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Abstract 

Bitmap indexes are useful in processing complex queries in 
decision support systems, and they have been implemented 
in several commercial database systems. A key design 
parameter for bitmap indexes is the encoding scheme, which 
determines the bits that are set to 1 in each bitmap in an 
index. While the relative performance of the two existing 
bitmap encoding schemes for simple selection queries of the 
form “z)i < A 5 212” is known (specifically, one of the 
encoding schemes is better for processing equality queries; 
i.e., vr = 212, while the other is better for processing range 
queries; i.e., vi < us), it remains an open question whether 
these two encoding schemes are indeed optimal for their 
respective query classes in the sense that there is no other 
encoding scheme with better space-time tradeoff. In this 
paper, we establish a number of optimality results for the 
existing encoding schemes; in particular, we prove that 
neither of the two known schemes is optimal for the class 
of two-sided range queries. We also propose a new encoding 
scheme and prove that it is optimal for that class. Finally, we 
present an experimental study comparing the performance 
of the new encoding scheme with that of the existing ones 
as well as four hybrid encoding schemes for both simple 
selection queries and the more general class of membership 
queries of the form “A E {v~,vz, . . . . . vk}“. These results 
demonstrate that the new encoding scheme has an overall 
better space-time performance than existing schemes. 
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1 Introduction 

A promising approach to process complex queries in 
Decision Support Systems (DSS) is the use of bitmap 
indexing [O’N87, OG95, O&97]. In a conventional B’- 
tree index, each distinct attribute value v is associated 
with a list of RIDS (called a RID-list) of all the records 
associated with the attribute value v. The basic idea 
of a bitmap index is to replace the RID-list with a bit 
vector (bitmap), i.e., a bitmap index is essentially a 
collection of bitmaps. The size of each bitmap is equal 
to the cardinality of the indexed relation, and the it’ bit 
corresponds to the ith record. In the simplest bitmap 

‘th index design, the a bit of a bitmap associated with 
value v is set to 1 if and only if the ith record has a 
value v for the indexed attribute. 

Bitmap indexes have been implemented in sev- 
eral commercial DBMSs (IBM [Win99], Informix [Inf, 
O’N97], Oracle [Jak97], RedBrick [Ede95], Sybase 
[Ede95, Syb971). A major advantage of bitmap indexes 
is that bitmap manipulations using bit-wise operators 
(AND , OR, XOR, NOT) are very efficiently supported 
by hardware. Furthermore, bitmap indexes are very 
space-efficient, especially for attributes with low cardi- 
nality. 

A key design parameter for bitmap indexes is the 
encoding scheme, which determines the set of attribute 
values “represented” by each bitmap in an index, that is 
the attribute values that set the corresponding records’ 
bits in a bitmap to 1. For example, in the simple design 
mentioned earlier, the encoding scheme is such that the 
bitmap associated with the value v represents v alone. 
Previous studies [WLO+85, WLO+86, OQ97, CI98b] 
have identified two basic bitmap encoding schemes: 
Equality Encoding, which is the one mentioned above 
and is efficient for equality queries (i.e., queries of the 
form “A = v”), and Range Encoding, which is efficient 
for one-sided range queries (i.e., queries of the form 
“A 5 v” or “A 2 v”). However, the space-time 
performance optimality’ of either of these encoding 

‘Informally, an encoding scheme S is optimal for a query class 
Q if there is no other encoding scheme with strictly better space- 
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schemes remains an open issue; that is, it is not known 
whether or not there exists an encoding scheme with 
strictly better space-time performance than equality 
encoding for equality queries or range encoding for one- 
sided range queries (and more generally for the class of 
two-sided range queries of the form ‘%I 5 A 5 ~2”). In 
addition, to the best of our knowledge, no earlier work 
has examined the performance of bitmap indexes for the 
more general class of membership queries (i.e., queries 
of the form “A E {VI, ~2,. . . ,vk}“). 

In this paper, we address these two issues and make 
the following contributions: 

We establish a number of optimality results for 
existing encoding schemes; in particular, we prove 
that neither of the two existing encoding schemes is 
optimal for the class of two-sided range queries. 

We propose a new encoding scheme, called Interval- 
Encoding, and prove that it is optimal for both one- 
sided and two-sided range queries. 

We introduce an efficient query evaluation frame- 
work for multi-component indexes that takes into 
account the buffer size to avoid rescanning from disk 
the same bitmaps. 

We present the results of an experimental study 
comparing the new encoding scheme with the ex- 
isting ones as well as four hybrid encoding schemes 
for both simple selection queries and the more 
general class of :membership queries of the form 
“A E {vl, ~2,. . . , uk}“. All encoding schemes have 
been studied in both compressed and uncompressed 
forms. The results of this study show that the in- 
terval encoding scheme exhibits better space-time 
overall for various query classes. 

We conclude this section with some preliminaries. 
Consider an attribute A of a relation R, where the 
attribute cardinality is C. For simplicity and without 
loss of generality, the domain of A is assumed to be 
a set of consecutive integers from 0 to C - 1. Let B 
be an individual bitmap of a bitmap index on A. For 
notational convenience, we overload the symbol B so 
that it indicates both the bitmap itself (i.e., a sequence 
of O’s and l’s) and the set of attribute values in A that 
correspond to its bits that are set to 1. This allows us to 
use set operators and logical operators interchangeably. 
The logical operators AND, OR, and XOR are denoted 
by A, V, and @, respectively, while the complement of 
B is denoted by B. 

An interval query on attribute A is a query of the 
form “Z 5 A < y” or “NOT (Z 5 A < y)” . An interval 
query is an equality query if x = 9; it is a one-sided 

time performance than S for Q. 

range query if 5 = 0 or 9 = C - 1; and it is a two- 
sided range query if 0 < x < y < C - 1. A one- 
sided or two-sided range query is also called a range 
query. We denote the class of equality queries, one- 
sided range queries, two-sided range queries, and range 
queries by EQ, lRQ, 2RQ and RQ, respectively. ‘We 
refer to a query that belongs to the query class Q, where 
Q E {EQ, lRQ,2RQ, RQ}, as a Q-query. Queries 
of the form “A E {VI, 212,. . . , ~12)” are membership 
queries. 

The rest of this paper is organized as follows. A re- 
view of related work is presented in Section 2. Sec- 
tion 3 presents optimality results for the existing encod- 
ing schemes. In Section 4, we introduce interval encod- 
ing, which is an optimal encoding scheme for the class 
of two-sided range queries. In Section 5, we consider the 
evaluation of membership queries and propose four hy- 
brid encoding schemes. Section 6 describes query evalu- 
ation using multi-component bitmap indexes. Section 7 
presents an experimental study comparing the various 
encoding schemes for evaluating both interval as well as 
membership queries. Finally, we summarize our results 
in Section 8. The proofs of theoretical results are given 
elsewhere [CI98a]. 

2 Previous Work 

We first review the two existing bitmap encoding 
schemes, equality encoding, denoted by E, and range 
encoding, denoted by R. These schemes have been 
described in several papers under different names 
[WLO+85, WLO+86, OQ97, CI98b]. 

Equality encoding is the most fundamental and 
common bitmap encoding scheme. It consists of C 
bitmaps E = {EO, El,. . . , EC-l}, where each bitmap 
E” = {v}~. (Recall the notational overload mentioned 
earlier, where a bitmap may be seen as the set of 
attribute values corresponding to its 1 bits.) For 
example, consider Figure l(a) showing the projection 
on an attribute A with cardinality C = 10 of a 
1Zrecord relation. Figure l(b) shows the equality- 
encoded bitmap index for the data in Figure 1 (a), where 
each column represents an equality-encoded bitmap 1T 
associated with an attribute value v. Evaluation of 
interval queries using an equality-encoded bitmap indeex 
proceeds as in Equation (1): 

“VI 5 A 5 ~2” = 
/ 

I 

\;i Ei 

i=vl 

ifvz-vl+lI [PI, 

0) 

I VI-1 C-l 

v 
Ei v v Ei otherwise. 

i=o i=v2+1 

2For the case when C = 2, since El = 8, it suffices to store 
just E”. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

ra(R) Eg Es E7 E6 Es E4 E3 E= El E" 
0 0 0 0 0 0 10 0 0 
0 0 0 0 0 0 0 10 0 
0 0 0 0 0 0 0 0 10 
0 0 0 0 0 0 010 0 
0 10 0 0 0 0 0 0 0 
0 0 0 0 0 0 010 0 
10 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 10 0 0 0 0 0 0 
0 0 0 0 10 0 0 0 0 
0 0 0 10 0 0 0 0 0 
0 0 0 0 0 10 0 0 0 

R8 R' R6 R5 R4 R3 R2 R1 RQ 
1 1 1 1 1 1 0 0 0 
1 1 1 1 1 1 1 0 0 
1 1 1 1 1 1 1 1 0 
1 1 1 1 1 1 1 0 0 
1 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 1 1 
1 1 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 
1 1 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 

c 

Figure 1: Example of Existing Bitmap Indexes with C = 10. (a) Projection of Indexed Attribute (with duplicates 
preserved). (b) Equality-Encoded Index. (c) Range-Encoded Index. 

The range encoding scheme consists of (C - 1) 
bitmaps R = {R”, R1, . . . , RCe2), where each bitmap 
R” = [O,v]. Figure l(c) shows the range-encoded 
bitmap index for the data in Figure l(a). Evaluation 
of interval queries using a range-encoded bitmap index 
proceeds as in Equation (2): 

“Q 5 A 5 u2” = 

I 

R0 if 2)1 = 212 = 0, 
R”’ @ RVl-1 ifO<vi =v2 <C-l, 
RC-2 ifvr =vs=C-1, 
p1-1 (2) if 0 < 01 < C - 1,~ = C - 1, 
R”2 if 211 = 0,O 5 212 < C - 1, 
R”2 @ R”‘-1 otherwise. 

The collection of bitmaps in a bitmap index essen- 
tially forms a two-dimensional bit matrix (e.g., Fig- 
ure 1). The definition of a bitmap index emphasizes on 
a column-wise view of this bit matrix: a bitmap index 
is a collection of bitmaps, where each bitmap represents 
a subset of the attribute’s domain values. However, by 
focusing on a bitmap index row-wise, we observe that 
each row is basically a representation of an attribute 
value using some number of bits encoded in some way. 
By varying the representation of the attribute values, 
different bitmap index designs can be obtained. 

Accordingly, in earlier work [CI98b], we have pro- 
posed a two-dimensional framework to explore the de- 
sign space of bitmap indexes for the class of equality 
and range queries. By varying the options in each di- 
mension, different bitmap index designs are obtained 
with different space-time performance. The two orthog- 
onal dimensions in our framework are (1) the bitmap 
encoding scheme, and (2) the bitmap index decompo- 
sition. The decomposition of a bitmap index is varied 
by selecting a number representation scheme for the at- 
tribute values. For example, consider an attribute with 
cardinality C = 50. A value of 35 can be represented as 
a single base-50 digit (i.e., 35 = 3550), or as two base-8 

digits (i.e., 35 = 4s3s), and so on. In general, given a 
sequence of integers < b,, &-I,. . . , br >, an attribute 
value u can be decomposed into a sequence of n digits 
v = 21,21,-l.. . v1 as follows: 

zl=21, (Ebj) +...+v; [p) +...+vzbl+vl (3) 

where each Vi is a base-bi digit (i.e., 0 5 ui < bi), 
bn = r $1 J’ 

and bi 2 2, V 1 < i 5 n. Each 

choice of h ‘and sequence < b,, b,-1, . . . , bl > gives a 
different representation of attribute values and defines 
a different n-component index. We refer to an index 
formed by the sequence < b,, b,-1, . . . , bl > as a base- 
< LL-l,.. . , bl > index. Figure 2 shows two base- 
< 3,4 > indexes based on the same data set as in 
Figure 1. We use the notation Bf to denote a bitmap 
in the ith component associated with value j in an n- 
component bitmap index, where 1 5 i < n, 0 < j < bi, 
and bi is the base of the ith component. Note that the 
evaluation equations (1) and (2) are directly applicable 
on one-component indexes only (or equivalently on 
individual components). A generalization of them to 
multi-component indexes is discussed in Section 6. 

Based on the above framework, designing a bitmap 
index is essentially an optimization problem of identify- 
ing a point in this two-dimensional space that exhibits 
“optimal” space-time performance. The only somewhat 
related piece of work that we are aware of is that of 
Wu and Buchmann [WB98], who studied a rather dif- 
ferent optimization problem for binary-encoded bitmap 
indexes (i.e., in our framework terminology, equality- 
encoded indexes with the maximum number of com- 
ponents). In a binary-encoded bitmap index, each at- 
tribute value is represented in binary form (i.e., with 
[log:!(C)] bits, where C is the attribute cardinality); 
so there are a total of [logs(C)] bitmaps in a binary- 
encoded index. Given a set of membership queries S, 
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Figure 2: Example of Base-< 3,4 > Indexes with C = 10 (a) Projection of Indexed Attribute (with duplica.tes 
preserved). (b) Equality-Encoded Index. (c) Range-Encoded Index. 

the optimization problem that Wu and Buchmann ad- 
dressed is to find an assignment of binary representa- 
tions for the C attribute values so that the number of 
bitmap scans required to evaluate all the queries in S 
is minimized. The authors have identified a sufficient 
condition for this problem, but as pointed out by them, 
the optimal solution might not always exist; further- 
more, the complexity of their solution is an exponential 
function of C and the number of queries in S. 

3 Optimality Results for Existing 
Encoding Schemes 

While it is known that equality encoding is better than 
range encoding for ecquality queries and vice-versa for 
range queries, it remains an open question whether or 
not there exist an encoding scheme that has better 
space-time performance than these. In this section, we 
examine the optimality of the two existing encoding 
schemes, E and R, for the query classes EQ, lRQ, 
2RQ, and RQ. The discussion refers to l-component 
indexes, or equivalently, to individual components of 
multi-component indexes, so that differences between 
bitmap index designs are essentially differences between 
their encoding schemes. The optimality definition could 
easily be extended to include arbitrary index designs, 

Let Time(S, C, Q) and Spuce(S, C) denote the time- 
and space-cost of a bitmap encoding scheme S for 
an attribute with ca.rdinality C and query class Q. 
The time-efficiency is in terms of the expected number 
of bitmap scans for evaluating a query in class Q, 
and the space-efficiency is in terms of the number of 
bitmaps stored. An encoding scheme S is complete 
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if it captures all information necessary to evaluate any 
interval query, or equivalently, any query in class EQ. A 
bitmap encoding scheme S is said to be optimal with 
respect to C and Q if there exists no other complete 
bitmap encoding scheme St such that 

1. Time(S’, C, Q) 5 Time(S, C, Q) and 

2. Space(S’, C) 5 Space(S, C) and 

3. at least one of these inequalities is strict. 

Figure 3: Space-Time Performance Field 

Figure 3 illustrates the notion of optimality within a 
space-time performance field for a universe of 12 bitmap 
encoding schemes. Each point represents the space- and 



time-cost of a distinct index (encoding scheme), with 
the optimal and non-optimal indexes indicated by black 
and white points, respectively. Note that there may be 
many optimal indexes, as they may be incomparable 
in terms of both time and space, i.e., for any pair of 
optimal points, one of them strictly dominates the other 
in terms of time and the opposite holds in terms of 
space. 

Given the above definition of optimality, Theorem 3.1 
states several results for the existing encoding schemes. 

Theorem 3.1 The following statements hold: 

1. Range .encoding is optimal for EQ iff C < 5. 

2. Range encoding is optimal for 1RQ for all C. 

3. Range encoding is not optimal for 2RQ for any C. 

4. Range encoding is optimal for RQ for all C3. 

5. Equality encoding is optimal for EQ for all C. 

6. Equality encoding is not optimal for lRQ, 2RQ, and 
RQ for any C. 

4 Interval Encoding Scheme 
An interesting result of Theorem 3.1 is that neither 
of the two existing encoding schemes is optimal for 
the class of P-sided range queries. In this section, we 
present a new encoding scheme called interval encoding, 
denoted by Z, which is optimal for the query class 2RQ. 
The intuition for the new encoding scheme is based on 
range encoding. In range encoding, each bitmap Ri = 
[0, i], and each 2RQ-query is evaluated by operating on 
an appropriate pair of bitmaps: [z, y] = RY $ R”-l. 
Figure 4(a) shows the set of values captured by each 
bitmap in a range-encoded bitmap for C = 10. 

The interval encoding scheme consists of [g] bitmaps 
Z = {lO,~l,. . . ,~r+l-l}, where each bitmap 1j = 
[j, j + m], and m = [$] - 1.4 Figure 5 shows 
the interval-encoded bitmap index for the data in 
Figure l(a). Evaluation of all interval queries using a 
one-component interval-encoded bitmap index proceeds 

3Note that R is optimal for the class of RQ queries although 
it is not optimal for its subclass of 2RQ queries. This may seem 
counterintuitive, but its quite plausible. For instance, imagine R 
and another hypothetical encoding S as black points in Figure 
3 for RQ queries, with R having better (expected) time and S 
having better space. In the corresponding figure for 2RQ, the 
space for both encodings remains the same of course and the time 
for R increases (as 1RQ queries, which are its best, are removed); 
assuming the time for S decreases so that it becomes better than 
that for R, then the latter is completely dominated by S and is 
no longer optimal. 

4Another variant of the interval encoding scheme for the case 
when C is odd is discussed elsewhere [CI%a]. 

as in Equations (4) to (6) for equality, one-sided range, 
and two-sided range queries, respectively. &Mn, 
evaluation using multi-component indexes is discussed 
in Section 6.) Note that for one-sided range queries 
where vi > 0 and us = C - 1, they are simply evaluated 
in terms of Equation (5) by negating the result of the 
evaluation of “A 5 2ri - 1”. Overall, we have obtained 
an encoding scheme that has almost half the space of 
range encoding, as shown in Figure 4(b), while still 
guaranteeing at most a two-scan evaluation for any 
query. 

l II II 
l 

I* 

8 
7 
6 
5 
4 
3 
2 I 

1 
0 

RDR’leF?FPFP FPl?‘Fe IO I’ I* 13 14 

(a) Range Encoding (b) interval Encoding 

Figure 4: Range vs Interval Encoding, C = 10. 

Z = {I”, I’, 12, 13, 14}, where 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

IO = 
I1 = 

;: 1 
14 = 

1 1 1 1 1 

Cc) 

Figure 5: Example of an Interval-Encoded Bitmap 
Index with C = 10. (a) Definition of Interval-Encoded 
Index for C = 10. (b) Projection of Indexed Attribute 
(with duplicates preserved). (c) Interval-Encoded Index 
for Data Set in (b). 
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“A = v” = 

I0 if v = 0, m = 0, -- 
IO 

I- 

if v = 1, C = 2, 
I’ if v = 1, C = 3, 
I” A Iv+1 if v < m, 

I” A I0 
(4) 

if v = m, m > 0, -- 
I”--” A p-m-1 if m < v < C - 1, m > 0, 

(Irw” 10) ifv=C-1. 

ForO<v<C-1, 

ifv<m, 
“A 5 v” = ifv=m, (5) 

ifm<v<C-1. 

For 0 < vi < 2)~ < C - 1, 

%l 5 A 5 v2)’ = 
if 112 < m, 
if v2 = m, 
if 212 < VI + m, 211 < 72, 
if 212 = VI + m, VI < 12, (6) 
if 212 > VI + m, 211 < m, 

if 212 = v1 + m + 1, v1 = m, -- 
p2-m A Iv*-m-1 if v1 2 12. 

4.1 Optimality of Interval Encoding 
Scheme 

The following theorem states several optimality results 
for interval encoding. 

Theorem 4.1 The following statements hold: 

1. Interval-encoding is not optimal for EQ if C 2 14. 

2. Interval-encoding is optimal for 1RQ for all C. 

3. Interval-encoding is optimal for 2RQ for all C. 

4. Interval-encoding is optimal for RQ for all C. 

Table 1 summarizes the results of Theorem 4.1 together We now consider encoding schemes targeted for the 
with those of Theorem 3.1 for ease of comparison. A more general class of membership queries of the form 
,/ for (Q, 5’) means that encoding scheme 5’ is optimal 
for query class Q; a x for (Q, S) means that encoding 

“A E (211,212 )...) Ok}“. A membership query is es- 

scheme 5’ is not optimal for query class Q. An empty 
sentially a collection of equality and range queries; 

(Q,S) means that it is unknown whether or not the 
specifically, each membership query can be uniquely e:x- 

encoding scheme S is optimal for query class Q; this 
pressed as a disjunction of a minimal number of equal- 

case is implicitly pre.sent in the table for Q = EQ, 
ity and range queries. For example, the membership 

S = 1, and C < 14. Observe that interval encoding 
query “A E {6,19,20,21,22,35}” can be rewritten as 

appears to be optimal for the widest possible class of 
“(A = 6) V (19 5 A 5 22) V (A = 35)“. We refer LO 

queries. 
the equality and range queries in a membership query 
as its constituent queries. Clearly, encoding schemes for 

Query Encoding Scheme 
Class E I R z 

EQ d JiffC<5 xifCL14. 
1RQ x d J 
2RQ x J 
RQ x 7 J 

Table 1: Optimality of Existing and New Encoding 
Schemes. 

4.2 Comparison of Basic Encoding Schem.es 

Among the three basic encoding schemes, interval 
encoding is the most space-efficient requiring about 
half the number of bitmaps of the other two basic 
schemes. Equality encoding is the most query-efficient 
for equality queries but the least query-efficient :for 
range queries. Range encoding is the most query- 
efficient for one-sided range queries, and is equally 
query-efficient as interval encoding for equality queries 
as well as two-sided range queries. 

For a new data record, the update-cost of an encoding 
scheme can be measured in terms of the number of 
bitmaps to be updated (to set the bits to 1). Equality 
encoding is the most update-efficient requiring only 
one bitmap update. Range encoding is the least 
update-efficient requiring 1, 9, and C - 1 bitmap 
updates, respectively, for the best, expected, and worst 
cases. Interval encoding falls in between requiring 1, 
f, and [$J bitmap updates, respectively, for the be;st, 
expected, and worst cases. However, index updates 
in DSS are typically batched and performed for a set 
of updates rather than for a single update. In that 
case, both the particular batching performed and the 
precise distribution of the updated records on the disk 
blocks become important. Studying the effect of these 
parameters on the update-costs of the various encoding 
schemes is beyond the scope of this paper and is left as 
future work. 

5 Hybrid Encoding Schemes for 
Membership Queries 
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interval queries can also be applied to evaluate member- 
ship queries. In this section, we propose four additional 
hybrid encoding schemes that offer different space-time 
tradeoffs. The first two hybrid schemes are based on the 
two known encoding schemes (i.e., equality and range 
encoding schemes), and the last two schemes are based 
on equality and interval encoding schemes. 

5.1 Equality-Range Encoding Scheme 

The first hybrid scheme, equality-range encoding (de- 
noted by ER), is simply a combination of the two known 
encoding schemes; i.e., ER = & U R. The bitmaps R” 
and Rch2 need not be physically materialized since by 
definition, R” = ED and RcW2 = EC-l. 

Equality and range constituent queries are evalu- 
ated using equality- and range-encoded bitmaps, re- 
spectively. Since equality encoding is the most time- 
efficient scheme for equality queries, and range encod- 
ing is the most time-efficient scheme for one-sided range 
queries, we expect this hybrid scheme to do really well 
time-wise for membership queries at the cost of about 
twice the space requirement of the basic schemes. 

5.2 OREO Encoding Scheme 

The second hybrid encoding scheme, OREO encoding 
scheme5 (denoted by O), offers a different approach 
to complement the strengths of the two basic schemes 
using the same amount of space as range encoding. 

One obvious way to reduce the space requirement of 
ER is to have only half its number of equality- and 
range-encoded bitmaps; for example, for an attribute 
with cardinality C, we can have an encoding scheme 
that uses equality encoding for the first g values and 
range encoding for the remaining $ values. However, 
such a design suffers from a similar performance 
problem as equality encoding for range query evaluation 
when the range query falls on the “wrong” values (first 
half of values in this example). 

The OREO encoding scheme alleviates the above 
problem by essentially interleaving equality- and range- 
encoded bitmaps. For an attribute with cardinal- 
ity C, OREO consists of (C - 1) bitmaps c3 = 

{Ol, 02,. . . , Oc-l}, such that Oc-i = v Ei; and 
i is even 

for 1 5 i < C - 1, Oi = Ei-’ V Ei if i is even; other- 
wise, Oi = Ri. Details on the design of OREO and its 
evaluation expressions are given elsewhere [CISSa]. 

5.3 Equality-Interval Encoding Scheme 

The third hybrid encoding scheme, equality-interval 

encoding (denoted by EZ), is simply a combination of 
both the equality and interval encoding schemes; i.e., 
&Z = & U Z. Note that &Z reduces to & when C 5 3. 

50RE0 = Oscillating Range and Equality Organization. 

Equality and range queries are evaluated using 
equality- and interval-encoded bitmaps, respectively. 
In terms of its space- and time-efficiency, EZ falls in 
between the first two hybrid schemes: it is more time- 
efficient than 0 and more space-efficient than ER. 

5.4 Variant of Equality-Interval Encoding 
Scheme 

The final hybrid encoding scheme, denoted by &I*, is 
a variant of EZ that requires about two-thirds of the 
space of EZ without sacrificing its time-efficiency for 
many queries. Its design is based on the observation 
that bitmap 1’ = [0, [gj - I] is commonly accessed 
for query evaluation. By combining pairs of equality- 
encoded bitmaps E” and EY such that z 5 I$] - 
1 < y, each equality query can be evaluated with 
one such combined bitmap and IO. More precisely, 
ET* = Z u (P1,P2,.. . ,PT}, where r = [VI and 
Pi = Ei U Ei+m+l. Note that ET reduces to Z when 
C 2 4. Thus, EZ” requires only ([$I+ [vl) bitmaps, 
which is about two-thirds of the (C + [g]) bitmaps 
required for EZ. The evaluation expressions using &Z* 
are given elsewhere [CI98a]. 

6 Query Processing with 
Multi-Component Indexes 

So far, we have presented the various encoding schemes 
and their evaluations assuming one-component indexes. 
In this section, we explain how arbitrary membership 
queries (and effectively, how individual interval queries 
as well) are processed for the more general case of multi- 
component indexes. 

Query processing with multi-component indexes con- 
sists of two phases: a query rewrite phase followed by a 
query ewakation phase. The first phase transforms the 
input query into a query evaluation graph, where each 
internal node in the graph represents a logical operator 
(AND, OR, NOT, XOR) and each leaf node represents 
a bitmap. The second phase optimizes the execution 
of the query evaluation graph by taking into account 
the allocated buffer space to minimize input bitmap re- 
scans and intermediate result replacements. The details 
of each phase are explained in the following subsections. 

We use n to denote the number of components in 
a bitmap index with base < b,, b,,-1,. . . , bl >, and 
wnw,-1 . . . v, to denote the digits of an attribute value 
v decomposed using the base of the index as given by 
Equation (3). 

6.1 Query Rewrite Phase 

This phase consists of the following 3 steps: 

1. Membership Query Rewrite 
First, if the input query is a membership query, it is 
rewritten into a disjunction of a minimal number of 
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interval queries an example of this straightforward 
rewrite was shown in Section 5. 

2. Interval Query .Rewrite 
Next, each predicate constant, in each interval query 
is decomposed into n digits using the base of 
the n-component index, and each interval query 
is then rewritten into a more detailed expression 
involving predicates at the digit-level. For example, 
consider the interval query “A 5 85” and a base-< 
10,lO > index. After decomposition of the predicate 
constant, the query becomes “AzAl < 810510” and 
is further rewritten as “(AZ 5 7) V [(AZ = 8) A 
(Al < 511”. This rewrite step is a function of 
both the query class (equality, one-sided range, two- 
sided range) as well as the index’s encoding scheme; 
details of this step are explained in Section 6.2. 

3. Predicate-Level 12ewrite 
Finally, based on the encoding scheme of the in- 
dex, each predicate is rewritten into a bitmap- 
level evaluation expression. Such evaluation ex- 
pressions correspond to the one-component evalu- 
ation expressions that we have already presented 
along with each encoding scheme. Continuing with 
the previous example, and assuming that the index 
bitmap is equality-encoded (Equation (l)), the final 
bitmap-level evaluation expression is “(E,8 V @)V 
[E;A (E; VET V E1” V Ef)]“. 

6.2 Interval Query Rewrite 

This section elaborates on the interval query rewrite 
step of the query rewrite phase; specifically, we explain 
with examples how an interval query is rewritten for the 
three interval query subclasses. 

Equality Queries 

An equality query is rewritten as a conjunction of n 
equality predicates, one per index component. For 
example, for a base-,< lO,lO, 10 > bitmap index, the 
query “A = 357” is rewritten as “(A3 = 3) A (AZ = 
5) A (A1 = 7)“. 

In general, if EQ(i,j, w) denotes the evaluation of 
“AjAj-1 . . . Ai = vjv,i-1 . . . vi”, where 1 5 i < j 5 n, 
then 

EQ(i,j, v) = A (Ak = vk). 
k=i 

(7) 

Hence, the evaluation of an equality query “A = w” is 
given by EQ(1, n, v). 

One-Sided Range Queries 

There are two basic alternatives for rewriting a one- 
sided range query. For example, for a base-< 10,lO > 
bitmap index, the query “A 5 57” can be rewritten 

as either “(AZ 5 4) V [(Ax 5 5) A (A1 < 7)]” or 
“(AZ 5 4) V [(AZ = 5) A (A1 5 7)]“. Both forms are 
equivalent, and the choice is made based on whether 
the index’s encoding scheme is more efficient for range 
or equality queries: the first option is more efficient for 
range encoding, while the second option is more efficient 
for equality encoding. 

In addition, to avoid unnecessary predicate evalua- 
tions, the least significant digits in the predicate ‘con- 
stant are dropped if they all have maximal values. For 
example, for a base-< lO,lO, 10 > index, the query 
“A < 499” will be simplified to “As 5 4” to avoid two 
unnecessary predicate evaluations for the two least sig- 
nificant digits. One-sided queries of the form “A 2 w” 
are evaluated as “A < v - 1”) w > 0. 

In general, if LE(k, V) and GE(k, w) denote the evalu- 
ations “AkAk-1 . . . A1 5 ‘uk?&-1 . . .UI” and “AkAk-..I . . . Al 
1 ‘uk’uk-1 . . . VI”, respectively, where 1 5 k 5 n, thsen 

LE(k,v) = 

1 

(Ak 5 vk - 1) v if k > 1, Ok > 0, 
(C-tk A L,!i?(k - 1, v)) 
Cuk A L,f?(k - 1, v) if k > 1, Vk = I), (8) 
(Ak _< vk - 1) V LE(k - 1, V) if k > 1, Vk = ljk - 1, 
& 5 vk if k = 1. 

Hence, the evaluation of a one-sided range query 
“A 5 20’ is given by LE(n, w), while GE(n,v) = 
LE(n,v - 1). In the above, (Yk is either (AL = ‘&) or 
(Ak 5 Vk) depending on the bitmap encoding scheme. 
Furthermore, LE(n, v) = LE(n’,v) if 21,) < b,, and 
zli = bi - 1 for 1 5 i < n’. 

Two-Sided Range Queries 

In general, two-sided range queries are evaluated as 
a conjunction of two one-sided range queries. For 
example, for a base-< 10, 10, 10,lO > index, the query 
“4254 5 A 5 8015” is rewritten as “(A 2 4254) A (A 5 
8015)“. To minimize bitmap operations, a prefix of 
common most significant digits are evaluated as equality 
queries. For example, the query “4326 5 A 5 4377” is 
rewritten as “(Ad = 4)A(As = 3) A(26 5 AzAl 5 77)“. 

Again, whenever there is a choice, the rewrite 
step chooses predicates to match the strengths of the 
encoding of the available indexes. Continuing on with 
the previous example, for equality-encoded indexes, the 
evaluation expression will be further refined into “(Ad = 
4) A (A3 = 3) A ((3 5 A2 5 6) V [(AZ = 2) A (Al 2 6)] 
V [(AZ = 7) A (A1 _< 7)] }“. 

6.3 Query Evaluation Phase 

In general, the bitmap evaluation expression generated 
by the rewrite phase for a membership query is a not 
a linear tree but an acyclic graph6. Optimizing the 

6The evaluation graph simplifies to a linear tree when the 
query is an equality or a one-sided range query and the index 
is range- or interval-encoded. 
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query evaluation becomes a scheduling problem: for a 
given allocation of buffer space, find the best bitmap 
access and replacement schedule that minimizes both 
the number of re-scans for input bitmaps as well as re- 
scans for intermediate results that were replaced. 

There are two simple query evaluation strategies that 
represent the two extreme points in the solution space 
with regards to their buffer space requirement. At one 
extreme, we have a query-wise evaluation that evaluates 
one constituent interval query at a time so that only 
one intermediate result is maintained. This approach 
requires the least amount of buffer space to run, but is 
also expected to incur the highest number of bitmap re- 
scans. At the other extreme, we have a component-wise 
evaluation that evaluates all the constituent interval 
queries one component at a time; that is, we first 
evaluate all the predicates for the first digit, and then 
proceed to evaluate all the predicates for the second 
digit, and so on. The number of intermediate results 
that needs to be maintained is (ni + 2ns), where ni 
is the number of equality and one-sided range queries, 
and n2 is the number of two-sided range queries. This 
approach requires the largest amount of buffer space to 
run, but does not incur any bitmap/intermediate result 
re-scans, and therefore raises no scheduling problem. 

For the purpose of our performance study (to be 
described in the next section), we use the component- 
wise evaluation strategy. We plan to look into efficient 
heuristics for the scheduling problem as part of future 
work. 

7 Performance Study 

This section presents experimental results comparing 
the space-time performance of the various bitmap 
encoding schemes for evaluating both interval as well 
as membership queries. The experiments were run on a 
200 MHz Intel Pentium Pro processor with 64 MB main 
memory running Solaris X86 2.6. The indexes were 
created using the Unix file system on a 2.1 GB Quantum 
Fireball disk; the file system buffer was flushed before 
each query was run. 

Data Sets: The experiments were conducted using 
synthetic data sets with over 6 million records. The 
data sets are characterized by two parameters: the 
attribute cardinality, denoted by C, and the attribute 
value distribution. We created indexes with C values 
of 50 and 200, and generated the attribute value 
distribution using the Zipf distribution with values of 
0,1,2 and 3 for its skew parameter z. Note that skew 
increases with z, with z = 0 corresponding to the 
uniform distribution. The data sets were generated 
such that there was no correlation between the attribute 
values and their frequencies. 

Queries: We used 8 different query sets for the 
experiments; each query set is characterized by two 

parameters: the total number of interval queries in a 
membership query, denoted by Nint, with Nint = 1,2, 
and 5; and the number of equality queries among 
these interval queries, denoted by Nequ, with Negzl = 
0, [*I, and Nint. Ten queries were randomly 
generated for each query set. 

Indexes: The bitmap indexes were generated by 
varying three parameters: the bitmap index encoding 
scheme (E, R, 1, ER, 0, EZ, and &I*), the bitmap 
index decomposition, and whether or not the index is 
compressed. The bitmap compression algorithm used is 
a byte-aligned run-length encoding scheme proposed by 
Antoshenkov [Ant931 which is used in Oracle8 Database 
Server [Jak97]. 

The space-efficiency of an index is in terms of the 
disk space for storing all its bitmaps. The time- 
efficiency of an index for a query set is in terms of 
its average processing time over all 10 queries in the 
query set; the processing time includes both disk I/O 
time for reading bitmaps, as well as CPU time for 
bitmap operations (including decompression time for 
compressed bitmaps). As mentioned earlier, we used 
the component-wise evaluation strategy; a buffer pool 
size of 11 MB was adequate for our experiments. We 
present results only for C = 50 as the results for C = 
200 were similar. Also, we do not present any results for 
hybrid encoding schemes, as they rarely offered a better 
index than non-hybrid ones (occasionally such an index 
had a slightly lower time at the expense of much higher 
space). 

7.1 Space-Efficiency and Compressibility of 
Encoding Schemes 

Figure 6 compares the space-efficiency and compress- 
ibility of the various encoding schemes for the case 
where C = 50 and z = 1. The comparison is in terms 
of three different space ratios (the precise definitions 
are given below) as a function of the number of index 
components, n. Among all the bitmap indexes with the 
same encoding and the same number of index compo- 
nents, the index that yields the “best” space ratio (i.e., 
smallest ratio value) is plotted on each graph. 

Figure 6(a) compares the space-efficiency of the 
encoding schemes in terms of the ratio of the size 
of the uncompressed form of an n-component index 
to that of the uncompressed, one-component equality- 
encoded index; the latter is used as the base case as it 
corresponds to the simplest and most common bitmap 
index design. As expected, for uncompressed indexes, 
interval encoding is the most space-efficient and equality 
encoding is the least space-efficient. 

Figure 6(b) compares the compressibility of the 
encoding schemes in terms of the ratio of the size of the 
compressed version of an n-component index to that 
of its uncompressed version. The graph shows that 
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Figure 6: Space-Efficiency and Compressibility of Basic Encoding Schemes (C = 50, z = 1). The y-axis measures 
the ratio of the space of two indexes. (a) Uncompressed Index to Uncompressed One-Component Equality-Encoded 
Index. (b) Compressed Index to Uncompressed Index. (c) Compressed Index to Uncompressed One-Component 
Equality-Encoded Index. 
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Figure 7: Effect of Data Skew on Space-Efficiency of Compressed Indexes (C = 50). Compares the Ratio of Space 
of a Compressed n-Component Index to that of the Uncompressed One-Component Equality-Encoded Index. 

equality encoding gives the best compressibility, while 
interval encoding has the worst compressibility. This 
result, which is consistent throughout our experiments, 
is not surprising. Since each equality-encoded bitmap 
represents only a single attribute value, equality- 
encoded bitmaps are more “sparse” and are therefore 
more amenable to the run-length encoding form of 
compression. In contrast, each interval-encoded bitmap 
represents half the values in the attribute domain; so 
the bitmaps are less likely to have long runs of the 
same bit value. Thus, although interval encoding is the 
most space-efficient scheme in terms of the number of 
bitmaps, it is the 1eas.t compressible scheme. 

Figure 6(c) compares the effect of compression on 
the space-efficiency of the encoding schemes in terms 
of the ratio of the size of the compressed form of an 
n-componem index to that of the uncompressed, one- 
component equality-encoded index. The results show 
that interval encoding is generally the most space- 
efficient encoding schleme for compressed indexes as 

well. 
Figure 7 shows the effect of data skew on the 

space-efficiency of compressed n-component indexes, for 
n = 1,2, and 5. As the data skew increases, the 
space-efficiency of compressed indexes improves for <all 
encoding schemes, and the difference in space-efficiency 
among the encoding schemes also decreases. 

7.2 Space-Time Tradeoff of Encoding 
Schemes 

In this section, we compare the performance of the 
encoding schemes in terms of their space-time tradeoffs. 
For each basic encoding scheme S, we show only one ‘of 
its uncompressed and compressed forms (labelled “3 
and ‘Compressed S” , respectively), depending on which 
one was in general dominant in terms of overall space- 
time performance. 

Figures 8 compares the space-time tradeoff of th.e 
encoding schemes for C = 50 and z = 1; the graphs 
on the same row (column) have the same value for 
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Nint (N,,,). The results show that interval encoding 
generally has the best space-time tradeoff except for 
cases where Nepv = Nint in which equality encoding 
is the winner, in the sense that the most time- 
efficient equality-encoded index has rather low space 
requirements as well. 

Figure 9 compares the effect of data skew z on the 
space-time tradeoff of the encoding schemes. The pro- 
cessing time shown is the averaged timing over all 
queries in all 8 query sets. The results show that 
for low-to-medium-skew data (graphs (a) and (b)), un- 
compressed indexes have better space-time performance 
than compressed ones and interval encoding is the 
overall winner, whereas for medium-to-high-skew data 

(graphs (4 and Cd)), compressed indexes have better 
space-time performance than uncompressed ones. The 
benefit of using compression increases with data skew 

because the bitmaps become more compressible, and 
both the I/O cost as well as the decompression over- 
head also become lower. 

8 Conclusions 

Bitmaps indexes appear to be an effective and effi- 
cient structure to help with processing complex ad- 
hoc queries. Most earlier studies and commercial in- 
dex implementations have focused on one-component 
indexes encoded using the equality or the range encod- 
ing schemes, typically in compressed form. In this pa- 
per, we have first demonstrated analytically that these 
two encodings are not in general optimal for interval 
queries. In pursuit of optimality, we have introduced 
and studied interval encoding, which has been proven 
optimal for all but equality selection queries, as well as 
four other hybrid encodings. To deal with genera1 mem- 
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bership queries, we h.ave also devised a query processing 
algorithm for multi-component indexes (independent of 
encoding) that accesses each component once on behalf 
of all subqueries of a query, thus minimizing bitmap res- 
cans from disk. Finally, we have conducted an experi- 
mental evaluation of all encoding schemes, in both com- 
pressed and uncompressed forms, which has revealed 
some interesting facts about their behavior: interval 
encoding has the overall best space-time performance, 
losing to equality encoding only on equality or equality- 
rich membership queries; for low-to-medium-skew data, 
uncompressed indexes have better space-time perfor- 
mance than compressed ones and interval encoding is 
the overall winner, whereas the situation is reversed for 
medium-to-high-skew data. 
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