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Abstract

Scheduling query execution plans 1s an important component of
query optimization in parallel database systems. The problem 1s
particularly complex in a shared-nothing execution environment.
where each system node represents a collection of time-shareable
resources (¢.g., CPU(s). disk(s). etc.) and communicates with other
nodes only hy message-passing.  Significant research effort has
concentrated on only a subset of the varous forms of intra-query
parallelism so that scheduling and synchronization is simplified.
In addition, most previous work has focused its attention on
one-dimensional models of parallel query scheduling, effectively
ignoring the potential benefits of resource sharing. In this paper,
we develop an approach that 1s more general in both directions,
capturing all forms of intra-query parallelism and exploiting
sharing of multi-dimensional resource nodes among concurrent plan
operators. Ths allows scheduling a set of independent query tasks
(1.e.. operator pipelines) to be seen as an instance of the multi-
dimensional bin-design problem. Using a novel guantification of
coarse grain parallelism, we present a list scheduling heuristic
algorithm that is provably near-optimal in the class of coarse
grain parallel executions (with a worst-case performance ratio that
depends on the number of resources per node and the granularity
parameter). We then extend this algorithm to handle the operator
precedence constraints m a bushy query plan by splitting the
execution of the plan into synchronized phases. Prelminary
performance results confirm the effectiveness of our scheduling
algorithm compared both to previous approaches and the optimal
solution. Finally, we present a technique that allows us to relax the
coarse granulanty restriction and obtain a list scheduling method
that 15 provably near-optimal in the space of all possible parallel
schedules.

1 Introduction

Parallelism has been recognized as a powerful and cost-
effective means of handling the projected increases in data
size and query complexity in future database applications.
Among all proposals, the shared-nothing multiprocessor
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architecture has emerged as the most scalable to support
very large database management [DG92]. In this, cach sire
consists of its own set of local resources and communicates
with other sites only by message-passing.  Despite the
popularity of this architecture, the development of effective
and efficient query processing and optimization techniques
to exploit its full potential still remains an issue of concern.

Earlier work on parallel query scheduling has typically
concentrated on two important problems:

1. compile-time optimizarion: minimizing the response
time of a single query through parallelization of an
execution plan, i.e.. scheduling of the plan’s operators
on the system’s sites (the plan is usually the resuit
of an earlier phase of conventional centralized query
optimization) [CHM95, GW93, HM94, Hon92, HCYY94.
LCRY93]; and

2. run-time execution: achieving some system-wide per-
formance goals (e.g., maximizing query throughput) by
adaptive scheduling of the operators of multiple concur-
rent queries [MD93, MDY5, RMY5].

We address the first problem, i.e., parallelization of query

execution plans. We consider the full variety of bushy plans

and schedules that incorporate independent and pipelined
forms of inter-operation parallelism as well as intra-operation

(i.e., partitioned) parallelism.

One of the main sources of complexity of query plan
scheduling is the multi-dimensionaliry of the resource needs
of database queries. That is, during their execution queries
alternate between multiple resources, most of which are
preemptable [GHKY2], e.g.. the CPU and disk bandwidth.
This introduces a range of possibilities for effectively time-
sharing system resources among concurrent query Operators,
which can substantially increase the utilization of these
resources and reduce the response time of the query.

Previous work on parallel query scheduling has typically
ignored the muiti-dimensional nature of database queries. It
has simplified the allocation of resources to a mere allocation
of processors, hiding the multi-dimensionality of query
operators under a scalar cost metric like “work™ or “time”
[CHMY95, GW93, HM94, HCY94, LCRY93]. This one-
dimensional model of scheduling is inadequate for database
operations that impose a significant load on multiple system
resources.

In this paper, we present a framework for multi-
dimensional resource scheduling in shared-nothing parallel



database systems. Building on the work of Ganguly et
al. [GHK92}, we represent query operator costs as work
vecrors with one dimension per resource. In order to account
for the communication overhead of parallelism. we initially
restrict our attention to operator parallelizations that are
sufficiently coarse grain. We present a quantification of
the notion of coarse granularity based on the relative costs
of communication and computation and use it to derive the
degree of partitioned parallelism.

Based on this framework, the problem of resource
scheduling for a collection of concurrently executed operators
is reduced to an instance of the multi-dimensional bin-
design problem [CGJ84] for work vector packings. For
this, we develop a fast resource scheduling algorithm
called OPERATORSCHEDULE that belongs to the class of
list scheduling algorithms [Gra66). The response time
(or, makespun) of the parallel schedule produced by
OPERATORSCHEDULE is analytically shown to be
(a) within (2d + 1) of the optimal schedule length for given

degrees of partitioned parallelism, and
(b) within (2d(fd + 1) + 1) of the optimal coarse grain
schedule length,
where d is the dimensionality of the work vectors and
f is a “small” parameter capturing the granularity of
the parallel execution. We then extend the algorithm
to handle the operator precedence constraints in a bushy
query plan by splitting the execution of the plan into
synchronized phases.  The resulting algorithm. called
TREESCHEDULE, uses OPERATORSCHEDULE as a subroutine
to determine the scheduling of operators within each phase.
Preliminary experimental results confirm the effectiveness
of these algorithms compared to previous one-dimensional
approaches. In addition, our results show that the analytical
worst-case bounds are rather pessimistic compared to the
average performance, which is extremely close to optimal.
Finally, we consider the more general malleable problem
in which the solution is no longer constrained by a coarse
granularity condition. Instead, the scheduler is free to
determine the degrees of partitioned parallelism with the
objective of minimizing response time over all possible
parallel schedules. Building on the ideas of Turek et
al. [TWY92] we present a technique that allows our list
scheduling rule for independent operators to achieve a
suboptimality bound of (2d + 1) for the malleable problem
at the additional cost of a preprocessing parallelization step.

2 Related Work

The problem of scheduling complex query plans on parallel
machines has recently attracted a lot of attention from the
database research community. Hasan and Motwani [HM94]
study the tradeoff between pipelined parallelism and its com-
munication overhead and develop near-optimal heuristics for
scheduling a star or a path of pipelined relational operators
on a multiprocessor architecture. Chekuri et al. [CHM95]
extend these results to arbitrary pipelined operator trees, The
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heuristics proposed in these papers ignore both independent
and partitioned parallelism. Gangualy and Wang [GW93] de-
scribe the design of a parallelizing scheduler for a tree of
coarse grain operators. Based on a one-dimensional model
of query operator costs, the authors show their scheduler to
be near-optimal for a limited space of query plans (i.e., left-
deep join trees with a single materialization point in any right
subtree). Ganguly et al. [GGW95] obtain similar results for
the problem of partitioning independent pipelines without
the coarse granularity restriction. The benefits of resource
sharing and the multi-dimensionality of query operators are
not addressed in these papers. Furthermore, no experimental
results are reported. Lo et al. [LCRY93] develop optimal
schemes for assigning processors to the stages of a pipeline
of hash-joins in a shared-disk environment. Their schemes
are based on a two-phase minimax formulation of the prob-
lem that ignores communication costs and prevents processor
sharing among stages. Moreover, no methods are proposed
for handling multiple join pipelines (i.e., independent paral-
lelism).

With the exception of the papers mentioned above, most
efforts are experimental in nature and offer no theoretical
justification for the algorithms that they propose. In addition,
many proposals have simplified the scheduling issues by
ignoring independent (bushy tree) parallelism; these include
the right-deep trees of Schneider [Sch90] and the segmented
right-deep trees of Chen et al. [CLY'Y92]. Nevertheless, the
advantages offered by such parallelism, especially for large
queries, have been demonstrated in prior research [CYWO92].

Tan and Lu [TL93] and Niccum et al. [NSHL95] consider
the general problem of scheduling bushy join plans on parallel
machines exploiting all forms of intra-query parallelism and
suggest heuristic methods of splitting the bushy plan into
non-overlapping shelves of concurrent joins. For the same
problem, Hsiao et al. [HCY94] propose a processor allocation
scheme based on the concept of synchronous execution time:
the set of processors allotted to a parent join pipeline are
recursively partitioned among its subtrees in such a way that
those subtrees can be completed at approximately the same
time. For deep execution plans, there exists a point beyond
which further partitioning is detrimental or even impossible,
and serialization must be employed for better performance.
Wilschut et al. [WFA95] present a comparative performance
evaluation of various multi-join execution strategies on the
PRISMA/DB parallel main-memory database system.

A common characteristic of all approaches described
above is that they consider a one-dimensional model of re-
source allocation based on a scalar cost metric (e.g., “work”),
which ignores any possibilities for effective resource sharing
among concurrent operations. Perhaps the only exception is
Hong’s method for exploiting independent parallelism in the
XPRS shared-memory database system [Hon92]. He sug-
gests a scheduling algorithm that combines one I/O-bound
and one CPU-bound operator pipeline through independent
parallelism to maximize the system resource utilizations and



thus minimize the elapsed time. Hong’s algorithm depends
on the dynamic (run-time) adjustment of intra-operator paral-
lelisin to ensure that the system always executes at its [0-CPU
balance point. However, this approach may fail in the context
of a shared-nothing architecture since the substantial commu-
nication overhead involved inrelation declustering causes the
cost of dynamic load balancing to increase dramatically.

Moving away from the database field, there is a significant
body of work on parallel task scheduling in the field of
deterministic scheduling theory. Since the problem is AP-
hard in the strong sense [DL&9], research efforts have
concentrated on providing fast heuristics with provable worst
case bounds on the suboptimality of the solution. However,
scheduling query plans on shared-nothing architectures
requires a significantly richer model of parallelization than
what 15 assumed in the classical [Gra66, GLLRK79] or
even more recent [BB90, BB91, KM92, TWY92, W(C92]
efforts in that field. To the best of our knowledge, there
have been no theoretical results in the literature on paratiel
task scheduling that consider multiple system resources
and explore resource sharing among concurrent tasks, or
study the implications of pipelined parallelism and data
communication costs. This is an area of growing interest,
however; in addition to our own effort, recently Shachnai
and Turek [ST94] have independently obtained some results
on multiresource parallel task scheduling. Their results
on makespan scheduling are similar to ours although they
assume a very different model of resource usage.

3 Problem Formulation
3.1 Definitions

We consider shared-nothing systems with identical multi-
programmed resource sites connected by an interconnection
network. Each site is a collection of d system resources that
are assumed to be time-sliceable or preemptable, in the sense
that they can be time-shared among different operations at
low overhead. Resources like the CPU(s), the disk(s), and
the network interface(s) or communication processor(s) are
preemptable, while memory is not.

An operator tree [GHK92, Hon92, Sch90] is created as a
“macro-expansion” of an execution plan tree by refining each
node into a subtree of physical operator nodes, e.g., scan,
probe, build (Figure 1(a,b)). Edges represent the flow
of data as well as two forms of timing constraints between
operators: pipelining (thin edges) and blocking (thick edges).
A query task is a maximal subgraph of the operator tree
containing only pipelining edges. A query tusk tree is created
from an operator tree by representing query tasks as single
nodes (Figure 1(c)).

The above trees clarify the definitions of the three forms
of intra-query parallelism;

o Furtitioned parallelism: A single node of the operator
tree is executed on a set of sites by appropriately
partitioning its input data sets.

367

ol >
/ \ RoBE @
Ra T s som scani /: \

/ \ SORTHERGE T4 /lBléILD ., . MERGE\\

A Bq ~ -
/ \m SCANGR) ;o sl sORT N @ @ @ @

S . .
" o IS (SCANR?) * + SCAN(R):
Rw

(b)

Figure 1: (a) An execution plan tree. (b) The corresponding
operator tree. (c) The corresponding query task tree. The
thick edges in (b) indicate blocking constraints.

(¢)

o Pipelined parallelism: The operators ot a single node of
the task tree are executed on a set of sites in a pipelined
manner.

o Independent parallelism: Nodes of the task tree with
no path between them are executed on a set of sites
independent of each other. For example, in Figure 1.
tasks T1-T4 can be executed in parallel, whereas task TS
must await the completion of T1-T4.

The home of an operator is the set of sites allotted to its
execution. Each operator is either rooted, if its home is fixed
by data placement constraints (e.g., scanning the materialized
result of a previous task), or floating, if the resource scheduler
is free to determine its parallelization.

3.2

A parallel schedule consists of (1) an operator tree and (2) an
allocation of system resources to operators. Given a query
execution plan, our goal is to find a parallel schedule with
minimal response time. To account for the communication
overhead of parallelism, we initially restrict our attention to
partitioned parallelism that is coarse grain [GW93. GY93].

That is, we ignore operator parallelizations whose ratio

of computation costs to communication overhead is not

sufficiently high, as most of them are bound to be ineffective.

Based on the above restriction, we devise an algorithm
for scheduling bushy execution plan trees that consists of the
following steps:

1. Construct the corresponding operator and task trees,
and deterministically split the latter into synchronized
phases [TL93], where each phase contains tasks with no
(blocking) paths between them.

. For each operator, determine its individual resource re-
quirements using hardware parameters, DBMS statis-
tics, and conventional optimizer cost models (e.g..
(HCY94, SACt79]).

3. For each floating operator, determine the degree of coarse
grain parallelism based on the relative cost of computa-
tion and communication (partitioned parallelism).

. For each phase of the task tree, schedule all floating
operators on the set of available sites using a multi-
dimensional list scheduling heuristic that is provably
near-optimal in the space of coarse grain parallel
executions (pipelined and independent parallelism).

Overview



We then propose a technique for selecting an operator
parallelization that allows us to relax the coarse granularity
restriction (Step 3). Combining this technique with our
list scheduling rule for independent operators results in an
algorithm that is provably near-optimal in the space of all
possible parallel executions.

3.3 Assumptions
Our approach is based on the following set of assumptions:

Al. No Memory Limitations. An operator is always
allotted sufficient memory buffers to allow the execution
of an operator pipeline to proceed in a single phase. For
example, when executing a pipeline of probe operators,
the hash tables built on the inner relations are assumed
t0 be memory-resident. To the best of our knowledge,
developing an accurate memory usage model for parallel
query optimization is an open problem.

A2. No Time-Sharing Overhead. Following Ganguly et
al. [GHK92], slicing a preemptable resource among
multiple operators introduces no additional resource
COSts.

A3. Uniform Resource Usage. Following Ganguly et
al. [GHK92], usage of a preemptable resource by an
operator is uniformly spread over the execution of the
operator.

A4. Non-increasing Operator Execution Times. For
the range of coarse grain parallelism considered, an
operator’s execution time is a non-increasing function of
its degree of parallelism, i.e., allotting more sites cannot
increase its response time.

AS. Dynamically Repartitioned Pipelined Outputs. The
output of an operator in a pipeline is always repartitioned
to serve as input to the next one. This is almost always
accurate, e.g., when the join attributes of pipelined joins
are different, the degrees of partitioned parallelism differ,
or different declustering schemes must be used for load
balancing.

4 Coarse Grain Parallelization of Operators
4.1

Our treatment of resource usage is based on the model of
preemptable resources proposed by Ganguly et al. [GHK92],
which we briefly describe here. The usage of asingle resource
by an operator is modeled by two parameters, 7" and W,
where T is the elapsed time after which the resource is freed
(i.e., the response time of the operator) and W is the work
measured as the effective time for which the resource is used
by the operator. Intuitively, the resource is kept busy by the
operator only W/T of the time. Although this abstraction
can model the true utilization of a system resource, it does
not allow us to predict exactly when the busy periods are.
Thus, we make assumption A3 which, in conjunction with
assumption A2, leads to straightforward quantification of the
effects of resource sharing [GHK92].

A Resource Usage Model
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Figure 2: Extremes in usage of d-dimensional resource sites:
(a) perfect overlap and (b) zero overlap.

We extend the model of Ganguly et al. [GHK92] and
describe the usage by an isolated operator of a site comprising
of d preemptable resources by the pair (7°¢9, W). Parameter
T¢4 is the (sequential) execution time of the operator, while
W is a d-dimensional work vector whose components denote
the work done on individual resources. Our model assumes
a fixed numbering of system resources for all sites; for
example, dimensions 1, 2, 3, and 4 may correspond to
CPU, disk-1, disk-2, and network interface, respectively.
Time 7°%? is actually a function of the operator’s individual
resource requirements, i.e., its work vector W (sometimes
emphasized by using T7¢%9(W) instead of 7°¢%), and the
amount of overlap that can be achieved between processing
at different resources. This overlap is a system parameter
that depends on the hardware and software architecture of
the resource sites (e.g., buffering architecture for disk 1/0)
as well as the algorithm implementing the operator. An
important constraint for 7°%9, however, is that it can never
be less than the amount of work done on any single resource
and it can never exceed the total work performed. As shown
in Figure 21, this is more formally expressed as

d
Zwm.

4.2 Quantifying Coarse Grain Parallelism

As is well known, increasing the parallelism of an operator
reduces its execution time until a saturation point is reached,
beyond which additional parallelism causes a speed-down,
due to excessive communication startup and coordination
overhead over too many sites [DGST90]. To avoid
operating beyond that point, we need to ensure that the
granules of the parallel execution are sufficienty coarse.
In particular, in the spirit of Stone [Sto87], we define the
granularity of a d-dimensional parallel operator op as the

ratio W, (op)/We(op, N), where
o W, (op) denotes the total amount of work performed
during the execution of op on a single site, when all its
operands are locally resident (i.¢., zero communication
cost); it corresponds to the processing area [GW93] of
op and is constant for all possible executions of op; and

Figure 2 is actually a little misleading since, by assumption A3, the
work performed on any resource should be uniformly spread over T4,

max (Wi} < T() <




o IV.(op, N) denotes the total communication overhead
incurred when the execution of op is distributed across
N sites; 1t corresponds to the communication area of
a parallel execution of op on N sites and is a non-
decreasing function of V.
Using the above notions, we extend earlier quantifications of
coarse grain parallelism [GW93] to our multi-dimensional
operator model as follows:

Definition 4.1 A parallel execution of an operator op on N
resource sites is coarse grain with parameter f (referred to as
a CGy execution) if the communication area of the execution
is no more than f times the processing area of op, that is,
W.(op, N) < f W,(op).

4.3 Degree of Partitioned Parallelism

Assuming zero communication costs, the resource require-
ments of the operator are described by a d-dimensional work
vector W whose components can be derived from system
parameters and traditional optimizer cost models. By defini-
tion, the processing area of the operator W,,(op) is simply
the sum of W's components, i.e., W, (op) = S0, Wi

Let I denote the total size (in hytes) of the operator S
input and output data set(s) that are transferred over the
interconnect. We use a simple model of communication costs
in which the total communication overhead for the parallel
execution of an operator on N sites is estimated as:

Welop, Ny=a N+ 3 D.

where «. 7 are architecture-specific parameters specified as
tollows:
¢ « is the startup cost for each participating site, and
e 7 is the time spent at the network interface and/or
communication processor per unit of data transferred.

This model of operator communication costs is substantiated
by the experimental results of DeWitt et al. on the Gamma
shared-nothing database machine [DGS*90], and simpler
forms of this model have been adopted in previous studies of
shared-nothing systems [GMSY93, WFA92].

Note that the startup cost cannot, in general, be distributed
among the participating sites. Rather, it is inherently serial
and is incurred at a single site (the designated “coordinator™
for the parallel execution). This implies that there always
exists some degree of parallelism beyond which the startup
overhead at the coordinator dominates the actual processing
time.

The following proposition is an immediate consequence
of Definition 4.1 and our communication cost model.

Proposition 4.1 The maximum allowable degree of intra-
operator parallelism for a CG; execution of operator op is
denoted by N.,......(op. f) and is determined by the formula

fWylop) — 5 DJ
a

Npar (0P, f) = max{[ , 1}

5 The Scheduling Algorithm

5.1 Notation

Table 1 summarizes the notation used in this section with
a brief description of its semantics. Detailed definitions
of some of these parameters are given below.  Additional
notation will be introduced when necessary. Vector Wop!

(| Parameter [ Semantics

P | Number of system sites
d | Site dimensionality (no of resources per site)
s, | Systemsite () =1...., P)
work(s;) | Operator clones sharing site s,

T***(s,) | Execution time for all operator clones at site v,
M | Number of concurrent opcrators‘
op, | Operator, e.g., o, budlad =1, .., M)

N, | Degree of partitioned parallchsm (number of
clones) for oy,

Wq,l Work vector for o], (including communication
costs for N, sites)

797 (o, No) | Tune of parallel execution of 1, on NV, sites
while alone in system
T**¢(W) | Time of sequential execution of operator with
resource requirements W (Section 4.1)
[(WW),1(5) | Length of a work vector W or set of work

vectors 9

Table 1: Notation

describes the total (i.e., processing and communication)
resource requirements of op;, given its degree of parallelism
N,. Using the notions of communication and processing area
defined in Section 4, the above is expressed as

d
> Wop,[
k=1

The individual components of Wop, are computed using
architectural parameters, database statistics. and our model
for communication costs.

The length of a d-dimensional vector T is its maximum
component, The length of a set S of d-dimensional vectors is
the maximum component in the vector sum of all the vectors
in 5. More formally,

k] = W[)(Opz) + I/V(‘(Opzv ‘}Vl)~

I(W)—lrgggd{WH . U9

o lglka}d{ Z Wik

Wes

5.2 Modeling Parallel Execution and Resource Sharing

In this section, we present a set of extensions to the (one-
dimensional) cost model of a traditional DBMS based on
the multi-dimensional resource usage formulation described
in Section 4.1. Our extensions account for all forms of
parallelism and quantify the effects of resource sharing on
the response time of a parallel execution.

2The actual distribution of costs among the vector's components 1
inmaterial as far as our model1s concerned.



5.2.1 Partitioned Parallelism

In partitioned parallelism, the work vector of an operator
is partitioned among a set of operator clones [GHK92].
Each clone executes on a single site and works on a portion
of the operator’s data. Consider an operator op, that is
distributed across N; sites and runs in isolation, without
experiencing resource contention. Partitioning Wop — into
the work vectors for the operator clones is determined
based on statistical information kept in the DBMS catalogs.
Given such a partitioning < W, Ws,..., Wy, >, where
Z]kv;l Wi = Wopl, the parallel execution time for op; can
be expressed as the maximum of the sequential execution
times of the N; clones; that is,

TP (op,, N;) = max

seq (TA7
max (T ).

M

5.2.2 Pipelined and Independent Parallelism

Definition 5.1 Given a collection of M operators to be ex-
ecuted concurrently {op,,7 = 1... M} and their respec-
tive degrees of partitioned parallelism {N;,i = 1...M}, a
schedule is a mapping of the Zf‘il N, operator clones to the
set of available sites such that no two clones of the same
operator are mapped to the same site.

The constraint on the mapping of operator clones to sites
ensures that N, is the true degree of parallelism for op; so
that Equation (1) is still valid.

The effects of time-sharing a site among many operators
can be quantified as follows. Let work(s;) denote the set
of all operator clones (or, equivalently, all work vectors)
mapped to site s; under a particular schedule. Since all
resources are preemptable, the execution time for all the
operator clones scheduled at s; is determined by the ability
to overlap the processing of resource requests by different
operators. Specifically, under our model of preemptable
resources described in Section 4.1, the execution time for
all the operator clones scheduled at s; is defined as

{19 (W) ), Uwork(s,)) }-
@

For example, consider two 2-dimensional operator clones
with resource usage pairs (777, W1) = (22,[10,15]) and
(T5°7, W4) =(10,[10,5]) placed at s,. In thiscase, Wy + Wy
= [20.201, which means that the total requirements of the
two clones ({({W1, W3}) = 20) can be “squeezed” into the
response time of the firstclone (T7°7 = 22),1.e., T**(s,) =
22. On the other hand, consider (7Y, W) placed at s, with
(T5°9, W) = (10,[5,101). In this case, W, + W5 = [15,25],
and the second resource gets congested, i.e., T°"¢(s,) =
L({W 1, W3}) = 25, while max{7}?, 75} = 22.

Let SCHED be a schedule for the parallel execution of
{op,,i = 1...M} on a set of resource sites {s;,j =
1 ...P}. Clearly, the response time of SCHED is determined
by the most heavily loaded site. Thus, we can combine

T (s,) = max{ _ max
Wework(s,)

370

Equations (2) and (1) to estimate the response time as follows:

TP (SCHED, P) max { T°7%(s;) }

1<5<P
par .

max{ 12;2:”{7“ (opy, Ni)} s

[ax {H{work(s;))}1.03)
Equation (3) defines the optimization metric for our schedul-
ing algorithm, described in the next section. Intuitively the
formula states that the response time of a parallel execution
schedule is determined by either the slowest executing oper-

ator, or the load at the most heavily congested resource in the
system, whichever is greater.

5.3 A Near-Optimal Heuristic for Independent Query
Tasks

The performance ratio of a scheduling algorithm is defined
as the ratio of the response time of the schedule it
generates over that of the optimal schedule. In this section,
we develop a heuristic for scheduling independent query
tasks that is provably near-optimal, i.e., with a constant
bound on the performance ratio. In Section 54, we
address the general query task tree scheduling problem.
A collection of independent query tasks (pipelines) is
essentially a collection of operators that can be executed
concurrently. Operators within each task form producer-
consumer pairs that communicate across the interconnection
network, whereas operators in different tasks are completely
independent. More specifically, let R, F' denote the set
of all rooted and floating operators respectively, that is
RUF = {op,,i=1...M}. Let N = 2" N;, where the
degree of parallelism N; is determined by Proposition4.1 for
op, € F' and by the existing data placement constraints for
op, € R.

The parallel execution time of an individual rooted operator
is fixed by its parallelization. By assumption A4 and the
calculation of N;, the parallel execution time of an individual
floating operator is optimal in the space of CG; executions.
Hence. depending on the operator type, the left input of
maxin (3),1.e., T7%" (op,, N, ), is either fixed or minimized.
Consequently, minimization of response time (equation (3))
translates to determining a mapping of the N work vectors
obtained through the cloning of operators in R U F' to the P
d-dimensional sites, such that
(A) no two vectors from the same operator are mapped to

the same site,

(B) data placement constraints for rooted operators are
satisfied, and

(C) the maximum resource usage among all system re-
sources, i.e., the right input of max in (3), is minimized.

This is essentially an instance of the d-dimensional bin-
design problem (the dual of the d-dimensional vector-packing
problem) [CGJ84]. In vector-packing terminology, our
scheduling probiem may be stated as follows:



(iiven a collection of positive d-dimensional vectors
(the work vectors) and a set of P d-dimensional bins
(the system sites), determine a packing of the vectors
in the bins that obeys constraints (A) und (B) and
minimizes the required common bin capacity (the
maximum resource usage in the system).

This problem is clearly AP-hard since it reduces to
traditional multiprocessor scheduling for d = 1, R = §§, and
N; = 1 for all . Given the intractability of the problem, we
develop an approximation algorithm, OPERATORSCHEDULE |,
that runs in polynomial time and guarantees a constant bound
on the performance ratio. OPERATORSCHEDULE belongs to
the class of list scheduling algorithms originally proposed
by Graham [Gra66]. The algorithm begins by placing
the work vectors of all rooted operators at their respective
sites and computing the degree of coarse grain parallelism
for all floating operators. It then proceeds to schedule
floating operators according to the following list scheduling
rule: Consider the list of work vectors resulting from the
cloning of all floating operators in non-increasing order of
their maximum component; at each step. pack the next
vector in the least filled allowable bin/site (that is, pack
the vector in the site s, such that [(work(s,)) is minimal
among all bins not containing other vectors of that operator).
OPERATORSCHEDULE is depicted in Figure 3.

Input: A set of rooted and floating operators R U F, a set of P

sites {s1,...,sp}, and a granularity parameter f
Output: A schedule ({work(s;),y = 1,...,P}) for the CGy
execution of R U F satisfying (A)-(B)

foreach n}), ¢ Rdo
place the work vectors of o}, at their respective sites
end-for
for each ), € Fdo
set the degree of intra-operator parallelism
N = min{Nmaz(0o},, ). P}

tet L, =< W,,..., Wy, > be the list of work
vectors for 1 -,’s clones
end-for
let L =< wy,.... wn > bethe list of all floating work

vectors in non-increasing order of I(w, )
fork=1to Ndo
let 1), be the operator whose cloning produced 7,
let s be a site with work(s) N L, = @ such that
(work(s)) = min$1 wmk(sﬂnlem{l(work(SJ)}
set work(s) = work(s) U {w}
end-for

Figure 3: The OPERATORSCHEDULE algorithm

The following theorem bounds the worst-case performance
ratio of our algorithm. As with all theoretical results
presented here, the theorem is stated without proof due to
space constraints. The details can be found in the full version
of this paper [GI96].

Theorem 5.1 The parallel execution time of the schedule
returned by OPERATORSCHEDULE is

371

(a) within (2d+ 1) of the length of the optimal schedule that
uses the same degrees of intra-operator parallelism for all
floating operators, and

(b) within (2d(fd + 1) + 1) of the optimal CG schedule
length.

We also provide an upper bound on the asymptotic time
complexity of OPERATORSCHEDULE.

Proposition 5.1 OPERATORSCHEDULE  runs in  time
O(MP(M + log P)), where M is the number of concur-
rent operators and P is the number of system sites.

5.4 Handling Data Dependencies

Scheduling arbitrary query task trees must ensure that the
blocking constraints specified by the tree’s edges are satistied.
For this, we split a query task tree into synchronized
phases or “shelves™ [NSHL93, TL93]. Each phase contains
independent tasks that are to be executed concurrently, after
the completion of all tasks in the previous phase. The
number of phases is equal to the height of the task tree and
each task is scheduled in the phase closest to the root that
does not violate the precedence constraints. For example,
the plan in Figure 1 is executed in two distinct phases
containing tasks T1-T4 and task TS5, respectively. This
corresponds to the M inShel f policy of Tan and Lu [TL93].
Resource scheduling within each phase is performed by
the OPERATORSCHEDULE algorithm. The full algorithm.
TREESCHEDULE is depicted in Figure 4.

.....

Input: Aquerytasktree T' = (V| E'). asetof Psites {5,
and a granulanty parameter f
Output: A schedule for the CGy execution of T'

for i = hewght(T) downto 0 do
OP =90
foreach node v € V" such that level(v) =1 do
OP = OP U {operators in task v}
end-for
call OPERATORSCHEDULE( O P, {s1,. ..
end-for

vseh )

Figure 4: The TREESCHEDULE algorithin

Observe that for any query execution plan the number of
nodes in the operator tree is bounded by a small constant
times the number of joins in the query. e.g.. expanding a
hash-join gives at most four operator nodes. Combining
this observation with Proposition 5.1 gives the following
complexity bound for TREESCHEDULE .

Proposition 5.2 TREESCHEDULE runs in time
O(JP(J + log P)), where J is the number of nodes in the
query execution plan and P is the number of system sites.

5.5 Comments on the Effectiveness of the Heuristics

Theorem 5.1 derives an upper bound on the worst-case
performance ratio of the OPERATORSCHEDULE algorithin tor
scheduling a collection of CG; concurrent operators.  In
general, the expected output quality of our heuristic should



be much better than the worst-case bounds, especially for a
set of operators with a good “mix” of resource requirements.
This conjecture is supported by theoretical results on
the expected performance of vector packing [KLMS84].
The big advantage of OPERATORSCHEDULE compared to
previous approaches is its ability to explore resource sharing
possibilities and balance the resource workloads at individual
sites.

Deriving performance bounds for the schedule produced
by the TREESCHEDULE algorithm is a much more difficult
problem. Theorem 5.1 ensures that scheduling within each
phase is near-optimal given its data placement constraints.
When scheduling a query task tree, the scheduling decisions
made at earlier phases may impose data placement constraints
on the phases that follow. For example, the build and
probe operators of a hash join belong to two adjacent phases
because of their sequential dependency (the hash table has
to be complete before probing can begin). Furthermore, the
probe operator has to be executed at the set of sites that
hold the hash table, that is, the home of the build. Such
interdependencies between phases complicate any proof of
suboptimality bounds for the TREESCHEDULE algorithm. At
this point, we have not been able to obtain theoretical
results on the quality of the schedule produced for the
entire query task tree. However, given the load balancing
capabilities of the OPERATORSCHEDULE algorithm, we feel
confident that TREESCHEDULE will outperform previous
approaches. Our conjectures tor both OPERATORSCHEDULE
and TREESCHEDULE are supported by the results of a
preliminary experimental evaluation presented in the next
section.

6 Experimental Performance Evaluation

In this section, we describe the results of several experiments
we have conducted comparing the average performance of
our multi-dimensional scheduling algorithm with a one-
dimensional ‘“‘synchronous execution time” algorithm that
we developed based on previous work [HCY94, LCRY93].
Another point of interest is examining how close the response
time of the generated schedule is to that of the optimal coarse
grain schedule on the average. We start by presenting our
experimental testbed and methodology.

6.1 Experimental Testhed
We have experimented with the following algorithms:

e SYNCHRONOUS : Combination of the synchronous
execution time method of Hsiao et al. [HCY94] for
processor allocation for independent parallelism with the
two-phase minimax technique of Lo et al. [LCRY93]
for optimally distributing processors across the stages
of a hash-join pipeline.  Although these strategies
were originally proposed for shared-disk systems, they
were appropriately extended to account for the data
redistribution costs in a shared-nothing environment.
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e TREESCHEDULE : Multi-dimensional list scheduling in
synchronized phases.

e OPTBOUND : Hypothetical algorithm achieving a lower
bound on the optimal response time.

We selected SYNCHRONOUS as a one-dimensional adversary
since it is the “‘state-of-the-art™ method for exploiting bushy
tree parallelism in parallel query execution® [WFA95]. Prior
research has demonstrated the advantages offered by such
parallelism, especially for large queries [CYW92]. To the
best of our knowledge, optimal processor distribution within
general join pipelines remains an open problem. We therefore
decided to restrict our experiments to bushy hash-join query
plans so that the optimal technique of Lo et al. could be
used in SYNCHRONOUS. We should stress, however, that
TREESCHEDULE is a general query scheduling algorithm that
can be applied to ¢ny bushy plan.

Some additional assumptions were made to obtain a
specific experimental model from the general parallel
execution model described in Sections 4 and 5:

EA1. No Execution Skew: With the exception of startup
cost, the work vector of an operator is distributed perfectly
among all sites participating in its execution. Startup is
added to only one of these sites, the “coordinator site”
for the parallel execution, and is equally divided between
the coordinator’s CPU and its network interface.

EA2. Uniform Resource Overlapping: The amount of
overlap achieved between processing at different re-
sources at a site can be characterized by a single system-
wide parameter ¢ € [0, 1] for all query operators. This
parameter allows us to express the response time of a
work vector as a convex combination of the maximum
and the sum of the vector components (see Section 4.1),
e, T(W) = e(maxi<,<a{ Wi} +(1—¢) i, WIil.
Small values of ¢ imply limited overlap, whereas values
closer to 1 imply a larger degree of overlap. In the ex-

treme cases, ¢ = 1 gives T(W) = max;<,<a{W[i]}

(perfect overlap), and ¢ = 0 gives T(W) = 27:1 Wi

(zero overlap).

Finally, special precautions were taken to ensure that
assumption A4 is not violated for any given value of the
granularity parameter f. For each query operator, there exists
an optimal degree of partitioned parallelism that minimizes
the response time [WFA92], and beyond which startup costs
will cause a speed-down. Our implementation makes sure
that this optimal degree of parallelism is never exceeded for
any operator.

We experimented with tree queries of 10, 20, 30,40, and 50
joins. For each query size, twenty query graphs (trees) were
randomly generated and for each graph a bushy execution
plan was randomly selected. We assumed simple key join
operations in which the size of the result relation is always
equal to the size of the largest of the two join operands. The

3The Fully Parallel Execution Method [TWFA95] apphes only to mam-
memory parallel database systems.



comparison metric was the average response times of the
schedules produced by the algorithms over all queries of the
same size. Experiments were conducted with the resource
overlap parameter ¢ varying between 10% and 70% and the
granularity parameter f varying between 0.3 and 0.9. (The
results presented in the next section are indicative of the
results obtained for all values of « and f.)

In all experiments, we assumed a system consisting of
3-dimenstonal sites with one CPU, one disk unit, and one
network interface. The work vector components for the CPU
and the disk were estimated using the cost model equations
given by Hsiao et al. [HCY94]. The communication costs
were calculated using the model described in Section 4.2.
The values of the cost model parameters were obtained from
the literature [GW93, HCY94, WFA92] and are summarized
in Table 24,

[ Configuration/Catalog Parameters |

Value ||

Number of Sites 10 - 140
CPU Speed 1 MIPS
Effective Disk Service Time per page 20 msec
Startup Cost per site () 15 msec
Network Transfer Cost per byte (/3) 0.6 psec
Tuple Size 128 bytes
Page Size 40 tuples

Relation Size
ﬂ—CPU Cost Parameters ]

10° - 10° tuples
No. of Instr. ||

Read Page from Disk 5000
Write Page to Disk 5000
Extract Tuple 300
Hash Tuple 100
Probe Hash Table 200

Table 2; Experiment Parameter Settings

6.2 Experimental Results

The first set of experiments studied the effect of different
values of the granularity parameter f on the performance of
TREESCHEDULE compared to that of SYNCHRONOUS (which
is, of course, not affected by different values of f). The
results for queries of 40 joins and a resource overlap of
30% (i.e., ¢ = 0.3) are depicted in Figure 5(a). Clearly,
for small values of f the coarse granularity condition is
too restrictive, not allowing the execution system to fully
exploit the available parallelism. As the value of f increases,
the average plan response time drops substantially until the
bound on operator parallelism is reached. As expected, the
advantages of resource sharing are most evident for resource-
limited situations (i.e., small parallel systems). Nevertheless,
for sufficiently large values of f, our algorithm outperformed
its one-dimensional adversary in the entire range of system
and query sizes.

The second set of experiments studied the effect of the
resource overlap parameter ¢ on the performance of the

4The CPU speed and disk service rate were chosen so that the system 1s
relatively balanced (i.e., not heavily CPU or IO bound).
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two algorithms, while the granularity parameter was kept
constant. The performance results shown in Figure 5(b)
(for queries of 40 joins) demonstrate that TREESCHEDULE
consistently outperformed the SYNCHRONOUS algorithm for
various values of f.  Clearly, the benefits of multi-
dimensional scheduling are more significant for smaller
values of the overlap parameter. The reason is that lower
overlap results in longer idle periods for the individual
resources which our algorithm can exploit through time-
sharing with other operations.

The average performance of the two scheduling algorithms
for different query sizes is depicted in Figure 6(a) for two
different system sizes (20 and 80 sites) and overlap ¢ = 0.5.
For TREESCHEDULE we assume f to be fixed at 0.7. Note
that, for a given system size, the relative improvement
obtained with TREESCHEDULE increases monotonically with
the query size.

We should also mention that the asymptotic time com-
plexity of SYNCHRONOUS is O(J P log(J F}), where J is
the number of joins in the query and P is the number of
sites [LCRY93]. Thus, TREESCHEDULE appears to be slightly
more expensive than SYNCHRONOUS, being quadratic in the
size of the query (Proposition 5.2). We believe that this is a
small price to pay compared to the significant performance
improvement offered by resource sharing, especially for large
queries and/or resource-limited situations.

For our final set of experiments, we examined the average
performance of TREESCHEDULE compared to a lower bound
on the response time of the optimal CG; execution for a
constant value of f. This lower bound, OPTBOUND, was
estimated using the formula
1(9)

OPTBOUND = max{ , T(CP) },

where
o 5'is the set of work vectors for all operators in the query
execution plan assuming zero communication costs for
each operator, and
o T(CP) is the total response time of the critical (i.e., most
time-consuming) path in the plan assuming the maximum
allowable degree of coarse grain parallelism for each
operator.
By assumption A4, OPTBOUND is indeed a lower bound
on the length of the optimal CG; execution [GI96]. The
results for queries of 20 and 40 joins are shown in
Figure 6(b) for f = 0.7 and overlap ¢ = 0.5. These
curves verified our expectations, showing that the average
performance of TREESCHEDULE is much closer to optimal
than what we would expect from the worst-case bound
derived in Theorem 5.1 for each plan phase. These results
are in accordance with the theoretical results of Karp et
al. [KLMS84] who used a probabilistic model to prove that
even very simple vector-packing heuristics can be expected
to produce packings in which very little of the capacity of the
bins is wasted.
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i o SV
7 Extensions for Malleable Operators TPer (SCHED, P, N) < (2d+ 1) max{ 24 Hs)) R},

In this section, we extend our list scheduling technique to
handle the more general malleable scheduling problem. The
degree of parallelism for the floating query operators is no
longer determined through a coarse granularity condition.
Instead, floating operators are malleable, in the sense that
the scheduler is free to determine their parallelization so
that the execution time is minimized over all possible
parallel schedules. Since rooted operators have no effect
on the quality of the generated schedule (their scheduling
is determined by data placement constraints) we will only
consider floating operators in this section.

Let N = (N1,...,Np) denote a parallelization (i.e.,
the degrees of parallelism) of a given set of independent
operators, and let S(NV) = (Wop, (N1), . ,WopM(NM))
be the set of (total) work vectors for the operators (including
the communication costs for the given parallelization).
Finally, define h(ﬂ) e maXlSiSM{Tpar(Opi,Ni)}, ie.,
the parallel execution time of the slowest operator. In proving
the (2d + 1) suboptimality bound for OPERATORSCHEDULE
[GI96] we actually show that the makespan of the schedule
produced by our list scheduling rule for any given operator
parallelization NV satisfies the following inequality:
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P

where LB(N) = max{ ——J , h(N) } is a lower bound
on the optimal response time for the given parallelization.
Our goal is to determine a particular operator paralleliza-
tion NV such that when A is used as input to our list scheduling
technique the resulting schedule is guaranteed to be within
(2d+ 1) of the optimal schedule (over all possible paralleliza-
tions). The following lemma formalizes our expectations.

Lemma 7.1 Let N ™ denote the parallelization of operators in
the optimal execution schedule. Let N be another (possibly
identical) parallelization such that LB(N) < LB(N™).
Then, applying our list scheduling rule to & will return an
execution schedule whose length is within (2d + 1) of the
optimal schedule length.

We now present a greedy selection algorithm for generating
a family of parallelizations. The algorithm is an adaptation
of the GF method presented by Turek et al. [TWY92] based
on the observation that in our work vector model, for any
operator op, if n < m then Wop (n) <4 Wop(m)® :

® <y stands for componentwise less-than, i.e., W1 <q W, iff W, [i] <
wplilfori=1,...,d



1. The first candidate parallelization is the minimum total
work parallelization N = (L, 1,...,1).

2. The k" candidate parallelization is determined by the
(k — 1)** parallelization by first finding the operator
whose execution time is equal to h{(N* ™! ) and increasing
its degree of parallelism by one.

3. The algorithm terminates when no more sites can be
allotted to the largest operator.

Lemma 7.2 Let N* denote the parallelization of operators
in the optimal execution schedule. The above algorithm
produces at least one parallelization N such that the following
two properties hold:

1. TP (op;, N;) < h(N™) forall 7, and

2. Wc)pl (N,) Sd Wop'(Nl*) for all <.

From Lemma 7.2 and the definition of the lower bound L B(),
at least one of the operator parallelizations produced by the
algorithm will satisfy the conditions of Lemma 7.1.

Theorem 7.1 Let A be the family of parallelizations gener-
atedand let N € Asuchthat LB(N) = mingea{ LB(K)}.
Then, the schedule generated by our list scheduling rule for
the parallelization /V is within (2d+ 1) of the optimal parallel
schedule length.

The number of parallelizations generated by our algorithm is
bounded by 1 + M ( P — 1) and so the complexity of selecting
an operator parallelization is O(M Plog M). Thus, this
preprocessing step does not affect the asymptotic complexity
of our scheduler. Also note that Theorem 7.1 does not depend
on the non-increasing execution times assumption (A4) or
any particular model for communication costs. The only
assumption required is that of non-decreasing work vectors.

8 Conclusions

In this paper, we have addressed the open problem of multi-
dimensional resource scheduling for complex queries in
parallel database systems. Our approach is based on (1) a
model of resource usage that allows the scheduler to explore
the possibilities for resource sharing among concurrent
operations and quantify the effects of this sharing on the
parallel execution time, and (2) a quantification of the notion
of coarse grain parallelism for query plan operators. Using
these tools we developed a vector-packing formulation of the
resource scheduling problem for independent query tasks,
and proposed OPERATORSCHEDULE, a fast list scheduling
heuristic that is provably near-optimal in the class of
coarse grain executions. We then extended our approach
to handle the blocking constraints in a bushy query plan
by splitting its execution into synchronized phases. The
resulting algorithm, TREESCHEDULE, exploits all forms of
intra-query parallelism and allows effective resource sharing
among operators executing concurrently. We also verified
the effectiveness of our scheduling methods compared to
both previous (one-dimensional) approaches and the optimal
solution through a series of experimental results. Finally,
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we proposed a technique that allows us to relax the coarse
granularity restriction and obtain a provably near-optimal list
scheduling method for the malleable independent operator
scheduling problem. In practice, the coarse granularity
condition provides a fast way of determining an efficient
parallelization based on system parameters. The more
sophisticated greedy selection technique can be used when
the additional scheduling overhead is justified.

The multi-dimensional model of query parallelization and
resource scheduling proposed in this paper suggests several
directions for future research. First, the framework is useful
only for resources that are preemptable. Incorporating non-
preemptable resources such as memory requires an even
richer model of parallelization and thus remains an open
question. Memory, in particular, introduces an additional
level of complexity since the amount of work performed by an
operator often depends on the amount of available memory.
Second, the assumption of zero time-sharing overhead (A2)
may not be accurate for certain types of resources. For
example, disks do not time share as gracefully as processors
or network interfaces; slicing a disk among many tasks
can reduce the disk’s effective bandwidth. Extending
our model and algorithms to consider different degrees of
“preemptability” for system resources is a challenging issue.
Finally, given the generality of our scheduling framework,
it would be interesting to investigate its applicability to
other “multi-dimensional processing” situations (e.g., request
scheduling in multimedia storage servers). These questions
form the basis of our current and future research.
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