
Multi-dimensional Resource

Mines N. Garofalakis
Ccmlputer Sciences Department

Umvers@ of Wmx~nsm

Madlsorr, WI 53706

mint] s@cs. wlsc.edu

Abstract

Scheduhng query executmrr plans 1s an mrportant component of

query optimization in parallel datafmse systems. The prc}hlem M

partmdarly cnmplex in a shared-nothing executmrr environment.

where each system node represen~s a collection of tme-shareohle

resources (e.g., CPU(S). disk(s), etc.) and commumcates with other

nodes only hy message-passmg. Significant research effolt has

concentrated on only a subset fIf the vmmtts forms of’ mtra-query

p.amllelism so that scheduling an~i synchromzatlon is smlphtied.

In ackiitlon, most previous work has focused Its attention on

(lne-ciimensional models of parrdlel query scheciuling, effectnwly

Ignrmng the potential henefrts of resource sharing. In thu+ paper,

we deveiop an approach that M more general in both directions,

capturing all forms of mtra-query parallelism ami exploltmg

sharing of multl-cfunensionzd resource nodes among conutrrentplan

operators.” This allows scheduhng a set of m~ieperr~ient query tasks

(].e.. operator pipelines) to be seen as an instance of the muk-

Limwnslonal bm-cieslgn problem. Using a novel quantificahon of

C(mrse gram parallelism, we present a hst schwiulmg heurlstlc

alg{mthm that M prnwthly near-optimal in the class {jt’ coarse

gram parallel executm ns (with a worst-case performance ratm that

depends on the number of resources per nocie and the granularity

parameter). We then extend this algorithm to handle the operator

prectxience constrains m a bushy query plan by splitting the

execution of the plan into synchronized phases. Prehmmaty

performance results confirm the effectiveness of our scheduling

algorithm compareci both to prevmus approaches and the optunal

s[)lutl[)n. Finally, we present a technique that allows us to relax the

coarse granulrmty restriction and obtain a list scheduhrrg methoci

that N provably near-optimal m the space of’ all posslhle parallel

schedules.

1 Introduction

Parallelism has been recognized as a powerful and cost-

et’fective means of handling the projected increases in data

size and query cotnplexity in future database applications.

Among all proposals, the shared-nothing tnultiprocessor

*Partdty supported by the National Science Foundation under (;rants
IRI-911 3736 and IRI-9157368 (PYI Award). and by grants from IBM, DEC.
HP, AT&T, Infonmx, and oracle.

Permission to make digitahhard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the mpyright notice, the
title of the pubhcatlon and its date appear, and noticw is given that

copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
O 1996 ACM 0-89791 -794-4/96/0006 ...$3 50

Scheduling for Parallel Queries

Yannis E. Ioannidis*
C[)rnputer Scxmces Department

Umvers@ of Wisconsin

Madmen, WI 53706

yann@cs.wlsc.edu

architecture hm emerged as the most scahible to support

very I,arge datab,ase management [DG92]. In this, each si[e

consists of its own set of local resources and communicates

with other sites only by message-passing. Despite the

popularity of this architecture. the development of effective

and et’ficient query processing and optitniz:ition techniques

to exploit its full potential still remains an issue of concern.

Earlier work on parallel query scheduling has typic:tlly

ccmcentr:ited on two impormnt problems:

1.

2.

compile-time optimizutiotl.. tninitnizing the response

tire; of a single query through purallelizu[iotl O(an
execution phan, i.e.. scheduling of the plan’s operator-s

on the system’s sites (the plan is usually the result

of an e,arlier phase of conventional centralized query

optimization) [CHM95, GW93, HM94, Hon92, HCY94,

LCRY93] ; and

run-time mmutiott. nchieving some systetn-wide per-

fortmtnce goals (e.g., maximi~ing query throttghputj by

ad:iptive scheduling of the operators of multiple concur-

rent queries [MD93, MD95, RM95].

We address the first problem, i.e., parallelization of query

execution plans. We consider the full variety of bushy plans

and schedules that incorporate independent :mtl pipelitlt~d

forms of inter-operation parallelism as well as intra-oper[ttion

(i.e., partitioned) parallelism.

One of the main sources of cotnplexity of query plan

scheduling is the multi-dimensionulity of the resource needs

of databme queries. That is, during their execution queries

afternate between tnultiple resources, most of which are

preemptable [GHK92], e.g.. the CPU and disk bandwidth.

This introduces a range of possibilities for effectively titne-

sharing system resources among concurrent query oper:itors.

which c,an subst.anti,ally incre,mse the utilization of these

resources and reduce the response time of the query.

Previous work on paraflel query scheduling has typicafly

ignored the tnulti-dimensional nature of chitabase queries. It

has simplified the allocation of resources to a tnere alloc:it ion

of processors, hiding the multi-dimensiomdity of query

operators under a scak cost metric like “work” or ‘lime”

[CHM95, GW93. HM94, HCY94, LCRY93]. This one-

dimensional tnodel of scheduling is inadequate for’ databme
oper:itions that impose a significant load on tntdtiple system

resources.

In this papa-, we present [i fm.tnework for multi-

ditnensimwd resource scheduling in shared-nothing parttllel

365

databasesystems. Building on the work of Ganguly et

al. [GHK92], we represent query operator costs ,as work

i’ectors with one dimension per resource. In order to account

for the communication overhead of parallelism, we initially

restrict our attention to operator pamllelizations that are

sufficiently coarse grain. We present a quantification of

the notion of cotarse gmnularity based on the relative costs

of communication <andcomputation <anduse it to derive the

degree of partitioned panllelism.

B,ased on this framework. the problem of resource

scheduling for a collection of concurrently executed operators

is reduced to ,an instance of the multi-dimensiorud bin-

design problem [CGJ841 for work vector packings. For

this, we develop a f,ast resource scheduling algorithm

called OPERATORSCHEDULE that belongs to the class of

list schedulin~ algorithms [Gra66]. The response time

(or, makespan) of the parallel schedule produced by

OPERATORSCHEIM_ILE is ‘analytically shown to be

(a) within (2d + 1) of the optimal schedule length for given

degrees of partitioned parallelism, and

(b) within (2d(.fd + 1) + 1) of the optimal co,arse grain

schedule length,

where d is the dimensionality of the work vectors and

~ is a “small” parameter capturing the gmnularity of

the parallel execution. We then extend the algorithm

to h,andle the operator precedence constraints in a bushy

query plan by splitting the execution of the plan into

synchronized phases. The resulting algorithm. called

TREESCHEI)ULE, uses OPERATORSCHEI)ULE as a subroutine

to determine the scheduling of operators within each ph,ase.

Preliminary experimental results confirm the effectiveness

of these algorithms comp,ared to previous one-dimension,al

:ipproaches. In addition, our results show that the an,aIytical

worst-c,ase bounds are rather pessimistic comp,ared to the

average performance, which is extremely close to optim,al.

Finally, we consider the more generaJ malleable problem

in which the solution is no longer constrained by a co,arse

gr,anulatity condition. Instead, the scheduler is free to

determine the degrees of partitioned parallelism with the

objective of minimizing response time over all possible

parallel schedules. Building on the ideas of Turek et

al. [TWY92] we present a technique that allows our list

scheduling rule for independent operators to achieve a

suboptimality bound of (2d + 1) for the malleable problem

at the additiorml cost of a preprocessing p,ar,allelization step.

2 Related Work

The problem of scheduling complex query plans on p,arallel

machines h,as recently attracted a lot of attention from the

database research community. Hasan ,and Motw.ani [HM94]

study the tradeoff between pipelined p.ar.allelism and its com-

munication overhead and develop ne.ar-optimaJ heuristics for

scheduling a st,ar or a path of pipelined relational operators

on a multiprocessor ,architecture. Chekuri et al. [CHM95]

extend these results to ,arbitrary pipelined operator txees. The

heuristics proposed in these papers ignore both independent

and partitioned parallelism. G,anguly and Wang [GW93] de-

scribe the design of a p.amllelizing scheduler for a tree of

co,arse grain operators. Based on a one-dimensional model

of query operator costs, the authors show their scheduler to

be near-optimal for a limited space of query pl,ans (i.e., left-

deep join trees with a single materialization point in any right

subtree). G,anguly et al. [GGW95] obtain similar results for

the problem of partitioning independent pipelines without

the co,arse gm.nul.arity restriction. The benefits of resource

sh,aring and the multi-dimension,ality of query operators are

not addressed in these papers. Furthermore, no experimental

results ,me reported. Lo et ,al. [LCRY93] develop optimal

schemes for ,assigning processors to the s~~ges of a pipeline

of hash-joins in a shared-disk environment. Their schemes

,are b,ased on a two-phase minimax formulation of the prob-

lem that ignores communication costs ,andprevents processor

sh,aring among stages. Moreover, no methods tare proposed
for handling multiple join pipelines (i.e., independent parall-

elism).

With the exception of the papers mentioned above, most

efforts ,are experimental in nature and offer no theoretical

justification for the algorithms that they propose. In addition,

many proposals have simplified the scheduling issues by

ignoring independent (bushy tree) p,ar,allelism; these include

the right-deep trees of Schneider [Sch90] ,and the segmented

right-deep trees of Chen et ,al. [CLYY92]. Nevertheless, the

advarmges offered by such ptamllelism, especially for large

queries, have been demonstrated in prior research [CYW92].

Tan and Lu [TL93] and Niccum et al. [NSHL95] consider

the general problem of scheduling bushy join pl,ans on parallel

machines exploiting ,all forms of intra-query parallelism and

suggest heuristic methods of splitting the bushy plan into

non-overlapping shelves of concurrent joins. For the s,ame

problem, Hsiao et al. [HCY94] propose a processor allocation

scheme based on the concept of synchronous execution time:

the set of processors allotted to a parent join pipeline ‘are

recursively partitioned ,among its subtrees in such a way that

those subtrees can be completed at approximately the s:une

time. For deep execution pl,ans, there exists a point beyond

which further partitioning is detrimental or even impossible,

and serialization must be employed for better performance.

Wilschut et al. ~A95] present a comparative performance

evaluation of warious multi-join execution strategies on the

PRISMA/DB parallel main-memory datab,ase system.

A common characteristic of all approaches described

above is that they consider a one-dimension,al model of re-

source allocation based on a scalar cost metric (e.g., “work”),

which ignores ,any possibilities for effective resource sharing

~among concurrent operations. Perhaps the only exception is
Hong’s method for exploiting independent parallelism in the

XPRS sh,ared-memory datab,ase system [Hon92]. He sug-

gests a scheduling algorithm that combines one I/O-bound

and one CPU-bound operator pipeline through independent

p.amllelism to m,aximize the system resource utilizations and

366

thus minimize the elapsed time. Hong’s algorithm depends

on the dymunic (run-time) adjustment of intr:i-oper:itor p,ar.at-
lelism to ensure that the system always executes at its IO-CPU

balance point. However, this approach may fail in the context

ofzi shared-nothing architecture since the substantial commu-

nication overheiid involved in rel:ition declttstering causes the

cost of dynamic load b.ahncing to incrtase drarmitic,ally.

Moving away from the d:itabase field, there is a significant

body of work on parallel task scheduling in the field of

deterministic scheduling theory. Since the problem is NT-
hard in the strong sense [DL89], research efforts have

concentrated on providing fast heuristics with provable worst

c:Lsebounds on the suboptim,alit y of the solution. However,

scheduling query plans on sh,ared-nothing architectures

requires a significantly richer model of p,am.llelization than

wh:it is msunmd in the classical [Gra66, GLLRK79] or

even more recent [BB90, BB91, KM92, TWY92, WC92]

efforts in that field. To the best of our knowledge, there

h~ive been no theoretical results in the literature on parallel

tmk scheduling that consider multiple system resources

:md explore resource sh,aring among concurrent tasks, or

study the implications of pipelined p.arallelisrn .wd dat:i

cmnmunic:ition costs. This is an are:i of growing interest,

however: in addition to our own effort, recently Shachnai

and Turek [ST94] have independently obtained some results

on multiresource ptarallel t,ask scheduling. Their results

on makespan scheduling are similar to ours although they

assume ii very different model of resource usage.

3 Problem Formulation

3.1 Definitions

We consider shared-nothing systems with identical multi-

programrned resource sites connected by an interconnection

network. Each site is a collection of d system resources that

are assumed to be time-sliceuble or preemptuble, in the sense

th:it they can be time-shta-red among different operations at

low overhead. Resources like the CPU(s), the disk(s), and

the network interface(s) or communication processor(s) ,are

preempt:ible, while memory is not.

An operator wee [GHK92, Hon92, Sch90] is cre:ited as a

“m:icro-exp,ansion” of an execution pl,an tree by refining each

node into :i subtree of physical operator nodes, e.g., scan,

probe, build (Figure l(a,b)). Edges represent the flow

of d:it:i as well as two forms of timing constraints between

oper[itors: pipelining (thin edges) <andblocking (thick edges).
A query fusk is a m,aximol subgr:iph of the operator tree

containing only pipelining edges. A query tusk tree is created

from an operator tree by representing query t,asks as single

nodes (Figure l(c)).

The above trees cl,arify the definitions of the three forms
of intra-query parallelism:

Partitioned purullelism: A single node of the operator

tree is executed on [i set of sites by appropri;itely

partitioning its input data sets.

T2 Ti

(3) (b) (c)

Figure 1: (:1) An execution plan tree. (b) The corresponding

oper:itor tree. (c) The corresponding query task tree. The

thick edges in (b) indiciite blocking constraints.

● Pipelined purullelism.. The oper:itors of :i sing le node of

the t,ask tree ,are executed on a set of sites in a pipelined

m,anner.

● independent purullelism. Nodes of the t&sk tree with

no path between them are executed on ii set of sites

independent of each other. For ex,arnple, in Figure 1,

tasks T1-T4 can be executed in parallel, whereas task T5

must :iwoit the completion of T1 -T4.

The home of .an operator is the set of sites allotted to its

execution. E:ich oper:itor is either rooted. if its home is fixed

by data phicement constraints (e.g., scanning the m:iterialized

result of a previous t,ask), orjlouting, if the resource scheduler

is free to determine its p,aralleliz;ition.

3.2 ()verview

A parallel schedule consists of (1) an operator tree and (2) an

allocation of system resources to operators. Given :i query

execution pl,an, our goal is to find a parallel schedule with

minim,al response time. To account for the communic[ition

overhead of p,ar,allelism, we initi,all y restrict our :ittention to

partitioned parallelism that is course ~rui}z [GWW. GY93].

That is, we ignore operator paralleliz:itions whose r:itio

of computation costs to communication overhe:id is not

sufficiently high, ,asmost of them are bound to be ineffective.

Based on the above restriction, we devise an algorithm

for scheduling bushy execution plan trees that consists of the

following steps:

1.

2.

3.

4.

Construct the corresponding operator and tm’k trees,

and deterministically split the latter into synchronized

phases [TL93], where each ph,ase contains tasks with no

(blocking) p:iths between them.

For e:ich operator, determine its individual resource re-

quirements using h,ardw,are p,am.meters, DBMS st:itis-

tics, ,and conventional optimizer cost models (e.g..

[HCY94, SAC+79]).

For e:ich flo:iting operator, determine the degree of coarse

grain parallelism based on the rehitive cost of comput:i-

tion and communication (partitioned p.ar.atlelistn).

For each phase of the task tree, schedule all floating

operators on the set of available sites using :i multi-

dimensional list scheduling heuristic that is ptwdlv

neur-optirnal in the space of coarse grain parallel

executions (pipelined and independent parallelism).

367

We then propose a technique for selecting an operator

parallelization that allows us to relax the co,arse gmnularity

restriction (Step 3). Combining this technique with our

list scheduling rule for independent operators results in an

calgorithm that is provably ne,ar-optim,al in the space of all
possible parallel executions.

3.3 Assumptions

Our approach is b,a,sedon the following set of ,assumptions:

Al. No Memory Limitations. An operator is always

allotted sufficient memory buffers to allow the execution

of ,an operator pipeline to proceed in a single ph,ase. For

example, when executing a pipeline of probe operators,

the hash tables built on the inner relations are assumed

to be memory-resident. To the best of our knowledge,

developing ,anaccurate memory usage model for p,arallel

query optimization is an open problem.

A2. No Time-Sharing Overhead. Following Ganguly et

al. [GHK92], slicing a preemptable resource among

multiple operators introduces no additional resource

costs.

A3. Uniform Resource Usage. Following G,anguly et

al. [GHK92], usage of a preemptable resource by an

operator is uniformly spread over the execution of the

operator.

A4. Non-increasing Operator Execution Times. For

the range of co,arse gr,ain parallelism considered, ,an

operzttor’s execution time is a non-increasing function of

its degree of p,ar,allelism, i.e., ,allotting more sites c,annot

incre<aseits response time.

A5. Dynamically Repartitioned Pipelined Outputs. The

4

output of ,anoperator in a pipeline-is always repartitioned

to serve .as input to the next one. This is almost ,always

accurate, e.g., when the join attributes of pipelined joins

are different, the degrees of partitioned p,amllelism differ,

or different declustering schemes must be used for load

balancing.

Coarse Grain Parallelization of Operators

4.1 A Resource Usage Model

Our treatment of resource usage is based on the model of

preemptable resources proposed by Ganguly et al. [GHK92],

which we briefl y describe here. The usage of a single resource

by an operator is modeled by two parameters, T and W’,
where T is the elapsed time after which the resource is freed

(i.e., the response time of the operator) and W is the work

measured as the effective time for which the resource is used

by the operator. Intuitively, the resource is kept busy by the

operator only W/T of the time. Although this abstraction
can model the true utilization of a system resource, it does

not allow us to predict exactly when the busy periods are.

Thus, we make ,assumption A3 which, in conjunction with

assumption A2, leads to str,aightforw’ard quantification of the

effects of resource sharing [GHK92].

TIME

I

TIME

\----
[i]

RESOURCES RESO\JR(’ES

(a) (b)

Figure 2: Extremes in usage of d-dimensional resource sites:

(a) perfect overlap and (b) zero overlap.

We extend the model of G,anguly et al. [GHK92] and

describe the usage by ,anisolated operator of a site comprising

of d preemptable resources by the p,air (Ts ‘q, W). Parameter
Tseg is the (sequential) execution time of the operator, while

~ is a d-dimensional work vector whose components denote

the work done on individual resources. Our model assumes

a fixed numbering of system resources for all sites; for

ex,ample, dimensions 1, 2, 3, and 4 may correspond to

CPU, disk- 1, disk-2, and network interface, respectively.

Time Tseg is actually a function of the operator’s individual

resource requirements, i.e., its work vector ~ (sometimes

emphasized by using TS’9(W) instead of Ts’q), ,and the

mnount of overlap that can be achieved between processing

at different resources. This overlap is a system parameter

that depends on the h.ardw,are ,and software ,architecture of

the resource sites (e.g., buffering architecture for disk 1/0)

,as well ‘as the algorithm implementing the operator. An

important constraint for Ts ‘q, however, is that it c,an never

be less th,an the amount of work done on ,any single resource

,and it can never exceed the total work performed. As shown

in Figure 21, this is more formally expressed as

4.2 Quantifying Coarse Grain Parallelism

As is well known, increasing the parallelism of an operator

reduces its execution time until a saturation point is reached,

beyond which additional parallelism causes a speed-down,

due to excessive communication startup and coordination

overhead over too many sites [DGS+90]. To avoid

operating beyond that point, we need to ensure that the

gr,anules of the parallel execution ,are sufficiency coarse.
In p,articul~, in the spirit of Stone [Sto87], we define the

granularity of a d-dimensional parallel operator op ,as the

ratio WP (op)/ Wc(op, N), where

● WP (op) denotes the total amount of work performed

during the execution of op on a single site, when all its

oper,ands are locally resident (i.e., zero communication

cost); it corresponds to the processing area [GW93] of

op and is constant for all possible executions of op; ‘and

1Figure 2 is actualty a little misleading since, by assumption A3, the
work performed on any resource should be unj%rrnly spread over 7’”’ q.

368

● JVC(OP, N) denotes the total communication overhe:id

incurred when the execution of op is distributed :icross

.V sites; it corresponds to the comrnunicution areu of

[iparallel execution of op on N sites and is :i non-

ilecreasing function of N.

Using the :ibove notions, we extend e,arli~r quantific:itions of

coarse grain parallelism [GW93] to our multi-dimensional

oper:ttor model as follows:

Definition 4.1 A p,arallel execution of an operator op cm N

resource sites is coarse ~rain with purameterf (referred to as

[i CGf execution) if the communication arwi of the execution

is no more th:in f times the processing area of OP, th:it is.

i’~”<.(opl N) < j ~t;, (Op).

4.3 Degree of Partitioned Parallelism

Assuming zero communic:ition costs, the resource require-

ments of the operator are described by ii d-dimensional work

vector ~ whose components can be derived from system

parameters and tr:iditional optimizer cost models. By defini-
tion, the processing area of the operator WT,(oP) is simply

the sum of ~’s components, i.e., J~\ (op) = ~~=, W [i].

Let D denote the total size (in bytes) of the operator’s

input and output data set(s) th:it ,are transferred over the

interconnect. We use :i simple model of communication costs

in which the tot,al cornmunic:ition overhead for the parallel

execution of an oper:itor on ‘V sites is estimated as:

WC(op, N)=n N+[~D.

where o. lj are architecture-specific parameters specified as

follows:
Q a is the startup cost for each participating site, :md

● d is the time spent at the network interface and/or

communication processor per unit of d:ita transferred.

This model of operator communication costs is subst,anti:ited

by the experimental results of DeWitt et al. on the Gamm:i

shared-nothing d:itzibase m:ichine [DGS + 90], and simpler

fbrms of this model h:ive been adopted in previous studies of’

shared-nothing systems [GMSY93, WFA92].

Note th:it the startup cost cannot, in general, be distributed

among the participating sites. Rather, it is inherently seri,al

and is incurred :it a single site (the designated “coordinator”

for the paraflel execution). This implies that there always

exists some degree of parallelism beyond which the smrtup

overhead at the coordin:itor domimites the actual processing

time.

The following proposition is ,an immediate consequence

of Definition 4.1 and our communication cost model.

Proposition 4.1 The maximum allowable degree of intr:i-

oper:itor parallelism for a CGf execution of operator OP is
denoted hy N,=<,=(OP. j) and is determined by the formtrln

5 The Scheduling Algorithm

5.1 Notation

T:ible 1 summarizes the not:ition used in this section with

:i brief description of its semantics. Detailed definitions

of some of these pamnwters are given below. Addition:it

not:ition will be introduced when necessary. Vector TOP,

Parameter

[’

d

~1

~I~rk($J)
ptt.-(,,,)

M

,.,L1,

N,

W(-lL),

T“ar((-i)t, Nt)

79(W)

1(W), J05’)

Semantics

Number of system sites

Site dimensiomrlity (no nt’ resources per site’1

System site (j = 1(. . . . F’)

()perator clones sharing site .S1

Execmtlon time for all operator clones at site s,

Number of concurrent operators

opwrtor,e. g., 1{11, l:ill (2 = 1,11)

Degree of partltl~)ned pmrllehsm (number of

clones) for flUI,

Work vector for OLI, (including ccmmlunwatl(]n

costs for N, sites)

Time of parallel executmn of -~, on N, sites

whale alone m system

Time of sequential execution of operator with

resource requirements W (Section 4.1)

Length of a work vector ~ or set of wnrk

vectors S’

T:ible 1: Not:ition

describes the total (i.e., processing and cornmunic:ition)

resource requiretnents of Opi, given its degree of parallelism
,V,. l_Jsing the notions of communication and processing :ire:i

defined in Section 4, the almve is expressed as

$ w’op,[~l = W,,(op,) + WC(OPL, N).
k=l

The individual components of ~opt are computed using

mchitectur,al parameters, database st:itistics. and our model

for cotnmunic:ition costs~.

The length of u d-dimcnsionul vector ~ is its maxitnum

component. The length of u set S ~~j’<1-divl~’tzsi~)tlul~vctors is

the tn,a.ximum cotnponent in the vector sutn of all the vectors
in ,>’. More fortnally,

5.2 Modeling Parallel Execution and Resource Sharing

In this section, we present [i set of extensions to the (one-

ditnensional) cost model of a traditional DBMS based on

the multi-ditnensional resource us:ige fortnukition described

in Section 4.1. Our extensions account for all fortns of
parallelistn and quantify the effects of resource sharing on

the response time of a p,ar.allel execution.

2The actual dlstnbutlon of costs among the vector’s components I\
unmatenal as far as our model u+coucemect.

369

5.2.1 Partitioned Parallelism

In partitioned parallelism, the work vector of an operator

is partitioned ‘among {i set of operucor clones [GHK92].

Each clone executes on a single site ,and works on a portion

of the operator’s data Consider an operator OP, that is

distributed across N~ sites and runs in isolation, without

experiencing resource contention. Partitioning ~op, into

the work vectors for the operator clones is determined

b,ased on statistical information kept in the DBMS catalogs.

Given such a partitioning < ~L, ~z, WIV, >, where

zfl~l ~~ = WOP,, the parallel execution time for op~ can

be expressed .as the maximum of the sequential execution

times of the Ni clones; that is,

7“’’’’(op, , N,) = ,~:~ { Tseq(~k) }. (1)
— —

5.2.2 Pipelined and Independent Parallelism

Definition 5.1 Given a collection of M operators to be ex-

ecuted concurrently {opt, i = 1 . . . M } ,and their respec-

tive degrees of partitioned parallelism { N~, i = 1 . . . M }, a

schedule is a mapping of the ~~ ~ N, operator clones to the

set of available sites such that no two clones of the same

operator are mapped to the s,arnesite.

The constmint on the mapping of operator clones to sites

ensures that N, is the true degree of p,amllelism for op~ so

that Equation (1) is still valid.

The effects of time-sharing a site ,among many operators

c,an be quantified as follows. Let work (sj) denote the set

of all operator clones (or, equivalently, all work vectors)
mapped to site Sj under a particulm schedule. Since all

resources ,are preemptable, the execution time for all the

operator clones scheduled at Si is determined by the ability

to overlap the processing of resource requests by different

operators. Specifically, under our model of preemptable

resources described in Section 4.1, the execution time for

all the operator clones scheduled at Sj is defined ,as

Tsz’e(.sj) = max{ rnax {T’’’(w)} , 1(W07+(S,)) }.
TTework(sj)

(2)

For ex,ample, consider two 2-dimensional operator clones

with resource usage pairs (T~eq, ~1) = (22,[10,15]) and

(T;”, ~2,) = (10,[10,5]) placed at Sj. In this c,ase,~1 +~z

= [20,201, whi~ m~ris that the total requirements of the
two clones (1({ WI, Wz }) = 20) c,an be “squeezed into the

response time of the first clone (T~e~ = 22), i.e., T’it’ (s3) =

22. On the other h,and, consider (T~’q, W 1) placed at Sj with

(T; ’q, W3) = (10,[5,10]). In this case, WI + W3 = [15,25],

and the second resource gets congested, i.e., T’tt’ (s~) =

1({~1 ,W3}) = 25, while max{T~cq, T;”} = 22.

Let SCHJ3D be a schedule for the parallel execution of

{opt, i = 1.. .M} on a set of resource sites {sj,.j =
1 . . . P }. Clearly, the response time of SCHED is determined

by the most heavily loaded site. Thus, we can combine

Equations (2) and (1) to estimate the response time as follows:

I@xJ(wo?+(s))} }.(3)
— —

Equation (3) defines the optimization metric for our schedul-

ing algorithm, described in the next section. Intuitively the

formula states that the response time of a parallel execution

schedule is determined by either the slowest executing oper-

ator, or the load at the most heavily congested resource in the

systetn, whichever is greater.

5.3 A Near-Optimal Heuristic for Independent Query

Tasks

The perjorrrrance ratio of a scheduling algorithm is defined

.as the ratio of the response time of the schedule it

generates over that of the optimal schedule. In this section,

we develop a heuristic for scheduling independent query

tasks that is provably near-optimal, i.e., with a constant

bound on the performance ratio. In Section 5.4, we

address the generat query task tree scheduling problem.

A collection of independent query tasks (pipelines) is

essentially a collection of operators that can be executed
concurrently. Operators within each task form producer-

consumer pairs that communicate across the interconnection

network, whereas operators in different tasks ,are completely

independent. More specifically, let R, F denote the set

of ,all rooted ,and floating operators respectively, that is

RuF={op,, i= l... M}. Let N = ~~1 Ni, where the

degree of parallelism N~ is determined by Proposition 4.1 for

opt E F and by the existing data placement constraints for

Opz E R.

The p,arallel execution time of an individual rooted operator

is fixed by its parallelization. By ,assumption A4 ,and the

calculation of N~, the parallel execution time of an individual

floating operator is optimal in the space of CGf executions.

Hence, depending on the operator type, the left input of

max in (3), i.e., T~a’ (op,, N,), is either fixed or minimized.

Consequently, minimization of response time (eqwition (3))

translates to determining a mapping of the N work vectors

obtained through the cloning of operators in 1?U F to the P

d-dimensional sites, such that

(A) no two vectors from the s,ame operator are m:ipped to
the same site,

(B) data placement constraints for rooted oper:itors are

satisfied, and

(C) the m,aximum resource usage among all system re-

sources, i.e., the right input of max in (3), is minimized.

This is essentially ,an inst,ance of the d-dimensional bin-

design probletn (the dual of the d-dimensional vector-packing

problem) [CGJ84]. In vector-packing terminology, our

scheduling problem may be stated ,asfollows:

370

(ii~’en u collection ofpositive d-dimensional vectors

(the work vectors) und u set of P d-dimensional bins

(the system sites), determine u packing of the vectors

in the bins that obeys constraints (A) una’ (B) und

nlitlimizt>s the required common bin capacity (the

muxinurm resource usuge in the system).

This problem is clearly A’?-harrl since it reduces to

traditional multiprocessor scheduling for d = 1, R = 0, and

.Vi = 1 for all i. Given the intractability of the problem, we

develop an approximation algorithm, OPERAT{)RSCHEIJULE ,

that runs in polynomial time and guarantees :i constant bound

on the performance ratio. OPERATORS CHEI)ULE belongs to

the chtss of list scheduling algorithms originally proposed

by Graham [Gr:i66]. The algorithm begins by placing

the work vectors of all rooted operators at their respective

sites :ind computing the degree of coarse grain parallelism

for all floating operators. It then proceeds to schedule

floating operators :iccording to the following list scheduling
rule: Consider the list of work vectors resulting from the

cloning of all floating operators in non-increasing order of

their maximum component: :it e:ich step, p:ick the next

vector in the least filled allowable bin/site (that is, p:ick

the vector in the site ,sl such that 1(u)orli (,s,7)) is tninimal

among all bins not containing other vectors of that oper:itor).

OPERATORSCHEIJLILE is depicted in Figure 3.

Input: A set of rooted and tloatmg operators R U F, a setof P

smx {s ~, ., .S.P}, and a granularity par2meter ~
Output: A schedule ({wor-k(sj), J = 1, . . . P}) for the CGf

execution of 1+u F satisfying (A)-(B)

foreach 011, e R do
place the work vectors of -1, at their respective sites

end-for
for each III, E F do

set the degree of intra-operator parallelism

N, = Inin{fv,,,a..(01,,, j-). P}

let L., =< U1, ..., ~,kJt > be the list of work
vectors for ,-)l,’s clones

end-for
let L =< til, ,. ,~~ > be the list of all floating work

vectors in non-increasing order of l(iiI,)
fork= lto Ndo

let -1,, be the operator whose cloning produced ZTL
let .Sbe a site with work(s) n L = 0 such that

lark) = rein, j ,UOrk(~, ~nLL=~{l(tuork(,s j)}

set work(s) = UJorli(s) u {mA}
end-for

Figure 3: The OPERAT(JRSCHEI)ULE algorithm

The following theorem bounds the worst-case performance

ratio of our algorithm. As with all theoretical results

presented here, the theorem is stated without proof due to

space constraints. The det,ails can be found in the full version
of this paper [G196].

Theorem 5.1 The parallel execution time of the schedule

returned by OPERATORS CHEIJULE is

(a) within (M-t 1) of the length of the optimal schedule th:it

uses the same degrees of intra-operatm parallelism for all

floating operators, and

(b) within (2d(~d + 1) + 1) of the optimal CGf schedule

length.

We also provide an upper hound on the :isymptotic time

complexity of OPERATORSCHEI)LILE.

Proposition 5.1 OPERATf~RSCHEI)ULE runs in time

()(Lf P(M + log P)), where Al is the number of concur-

rent operators and P is the nutnher of system sites.

5.4 Handling Data Dependencies

Scheduling arbitrary query task trees must ensure th:tt the

blocking constraints specified by the tree’s edges are s:itistied.

For this, we split [i query task tree into synchronized

phases or “shelves” [NSHL95, TL93]. E:ich phase contains

independent tasks th:it are to be executed concurrently. after’

the cotnpletion of all tasks in the previous ph:ise. The

number of phases is equal to the height of the task tree tmd

e:ich task is scheduled in the phase closest to the root th;it

does not viokite the precedence constraints. For exa.rnple,

the pl:m in Figure 1 is executed in two distinct phases

containing tasks T 1-T4 and task T5, respectively, This

corresponds to the M i7L$’h el f policy of Tan and Lu [TL93].

Resource scheduling within e:ich phase is performed by

the OPERATORSL’HEDULE algorithm. The full :Jgorithm.

TREESCHEI)ULE is depicted in Figure 4.

Input: Aquery task tree 7 = (V, E). asetclf Psltes {s1. s~. }.

and a granularity parameter f
output: A schedule for the CGf execution of T

for i = ktghq T) downto O do
of” = @

foreach node o E t’” such that lru~l(v) = Ldo

(>P = OF’ u {operators in task II}
end-for
call OPERATORSCHEDULE((~P, {sl, ,,, , SF}, f)

end-for

Figure 4: The TREESCHEIXJLE algorithm

Observe that for ,any query execution plan the number of

nodes in the oper:itor tree is bounded by a small constant

times the number of joins in the query. e.g.. expanding ii

hash-join gives at most four oper:itor nodes. Combining

this observation with Proposition 5.1 gives the following

complexity bound for TREESCHEI)ULE .

Proposition 5.2 TREESCHEDULE runs in time

()(JP(J + log F’)), where J is the number of nodes in the

query execution pl,an and P is the number of system sites.

5.5 Comments on the Effectiveness of the Heuristics

Theorem 5.1 derives an upper bound cm the worst-case

performance ratio of the OPERAT()RSCHEI)ULE algorithm for

scheduling {i collection of CGf concurrent operators. in

general, the expected output quality of our heuristic sh(mld

371

be much better than the worst-case bounds, especially for a

set of operators with a good “mix” of resource requirements.

This conjecture is supported by theoretical results on

the expected performance of vector packing [KLMS84].

The big [idv,antage of OPERATORSCHEIN-JLE comp,ared to

previous approaches is its ability to explore resource sharing

possibilities and bahance the resource workloads at individual

sites.

Deriving performance bounds for the schedule produced

by the TREESCHEIJULE algorithm is a much more difficult

problem. Theorem 5.1 ensures that scheduling within each

phase is near-optimal given its data placement constraints.

When scheduling a query task tree, the scheduling decisions

made at earlier ph,asesmay impose. daL~placement constraints

on the ph,ases that follow. For example, the build and

probe operators of a h,ashjoin belong to two adjacent ph,ases

because of their sequential dependency (the h,ash mble h,as

to be complete before probing c,an begin). Furthermore, the

probe operator h,as to be executed at the set of sites that

hold the hash table, that is, the home of the bui ld. Such

interdependencies between ph,ases complicate any proof of

suboptimality bounds for the TREES CHEDULE algorithm. At

this point, we have not been able to obtain theoretical

results on the quality of the schedule produced for the

entire query task tree. However, given the load batancing

cap:tbilities of the OPERATORSCHEDULE algorithm, we feel

confident that TREES CHEIIULE will outperform previous

approaches. Our conjectures for both OPERATORSCHEI)ULE

and TREESCHEIJULE are supported by the results of a

preliminary experimental evaluation presented in the next

section.

6 Experimental Performance Evaluation

In this section, we describe the results of severaJ experiments

we have conducted comparing the average performance of

our multi-dimension,al scheduling algorithm with a one-

dimensional “synchronous execution time” algorithm that

we developed based on previous work [HCY94, LCRY93].

Another point of interest is examining how close the response

time of the generated schedule is to that of the optimal coarse

grain schedule on the uverage. We start by presenting our

experimental testbed ,and methodology.

6.1 Experimental Testbed

We have experimented with the following algorithms:

● SYNCHRONOUS : Combination of the synchronous

execution time method of Hsiao et al. [HCY94] for

processor allocation for independent p.ara.llelism with the

two-phase minim,ax technique of Lo et al. [LCRY93]

for optimally distributing processors across the stages

of a hash-join pipeline. Although these strategies

were originally proposed for sh,ared-disk systems, they

were appropriately extended to account for the data

redistribution costs in a shared-nothing environment.

● TREESCHEDULE : Multi-dimensional list scheduling in

synchronized phases.

● OPTBOUND : Hypothetical atgorithm achieving :i lower

bound on the optimal response time.

We selected SYNCHRONOUS as a one-dimensional :idversary

since it is the “state-of-the-,art” method for exploiting bushy

tree parallelism in parallel query execution3 [WFA95]. Prior

research has demonstrated the advantages offered by such

parallelism, especially for l,arge queries [CYW92]. To the

best of our knowledge, optimal processor distribution within

general join pipelines remains an open problem. We therefore

decided to restrict our experiments to bushy h,ash-join query

pl,ans so that the optimal technique of Lo et al. could be

used in SYNCHRrJNCKJS. We should stress, however, that

TREES CHEDULE is a general query scheduling algorithm that

c,an be applied to any bushy pkan.

Some additional ,assumptions were made to obtain :i

specific experimental model from the general parallel

execution model described in Sections 4 and 5:

EA1. No Execution Skew: With the exception of startup

cost, the work vector of an operator is distributed perfectly

~among all sites participating in its execution. Startup is

added to only one of these sites, the “coordinator site”
for the p,arallel execution, and is equally divided between

the coordinator’s CPU and its network interface.

EA2. Uniform Resource Overlapping: The amount of

overlap achieved between processing at different re-

sources :it a site can be characterized by a single system-

wide p,ar,ameter c ‘& [0, 1] for all query operators. This

parameter allows us to express the response time of a

work vector as a convex combination of the maximum

and the sum of the vector components (see Section 4. 1),

i.e., T(~) = 6(maxl~, <~{ W[i]})+(l–6)~~=1 IV[i].

Small values of (imply limited overlap, whereas vatues

closer to 1 imply a larger degree of overlap. In the ex-

treme cases, < = 1 gives T(w) = rrlaxl~,<~{W[2] }

(perfect overlap), and E = O gives T(w) = ~~=1 W’[i]

(zero overlap).

Finally, speciaJ precautions were taken to ensure that

,assumption A4 is not violated for <any given value of the

granularity par.arrwter j. For each query operator, there exists

<anoptim~al degree of p~artitioned parallelism that minimizes

the response time PWFA92], and beyond which st,artup costs

will cause a speed-down. Our implementation mkes sure
that this optimal degree of parallelism is never exceeded for

,any operator.

We experimented with tree queries of 10,20,30,40, and 50

joins. For e:ich query size, twenty query graphs (trees) were

randomly generated ,and for each graph a bushy execution

pl,an was randomly selected. We assumed simple key join

operations in which the size of the result relation is always

equal to the size of the l,argest of the two join operands. The

3The Fully Parallel Execution Melhod [WFA95] apphes only to nlaln-
memory paraltel database systems.

372

comparison metric was the average respome times of the

schedules produced by the algorithms over all queries of the

same size. Experiments were conducted with the resource

overlap p.ar,ameter c warying between 10% ,and 70% and the

gr,anuhrity par,a.nwter ~ varying between 0.3 ,and 0.9. (The

results presented in the next section are indicative of the

results obtained for all values of c and ~.)

In all experiments, we assumed a system consisting of

3-dimensional sites with one CPU, one disk unit, and one

network interface. The work vector components for the CPU

and the disk were estimated using the cost model equations

given by Hsiao et al. [HCY94]. The communication costs

were calculated using the model described in Section 4.2.

The values of the cost model p,ararneters were obtained from

the literature [GW93, HCY94, WFA92] ,and are summarized

in Table 24.

Configuration/Catalog Parameters Value

Number of Sites 10-140

CPU Speed 1 MIPS

Effective Disk Service Time per page 20 msec

St<artup Cost per site (~) 15 msec

Network Transfer Cost per byte (/3) 0.6 /dsec

Turde Size 128 bvtes
J

Page Size 40 tuples

Relation Size 10J -105 tuples

CPU Cost Parameters No. of [nstr.

E!E=H!l

two algorithms, while the gr,anukarity parameter was kept

constcant. The performartce results shown in Figure 5(b)

(for queries of 40 joins) demonstrate that TREESCHEDULE

consistently outperformed the SYNCHRONOUS algorithm for

warious values of .f. Clearly, the benefits of multi-

dimensional scheduling ,are more significant for smaller

values of the overlap par,arneter. The reason is th:it lower

overlap results in longer idle periods for the individual

resources which our algorithm c,an exploit through time-

sharing with other operations.

The average performance of the two scheduling algorithms

for different query sizes is depicted in Figure 6(a) for two

different system sizes (20 and 80 sites) ,and overlap c = 0.5.

For TREESCHEDULE we ,assume ~ to be fixed at 0.7. Note

that, for a given system size, the relative improvement

obtained with TREESCHEDULE increases monotonically with

the query size.

We should atso mention that the asymptotic time com-

plexity of SYNCHRONOUS is 0 (.JP log(JP)), where J is

the number of joins in the query ,and P is the number of

sites [LCRY93]. Thus. TREESCHEDLJLE appeam to be slightly

more expensive than SYNCHRONOUS, being quadratic in the

size of the query (Proposition 5.2). We believe that this is a

sm,all price to pay comp,ared to the significant performance

improvement offered by resource sh,aring, especi,alIy for large

queries and/or resource-limited situations.

For our final set of experiments, we ex,arnined the average

performance of TREES CHEDULE comp,ared to a lower bound

on the response time of the optimal CGf execution for a

constant value of ~. This lower bound. OPTBOUND, was

estimated using the formula

Table 2: Experiment P,amrneter Settings

6.2 Experimental Results

The first set of experiments studied the effect of different

values of the gr,anul.tity p,ar.arneter ~ on the performance of

TREESCHEDULE comp,ared to that of SYNCHRONOUS (which

is, of course, not ,affected by different values of j9. The

results for queries of 40 joins ,and a resource overlap of

30% (i.e., ~ = 0.3) are depicted in Figure 5(a). Clearly,

for small values of ~ the co,arse granularity condition is

too restrictive, not allowing the execution system to fully

exploit the available parallelism. As the v,alue of j increases,

the average pl,an response time drops substantially until the

bound on operator parallelism is reached. As expected, the

advantages of resource sharing ,aremost evident for resource-

Iimited situations (i.e., small p,arallel systems). Nevertheless,

for sufficiently large values of ~, our algorithm outperformed

its one-dlmension,al adversary in the entire mnge of system

and query sizes.

The second set of experiments studied the effect of the
resource overlap parameter 6 on the performance of the

4Th~ CPU speed and disk sermce rate were chosen so that the system IS

relatively halauced (i.e., not heavily CPU or 10 hound).

1(s’)
OPTBOUND = max{ ~ , T(CP) },

where

● S’ is the set of work vectors for ,all operators in the query

execution phn assuming zero communication costs for

each operator, ,and

. T(CP) is the tot,al response time of the critic,al (i.e., most

time-consuming) path in the plan assuming the maximum

allowable degree of coarse grain parallelism fbr each

operator.

By assumption A4, OPTBOUND is indeed :i lower bound

on the length of the optimal CGf execution [G196]. The

results for queries of 20 and 40 joins ,are shown in

Figure 6(b) for ~ = O.7 ‘and overlap c = 0.5. These

curves verified our expectations, showing that the average

performance of TREESCHEDULE is much closer to optimaf

than what we would expect from the worst-cme bound

derived in Theorem 5.1 for each phn phase. These results

are in accordance with the theoretical results of Karp et
at. [KLMSt34] who used a probabilistic model to prove that

even very simple vector-packing heuristics can be expected

to produce packings in which very little of the capacity of the

bins is w,asted.

373

40 Joins, 30% overlap 40 Joins, f = 0.7
800 1 , i 800 I ,,, I

700

600

500

400

300

200

100

}<,,
\

.&&... ~

700

600

500

400

300

200

100

--- \--
~-”-,+ED (50”/. overlap) -~
EESCHED (70% overlap) --+--- 1

,,
~‘:,‘\

TREESCHED (l O% overlap) -A--
TREESCHFD (30% overlap) -K--
TRF!=CPL

(JL
20 40 60 80

.
100 120 140 20 40 60 80 100 120

No of sites
140

No of sites

Figure 5: (a) Effect of the gr,anul,tity p,ar,ameter (~). (b) Effect of the resource overlap p,ar,ameter (c).

50% overlap, f -0.7
700 ! 1

50% overlap, f = 0.7
600 ,

600

500

400

300

200

100

OT I

l\
TREESCHED(40joins) +

500 , T%:%w%l%] :::-. ---
0PTBOUND(20joins) +—

3
$_ 400 ‘!

2.— II

10 15 20 25 30 35 40 45 50 0 20 40 60 80 100
No of joins

120 140
No of sites

Figure 6: (a) Effect of query size. (b) Average Performance of TREESCHEI)ULE vs. Optimal.

7 Extensions for Malleable Operators

In this section, we extend our list scheduling technique to

handle the more general malleable scheduling problem. The

degree of parallelism for the floating query operators is no

longer determined through a coarse gr,anul,arity condition.

Instead, flo:iting operators are malleable, in the sense that

the scheduler is free to determine their p,arallelization so

that the execution time is minimized over all possible

parallel schedules. Since rooted operators have no effect

on the qu,ality of the generated schedule (their scheduling

is determined by data placement constraints) we will only

consider floating operators in this section.

Let & = (N1, NM) denote a ptarallelization (i.e.,

the degrees of parallelism) of a given set of independent

operators, and let ,5’(&) = (~op, (Nl),. ., ~op~ (NM))

be the set of (total) work vectors for the oper:itors (including

the communication costs for the given p.arallelization).
Fins.lIy, define h(~) = maxl<i<~{Tp”r(OPi, ~i)}, i.%

the parallel execution time of the slowest operator. In proving

the (2o! + 1) suboptim.ality bound for OPERATORS CHEINJLE

[G196] we actually show that the makesp,an of the schedule

produced by our list scheduling rule for ,any given oper:itor

parallelization ~ s:itisfies the following inequality:

TP””(SCHED) P, IV) < (2d+ 1) max{ ~(’$yy , h(lV) },

where LB(N) = max{ W , h(~) } is a lower bound

on the optimal response time for the given parallelization.

Our goal is to determine a particular oper:itor paralleliza-

tion & such that when ~ is used as input to our list scheduling

technique the resulting schedule is gu,ar,anteed to be within

(2d+ 1) of the optimal schedule (over all possible paralleliz:i-

tions). The following lemma formalizes our expect:itions.

Lemma 7.1 Let ~“ denote the parallelization of oper:itors in

the optimal execution schedule. Let ~ be another (possibly
identical) p,arallelization such that LB(~) < ~ B (~”).

Then, applying our list scheduling rule to ~ will return ,m

execution schedule whose length is within (2d + 1) of the

optimal schedule length.

We now present :igreedy selection algorithm for generating

a f’amily of par,allelizations. The ‘algorithm is ‘an :idaptation

of the (;F method presented by Turek et al. [TWY92] based

on the observation that in our work vector model, for any

operator op, if n < rn then mop(n) <d mop(m) 5 :

‘5<~ stands for componentwise less-than, i.e., ml <,1 ?ZZff 01 [~] <
Z7~[i]for 2=1, ,., ,o!,

374

1.

2.

3. .

The first candidate p,arallelization is the minimum total

work p.arallelization &l = (1, 1, 1).

The kt~’ candidate parallelizatitm is determined by the

(k – 1)’}’ parallelization by first finding the operator

whose execution time is equ,al to h(~k- 1) <andincreasing
its degree of p,arallelisrn by one.

The algorithm terminates when no more. sites can be

allotted to the l,argest operator.

Lemma 7.2 Let ~“ denote the p,arallelization of operators

in the optim,at execution schedule-. The above algorithm

produces at le,astone p,arallelization &such that the following

two properties hold:

1. TP”” (OPi, ~i) < h(fl”) for all i, and

2. ~op, (fvi) <d WOp, (N~) for all i.

From Lemma 7.2 and the definition of the lower bound LB(),

at le,ast one of the operator p,ar,allelizations produced by the

talgorithm will satisfy the conditions of Lemma 7.1.

Theorem 7.1 Let A be the family of p.arallelizations gener-

ated and let ~ ~ A such that LB(M) = min&~A { LB(K) }.

Then, the schedule generated by our list scheduling rule for

the p,arallelization N is within (2d+ 1) of the optimal p,araflel

schedule length.

The number of parallelizations generated by our algorithm is

bounded by 1+ M (P – 1) ,and so the complexity of selecting

an operator p,amllelization is O(M P log M). Thus, this

preprocessing step does not affect the ,asymptotic complexity

of our scheduler. Also note that Theorem 7.1 does not depend

on the non-incre,asing execution times assumption (A4) or

any particular model for communication costs. The only

,assumption required is that of non-decre<asing work vectors.

S Conclusions

In this paper, we have addressed the open problem of multi-

dimensional resource scheduling for complex queries in

parallel datab,ase systems. Our approach is b,ased on (1) a
model of resource usage that ,allows the scheduler to explore

the possibilities for resource sh,aring among concurrent

operations ,and qu,antify the effects of this sh,aring on the

parallel execution time, and (2) a quantification of the notion

of co<arsegrain parallelism for query pl,an operators. Using

these tools we developed a vector-packing formulation of the
resource scheduling problem for independent query tasks,

and proposed OPERATORSCHEDULE, a fast list scheduling

heuristic th:it is provably ne,ar-optimal in the class of

coarse grain executions. We then extended our approach

to handle the blocking constraints in a bushy query plan

by splitting its execution into synchronized phmes. The

resulting algorithm, TREESCHEDULE, exploits tall forms of

intra-query parallelism ,and tallows effective resource sh,aring
wnong operators executing concurrently. We ,also verified

the effectiveness of our scheduling methods comp,ared to

both previous (one-dimensional) approaches and the optimal

solution through a series of expenment,af results. Fin,ally,

we proposed a technique that allows us to rel,ax the co(arse

granularity restriction ,and obtain a provably ne,ar-optimal list

scheduling method for the malleable independent operator

scheduling problem. In practice, the coarse granularity

condition provides a f,a,st way of determining (an efficient

parallelization based on system parameters. The more

sophisticated greedy selection technique can be used when

the additional scheduling overhead is justified.

The multi-dimensionaf model of query p,arallelization ,and

resource scheduling proposed in this paper suggests several

directions for future research. First, the framework is useful

only for resources that tare preemptable. Incorporating non-

preemptable resources such ,as memory requires ,an even

richer model of parallelization and thus rem,ains an open

question. Memory, in particular, introduces an additional

level of complexity since the amount of work performed by an

operator often depends on the amount of available memory.

Second, the assumption of zero time-sharing overhead (A2)

may not be accurate for certain types of resources. For

example, disks do not time sh,are ,a.sgracefully ,asprocessors

or network interfaces; slicing a disk among many tasks

c,an reduce the disk’s effective bandwidth. Extending

our model <andalgorithms to consider different degrees of

“preernptability” for system resources is a challenging issue.

Finally, given the generality of our scheduling framework,

it would be interesting to investig:ite its applicability to

other “multi-dimensional processing” situations (e.g., request

scheduling in multimedia storage servers). These questions

form the basis of our current ,and future research.

References
[BB90]

[BB91]

[CGJ84]

[CHM95]

K. P. Bettchale and P. Banerjee. “Approxunate
Algorithms for the t%titionable Independent Task
Scheduling Problem”. In Proc. of the 1990 lntl.

Conference on Parallel Processing, August 1990,

K. P. Betkhale and P. Banerjee. “A .%heduling

Algorithm for Ptwallelizable Dependent Tasks”. In

Proc. of(he 5th Intl. Parallel Procmsing Symposium,
1991.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson.

“Approximation Algorithms for Bin-Packing - An

Updated Survey”. In “Algorithm Design jbr Corr-

puting System Design”. Springer-Verlag, New York.

1984.

C. Chekuri, W. Hasan, and R. Motwani. “Scheduling

Problems in Parallel Query Optimization”. In Ptw. of

the 14th ACM Symposium on Principles of Da~ubuse

sysfems, San Jose, California, May 1995.

[CLYY92] M.-S. Chen, M.-L. Lo, P. S. Yu, am-t H. C.

Young. “Using Segmented Right-Deep Trees for

the Execution of Pipelined Hash Joins”. In Proc. of

~he 18th Ird Conference on Very Large Data Bases,

Vancouver. Canada, August 1992.

[CYW92] M.-S. Chen, P. S. Yu, and K.-L. Wu. “Scheduling and

Processor Allocation for Parallel Execution of Multi-

Join Queries”. In Proc. of the 8(h Intl. Conf&ence on

Da(a Engineering, Phoenix, Arizona, February 1992.

375

[DG92]

[DGS+ 90]

[DL89]

[GGW95]

[GHK92]

[G196]

[GLLRK79]

[GMSY93]

~Gra66]

[GW93]

[GY93]

[HCY94]

HM94]

Hon92]

[KLMS84]

D. J. DeWitt and J. Gray. “Parallel Database Systems:

The Future of High Performance Database Database

Systems”. Comrnunkutiorzs of the ACM, 35(6), June

1992.

D. J. DeWitt. S. Ghandeharlzadeh, D. A. %hnelder,

A. Bricker, H.-I Hsiao, and R. Rasmussen. “The

Gamma Database Machine Proysct”. IEEE Trans-

(zctions on Knowledg~ and Daca Engineering, 2(1),

March 1990.

J. Du and J. Y-T. Leung. “Complexity of Scheduling

Parallel Task Systems”. SIAM Journal on Discrete

Mathematics, 2(4), November 1989.

S. Ganguly, A. Gerasouhs, and W. Wang. “Partition-

ing Pipelines with Communication COSLS”. In Proc.

of the 6th Int 1. Confivvruv on [rrf{~rmat ion S’ys&ms

and Datu Manugernent (CISMOD’ 95), Bombay, In-

dia, November 1995.

S. Ganguly, W. Hasan, and R. Krishnamurthy. ‘Query

(“optimization for Parallel Execution”. In Proc.

of the 1992 ACM SIGMOD [ntl. Conference on

Management of Data, San Diego, Califorma, June

1992.

M. N. Garofalakls and Y. E. Ioannidis. “Multi-

ciimensional Resource Scheduling for Parallel

Queries”. Unpublished manuscript March 1996.

R.L. Graham, E.L. Lawler, J.K. Lenstsa, and A.H.G.

Rinnooy Kan. “Optimizatlon and Approximation

in Deterministic Sequencing and Scheduling: A

Survey”. Annals of Discrete Mathematics, 5, 1979.

S. Ghandeh,wizadeh, R. R. Meyer, G. L. Schultz, and

J. Yackel. “Optimal Balanced Assignments and a

Parallel Database Application”. ORSA Journal on

Computing, 5(2), Spring 1993.

R.L. Graham. “Bounds for Certain Multiprocessing

Anomalies”. The Bell System Technical Journal. 45,

November 1966.

S. Ganguly and W. Wang. “Optlmizing Queries

for Coarse Grain Parallelism”. Technical Report

LCSR-TR-218, Dept. of Computer Sciences, Rutgers

University, october 1993.

A. Gerasouhs and T. Yang. “On the Granularity and

Clustering of Directed Acychc Task Graphs”. IEEE

Transactions on Parallel and Distribukd .Yystems,

4(6), June 1993.

H.-I Hsiao, M.-S. Chen, and P. S. Yu. “On Parallel

Execution of Multlple Pipelined Hash Joins”. In

Proc. of ~hc 1994 ACM SIGMOD Intl. Conference on

Management of Da~a, Minneapolis, Minnesota, May

1994.

W. Has an and R. Motwani. “optimization Algorithms

for Exploiting the Parallelism-Communication Trade-

off in Pipelined Parallelism”. In Proc. of the 20th

Intl. Conference on Very Large Data Bases, Santiago.

Chile, August 1994.

W. Hong. “Exploiting Inter-Operation Parallelism

in XPRS”. In Proc. of the 1992 ACM SIGMOD

Intl. Conference on Management of Data, San Diego,

California, June 1992.
R. M. Karp, M. Luby, and A. Marchetti-Spaccamela.

“A Probabilistic Analysis of Multidimensional Bm

Packing Problems”. In Proc. of lhe Annual ACM

Symposium on the Theory of Cmnputing, 1984.

[KM92]

[LCRY93]

[MD93]

[MD95]

[NSHL95]

[RM95]

[SAC+ 79]

[Sch90]

[ST94]

[Sto87]

[TL93]

[TWY92]

[WC92]

[WFA92]

[WFA95]

R. Krishnamurti and E. Ma. “An Approxunatlon

Algorithm for Scheduling Tasks on Varying Partition

Sizes m Partitionable Multiprocessor Systems”. IEEE

Transactions on Computers, 41 (12), December 1992.

M.-L. Lo, M.-S. Chen, C.V. Ravlshank.ar, and P. S.

Yu. “th Optimal Processor Allocation to Support

Plpehned Hash Joins”. In Proc. of the 1993 ACM

SIGMOD tntl. Conference on Management of Da~a,

Washington, D. C., June 1993.

M. Mehta and D. J. DeWitt. “Dynamic Memory

Allocation for Multiple-Query Workloads”. In Proc.

of the 19th [ntl, Conference on Very Large Data Bases,

Dublin, Ireland, 1993.

M. Mehtaand D. J. DeWkt. “Mana.gmg Irrtra-operator

Parallelism in Parallel Database Systems”. In Proc. of

the 2 1s~Intl. Conference on Very Large DUW Bases,

Zu~ch, Switzerland, September 1995.

T. M. Niccum, J. Srivastava, B. Himatsingka, and

J. Li. “Query Optimizatlon and Processing m Parallel

Databases”. DIMACS Series in Discrete Mathernalics

and Theoretical Computer Sciencw, 22, 1995.

E. Rahm and R. Marek. “’Dynamic Multl-Resource

Load Balancing in Parallel Database Systems”. In

Proc. of the 2 Ist Intl. Conference on Very Lurge Data

Bases, Zurich, Switzerland, ,%ptember 1995.

P. Selinger, M.M. Astrahan, D.D. Chamberlain, R.A,

Lorie, and T.G. Price. “Access Path SelectIon m

a Relational Database Management System”. In

Proc. of the 1979 ACM SIGMOD Intl. Conference on

Managetrwnt of Data, Boston, Massachusetts, June

1979.

D. A. Schneider. “Complex Query Processing in

Multiprocessor Database Machines”. PhD thes~s.

University of Wisconsin-Madison, September 199[).

H. Shachnai, and J. J. Turek. “Multiresource Mal-

leable Task Scheduling”. Submitted for pubhcation,

July 1994.

H. S. Stone. ‘<High-performance Comi~uter Architec-

ture”. Reading, Mass. : Addison-Wesley Pub. Co,,

1987.

K.-L. Tan and H. Lu. “on Resource Scheduling of

Multi-join Queries in Parallel Database Systems”.

Information Processing Letters. 48, 1993.

J. Turek, J. L, Wolf, and P. S. Yu. “Approximate

Algorithms for Scheduling Parallelizahle Tasks”. In

Proc. of the 4th Annual ACM Symposium on Parullel

Algorithms and Architectures, San Diego, Califorma,

June 1992.

Q. Wang and K. H. Cheng. “A Heurlstlc of Scheduling

Parallel Tasks and its Analysis”. SIAM Journal on
Computing, 21(2), April 1992.

A. N. Wilschut, J. Flokstra, and P. M.G. Apers. “Par-

allelism in a Main-Memory DBMS: The Performance

of PRISMAIDJ3”. In Proc. of the 18th [nil. C@v-

ence on Very Large Data Bases, Vancouver. Canada,

August 1992.

A. N. Wilschut, J. Flokstra, and F? M.G. Apers.

“parallel Evaluation of Multi-join @cries”. In proc,

of the 1995 ACM SIGMOD Intl. Conference on

Management ofDa~a, San Jose, California, May 1995.

376

