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Abstract

Many commercial database systems maintain histograms to sum-

marize the contents of relations and permit efficient estimation of

query result sizes and access plan costs. Although several types of

histograms have been proposed in the past, there has never been a
systematic study of all histogram aspects,the available choices for
each aspect, and the impact of such choices on histogram effective-
ness. In this paper, we provide a taxonomy of histograms that cap-
tures all previously proposed histogram types and indicates many
new possibilities. We introduce novel choices for several of the tax-
onomy dimensions, and derive new histogram types by combining
choices in effective ways. We also show how sampling techniques
can be usedto reduce the cost of histogram construction. Finally, we
present results from an empirtcal study of the proposed histogram
types used in selectivity estimation of range predicates and identify
the histogram types that have the best overall performance.

1 Introduction

Several modules of a database system require estimates of

query result sizes. For example, query optimizers select the

most efficient access plan for a query based on the estimated

costs of competing plans. These costs are in turn based on

estimates of intermediate result sizes. Sophisticated user

interfaces also use estimates of result sizes as feedback to

users before a query is actually executed. Such feedback

helps to detect errors in queries or misconceptions about the

database.

Query result sizes are usually estimated using a variety

of statistics that are maintained for relations in the database.

These statistics merely approximate the distribution of data

values in attributes of the relations. Consequently, they rep-

resent an inaccurate picture of the actual contents of the
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database. The resulting size-estimation errors may under-

mine the validity of the optimizer’s decisions or render the

user interface application unreliable. Earlier work has shown

that errors in query result size estimates may increase expo-

nentially with the number of joins [IC9 1]. This result, in con-

junction with the increasing complexity of queries, demon-

strates the critical importance of accurate estimation.

Several techniques have been proposed in the literature to

estimate query result sizes [MCS88], including histograms

[Ko080], sampling [LNS90, HS95], and parametric tech-

niques [CR94, SLRD93]. Of these, histograms approxi-

mate the frequency distribution of an attribute by grouping

attribute values into “buckets” (subsets) and approximating

true attribute values and their frequencies in the data based

on summary statistics maintained in each bucket. The main

advantages of histograms over other techniques are that they

incur almost no run-time overhead, they do not require the

data to fit a probability distribution or a polynomial and, for

most real-world databases, there exist histograms that pro-

duce low-error estimates while occupying reasonably small

space (of the order of 200 bytes in a catalog)l. Hence, they

are the most commonly used form of statistics in practice

(e.g., they are used in DB2, Informix, Ingres, Microsoft SQL

Server, Sybase) and are the focus of this paper,

Although histograms are used in many systems, the his-

tograms proposed in earlier works are not always effective

or practical. For example, equi-depth histograms [Ko080,

PSC84, MD88] work well for range queries only when the

data distribution has low skew, while sericd histograms [IC93,

Ioa93, IP95] have only been proven optimal for equality joins

and selections when a list of all the attribute values in each

bucket is maintained. (In serial histograms, attribute values
assigned to the same bucket need not be contiguous.)

In this paper, motivated by the above issues, we identify

several key properties that characterize histograms and de-

termine their effectiveness in query result size estimation.

These properties are mutually orthogonal and form the basis

for a general taxonomy of histograms. After placing all ex-

isting histogram types in the appropriate places in the taxon-

omy, we introduce novel techniques for several of the taxon-

1Nevefiheless, one can construct data d]stnbut]ons that cannot be ap-

proximated well using a small number of buckets
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Abstract partitioning rule Equi-width partitioning rule

● Adjoin to T a third column derived from the first two and ● The third column is equal to the value column.

sort T on it, Histogram buckets correspond to groups of
elements of ‘T that are contiguous in the order of the sorted
third column.

QSpecify a restricted subclass of all possible histograms on ● There areno restrictions on the number of elements allowed
a distribution T, based on the number of elements of ‘T in each bucket.
allowed in each bucket, and consider only histograms in this
subclass.

● Adjoin a fourth column derived from the first two. ● The fourth column is identical to the value column.

● Determine the unique partition of ‘T into (3 buckets such ● Partition ~ so that the buckets contain attribute values in

that the histogram belongs to the restricted subclassand sat- ranges of equal size.
isfies a specified constraint on the fowth column.

Figure 1: Abstract partitioning rule and an example

omy dimensions, e.g., for assigning attribute values to buck-

ets and approximating the data in a bucket, and then derive

new histogram types by combining these techniques in effec-

tive ways. We also provide efficient sampling-based meth-

ods to construct several of the new histograms together with

guidelines on the required sample size. Finally, we compare

empirically the accuracy of both old and new histograms us-

ing a large set of data distributions and range queries. The

results of these experiments identify the techniques that are

most effective for each property in the histogram taxonomy,

and point towards the histogram types with the best overall

performance.

2 Histogram Definitions and Usage

The predicates that we consider are of the forma ~ X ~ b,

where X is a non-negative real or integer-valued attribute in a

relation Rand a and b are constants such that a < b. Observe

that such predicates include equality predicates (choose a =

b) and “one-sided” predicates such as X ~ b (choose a =

–l).

2.1 Data Distributions

The domain D of X is the set of all possible values of X

and the (finite) value set V (~ 22) is the set of values of X

that are actually present in R. Let V = { vi: 1 ~ i ~ D},

where vi < vj when i < j. The spread Si of vi is defined

as s~ = v~+l — vi, forl s i < D. (We take so = VI and

SD = 1.)

The frequency .f~ of vi is the number of tuples t c R

with t .X = vi. The cumulative frequency c~ of vi is the

number of tuples t G R with t .X < vi, i.e., c~ =

~~=1 fj. The data distribution of X (in R) is the set of

p~rs~= {(vi, fl), (v2, f2), . . .,( VD, fD)}. Similarly, the
cumulative data distribution of X is the set of pairs ‘TC =

{( VI, CI), (V2, C2),..., (VD, CD)}. Finally, the extended cu-

mulative data distribution of X, denoted by Tc+, is the cu-

mulative data distribution of ‘TC extended over the entire do-

main D by assigning a zero frequency to every value in D–V.

2.2 Hhtogram Definition

A histogram on attribute X is constructed by partitioning the

data distribution ‘T into (3 (~ 1) mutually disjoint subsets

called buckets and approximating the frequencies and values

in each bucket in some common fashion. The buckets are de-

termined according to a partitioning rule that seeks to effec-

tively approximate ‘7, (Note that this notion of a histogram

is more general than the classical definition.)

In order to describe both new and existing partitioning

rules in a uniform manner, we first present a multi-step ab-

stract partitioning rule that captures the entire collection of

partitioning rules in the paper (Figure 1). To illustrate our ab-

stract definition, we also show how each step can be instanti-

ated to yield the partitioning rule for classical equi-width his-

tograms [Ko080]. In the description, ‘T is viewed as a rela-

tion with two columns, the value column and the frequency

column.

Based on the description in the table, every histogram is

characterized by these properties:

1.

2.

3,

Partition class: The restricted class of histograms

considered by the partitioning rule.

Partition constraint: The mathematical constraint that

uniquely identifies the histogram within its partition

class.

Sort parameter and source parameter: The parame-

ters derived from 7 and placed in its third and fourth

column, respectively.

Each histogram is also characterized by the following addi-

tional properties:

4.

5,

Approximation of values within a bucket: The as-

sumption that determines the approximate values within

a bucket of the histogram.

Appmximzztion of frequencies within a bucket: The

assumption that determines the approximate frequency

of each value within a bucket of the histogram,
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Properties 4 and 5 determine the information that needs to be

stored for each bucket. Note that all of the above properties

are mutually orthogonal.

2.3 Histogram Maintenance and Usage

Typically, histograms are stored in system catalogs with the

number of buckets limited only by the available disk space.

Database updates are periodically propagated to histograms

so that their effectiveness does not degrade. Techniques for

determining appropriate schedules for such propagation are

beyond the scope of this paper and do not affect the results

presented here.

The range of a bucket B ~ ‘7_is the interval [v. (B), V* (B)],

where V* (1?) and v* (B) are the smallest and largest attribute
values covered by B. The length of its range is equal to
~,’ (B) – W*(B). To estimate the result size of the predicate

a s X s b, an estimation routine identities each bucket

B for which the ranges [w* (B), v“ (B)] and [a, b] overlap.

Then, using specified approximation formulas, it estimates

the number of values in each identified bucket that satisfy the

range predicate, along with the frequency of each such value.

These frequencies are summed over all identified buckets to

yield the estimate of the result size.

3 Previous Approaches to Histograms

Several different histograms have been proposed in the liter-

ature. This section discusses the various choices that have

been considered for instantiating the properties discussed

above. The next section presents specific histograms as char-

acterized by properties 1-3.

3.1 Partition Class

As indicated above, the histograms that we consider are seria12

in the sense that histogram buckets correspond to groups of

elements of 7 that are contiguous in the order of the sort pa-

rameter. Classical histograms (both “equi-height” and “equi-

depth”) have no constraints on the number of elements of ‘T

that can be assigned to a bucket. On the other hand, end-

biased histograms [IC93, IP95] require that all but one of

their buckets are singleton, i.e., they contain a single element

of ‘T. One of the advantages of the end-biased histograms

is their storage efficiency. As we will see later, singleton

buckets occupy less space than buckets containing multiple

attribute values. Hence, histograms with several singleton

buckets (such as end-biased histograms) occupy less space

than general serial histograms with the same number of buck-

ets.

3.2 Partition Constraint

For the serial class, three different types of histograms have

been defined, for various source parameters:

2Our current usage of the term is ddYerent from, and more general than,

the usage m our earlier work [IC93, Ioa93, IF95], In that work frequency

was the only sort parameter considered.

Equi-sum: In an equi-sum histogram (with P buckets),

the sum of the source values in each bucket is equal

to 1//3 times the sum of all the source values in the

histogram.

V-optimal: In a v-optimal histogram. a weighted variance

of the source values is minimized. That is, the quantity

Z$G, nj~ is minimized, where nj is the number of
entries in the jth bucket and Vj is the variance of the

source values in the jth bucket.

Spline-based: In a spline-based histogram, the maximum

absolute difference between a source value and the aver-

age of the source values in its bucket is minimized.

For the end-biased class, only the v-optimal histogram has

been proposed, defined exactly as above.

3.3 Sort Parameter and Source Parameter

For the sort parameter, attribute values and frequencies have

been proposed in the past. For the source parameter, spreads,

frequencies, and cumulative frequencies have been proposed.

3.4 Approximation of Attribute Values and

Frequencies

All histograms make the uniform frequency assumption and

approximate all frequencies in a bucket by their average.

Thus, all histograms require storage of the average frequency

for each bucket.

Three different approaches exist for approximating the set

of attribute values within a bucket. The most common is the

continuous values assumption, where all possible values in D

that lie in the range of the bucket are assumed to be present

[SAC+79]. When V is an uncountably infinite set, (e.g., an

interval of real numbers), the contribution of a bucket to a

range query result size is estimated by linear interpolation.

This assumption requires storage of the lowest and highest

value in each bucket. Note that, for singleton buckets, this

requires storing only one attribute value.

Another approach is the point value assumption [PSC84],

where only one attribute value is assumed to be present (usu-

ally the lowest among those actually in the bucket). This as-

sumption requires storage of this single attribute value. Fi-

nally, the histograms considered in [IP95] record every dis-

tinct attribute value that appears in each bucket (i.e., no as-

sumptions are made). Such histograms require an auxiliary

index for efficient access when estimating the result size of a
query.

4 Previous Histograms

Several well-known and other relatively recent histograms

are described in this section. Each one is primarily identified

by its partition constraint and its sort and source parameters.

If the choice in the above three properties is p, s, and u,

respectively, then the histogram is named p(s,u). For s and

u the abbreviations S, V, F, and C are used for spreads,

attribute values, frequencies, and cumulative frequencies,
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respectively. When this definition is applied to a partition

class other than serial, p is enhanced with the class name

as well. Figure 2 provides an overview of the property

combinations that have been proposed in the past.

SORT SOURCE PARAMETER

PARAMETER SPREAD(S) I FREQUENCY(F) ICUM. FREQ(C)

Figure 2: Histogram Taxonomy.

Each of these histograms is discussed in a separate subsec-

tion. Within each bucket, each histogram makes the uniform

distribution assumption for frequencies and usually the con-

tinuous values assumption for attribute values.

4.1 llivial Histogram

Trivial histograms have a single bucket and vacuously belong

to all histogram classes, They are equivalent to the popular

uniform distribution assumption, used in most of the early

and a few of the current database systems [SAC+79].

4.2 Equi-sum(V,S) alias Equi-width

Equi-sum(V,S) histograms group contiguous ranges of at-

tribute values into buckets, and the sum of the spreads in each

bucket (i.e., the maximum minus the minimum value in the

bucket) is approximately equal to 1//3 times the maximum

minus the minimum value that appears in V [Ko080]. They

are commonly known as equi-width histograms and are used

in many commercial systems.

4.3 Equi-sum(V,F) alias Equi-depth

Equi-sum(V,F) histograms are like equi-widthhistograms but

have the sum of the frequencies in each bucket be equal rather

than the sum of the spreads [Ko080, PSC84]. They are popu-

larly called equi-depth (or equi-height) histograms, If the fre-

quency .f~ of some value vi is greater than the total frequency

allowed for a bucket, vi appears in multiple contiguous buck-

ets, so that the total frequency of vi (summed over all buck-

ets in which vi appears) equals fi. Piatetsky-Shapiro and

Connell [PSC84] considered equi-depth histograms in con-

junction with the point value assumption and derived place-

ments of the single point in each bucket for effective size es-

timation. Use of these histograms in commercial systems has

been limited, because exact determination of “bucket bound-

aries” (i.e., the lowest and highest value in each bucket) can

be very expensive. In Section 7, we discuss several ap-

proximate techniques for determining bucket boundmies that

make practical implementation of essentially all types of his-
tograms (including equi-depth histograms) feasible.

4.4 Spline-based(V,C)

Spline-based(V,C) histograms have not been actually pro-

posed in the database literature, but are inspired by efforts in

numerical analysis to approximate curves. Such a histogram

is constructed effectively by obtaining apiece-wise linear ap-

proximation to ~+. Since any range-query result size can

be expressed in terms of cumulative frequencies, the better

the approximation, the lower the result size estimation errors.

The problem of identifying optimal piecewise-linear ap-

proximations is known in numerical analysis as the optimal

knot placement problem, which unfortunately, has no effi-

cient solution [dB95]. We have adapted a heuristic algorithm

due to deBoor [dB78]. Although rather complicated, the al-

gorithm has very low time and space complexity; a detailed

description appears elsewhere [dB78].

4.5 V-Optimal(F,F)

V-optimal(F,F) histograms group contiguous sets of frequen-

cies into buckets so as to minimize the variance of the over-

all frequency approximation. In earlier work [IC93, Ioa93,

IP95], they were simply called v-optimal serial histograms,

and it was assumed that they would record every distinct at-

tribute value that appeared in each bucket. The importance

of these histograms is due to the fact that, under the above

assumption and under a definition of optimality that captures

the average over all possible queries and databases, these

histograms have been proven to be optimal for estimating

the result size of tree, function-free, equality join and selec-

tion queries [IP95]. The canonical construction algorithm in-

volves an exhaustive (exponential-complexity) enumeration

of all serial histograms and is clearly impractical, In Sec-

tion 6, we show how to adapt a randomized algorithm to com-

puting the v-optimal histogram.

4.6 V-Optimal-End-Biased(F,F)

V-optimal-end-biased(F,F) histograms are serial histograms

in which some of the highest frequencies and some of the

lowest frequencies are placed in individual buckets, while the

remaining (middle) frequencies are all grouped in a single

bucket, In earlier work [IP95], they were called v-optimal

end-biased histograms. The importance of these histograms

is due to their competitiveness with the v-optimal(F,F) his-

tograms in many real-life situations [IP95]. The canoni-

cal construction algorithm involves an exhaustive enumera-

tion of all end-biased histograms in slightly over linear time

[IP95].

5 New Approaches to Histograms

None of the histograms described above are sufficiently ac-

curate for general use in range query result size estimation.

In this section, we propose several new choices for many

of the histogram properties, We motivate each one by iden-
tifying the particular problem that it solves. The next sec-

tion presents the specific combinations of these choices with

which we experimented.

5.1 Partition Class

Biased histograms form an interesting class of histograms

that falls between the serial and end-biased classes (i e., it is
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a subclass of the former and a superclass of the latter). Bi-

ased histograms have at least one singleton bucket and pos-

sibly multiple non-singleton buckets. This new class allows

systematic tradeoffs between the high accuracy of serial his-

tograms and the low storage costs and computational effi-

ciency of end-biased histograms.

5.2 Partition Constraint

We introduce two new partition constraints, which (as al-

ways) can be combined with various sort and source parame-

ters. The goal of all the new partition constraints (and the ear-

lier v-optimality constraint) is to avoid grouping vastly differ-

ent

●

●

source parameter values into a bucket.

A4axdiff: In a maxdiff histogram, there is a bucket bound-

ary between two source parameter values that are adja-

cent (in sort parameter order) if the difference between

these values is one of the ~ – 1 largest such differences.

Compressed: In a compressed histogram, the n highest

source values are stored separately in n singleton buck-

ets; the rest are partitioned as in an equi-sum histogram,

In our implementation, we choose n to be the number of

source values that (a) exceed the sum of all source values

divided by the number of buckets and (b) can be accom-

modated in a histogram with 1?buckets. It turns out that

most compressed histograms belong to the biased class.

5.3 Sort Parameter and Source Parameter

In most earlier serial histograms, the sort and source parame-

ters have been either attribute values or frequencies, and the

resulting histograms have been reasonably effective for ap-

proximating either value sets or frequency sets, respectively.

The goal of any histogram, however, is to approximate well

the entire data distribution ‘T, i.e., to approximate well both

the value and frequency sets. Therefore, serial partitionings

should contiguously group quantities that reflect proximity of

both attribute values and frequencies. Toward this end, we

introduce area as a possible choice for the sort and source

parameters, defined as the product of the frequency and the

spread. That is, the area a, of v; is given by ai = jis; . The

area parameter is abbreviated below by A.

5.4 Approximation of Attribute Values Within a

Bucket

One of the most serious drawbacks of previous histograms

is their inaccuracy in approximating value sets with non-

uniform spreads. As indicated by the experimental results in

Section 8, the continuous values and point value assumptions

used in previous histograms can lead to significant estimation

errors.

To overcome this problem, we introduce the un~ormspread

assumption, under which each attribute value within a bucket

is assumed to have a spread equal to the bucket average.

This assumption requires storage of the lowest and high-

est value in each bucket together with the number of dis-

tinct attribute values in the bucket. The continuous values

and point value assumptions also assume that attribute values

have equal spreads. However, instead of storing the actual

number of distinct values in each bucket, they make crude as-

sumptions about it.

Example 5.1 Consider an equi-width histogram for an at-

tribute with domain D = {O, 1,2, . ..}. Assume that the

range of a given bucket is equal to [1, 100], the number of

distinct values in it is equal to 10, and the sum of frequencies

of attribute values in it is 200. Suppose we wish to estimate

the result size for the range predicate 10 s X <25. Under

the uniform spread assumption, the values in the bucket are

1, 12,23, . ...89, 100, each having a frequency of 20, so that

the estimated result size is 40. Under the continuous values

assumption, the values in the bucket are 1, 2, . . . . 100, each

value having a frequency of 2, so that the estimated result size

is 16 x 2 = 32. Finally, under the point value assumption,

the only value in the bucket is 1 (with a frequency of 200), so

that the estimated result size is O.

6 New Histograms

In this section, we introduce several new types of histograms

obtained by specifying new choices for histogram properties

as above or by combining earlier choices in novel ways.

Figure 3 provides an overview of the new combinations that

we introduce (enclosed in boxes) together with the earlier

combinations discussed in Section 4. Note that all locations

in the table correspond to valid histograms. We focus on

histograms that intuitively appear to have good potential.

SORT SOURCE J

PARAMETER SPREAD (S) \ FREOUENCY (F)

EQu1-SUM I EQUI-SUM

I 1- 1“
———____—,

VALUE (V) ] V-OPTIMAL I

I MAX-DIFF !
~compressed ~

.

I V-OPTIMAL

I AREA (A)

I I

RAMETER

AREA (A)

I ‘V–4–P~~M–A~:

[ MAXDIFF
l––______l

~UM. FREQ (C)

SPLINE-BASED
—————___
1 V-OPTIMAL 1
L–______l

Figure 3: Augmented Histogram Taxonomy.

Each one of the new histograms is discussed in a separate

subsection. All histograms make the uniform spread and the

uniform frequency assumptions when approximating the data

distribution within a bucket.

6.1 V-Optimal(V,F), V-Optimal(V,A), V-Optimal(A,A),

and V-Optimal(V,C)

These histograms are identical to v-optimal (F,F) histograms,

except that they use different sort and source parameters.

The v-optimal(V,F) and v-optimal(V,A) histograms min-

imize the variances in frequencies and areas respectively,
while grouping contiguous attribute values. Using F (resp.,

A) as the source parameter ensures that skew in the frequency
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(resp,, frequency and value) domains are considered in the

bucketization, while using V as the sort parameter often re-

sults in a good approximation of the value domain.

By definition, the v-optimal(A,A) histograms minimize

the variance of the overall approximation of area. Therefore,

such a histogram should achieve a close approximation to

both the value and frequency sets.

The reason for using the cumulative frequency parameter

is somewhat different. Since the result sizes for any range

query can be expressed in terms of cumulative frequencies,

by grouping into buckets cumulative frequencies that are

similar (v-optimal constraint), we should obtain a good ap-

proximation of ‘TC.

To avoid the exponential cost of the canonical algorithm

to construct these histograms, we provide a randomized al-

gorithm that with high probability finds a histogram close to

the actual v-optimal histogram. The algorithm is applicable

independent of the sort and source parameter choice. Ex-

perimentation with the Iterative-Improvement (11) and Two-

Phase Optimization (2PO) randomized algorithms, which

have been proposed as search strategies in query optimization

[SG88, IK90], has shown that the simpler II algorithm pro-

duces very effective serial histograms, so we use II through-

out. Details about II may be found in the above references. In

our specific adaptation of II to the current problem, we define

the neighbors of a histogram H to be all valid histograms that
can be obtained by incrementing or decrementing a bucket

boundary of H by one position in the domain of source val-

ues.

6,2 V-Optimal-End-Biased(A,A)

V-optimal-end-biased(A,A) histograms histograms are iden-

tical to the v-optimal-end-biased(F,F) histograms, except that

they use area for the sort and source parameters.

6.3 Maxdiff(V,F), Maxdiff(V,A)

As mentioned in Section 5.2, the goal of all the new partition

constraints is to avoid grouping attribute values with vastly

different source parameter values into a bucket. The maxd-

iff histograms try to achieve this goal by inserting bucket

boundmies between adjacent source values (in sort param-

eter order) that differ by large amounts. The motivations for

using various sort and source parameters is exactly the same

as those for the corresponding v-optimal histograms (Section

6.1).

These histograms can be efficiently constructed by first

computing the differences between adjacent source parame-

ters, and then placing the bucket boundaries where the ~ – 1

highest differences occur.

6.4 Compressed(V,F) and Compressed(V~)

Compressed(V,F) histograms (resp., compressed(V,A) his-

tograms) group contiguous attribute values into buckets, place

the attribute values with the highest frequencies (resp., areas)

in singleton buckets, and then divide the remaining values

among multiple buckets in an equi-sum fashion.

By keeping values with high frequencies or areas in single-

ton buckets, these histograms achieve great accuracy in ap-

proximating the skewed frequency distributions andlor nonuni-

form spreads that are typical of many real-life data sets.

7 Some Computational Techniques

As can be seen from the above discussion, construction of

the histograms considered in this paper requires, among other

things,

computation of “quantiles” (see definition below) for equi-

depth histograms;

computation of the frequency and cumulative frequency

of each attribute value;

computation of the number of distinct attribute values

that lie in a given range; and

computation of the spread of each attribute value.

In this section, we consider techniques for efficient computa-

tion of these quantities. We focus on methods that require at

most one complete scan through the relation. (Such a scan is

required when the data is initially loaded. Moreover, a com-

plete scan is typically required by current DBMSS in order

to compute quantities such as the largest and smallest key

value in a column.) To be useful in practice, computational

algorithms need to minimize the CPU cost per tuple of the

relation, the number of I/O’s required (over and above the

complete scan), and the amount of main memory required for

storage of intermediate results.

Throughout, we denote the number of tuples in the relation

by N. We also denote by f(v) the fraction of tuples in

the relation with attribute value equal to v and by F(v) the

fraction of tuples with attribute value less than or equal to v.

When v coincides with some v, E V, we have ~(v, ) = f, /N

and F(vi) = c,/N.

7.1 Quantiles

To construct an equi-depth histogram with /3 buckets, we

need to compute ~ bucket boundaries ql, qz, . . . . qp such that

q, = min { v >0: F’(v) ~ i/~}. In statistical terminol-

ogy, qi is the (i//3) -quantile of the attribute-value distribu-

tion. Exact computation of ql, qz, . . . . qp requires sorting the

entire relation in order of increasing attribute value. Then

qi is computed as the attribute value of the r(i) th tuple in
the sorted relation, where r = ~Ni/@l. Although this ap-

proach is simple and exact, it is too expensive to be used for

the large relations typically encountered in practice. Internal

sorting algorithms require too much main memory and CPU

time, while external algorithms [GS91 ] incur multiple scans.

We therefore focus on algorithms that compute approximate

quantiles.

One well-known technique is the P2 algorithm proposed

by Jain and Chlamtac [JC85]. The basic idea behind this

one-pass algorithm is to maintain a set of five ‘<markers”

that approximate the quantile of interest, the minimum value,
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the maximum value, and the two additional quantiles lo-

cated midway between the quantile of interest and the maxi-

mum (resp., minimum) value. Whenever a new data value is

read, the value of each marker is updated using a piecewise-

parabolic curve-fitting technique. After the last data value is

read, the middle marker is used as the estimate of the quantile.

Raatikainen [Raa87] generalized the P2 procedure to permit

simultaneous estimation of more than one quantile during a

single pass. As observed both in [Raa87] and in our own

work, the accuracy of the procedure can be improved by us-

ing additional markers for each percentile to be estimated: we

incorporate this enhancement into the version of the P2 algo-

rithm that we use in our experiments.

Another well-known approach to estimating quantiles is to

use random sampling [MD88, PSC84]. The idea is to sample

n (<< N) tuples from the relation randomly and uniformly,

without replacement, (Such a sample is called a simple ran-

dom sample,) Then the quantile values for the sample are

used as estimates of the corresponding quantile values for

the entire relation. To obtain the random sample, we use a

reservoir sampling algorithm due to Vitter [Vit85]. This al-

gorithm (called Algorithm X in Vitter’s paper) obtains a ran-

dom sample of size n during a single pass through the rela-

tion. The number of tuples in the relation does not need to

be known beforehand. The algorithm proceeds by inserting

the first n tuples into a “reservoir.” Then a random number of

records are skipped, and the next tuple replaces a randomly

selected tuple in the reservoir. Another random number of

records are then skipped, and so forth, until the last record

has been scanned. The distribution function of the length of

each random skip depends explicitly on the number of tuples

scanned so far, and is chosen such that each tuple in the rela-

tion is equally likely to be in the reservoir after the last tuple

has been scanned. An advantage of the reservoir sampling

approach is that it does not require the database system to

support individual retrieval of randomly selected pages, and

hence can be implemented in most current systems.

Both the sampling-based algorithm and the P2 algorithm

require exactly one pass through the relation, and hence have

the same I/O cost. The intermediate storage requirements

of these algorithms are also comparable. The P2 algorithm,

however, performs some fairly elaborate calculations for each

tuple in the relation, while the sampling-based algorithm

skips over most of the tuples in the relation, resulting in a low

CPU cost per tuple. Unlike the P2 algorithm, the sampling-

based algorithm permits the subsequent adjustment of the

histogram buckets required for constructing compressed his-

tograms. Moreover only the sampling-based algorithm pro-

vides an estimate of the error in the approximation. Both of

the above techniques can be extended to equi-sum histograms

based on source parameters other than frequency.

7.2 Frequencies

Exact computation of frequencies and cumulative frequen-

cies requires that a counter be maintained for each distinct

attribute value and that each tuple in the relation be hashed

on its attribute value and the appropriate counter be incre-

mented. Such hashing can lead to excessive CPU costs. As

with quantiles, the desired frequencies can be estimated from

a random sample obtained using reservoir sampling. The es-

timated frequency of a value w is simply n~N/n, where n, is

the number of tuples in the sample with attribute value vi.

Of particular importance in histogram construction are the

frequencies of the most frequent values. In some situations,

it may be possible to obtain a very small “pilot” random sam-

ple of the tuples in the relation prior to the complete scan of

the relation. Then, by adapting a technique due to Haas and

Swami [HS95], the frequencies of the most frequent values

can be obtained exactly with high probability, The idea is to

obtain the pilot sample and observe the distinct attribute val-

ues that appear in the sample. During the full scan of the re-

lation, the frequencies for these attribute values can be com-

puted exactly using a relatively inexpensive hashing scheme.

If the frequency of an attribute value is high, then with a very

high probability the value will appear in the pilot sample, and

the frequency of the value will be computed exactly. It is

shown in [HS95], for example, that if the attribute values of

a relation containing 106 tuples are distributed according to a

Zipf distribution [Zip49] with parameter z = 0.86 (roughly,

an “80-20” law), then with a probability of approximately

99.9% the 10 most frequent values will all appear in a sample

of 1000 tuples (i.e., in a O.19Z0sample). The more skewed the

attribute-value distribution, the better the scheme works.

7.3 Distinct Values

Use of the uniform spread assumption (Section 5.4) requires

techniques for computation of the number of distinct attribute

values, denoted d(l, u), that lie between given limits 1 and

u. As with other statistics on the data distribution, exact

computation of d(i, u) typically requires too much CPU time

and intermediate storage, due to the extensive hashing and/or

sorting required.

The number of distinct values can be estimated based on a

reservoir sample. The simplest procedure is to use the num-

ber of distinct values in the sample that lie between 1 and

u, denoted D(l, u), as an estimate of d(l, u). Our experi-

ments indicated that this simple estimate works reasonably

well in practice. D(l, u) typically underestimates d(l, u) be-

cause some of the attribute values in the relation do not show

up in the sample. The frequencies of the missing attribute

values tend to be low, however, so that the absence of these

values does not introduce serious errors into the final query-

size estimate. In future work, we will investigate the util-

ity of more sophisticated estimation methods such as those

in [HNSS95].

7.4 Spreads

Histograms that use the area as a source and/or sort param-

eter require computation of the spreads of different attribute

values. As with frequencies, spreads are expensive to calcu-

late exactly. In our experiments, we simply used the spreads

that appeared in a reservoir sample; this approach appeared to
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be adequate for our purposes. More sophisticated techniques

for estimation of the spread can be derived directly from ad-

vanced techniques for estimation of the number of distinct

values d(i, u) (as defined in the previous section); this is a

topic for future research.

7.5 Required Sample Size

The required sample size for various techniques presented in

the previous sections depends upon the desired accuracy of

the result size estimates. In general, there will be errors be-

cause the sample does not accurately represent the entire re-

lation. For example, the relative error in estimating the re-

sylt size for a predicateAof the form X ~ v is given by

lF’n (v) – F(v) 1,where Fn (v) is the (random) fraction of tu-

ples in a simple random sample of size n with attribute value

less than or equal to v. We call such error the sampling error.

In this subsection we discuss the relation between the sample

size and the sampling error. To simplify the mathematics, we

derive methods for determining the sample size under the (in-

accurate) assumption that samples are obtained with replace-

ment; for small sample sizes (< 10Yo) this results in a slight

overestimate of the number of samples needed.

A conservative estimate of the sample size required to

control the relative sampling error to a desired level can

be based on the following bound, originally due to Kol-

mogorov [K0141]. Fix n ~ O and let U1, U-J, . . . . Un be a

collection of independent and identically distributed random

variables uniformly distributed on [0, 1]. For O < z ~ 1,

denote by ~~” )(x) the (random) fraction of these random

variables with values less than or equal to z. Finally, de-

note by Gn the distribution function of the random variable

SUPO<z<l lF~U)(X) – $1. Then

{ 1P sup@~(v) – F’(v)l s c z G.(c) (1)
U>o

for e ~ O. Observe that Gn does not depend on either N,

the size of the relation, or F, the form of the attribute value

distribution function. The distribution Gm has been tabulated

for small values of n by Massey [Mas51 ]; for large values of

n (> 100), Gn(z) is well-approximated by G(nllzz), where

G(.E) = 1 – 2exp(–2z2); cf [Mas51].

Consider a range predicate of the form vi < X ~

v], where v%,Vj c V with vi ~ Vj (we allow equality

predicates). The estimated result size based on a sample

( )
of size n is N ~n(t~~ ) – ~~(vi-l ) . Thus, the relative

sampling error R. is

R. = (~.(v,)-~.(v-)) ‘(F(VJ)-F(~i-))

= (~Tz(vj) - @,)) - (~&,) -F(v,-,))

Since, by the Triangle Inequality,

lRnl S l~n(~j) -F(vj)li- l~n(vi-1)-F(w~)l

< 2su~ IF.(V) – F(v)l
—

it follows from (1) that

P{]Rnl <6} 2 P{suP l&(v) –~(~)1 < ~/2}
V>o

~ Gn(c/2).

For example, a sample size of 1064 tuples is sufficient to give

a relative sampling error of less that 10’% with 9970 proba-

bility. Similar arguments show that for one-sided predicates

such as X > v,, only about 270 samples are needed to

achieve the above accuracy.

The above guidelines are conservative in that fewer sam-

ples are actually needed in practice to achieve a given degree

of accuracy. (For example, Theorem 1 in Hoeffding [Hoe63]

implies that only about 190 samples are actually needed to

achieve the above accuracy for an equality predicate X = L+

in the specific case ~(vi ) = O.2.) In our experiments, we

used a sample size of 2000 tuples.

7.6 Construction Cost

Table 1 illustrates the difference in the construction costs of

various histograms. It contains actual timings collected from

running the corresponding algorithms on a SUN-SPARC,

for varying amounts of space allocated to the histograms.

The specific timings are for histograms with V and A as

the sort and source parameters, respectively, but all other

combinations of sort and source parameters produce quite

similar results. These timings do not include the time taken

to scan the relation and compute the sample, The cardinality

of ‘T (i.e., the number of distinct values) was fixed at 200

and the total number of tuples was equal to 100,000. All

but the equidepth-P2 histograms were constructed based on a

reservoir sample of 2000 tuples. As can be seen from Table 1,

the construction cost is negligible for most of the histograms

when sampling techniques are used. The P2 algorithm is

expensive because of the significant processing cost incurred

for each tuple in the relation.

Time Taken (msec)
Histogram Space = 160b Space = 400b

Compressed 5.9 9.3

Equi-sum 6.2 10.9

MaxDiff 7.0 12.8

V-optimal-end-biased 7.2 10,9

Spline-Based 20.3 41,7

V-optimal 42.9 67.0

Equi-Depth: by P2 4992 10524

Table 1: Construction cost for various histograms

8 Experimental Results

We investigated the effectiveness of different histogram types

for estimating range query result sizes. The average error due

to a histogram was computed over a set of queries and ex-

pressed as a percentage of the relation size. That is, for a set
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Q of N queries, the error E was computed as

where Sq and S~ are the actual and the estimated size of the

query result, respectively. The histogram types, data distri-

butions, and queries considered in our experiments are de-

scribed below. Observations on the sensitivity of our results

to the allotted storage space, sample size, and number of dis-

tinct values in the data distribution are presented in Section

8.4.

Histograms: Experiments were conducted using all his-

togram types described in Figure 3. In general, the bucket of

a histogram contained four floating numbers: the number of

elements in the bucket, the lowest and highest attribute value

in the bucket, and the average frequency in the bucket. In

special cases, however, buckets could occupy less space. In

particular, buckets of histograms with V as the sort parameter

contained only three floating numbers: the lowest attribute

value in a bucket was not explicitly stored but was implicitly

assumed to be the successor (in the attribute’s domain) of the

highest value of the previous bucket. Also, singleton buck-

ets contained only two floating numbers: the single attribute

value in it and the corresponding frequency.

Since different histograms need to store different amounts

of information per bucket, the number of buckets varied

among histogram types in our experiments, with differences

of up to 50%. To ensure fair comparisons, all histograms

were constructed so that they occupied the same amount of

space. The amount of available space was fixed at 160 bytes

(approximately 10 buckets for a general serial histogram with

a sort parameter other than V and 20 buckets for an end-

biased histogram). All histograms were constructed based

on samples of 2000 tuples, except for the trivial histogram,

the equi-depth histogram in which bucket boundaries were

computed exactly by sorting all of the tuples in the relation,

denoted by equi-depth:precise, and the equi-depth histogram

constructed from all the tuples in the relation using the P2

algorithm, denoted equi-depth:P2.

Data Distributions: Experiments were conducted using

synthetic data distributions with 100K to 5001< tuples, and

number of attribute values (D) between 200 and 1000. In or-

der to isolate the effects of different choices for the various

orthogonal parameters of histograms, we experimented with
several frequency and value sets. The frequency sets were

generated independently of the value sets, and different types

of correlation were induced between each frequency set and
value set, thereby generating a large collection of data distri-

butions. The choices for each set and for their correlation are

given below:

e Frequency Sets: These were generated with frequencies

following a Zipf distribution, with the z parameter var-

ied between O(uniform) and 4 (highly skewed), which al-

lowed experimentation with several degrees of skew.

Value Sets: All attribute values were nonnegative inte-

gers, and spreads were generated according to one of

five alternative distributions: un~orrn (equal spreads),

zipfinc (increasing spreads following a Zipf distribu-

tion), zipf-dec (decreasing spreads following a Zlpf distri-

bution), cusp-rnin (zipf-inc for the first D/2 elements fol-

lowed by zipfdec), cuspJwx (zipfAec for the first D/2

elements followed by zipf~’nc), and zipf-ran (spreads fol-

lowing a Zipf distribution and randomly assigned to at-

tribute values). Example value sets following the above

spread distributions are plotted in Figure 4. The default z

parameter for the Zipf distributions was 2.

——+——— uniform
_ zip f.inc
_ zip f.dec
— —* — cusp_min
— —+ — cusp_max
— —* — zipf_ran

4* A

) — x

4* -— -- -—— *——+x*&—-&— ———--—4

<——+———+—— ————— —-O— ---+0.0

>1+—=———————— ——————— —W*———%*

200 400 600 800 10’00

Attribute Value

Figure 4: Value Sets.

Correlations: Three different types of correlation were

induced between the value and frequency sets. For posi-

tive correlation, values with high (resp., low) frequencies

were mapped to values with high (resp., low) spreads.

For negative correlation, high (resp., low) frequencies

were mapped to values with low (resp., high) spreads.

For zero correlation, frequencies were mapped to spreads

randomly. In all cases involving random correlations, the

average of errors in 10 runs of the experiment for differ-

ent random mappings was used.

Queries: Experiments were conducted using five different

query sets. All queries were of the forma < X s b; the sets

differed in the values of the constants a and b. Set A contained

all possible queries with a = – 1 (so that the queries were

one-sided) and b an integer lying between the minimum and

maximum values in V. (Observe that b assumed values in

V and D-V.) Set B contained all queries with a = – 1

and b E V. Set C contained 1000 “low-selectivity” random

queries with a, b G V and selectivities uniformly distributed
in [0, O.2]. Set D contained 1000 “high-selectivity” random

queries with a, b c V and selectivities uniformly distributed

in [0.8, 1]. Set E contained 1000 “mixed-selectivity” random

queries with a, b E V and selectivities uniformly distributed

in the composite interval [0, 0.2] U [0.8, 1]. The results of

our experiments did not vary significantly for different query

sets, so we only present those obtained for query set A below.
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8.1 Typical Performance

It turned out that the relative performance of various his-

tograms was fairly constant over a wide range of data and

query sets. Due to the large number of combinations of the

testbed parameter choices, we present results from one ex-

periment that illustrates the typical behavior of the histogram

errors. In this experiment, the value set follows cuspnuzx,

the frequency set follows a Zipf distribution with parame-

ter z = 1, and the correlation between values and frequen-
cies is random. Table 2 shows (in decreasing order) the er-

rors generated by the entire set of histograms on the query set

A. As indicated by Table 2, a clear separation was observed

Hktogram

Trivial

Equi-depth:P2

V-optimal(A,A)

V-optimal(V,C)

Equi-width

V-optimal(F,F)

V-optimal-end-biased(A,A)

V-optimal-end-biased(F,F)

Equi-depth:Precise

Spline-based(V,C)

Compressed(V,A)

Compressed(V,F)

Maxdiff(V,F)

V-OptimalW,F)

Maxdiff(V,A)

V-Optimal(V,A)

Error (%)

60.84
17.87
15.28
14.62
14.01
13.40
12.84
11.67
10.92
10.55

3.76
3.45
3.26
3.26
0,77
0.77

Table 2: Errors due to histograms

throughout the experiments between a set of effective his-

tograms and a set of poor histograms. Although the relative

performance of histograms in the lower set varies between

experiments, and on some occasions histograms from the up-

per set were competitive, the results in Table 2 are quite char-

acteristic overall. Hence, in the remaining subsections, we

focus on the histograms in the lower part of the table. Also,

the bottom part of the table demonstrates the importance of

using V as the sort parameter.

The effectiveness of sampling is clearly illustrated by com-

paring the accuracy of the equi-depth:P2 and compressed(V,F)

histograms. As shown in Section 7.6, sampling-based con-

struction of a compressed histogram requires much less CPU

time than construction of an equi-depth:P2 histogram. As

can be seen from Tables 1 and 2, use of sampling and read-

justment of bucket boundaries results in a histogram that is

not only much cheaper to compute, but is far more accurate

than the equi-depth:P2 histogram. (Other experiments, not

reported here, indicated that even ordinary equi-depth his-

tograms computed from a sample are both cheaper to con-

struct and more accurate than equi-depth:P2 histograms.)

8.2 Effect of Frequency Skew

To study the effect of frequency skew, we present results from

the experiments in which the value set has uniform spreads

while the frequency set follows a Zipf distribution with vary-

ing skew (z). Note that the use of either frequency or area

as the source parameter makes no difference here. since the

value spreads are uniform. The histogram errors for queries

in set A are plotted in Figure 5, with the value of the Zipf

parameter z indicated on the x-axis and average error indi-
cated on the y-axis. Clearly, for very low (s = O) and

very high (z = 4) skew, all histograms generate essentially

no error. The hardest to deal with were intermediate skew

levels. Since there were many frequencies that were quite

different in these distributions, grouping them into only 10

or 15 buckets was insufficient to avoid errors. Overall, the

maxdiff(V,A) and v-optimal(V,A) histograms performed bet-
ter than the compressed(V,A ) histograms.
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+ Compressed(V,A)
g + Maxdit’f(V,A)
.=
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m
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Figure 5: Frequency Set Approximation.

8.3 Effect of Non-uniform Spreads

To study the effect of non-uniform spreads, we present re-

sults from the experiments in which the frequency set is uni-

form while the value set follows zipf_dec with varying skew

(z). The histogram errors for queries in set A are plotted

in Figure 6, with the Zlpf parameter z indicated on the x-

axis. Clearly, there is a major advantage to using area as

the source parameter, for all histogram types. Note that the

v-Optimal (V,A) histogram performs consistent y better than

the others.

8.4 Sensitivity Analysis

In order to study the effect on histogram accuracy of the of the

storage space, the sample size, and the number of attribute

values in the relation, we conducted the above experiments

for different values of these parameters (and their combina-

tions), The results are shown for the v-optimal(V, A) his-

tograms in Table 3 and Figure 7. Table 3 demonstrates that

the accuracy of these histograms is not significantly affected

by modest changes in sample size and number of attribute
values. The effect of storage space is plotted in Figure 7, with

the number of bytes on the x-axis and errors on the y-axis. It

is clear that, beyond a small value of 160 bytes (10 buckets

for general serial histograms with a sort parameter other than
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Figure 6: Value Set Approximation.

V), storage space has negligible effect on histogram accuracy.

Also, it can be seen that the v-optimal and maxdiff histograms

perform slightly better than the compressed histograms.

b=%=llNo. of Attr. Values 2000 10000 100000
L

200 0459 0.46 0.29

500 0.68 0.49 0.31

1000 0.64 0.66 0.40

Table 3: Sensitivity Results

o~
0 100 200 300 40

1 _ Compressed(V,A)

g _ Maxdiff(V,A)

.-–– — V-Optimal(V,A)

Storage Space (bytes)

Figure 7: Effect of Storage Space.

8.5 Other Experiments

We observed in other experiments that all histograms perform

slightly better when there is no correlation between spreads

and frequencies, and that the uniform spread assumption

approximates the value domain better than the continuous

values and the point value assumptions.

9 Conclusions

This paper studied the use of histograms for estimating the

result size of range queries, We systematically isolated and

enumerated the various properties that characterize a his-

togram, some of which have never been considered explicitly

in the literature. Motivated by our histogram taxonomy, we

introduced the following innovations:

explicit consideration of the spread between successive

attribute values when assigning values to buckets;

novel partition constraints that are more accurate than the

traditional equi-sum constraint;

use of the number of distinct values in a bucket to more

accurately approximate the distribution of values and fre-

quencies in the bucket;

adaptation of a randomized algorithm for efficient con-

struction of serial histograms; and

use of reservoir sampling and statistical estimation tech-

niques to efficiently construct histograms using a single

scan of the data, together with guidelines on the required

sample size that are tailored to range predicates.

Guided by our taxonomy, we combined both previous and

new techniques in novel ways to yield several new histogram

types, We then compared the accuracy of both old and new

histograms empirically using a large set of data distributions

and queries. The main conclusions from our experiments are

as follows:

The uniform spread assumption should be used to ap-

proximate the value set within each bucket,

Area should be used as the source parameter.

Attribute values should be used as the sort parameter,

Equi-depth histograms constructed using reservoir sam-

pling are both less expensive to obtain and more accurate

than equi-depth histograms constructed using the P2 al-

gorithm. In general, sampling-based construction meth-

ods can produce accurate histograms at a small cost.

The v-optimal(V,A), maxdiff(V,A), and compressed (V,A)

histograms generate very small errors in a wide variety of
situations. Over all data distributions, the v-optimal(V,A)

and maxdiff(V,A) histograms performed better than the

compressed(V,A) histograms. The computation times of

the v-optimal histograms are slightly higher than those of

the compressed and maxdiff histograms, but are still quite

small (and quite insignificant compared to the costs of

scanning the relation and generating the sample). Over-

all, we believe that maxdiff(V,A) is probably the his-

togram of choice, as it is very close to the best histogram

on both issues, construction time and generated error.
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