, i.e., the

numbering of attribute values is arbitrary and does not

reflect some natural ordering of them. The frequency

matrix ~j = (tkl ) of relation Rj, O ~ ~ ~ N, is defined as

an (~j x Mj+l )-matrix, whose entry tkl is the ~requency

of the pair < dk j, dl(j+l) > in the attributes aj, aj+l

of Rj. Note that the frequency matrices of R. and

RN are a horizontal and a vertical vector, respectively.

Occasionally, it is useful to treat all frequencies in ~j

as a collection, ignoring the attribute value with which

each frequency is associated. That collection is called

the frequency set of Rj and may contain duplicates.

Example 2.1 A common claim is that, in many

attributes in real databases, there are few domain values

with high frequencies and many with low frequencies

[3, 6]. Hence, for most examples in this paper, frequency

distributions follow the Zipf distribution [24], which has

exactly the above property. For a relation size T and

domain size Ml the frequencies generated by the Zipf

distribution m-e

l/iz
ti=T foralll<i<lM.

~:f, l/i’
(1)

Figure 1 is a graphical representation of (1) for T =

1000, A4=1OO, and z = 0,0.02, ..,0.1, where the x-

axis represents i, the rank of the attribute value with

respect to its associated frequency in descending order.

The skew of the Zipf distribution is a monotonically
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Figure 1: Zipf frequency distribution

increasing function of the z parameter, starting from

z = O, which is the uniform distribution. ❑

Abstractly, in a database system, a frequency set is

represented as a single-column table (we use the word

‘table’ not to be confused with query relations). Simi-

larly, a D-dimensional frequency matrix is represented

by a (D+ 1)-column table, with D domain columns for

the cross product of the domains of its D dimensions

and one frequency column for the frequency. We often

need to collect in one structure the frequencies of the

corresponding attribute values from all query relations,

This is achieved by applying the query joins on the do-

main columns of the tables representing the frequency

matrices, and generating a (2N+ 1)-column table with
I

all the original columns kept in the result, i.e., N do-

main columns and N+ 1 frequency columns. In a slight

misuse of terminology, we say that the result table rep-

resents the joint-frequency matrix of the query relations.

Theorem 2.1 1 The size S of the result relation of

query Q is equal to the product of the frequency

matrices of its relations:

1All results in this paper are given without proof due to lack

of space. The full details can be found elsewhere [12].



Example 2.2 Consider the following query

Q := (Rrj.al = R1.al and R1.az = Rz.aZ),

whose join attribute values have the frequencies below:

Rel Domain Frequencies

RO {V,, V2} ‘VI + 20, ‘7)2+ 15

The corresponding frequency matrices are

One can easily verify that the size of the result of Q is

equaltos = ~o&T2 = 19, 265. Some of the quintuples

in their joint-frequency matrix are < VI, UI, 20, 25, 21>,
< vl, uz,20,10,16>, and < VZ, US,15,3,5>.

As an example of a query with a selection, consider

Q’ := (Ro.al = RI.aI and (R1.uz = U1 or R1.az = w))

The size of the result of Q’ can be computed as before

but by using the transpose (i,e., vertical) vector of

( 101 ) instead of ~z, the 1’s indicating that UI and

U3 are the values selected. ❑

2.3 Histograms

Among commercial systems, maintaining histograms is

a very common approach to approximating frequency

matrices. In what follows, we discuss histograms for

two-dimensional matrices; histograms for matrices of

other dimensions are defined similarly. In a histogram

on attributes aj, aj+l of relation Rj, O < j’ < N, the

set Dj x Dj+l is partitioned into buckets, and a uniform

distribution is assumed within each bucket. That is,

for any bucket b in the histogram, if < dkj, di(j+l) >C

b then tkl is approximated by the integer closest to

L%,%,+,) E
> ~ t~n / \bl. The approximate frequency

matrix captured by a histogram is called a hzstogram

matrix. This is typically stored in some compact form in

the catalogs of the database system, and the optimizer

uses the average frequency corresponding to a bucket

to approximate the frequencies of all domain values

belonging to it. A histogram whose matrix has all its

entries equal is called trwial and corresponds to making

the uniform distribution assumption. Note that any

arbitrary subset of ‘Dj x Dj+l may form a bucket, e.g.,

bucket {< dlj, dq(j+lj >,< d7j, dztj+l) >}. Whenever

no confusion arises, we may describe a histogram as

placing not combinations of domain values in its buckets

but frequencies.

After any update to a relation, the corresponding his-

togram matrix may need to be updated as well. Oth-

erwise, delaying the propagation of database updates

to the histogram may introduce additional errors, Ap-

propriate schedules of database update propagation to

histograms are an issue that is beyond the scope of this

paper. Moreover, any proposals in that direction do

not affect the results presented here, so this issue is not

discussed any further.

Example 2.3 To illustrate the above definition of

histograms, consider the following relation schema:

WorksFor( ename, dname, year). The attributes in it alics

form the key to the relation, and represent employee and

department names such that the employee is working

in the department. The ‘year’ attribute represents the

year the employee started working at the department.

We focus on the combination of ‘dname’ and ‘year’

attributes, and assume for simplicity that there are four

different departments (toy, jewelry, shoe, and candy)

and five different years (1990 through 1994). The

frequency matrix of the relation is shown in Figure 2(a),

where ‘dname’ is used for the rows and ‘year’ is used for

the columns of the matrix, and the corresponding values

are arranged in the order specified above. An example

histogram matrix with two buckets 1s shown in Figures

2(b) and 2(c). In the former, we show the original

matrix with an indication of which attribute value pairs

(or equivalently, frequencies) are placed in which bucket.

In the latter, we show the actual histogram matrix that

is the result of averaging the frequencies in each bucket.

Another example histogram matrix with two buckets is

shown in Figures 2(d) and 2(e), again depicted in the

two ways discussed for the first histogram. ❑

We now define a very important class of histograms.

Definition 2.1 Consider relation Rj, O ~ j < N,

with a frequency matrix ~j, A histogram for relation

Rj is serzal, if for all pairs of buckets bl, bz, either

~ < dkj, dl(j+l) >= h, < d~j, d~(j+l) >6 bz, the

inequality tkl > tmn holds, or ~ < dkj, dl(j+l) >E bl, <

dmj, dn(j+l) >G b2, the inequality tkl< tmn holds.

Note that the buckets of a serial histogram group

frequencies that are close to each other with no

interleaving. For example, the histogram of Figures

2(d)-(e) is serial, while that of Figures 2(b)-(c) is not.

A histogram bucket whose domain values are associ-

ated with equal frequencies is called univalued. Other-

wise, it is called multzwalued. Univalued buckets char-

acterize the following important classes of histograms,

Definition 2.2 A histogram with f? – 1 univalued

buckets and one multivalued bucket is called bzased. If

the univalued buckets correspond to the domain values
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Figure 2: Frequency matrix and two histogram matrices on WorksFor.

with the /?l highest and the ~z lowest frequencies, where

,B – 1 = @l + /32, then it is called end-biased.

Note that end-biased histograms are serial.

2.4 Histogram Optimality

The accuracy of estimates of query result sizes obtained

through histograms depends heavily on how the domain

values of the attribute(s) concerned have been grouped

into buckets [11, 21]. Ideally, for any given query and

database, one would always like to use the histograms

on the join attribute(s) of each relation that return the

closest approximation to the result size of the specific

query applied on the specific database. Several practical

considerations, however, make this ideal unachievable.

First, taking into account the precise contents of

the database is usually very expensive and results in

histograms that are very sensitive to database changes.

Therefore, it is important to use restricted forms of

information about the database contents and obtain a

histogram that is best on the average, for all possible

database contents that are consistent with the available

information. Our study deals with histogram optimality

when the joint-frequency matrix of all query relations is

known (full knowledge) and when only their frequency

sets are known (which we consider to be the minimum

required knowledge and is easily obtained in practice).

Second, taking into account the query in which

relations participate results in histograms that may be

very poor for other queries. Our study does focus on

individual queries but presents results that show that,

when only frequency sets are known, the best histogram

is independent of the query.

Third, in all cases, identifying the optimal histograms

requires algorithms that are exponential in cost. More-

over, efficient access to arbitrary histograms requires

advanced data structures, which incur nontrivial space

and maintenance overhead. Therefore, it is crucial to

identify not the best overall histogram but the best one

within a restricted but more efficient class. Our study

deals with both arbitrary and biased histograms, since

the latter have much lower construction and mainte-

nance overhead.

The following section deals with histogram optimal-

ity under various amounts of available information, ad-

dressing the first two issues above, The subsequent

section deals with differences in histogram construction

and maintenance cost, addressing the third issue above,

3 Histogram Optimality under

Varying Knowledge

3.1 Knowledge of Joint-Frequency Matrix

When the joint-frequency matrix of all query relations

is available, optimal histograms are defined as follows.

Definition 3.1 Consider a query Q on relations Rj, O ~

j ~ N, whose result size is S, as determined by the

frequency matrices of the relations. For each relation

RJ, let %!j be a collection of histograms of interest. The

(iV+l)-tuple < l?fj >, where Hj G ?fj, O ~ j < N, is op-

tzmal for Q within < ?fj >, if it minimizes IS–S’ [, where

S’ is the approximate query result size determined by

any such histogram tuple.

Note that optimality is defined per query and per

collection of frequency matrices, and for the histograms

of all relations together.

In our previous work [9, 11], we mostly concentrated

on the case where the joint-frequency matrix of the

query relations is known, and dealt with histogram

optimality when the query result size reaches some

extreme. Below, we summarize the main results that

we have obtained earlier for the case where that size IS

maximized, because they are important for the results

presented in this paper. We then provide some new

insights for the general (non-extreme) case.

We have investigated histogram optimality within the

class of general histograms ‘H, and used tie to refer

to its subclass that contains only histograms with ~

buckets. Using results from the mathematical theory
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of majorization [17] and extending them to matrices

of arbitrary dimension, we have derived the following

general theorem, which establishes the importance of

serial histograms.

Theorem 3.1 [9] Consider a query Q on relations Rj,

O ~ j ~ N, and let Bj be their frequency sets,

Assume that, for each O ~ j ~ N, the elements of Bj

are arranged in the frequency matrix ~j so that the

result size of Q is maximized. Consider an (N -I- l)-

tuple of histogram sizes < ,Bj >. There exists an

optimal histogram tuple for Q within < ?-LP, > where

all histograms in it are serial,

Corollary 3.1 For the query in the above theorem, the

optimal biased histogram for any relation is end-biased,

Histograms are usualIy constructed in such a way

that each bucket stores attribute values that belong in a

certain range in the natural total order of the attribute

domain. The import ant implication of Theorem 3.1 is

that this traditional approach may be far from optimal.

(Examples are shown m Section 5.) Histograms should

be constructed so that attribute values are grouped

in buckets based on proximity m their corresponding

frequencies (serial histograms) and not in their actual

values, This is a significant difference, since the two

orderings may be completely unrelated.

Identifying which of the many serial histograms is

optimal in each case is not straightforward, Here we

focus on 2-way join queries where a relation is joined

with itself (self-joins), which is a case where the query

result size is maximized [17]. For a self-join, the optimal

histogram is the same for both instances of the joined

relation [11] and may be identified by exhaustively

looking at all possible bucketizations of the relation’s

frequencies and choosing the one minimizing the error,

Before presenting the necessary size and error formu-

las, we introduce some notation regarding a serial his-

togram:

b% The i-th bucket in the histogram, 1 ~ i ~ ~

(numbering 1s in no particular order).

Tj The sum of the frequencies in bucket b,.

Pi The number of frequencies in bucket b,

w The variance of the frequencies in bucket bi

Proposition 3.1 Consider a query Q joining a relation

R with itself The approximate size of Q corresponding

to a serial histogram of R with /3 buckets is equal to

while the error in the approximation is equal to

(3)

Since biased histograms are serial, the above formu-

las apply to them as well. In addition to its usefulness

in algorithms identifying optimal serial and end-biased

histograms, the above proposition has other applica-

tions also. By applying the error formula to histograms

of various numbers of bucketsj administrators can de-

termine the minimum number of buckets required for

tolerable errors. For example, when applied to distribu-

tions that are close to uniform, the value returned will

be close to zero independent of the number of buck-

ets, which would indicate that one or two buckets will

suffice. Also, the above proposition provides some in-

tuition to Theorem 3.1 and to why serial histograms

are optimal. Intuitively, serial histograms group simi-

lar frequencies together, thereby reducing the variances

IL of frequencies in the buckets. Based on the formula

for S – S’ above, this essentially reduces the estimation

error.

Theorem 3.1 is inapplicable to arbitrary non-extreme

cases, and in fact, any formal results are unlikely to

exist in general. Nevertheless, given the frequency

sets of two relations, for most corresponding frequency

matrices (i.e., arrangements of the frequency sets), the

associated optimal histograms do turn out to be serial

We have experimented with various Zipf distributions

and biased histograms for the relations of a 2-way

join query. In approximately 90% of all arrangements,

the optimal histogram pair places the frequencies of

the same domain values in the univalued buckets and

has at least one of the two histograms be end-biased

(i.e., serial). Also, in about 20% of all arrangements,

both histograms are end-biased. The insights gained

from the above results and experimental evidence have

guided some of the work that is presented in the next

subsection, where less information about the database

contents is assumed.

3.2 Knowledge of Frequency Sets Alone

In this subsection, we investigate histogram optimality

when the frequency matrices of individual relations of

a query are available but their joint-frequency matrix

is not, i.e., when essentially only the frequency sets are

known. This is the typical scenario in real systems,

where statistics are collected independently for each

relation, wit bout any cross references. Using this

knowledge, the goal is to identify optimal histograms

for the average case, i.e., taking into account all possible

permutations of the frequency sets of the query relations

over their corresponding join domains.
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We first introduce some formal notation. Assume

that for each relation R], O < j ~ N, in query Q, its

frequency set B] together with a partitioning of Bj into

buckets are given. Let B; be the approximate frequency

set generated from Bj by replacing each frequency by

the average of the frequencies that belong to the same

bucket in the given partitioning. For each relation

RJ, O ~ j ~ N, consider all possible arrangements of

the elements of Bj in the frequency matrix ~j that

respect any functional dependencies that may hold in

R,, O < j < N, and the same arrangements of the

corresponding elements of B;. Each combination of

arrangements m all matrices corresponds to a value for

the actual cluery result, size S and its approximation S’.

One coLdcl define optimal histograms as those that

minimize the expected value of the difference S – S’,

denoted by 17[S – S’]. Unfortunately, the following

theorem from our earlier work shows that all histograms

are equivalent in that respect.

Theorem 3.2 [9] Consider a query Q on relations Rj,

O < j < N, and an (N+ 1)-vector < Bj > of frequency

sets together with partitionings of them. If 13[S – S’] is

defined as above, then E[S - S’] = O

Note that Theorem 3.2 deals with arbitrary histograms,

not only serial ones. It implies that all histograms are

accurate in their approximation of the expected value

of the query result size. Hence, this quantity cannot be

used to define optimal histograms.

We define optimal histograms as those that minimize

the expected value of the square of the difference S – S’,

denoted by E[(S – S’) 2]. To distinguish that form of

optimalit y from the one of Definition 3.1, we use the

term u-optzmal. Note that, since 13[S – S’] = O, this

error measure 17[(S– S’ )‘] is also the variance of (S– S’)

(the reason for the prefix w in v-optimal). Hence, v-

optimal histograms could have been defined as those

that minimize the variance of the difference between

the actual and approximate sizes.

Definition 3.2 Consider a query Q on relations Rj, O <

j ~ N, whose corresponding frequency sets are Bj, O ~

j ~ N. For each relation Rj, let ?ij be a collection

of histograms of interest. The (N + 1)-tuple < Hj >,

where Hj E ?ij, O ~ j s N, is u-optimal for Q within

< ?tj >, if it minimizes E[(S – S’)2].

Note that, as in the case where the query result size

is maximized, optimality is defined per query and per

collection of frequency sets, and for the histograms of

all relations together. The following general theorem

identifies the v-optimal histogram for any query

Theorem 3.3 Consider a cluery Q on relations Rj,

O ~ j s N, and let Bj, O s j s N, be their frequency

sets. Consider an (N + 1)-tuple of histogram sizes

< Pj >. Let .Hj, O < j ~ N, be the optimal histogram

within X09 for joining RI with itself on its attributes

that are part of Q. Then, the histogram tuple < HJ >

is v-optimal for Q within < ?tp, >.

There are several important implications of Theorem

3.3.

1,

2.

3.

The 2-way join of Rj, O < j < N, with itself

represents a case where the joint-frequency vector

of the two joined relations is known and the query

result size is maximized (self-join). Therefore, by

Theorem 3.1, the v-optimal histograms are serial.

The v-optimal (serial) histogram for Rj, O ~ j < N,

is independent of the query and of the contents (i.e.,

the frequency set) of any other relation. It can,

therefore, be identified by focusing on the frequency

set of the relation alone. It will be v-optimal for any

query where Rj is joined on the same attribute(s)

with any relation of any contents.

Proposition 3.1 can be applied to precisely identify

the v-optimal (serial) histogram of a relation.

Theorem 3.3 is a significant step towards practical

histograms. It shows that v-optimality is a local

property of each relation and can be obtained by looking

into the individual frequency sets alone.

3.3 Comparison of Information Collection

costs

In the previous subsections, we have examined his-

togram optimality under two different amounts of avail-

able information. We now compare the costs incurred

when obtaining this information.

For a given query Q joining relatlons RO and RI on

attribute al, the joint-frequency matrix can be obtained

by Algorithm JointMatrix below. (The algorithm can

be easily extended for more joins; it is only presented

here for a 2-way join for simplicity.)

Construction (JointMatriz): First, the frequencies

of the domain values of attribute al in R. and RI are

computed. This can be achieved in a single scan of

each relation using a hash table to access the frequency

counter corresponding to each data value. Next, these

two lists of <attribute, frequency> pairs are joined on

the attribute value to give the joint-frequency matrix.

This algorlthm is quite expensive because of the join

operation. The problem is simpler when we want to

obtain the the frequency sets alone, which are given

by JointMatrix immediately before the join step. The

simpler algorithm is called Matrix and will be very

efficient if an index exists on the attribute(s) of interest.

Otherwise, even Matrix may become quite expensive,

especially when the number of different values in the

attributes of interest is very high, which is particularly

possible when collecting statistics for multiple attributes

of a relation. In that case, there may not be sufficient
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space for the frequency tables in primary memory, which

would force some disk 1/0s. Nevertheless since statistics

collection 1s an infrequent operation, this is usually

acceptable We later discuss some efficient heurlstlc

algorithms that are effective for certain common cases

and require very little working space,

4 Construction and Storage

Efficiency of Optimal Histograms

The results in the previous section addressed two of the

three Issues raised in Section 2.4 regarding the practical-

ity of histograms. First, optimal histograms have been

Identified when only knowledge of frequency sets is avail-

able, and second, these histograms have been shown

to be query independent. In this section, we address

the last issue, dealing with the efficiency of construc-

tion and maintenance of histograms in various classes.

Specifically, as suggested by the analysis of the prevl-

ous section, we focus on the v-optimal serial and end-

biased histograms and demonstrate that very efficient

techniques exist for the latter while deahng with gen-

eral serial histograms is very costly. Algorithm Matrix,

which computes the individual frequency matrices of a

query’s relatlons, is in general a necessary first step m

constructing any histogram, and is therefore ignored in

the histogram comparison.

4.1 Serial Histograms

Construction (V- OptHist): In conjunction with Propo-

sition 3.1, Theorem 3.3 leads to the following algorithm

V-OptHist for identifying the v-optimal histogram with

/3 buckets of relation R with a given frequency set B:

B is sorted and then partitioned into ~ contiguous sets

in all possible ways. Each partitioning corresponds to

a umque serial histogram with the contiguous sets as

Its buckets, The error corresponding to each histogram

1s computed using formula (3), and the histogram with

the mmimum error is returned as optimal.

Theorem 4.1 Given the frequency set B of a relatlon

R and an integer ~ >1, Algorithm V-OptHlst finds the

(serial) histogram that is v-optimal within ‘HP for any

query of R. If the cardinality of B is M, the algorithm

runs in O(MlogM + (M – 1)~–1) time.

Storage and Maintenance: Since there is usually no

order-correlation between attribute values and their

frequencies, for each bucket in the histogram, we need

to store the average of all frequencies in it and a

list of the attribute values mapped to the bucket.

Efficient accessing of this information requires a multi-

dimensional index, something too expensive for a

catalog structure.

In storing a general serial histogram, one may

save some space by

associated with its

not storing the attribute values

largest bucket and only storing

them approximate frequency m a special form. Not

finding a valid attribute value among those exphcitly

stored imphes that lt belongs to the missmg bucket

and has that special frequency. Clearly, the larger

that bucket is, the more space-efficient and realistic

a hm.togram becomes. As an extreme case, consider

a l-bucket histogram (uniform approximation), where

only the average of all frequencies is stored but not the

attributes values, since all of them are associated with

that average. As will be discussed below, end-biased

histograms are another realistic special case.

4.2 End-biased histograms

As demonstrated above, except for very small domain

sizes, there are two major probIems with general serial

histograms: the exponential complexity of Algorithm

V-OptHist and the storage overhead. Because of these,

we turn our attention to biased histograms, which suffer

from no such problem.

Construction (V- OptBiasHist): Since the serial

biased histograms are end-biased, Theorem 3.3 implies

that the v-optimal biased histogram for a rel atlon R is

end-biased and is the same histogram that is optimal for

joining R with itself. The algorithm V-OptBiasH1st to

identify the v-optimal end-biased histogram is similar

to V-OptHist, but simply enumerates all the end-biased

histograms instead of all serial histograms. Fortunately,

the number of end-biased histograms is less than the

number of frequencies (M). They can be efficiently

generated by using a heap tree to pick the highest

and lowest ~ – 1 frequencies and enumerating the

combinations of highest and lowest frequencies placed

in univalued buckets. Since the univalued buckets have

zero variance, the v-optimal end-biased histogram is the

one whose multivalued bucket has the least variance

(formula (3)).

Theorem 4.2 Given the frequency set B of a relatlon

R and an integer ~ >1, Algorithm V- OptBiasHist finds

the v-optimal end-biased histogram with ~ buckets for

any query of R. If the cardinality of B 1s M, then the

algorithm runs in O(M + (~ – l)loglvf) time.

Theorem 4.2 shows that the optimal end-biased

histogram may be found very efficiently, in time that

is almost hnear. The difference with the algorithm for

finding the optimal serial histogram is significant.

Certainly the cost of V-OptBiasHist 1s much less

than the cost of Matrix, which constructs the frequency

set of a relation. As mentioned above, Matrix may

need to perform some disk 1/0s when there are many

distinct attribute values. The two algorithms may be

combmed in an efficient alternative when only high

frequencies are picked for univalued buckets in the end-

biased histogram, In

to identify the /? – 1

that case, sampling can be used

highest frequencies, which is an
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extremely fast operation, recluiring constant amount

of very small space. Something similar is done in

DB2/MVS in order to identify the 10 highest frequencies

in each attribute, which it maintains in its catalogs [23],

This approach will not work when the distribution has

relatively many high frequencies and few small ones, in

which case low frequencies will be chosen for univalued

buckets, because there is no known efficient technique

to identify the lowest frequencies m a distribution. Such

distributions, however, are quite rare in practice (they

are, m some sense, the reverse of Zipf distributions), so

we expect that most often the efficient combination of

V-OptBiasHist and Matrix would be applicable.

Storage and Maintenance: As mentioned above,

end-biased histograms are a special case of serial

histograms that require little storage, since most of

the attribute values belong in a single bucket and do

not have to be stored explicitly In addition, since

the number of univalued buckets (~-l) tends to be

quite small in practice (< 20), binary or sequential

search of the buckets will be sufficient to access the

information efficiently. Note that many commercial

database systems already contain catalogs intended to

store similar statistics, e.g., the SYSIBM. SYSCOLDIST

and SYSIBM. SYSCOLUI’!NS catalogs of DB2 [5].

4.3 Comparison of Histogram Construction

costs

Ignoring the cost of obtaining the frequencies of the at-

tribute values (algorithm Matrix), the cost of histogram

construction depends on the number of distinct values in

the histogram attribute(s) and the number of desirable

buckets. The following table illustrates the difference in

construction cost between general serial and end-biased

histograms (Theorems 4.1 and 4.2) by presenting actual

timings collected from running algorithms V-OptHist

and V-OptBiasHist on a DEC ALPHA machine, for

varying cardinalities of frequency sets and numbers of

buckets. For end-biased histograms, the numbers pre-

sented are for /3 = 10 buckets, and are very similar to

what was observed for ~ ranging between 3 and 200.

In contrast, for the serial histograms, the times increase

drastically for a small increase in buckets from 3 to 5

and similarly for increases in the number of attribute

values, Thus, the results presented are rather limited,

but we believe they are sufficient to convey the construc-

tion cost difference between histograms.

5 Effectiveness of Practical

Histograms

Given a relation R and a (possibly singleton) set

of its attributes A, let the affordable htstogram with

/3 buckets for A of R be the end-biased histogram

with ~ buckets that is v-optimal, i e., optimal for

Number of

attribute values

100

1000

100K

lM

Time taken (see)

Serial End-biased

/3=3 p=5 /3=10

0.18 128.60 0.00

156.70 0.01

010

1.80

Table 1 Construction cost for optimal general serial

and end-biased histograms

a self-join of R on A. The cumulative outcome of

the previous two sectlous has been that affordable

histograms are flexible (i.e., they work well on the

average) and can be efficiently obtained m practice.

Clearly, the price paid for this flexibility and efficiency is

that affordable histograms are, in general, suboptimal.

In this section, we investigate the magnitude of that

price and present several experimental results that

illustrate the effectiveness of affordable histograms in

most real-life cases. Specifically, we first compare

various types of histograms on self-join queries (which

are important with respect to v-optimality) and study

how errors are affected as different parameters vary (/7,

A4, frequency distribution skew). We then compare the

errors generated by the v-optimal end-biased and serial

histograms for various queries on relations of different

frequency distributions, thus investigating the effect of

using reduced information (i.e., frequency sets).

We use five types of histograms: trivial, optimal

serial, optimal end-biased, equi-width and equi-depth

histograms, with the number of buckets /3 ranging from

1 to 30. In most experiments, the frequency sets

of all relations follow the Zipf distribution, since it

presumably reflects reality [3, 6, 24]. Its z parameter

takes values in the range [0.01 – 3.0], which allows

experimentation with varying degrees of skewness. The

size ill of the join domains ranges from 10 to 100.

5.1 Effect of Histograms Type

In this subsection, we compare the error generated by

the five types of histograms mentioned above for self-

joins, due to the importance of these clueries for v-

optimality. To correctly model the eclui-depth and equi-

width histograms, we assume no correlation between the

natural ordering of the domain values and the ordering

of their frequencies.

5.1.1 Synthetic Data

As mentioned above, the three parameters of interest

are /3, ill, and z. The relation size (parameter T

in (1)) has provably no effect on any result and was

chosen arbitrarily to be 1000 tuples. Each one of
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Figures 3, 4, and 5 shows the standard deviation of

the error (a = ~E[(S – S’)2], based on which v-

optirnality is essentially defined) generated by the five

types of histograms as a function of one of these

parameters while keeping the others constant. In

almost all cases, the histograms can be ranked in the

following order from lowest to highest error: optimal

serial, optimal end-biased, equi-depth, equi-width, and

trivial (uniformity assumption). (For the comparison of

equi-depth with equi-width, we essentially verified the

findings of Platetsky-Shapiro and Connell [21].) The

error of the optimal end-biased histogram is usually less

than twice the error of the optimal serial histogram

and much less than half the error of the equi-depth

histogram. Hence, using serial histograms (the optimal

serial or the optimal end-biased histogram) is crucial.

Interestingly, the equi-width and the trivial histograms

are almost always identical, the reason being that

the association of domain values and frequencies was

random and had no implication on their respective

orderings

In Figure 3, ~ is varied, while Nl = 100 and z =

1.0. The optimal serial histogram is not shown for

more that ~3 = 5 buckets, because of the exponential

time complexlt y of Algorithm V-OptHist. One can

notice that, although the optimal serial and end-biased

histograms always improve with additional buckets, the

equi-width and especially the equi-depth histograms

have nonrnonotonic behavior. Although decreasing

overall, the equl-depth histogram is quite unpredictable

with many instances of increased errors for increased

/?. The trivial histogram is unaffected, since it always

has a single bucket, and the equi-width histogram has

very similar behavior as well. For the optimal serial

and end-biased histograms, the improvement is more

dramatic in the range of small number of buckets, while

after a point additional buckets have httle effect. From

a practical standpoint, this 1s important since it implies

that a small number of univalued buckets is enough to

bring down the error to very low levels.

In Figure 4, &l is varied, while @ = 5 and z = 1.0. As

expected, for a few values of&f beyond Al = 5, the error

increases, since five buckets are not enough to accurately

capture the distribution. Nevertheless, because the re-

lation size remains always constant, as the domain size

increases, the frequency distribution becomes increa-

singly more similar to uniform. Therefore, beyond a cer-

tain point the same number of buckets becomes more

effective and the error decreases for all histograms.

In Figure 5, z is varied, while /3 = 5 and M = 100

The histograms are partitioned in two categories based

on two very distinct behaviors. The eqtli-width and

trivial histograms behave very poorly as the skew m

the frequency distribution (or equivalently z) increases

and fall quickly out of the chart. For the other three

histograms, the diagram presents a maximum: beyond

a cert am value of z, further increases reduce the error.

The reason is that all these histograms are essentially

frequency-based. For high values of skew, there are few

frequencies that are very high and, therefore, end L~p

m univalued buckets, while the rest of the frequencies

are very low and end up in a single multivalued bucket

that generates a small error. Thus, as low skew is easy

to handle because the choice of buckets is unimportant,

similarly high skew is easy to handle because the choice

of buckets is easy.

5.1.2 Real-life Data

We have also conducted experiments using frecluency

sets from a real-life database (performance measures

of NBA players). Due to space limitations, we do

not present the results of these experiments. Overall,

however, these verified what was observed for the Zipf

distribution, despite the wide variety of distributions

exhibited by the data.

5.2 Effect of Amount of Available

Information

Based on Theorem 3.3, the amount of avadable informa-

tion used in histogram construction touches upon two

of the issues raised in Section 2.4: use of joint-frequency

matrices vs. frequency sets and use of individual queries

vs. self-joins. The trade-offs that these issues introduce

are exammed m this section. We study arbitrary join

clueries on relations with different frequency sets.

In this experiment, we take the average of the results

obtained for several permutations of the frecluency sets

of the relations involved. Since our goal is to study how

affordable histograms behave in general, the y-axis of

the graphs represents the mean relative error over all

permutations, defined as EIIS–S’1/S].

Specifically, the frequency sets of all relations follow

the Zipf distribution, but J takes values in {0.0, 0.1,0.25,

0.5,0 .75,1.0)1.5,2.0,2.5,3.0}. In addition, ill = 10

for the two end relations of a query (which need one-

dimensional matrices), but ~ = 100 for the remain-

ing relations (which need (10 x 10) two-dimensional ma-

trices). Three separate experiments are run for three

classes of queries: low skew clueries (where z M randomly

chosen for each relation from the set {0.0, . . . . 0.75}),

mixed skew queries (where z IS randomly chosen among

all possible values), and high Skew querl= (where s 1S

randomly chosen from the set {1 .0, . . . . 3.0}). For each

class of queries and each number of joins, average errors

are obtained over twenty permutations of the frecluency

sets generated. Given the size of domain of most re-

lations, this experiment does not include any actually

optimal histogram, but only compares the errors gen-

erated by the trivial, v-optimal serial, and v-optimal

end-biased histograms with varying numbers of buck-

ets. The errors generated in this experiment are shown
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two main conclusions that may be drawn from these

figures. First, as expected, the errors increase with the

number of joins and decrease with the number of buck-

ets. Interestingly, even with a small number of buck-

ets (,/3 = 5), the errors drop significantly to a tolerable

level. Second, the v-optimal serial histograms is not al-

ways end-biased in the general case. Nevertheless, their

average difference appears to be relatively small, and in

fact the v-optimal serial histogram 1s sometimes worse

than the end-biased histogram for arbitrary clueries, as

observed in mixed skew queries of five joins for two and

three buckets. This implies again that, for most general

clueries, concentrating on end-biased histogram does not

sacrifice much in the accuracy of the estimation.

6 Conclusions

Maintaining histograms to approximate frequency dis-

tributions in relations is a common technique used by

database systems to limit the errors in the estimates of

query optimizers. In this paper, we have examined the

trade-offs between optimal histograms and histograms

that can be obtained in practice, A major result of our

study is that, if no information on joint-frequency ma-

trices is available, one can decide on the histogram of

each relation independently. The histogram that is op-

timal for the join of a relation with itself is optimal on

the average for any query with any other relations with

arbitrary contents. Another conclusion of our study is

that end-biased histograms can be much more efficiently

constructed than general serial histograms, most often

without sacrificing much with respect to the estimate er-

rors that they generate. All the above have been demon-

strated in a series of experiments on both synthetic and

real data.

In addition to equality join and selection queries,

serial histograms turn out to be important elsewhere

as well. One can easily verify that serial histograms

are optimal for queries with the not-equals # operator,

since this is simply the complement of equality joins and

selections. Also, range selection queries (with the <, ~

, <, > operators) maybe seen as queries with disjunctive

equality selections, where the chosen selected values

are those in the desired range. Thus, assuming that

one is interested in both equality and range selections

on a relation, serial histograms are in fact v-optimal
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for queries with general selections, Based on all the

above, we believe that theresults presented in this paper

can be used in practical systems for a wide variety of

applications.

Several interesting and important cluestions on his-

togramoptimality remain open. The one on top of our

list deals with identifying optimal histograms for com-

pletely different types of queries (e.g., cyclic joins, non-

equality joins and selections) and different parameters

of interest (e. g., operator cost or ranking of alternative

access plans, which determines the final decision of the

optimizer). This is part of our current and future work
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