
ZOO: A Desktop Experiment Management Environment* ~
(http://www.cs.wisc.edti ZOO)

Yannis E. Ioannidis$ Miron Livny Anastasia Ailamaki

Univ. of Wisconsin, Madison Univ. of Wisconsin, Madison Univ. of Wisconsin, Madison

yannis@cs.wise.edu miron@cs.wise.edu natassa@cs.wise.edu

Anand Narayanan
Univ. of Wisconsin, Madison

narayana@cs.wise.edu

1 Introduction

Despitemuch interestin theareaof Scientific Database Systems [2,
11], a major problem that many experimental scientists are still fac-
ing today is that there are no adequate experiment management tools
that are powerful enough to capture the complexity of the exper-
iments and at the same time are natural and intuitive to the non-
expert. Over the past three years, in collaboration with several do-
main scientists, we have studied the needs of a wide range of exper-
imental disciplines, developed solutions to some of the basic prob-
lems in experiment management, and have made significant prog-
ress towards implementing a simple Desktop Experiment Manage-
ment Erwir-onmen~(DEME) called Zoo. Our work has proceeded in
a tight Ioop between developing generic experiment management
technology that is implemented in a generic tool, Zoo, installing
customized enhancements of the tool thatconstitute full systems
(complete Customized Desktop Experiment Management Systems
(CDEMSS)) in Iaboratoriesl of interest, andusingthe provided feed-
back to guide our research directions and decisions.

The defining document of the entire project has appeared in the
1996 VLDB Conference [8]. Specific aspects of the project and
some of the Zoo modules (mostly emphasizing user interfaces) have
also been discussed elsewhere: the role of schemas in Zoo [6], the
theoretical framework used for schema visualization [3] and the re-
sulting prototype schema manager [4, 7], the data model and query
language of the system [12], and the object-to-file translator [1], In
this short demonstration document, we first describe the overall phi-
losophy and architecture of Zoo and then briefly discuss our experi-
ences with the use of the current Zoo prototype. Most of this exposi-
tion is taken from the main Zoo paper mentioned above [8]. Finally,
we provide an overview of how we demonstrate the system.

“ Work supported in part by the National Science Foundation (“Scientific
Databases Initiative”) under Grsnt MI-9224741.

t We ~o”ld I&e to th~k all rhow who have beenassociated with the ZOO prOJeCt.

and especially those who have implemented significant pieces of the existing code
Vaishnavi Anjur, Jian Bao, Shivrmi Gupta, Eben Haber, VarnsiPonnekrmti,and Tom
Wang.

~ Additionally suppowd in pwr by the National Science Foundationunder Grant
IRI-9157368(PYIAward) mrd by grams from DEC. IBM,HP,AT&T,Oracle, and

[nfonslix,

1The term ‘laboratory’ indicates any scientific environment where experiments we
conducted, be it a physical laboratory in the traditional sense, or a virtuat laboratory
involving scientists collaborating across the network, simulation-based modeting, etc.

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fae provided that

copies are not made or distributed for profit or commercial advan-

tsge, the copyright notice, the title of the publication snd its date

ePPear, and notice is 9iven that copying is by permission of ACM,

Andrew Therber
Univ. of Wk.consin, Madison

andyt @es. wise.edu

2 Life-Cycle of Experimental Studies

We have been in an on-going dialog with experimental scientists
who represent many experimental disciplines: primarily groups in
soil sciences and biochemistry, but also physics, genetics, biotech-
nology, molecular biology, earth sciences, and manufacturing. Al-
though these sciences have very little in common, typical experi-
mental studies in any of them seem to go through very similar lr~e-
CyCk?S [6].

We present this life-cycle through an example involving exper-
iments in the area of soil sciences, conducted by a group of domain
scientists with whom we have been collaborating the longest. They
have developed the Cupid model [9, 10], which represents an at-
tempt to define collective plant-environment interactions by com-
bining knowledge from the disciplines of meteorology, soil physics,
plant physiology, microbiology, entomology, and plant pathology
into a single manageable package. Cupid is quite complex (more
than IOK lines of Fortrart) and is used in about a dozen laborato-
ries in the U.S. and abroad. ~pically about a hundred parameters
are input to Cupid and over three hundred are received as output for
any specific application.

Traditionally, an experimental study using Cupid goes through
the following stages. ExperimentDesign: The input and output vari-
ables that are important to the study are chosen among all those dealt
with by the model. This is done with pencil and paper and the fi-
nal outcome is kept in notebooks. Data Collection: Input files are
constructed in the format required by Cupid, containing the combi-
nations of input variables to be tested. Cupid is called on each one
of these tiles, generating each time an output file in a specific for-
mat. Data Exploration: Unix scripts are written to extract the re-

quired data for every different research question that the scientists
may have in the course of their study.

A major impediment to exploiting the full power of Cupid has
been keeping track of the numerous input and output files that are
associated with a study. Over time literally thousands of files are
generated, making the task of data exploration a nightmare. An-
other major problem has been that scientists are forced to use very
different tools during each of the three life-cycle stages, making the
whole process difficult to manage.

A key objective of our effort has been for Zoo to be an integrated
software package with a uniform user interface that (a) supports the
entire life-cycle of an experimental study allowing smooth transi-
tions between its stages, (b) transparently manages all the data gen-
erated by the study, and (c) hides the details of any underlying soft-
ware used. The following section describes the architecture of Zoo,
which has been influenced significantly by the above objectives.

Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to Iista, requires prior specific permission and/or a fee.
SIGMOD ’97 AZ,USA
01997 ACM 0-89791-91 1-4/97 /0005 ...$3.50

580

dmlgnw
Q- “

dc$,gner00 OPOSSUM FROG

-0 LO Expermwu Design SIoge

3“ ‘

DEFAUL /\

mcdel /

Ilk DD ---:m4-
rkll * PAeN

Dam Collection and Ezpioration Stages

@
Scimlisl

Figure 1: Overall architecture of Zoo

3 Architecture of Zoo

i I
1’

I
I I i------ ------ -- ------ -------------- --

I ~::1 ZOO-M CDSMSbwndary m GmericIuaduk/sile

m n Zoobmldsly
= cuslOnl-UImkmcduklnk

m axtemsl Syssm

Zoo is designed to be a generic Desktop Experiment Management
Environment (DEME). To become a complete Customized Desk-
top Experiment Management System (CDEMS) and be installed in
a specific laboratory, e.g., the Cupid laboratory, it must be enhanced
with some custom-made pieces, which can be generated usually with
little effort. The overall architecture of Zoo and a resulting CDEMS
is shown in Figure 1. Blocks with white background ate generic Zoo
modules and files; for ease of reference, a short description of these
modules is shown in Table 1. Blocks with gray background must be
generated separately for each complete Zoo-based CDEMS. Blocks
with striped background are external systems with which a given
CDEMS needs to communicate. Among them there is at lea.rr one
experimentation system2, where the experiments are conducted dur-
ing the data collection stage. In addition, there may be other ex-
ternal systems that are useful in the data exploration stage, e.g., for
statistical analysis or visualization.

3.1 Zoo Module Functionality

At the core of the system is Horse (Heavy-duty Object Repository
for Scientific Experiments), its database server. It is based on the
Moose (Modeling Objeets Of Scientific Environments) object-
oriented data model and the Fox (Fiiding Objects of experiments)
query language [5, 12], which we have designed for Zoo. Horse
is implemented using the Informix relational DBMS as a storage
server, with Fox statements being translated into SQL. Moose sup-
ports various kinds of object classes, including tuples, sets, multi-
sets (bags), and indexed-sets (i.e., arrays indexed by arbitrary col-
lections), as well as five kinds of binary object relationships: has-
purt (from tuples), sef-o~ (from any collection), indexed-by (from

2Weuse the term ‘syssem’ in ageneralsmse, to includebottrsoftwaresystemsand
physicalsysremspossibly involvinghumansin theiroperation.

Module Description
EMu Experimentation massager
Fox Declarativeobject-orientedquery language
PROG Viual tool for specifying mappings between

Moose objects and Aacii files
HORSE Object-oriented database server baaed on

Moose and FOX

MOOSE Object-oriented data model
omssuM Visual schema manager
sQum Vkurd query manager
TURTLE Tmnslator between Moose objects and Aacii files

Table 1: Alphabetical list of Zoo modules with short descriptions

indexed-sets), association (between any object kinds), and is-a (with
the usual meaning). Any tdationship from class A to class B may
be specified as derived, implying that for each A object, the related
B objeet is constructed or identified based on other objects that are
(indirectly) connected to the A object via other relationships. The
construction or identification may be through a Fox query, or may
require proeessingby an external system that receives as input a file
containing (parts of) these other objects.

Figure 2 shows a simple Moose schema in graph form. It cap-
tures a (simplified) soil-science study. Each Experiment is modeled
as a complex object, with sub-objects representing its Input and its

Output. Its outputis a pair of the totalyield and quality of the har-
vest. Its input consists of the Weather andaPkmtxommunity, which
is an indexed-set of Plants indexed by the set of land Zimes. (The
zone whereeach plantis grown is recorded independentlyfor each
Plant-eommunityin which the plant participates.) The weather is
captured by rainfall, temperature, and wind-speed values, and may
be windy, in which case wind-direction becomes important as well,

581

—> has-pm

“’’ion “’ea&

-> Setof

,_

--+

~ indexed-by

quality

Figure 2: Sample Moose schema of Soil Sciences experiment

dry, in which case air hunuiiity becomes important as well, or dis- fies whatobjects correspond to whatareaof the file.
aster, which combines the two. Note that the output of an experi-
ment is indicated as a derived relationship (label (D)). Although not
shown in the figure, the derivation is based on the input part of an
experiment (in particular, the values in the primitive leaf classes of
that complex object class) and is realized by the execution of an ex-
ternal program (e.g., a simplified form of Cupid).

Opossum (Obtaining Presentations Of Semantic Schemas Using
Metaphors) is a schema manager [4]. It has been built following a
visualization framework that we have developed, which separates
the data domain from its visualization [3] for maximum flexibility.
In particular, it is a generic visual system whose inputs are files with
specifications of a data model (which is always Moose for Zoo), a
visual model, and a visual metaphor that indicates the correspon-
dence between visualizations and underlying schemas. Receiving
these, Opossum is customized to operate for the specific models and
visualization styles. For example, the most useful visual model for
Moose schemas is that of graphs and the most useful correspond-
ing metaphor maps graph nodes to Moose classes, graph edges to
Moose relationships, etc. (Hgure 2 presupposes such a metaphor.)
Due to their usefulness, these models and metaphors are provided
as default in Zoo.

Squid (System for Queries Updates Insertions Deletions) is a
query/update manager. It is a derivative of Opossum, using schemas
as query and update templates, and therefore offers the same visu-
alization flexibility as Opossum.

Emu (Experimentation Management Unit) is responsible for
transforming user requests into actions at external systems and pre-
paring everything necessary for these actions. It interacts with Horse
for retrieving the necessary user requests and with custom-built
agents, one for each external system that the specific Zoo-based
CDEMS needs to communicate with. It also interacts with Turtle,
to which it delegates the necessary object-to-file translations.

Turtle (Translation Unit of Run Time of Large Experiments) is
the system’s translator from Moose objects to Ascii tiles and vice
versa [1]. It is also a generic module; it receives as input a map-file
that specifies how the parts of a complex object correspond to the
areas of an external file, and based on that, it performs the actual
translations.

Frog (Files Related to Objects Graphically) is a visual tool for
generating the map-tiles required by Turtle [1]. In one window, it
has a sample (input or output) file of the external system, and in an-
other, it has the Moose schema for the experiment concerned, man-
aged by Opossum. By highlighting a specific area in the file and
clicking on the appropriate part of the schema, the designer speci-

3.2 Installation of Zoo-based CDEMS

Each external system with which communication is desired may
have specialized usage requirements that are impossible to include
in a generic system. Thus, installation of a Zoo-based CDEMS in a
specific laborato~ or for a specific study requires that, for each ex-
ternal system of interest, a customized agent is built incorporating
all the details required for interacting with and monitoring the sys-
tem. For example, to execute Cupid, an agent is built that takes care
of all the Cupid communication. Note that installation only requires
some programming in a regular programming language to build the
agents but no database expertise, which is one of the goals of our
effort.

3.3 Experiment Design

During the design stage of an experiment’s life-cycle, Opossum is
used to speci~ the schema of the experiment (e.g., F@re 2), which
is then used to generate a database under Horse. This schema con-
tains derived relationships corresponding to external systems asso-
ciated with the given Zoo-based CDEMS. Since Turtle is also a ge-
neric module, to be able to perform the appropriate translations be-
tween objects and files, it needs some customized input. Therefore,
during experiment design, Frog is also used to specify mappings be-
tween the designed Moose schema and the input and output files
required by each external system. The resulting map-files are then
stored and used as Turtle input [1]. Again, no real database exper-
tise is required for experiment design, as both Opossum and Frog
are visual tools offering a high-level interface.

3.4 Data Collection and Exploration

An impottant feature of Zoo is that it blurs the distinction between
the data collection and data exploration stages if the scientist so de-
sires. In particular, the scientist may use Squid to request results
of experiments without any knowledge of whether they have been
run yet or not. When they have been run, Horse retrieves the nec-
essary information from its database and returns it to Squid for dis-
play. When not, Horse invokes the mechanism for dealing with de-
rived relationships (recall that the output of an experiment is de-
rived), which eventually triggers the necessary actions at the appro-
priate external system.

582

4 Status and Experience

Zoo is being implemented in C++. Not counting any visual libraries
(TclflX) or database libraries (Informix) that it uses, Zoo is cumently
approximately 144Klines of code. Some of the functionality de-
scribed above as part of the system’s design is still underdevelop-
men~ Squid provides avisual language thatcaptures only a subset
of the expressive power of Fox; Frog and Turtle are able to deal with
only a subset of constructs in the Moose model; the Emu and agent
functionality is provided by the same module and so a Zoo-based
CDEMS only works with a single external system at a time.

Zoo has been successfully tested by the Cupid group for exper-
imentation. A custom-built Emu/agent combination has been im-
plemented as a single module, for communication with the Cupid
simulator. The resulting CDEMS has been used to drive test runs

on Cupid. The interfaceoffered by Opossum for experiment design
has played a key role in the positive reception the system has had.
Moreover, the Cupid group now uses visual schemas as their ref-
erence in thinking about the model, planning experiments, and ex-
plaining the model and experiments to other scientists, with no need

to deal directly with large numbers of input and output files.
In addition to the Cupid group, Zoo has also been tested by a

collaborating group in biochemistry for NMR experiments run on
spectrometers, with very positive results again. To a lesser extent,
Zoo has also been explored by gmtrps in Physics, Space Sciences,
and Manufacturing Engineering. This has given us the opportunity
to observe the effect the system may have to a diverse range of en-
vironments.

Finally, Opossum has been used as a stand-alone schema man-
ager for the relational and E-R data models, using various visual
models and metaphors. In particular, our biochemistry collabora-
tors have used it to design a large relational schema for the Biologi-
cal Magnetic Resonance Databank (BMRB), an international ~pos-
itory of data on biological macromolecules derived from NMR spec-
troscopy. Moreover, customized (through its input files) to visualize
E-R schemas as the traditional E-R diagrams, Opossum is currently
used in our database courses as a database design tool.

5 Demonstration of Zoo

Our demonstration mostly focuses on the Data Collection and Ex-
ploration stages of the experiment life-cycle, i.e., the lower part of
Figure 1. A small number of Zoo-based CDEMSS have been in-
stalled communicating with a variety of experimentation environ-
ments. For each one, schemas and experiments have been designed,
and the map-files needed for Turtle have been constructed as well.
Squid is used to invoke experiments at the appropriate experimen-
tation environments, browse the data related to past experiments,
or query it and visualize the results using available tools. Some of
these experiments involve sequences of external-system invocations,
thus generating a scientzjfc workj?ow that is managed by Zoo.

To emphasize the flexibility of our system architecture and the
underlying implementation, some of the experimentation environ-
ments demonstrated reside on different machines, communicating
with Zoo over the network. In addition, to show the versatility and
power of the various system modules, we also demonstrate addi-
tional applications that have been built on top of the Horse database
server.

We believe thatthe Zoo demonstrationis of interestto several
Sigmod attendees,both as databaseresearcherdpractitionersandas
experimentalists(i.e., potentialZoo users. Fkst, from thedatabase
technology point of view, Zoo offers a ratherunique approachfor
a databasesystem to communicate with various heterogeneousex-
ternal ‘systems’, which in principle do not even have to be soft-
ware systems - they may be hardware instruments or even humans.
While most of the heterogeneous database system efforts focus on

communicating with other database systems, Zoo focuses primar-
ily on nontraditionalexternaldataproviders (in principle, database
systemsarejust a special case). Second, from the experimentation
point of view, Zoo is a system that intends to help scientists in their
experimental studies. Several of our database colleagues (and other
computer scientists) have expressed how much they would like to
get rid of all their convoluted file naming schemes and data extrac-
tion script files and use a system like Zoo for their experiments in
comparing algorithms, data structures, whole systems, ete.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

V. Anjur, Y. Ioannidis, and M. Livny. Frog and Turtle: Visual
bridges between files and object-oriented data. In Proc. 8rh Irr-
ternationai Conference on Sciendjic and Statistical Datibase
Management, pages 76-85, Stockholm, Sweden, June 1996.

J, C. French, A. K. Jones, and J. L. Pfakz. Summary of the fi-
nal report of the NSF workshop on scientific database manage-
ment. ACM-SIGMOD record, 19(4):3240, December 1990.

E. Haber, Y. Ioannidis, and M. Livny. Foundations of visual
metaphors for schema display. Journal of Intelligent Informat-
ion System, 3(3/4):263-298, July 1994.

E. Haber, Y. Ioannidis, and M. Livny. opossum Desk-top
schema management through customizable visualization. In
Proc. 21st International VLDB Conference, pages 527-538,
Zurich, Switzerland, September 1995.

Y. Ioannidis and M. Livny. MOOSE: Modeling objects in a
simulation environment. In G. X. Ritter, editor, Information
Processing 89, pages 821-826. North Holland, August 1989.

Y. Ioannidis and M. Livny. Conceptual schemas: Multi-
faceted tools for desktop scientific experiment management.
Journal of intelligent and Cooperative Information System,
1(3):45 1474, December 1992.

Y. Ioannidis, M. Livny, J. Bao, and E. Haber. User-oriented
visual layout at multiple granularities. In Proc. 3rd Intern-
ationalWorkshop on Advanced Wrual Interfaces, pages 184-
193, Gubbio, Italy, May 1996.

Y. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti. ZOO: A
desktop experiment management environment. In Proc. 22nd
International VLDB Conference, pages 274-285, Bombay, In-
dia, September 1996.

J. M. Norman and G. S. Campbell. Application of a plant-
environment model to problems in irrigation. In D. I. Hil-
lel, editor, Advances in Irrigation, volume II, pages 155-168.
Academic Press, New York, NY, 1983.

J. M. Norrnao and G. S. Campbell. Canopy StTUCtUS7Z ~

R.W. Pearcy et al., editors, Physiofogicalpkutt ecology: Field
ntethorzkand instrumentation, pages 301–325. Chapman Hall,
Ltd., Lmdon, UK, 1989.

A. Shoshani, F. Olken, and H. K. T. Wong. Characteristics of
scientific databases. In Proc. 10th International VLDB Con-
ference, pages 147-160, Singapore, August 1984.

[12] J. Wiener and Y. Ioarmidis. A Moose and a Fox can aid
scientists with data management problems. In Proc. 4th In-
ternational Workshopon Database Programming Languages,
pages 376-398, New York, NY, August 1993.

583

