
An Efficient Bitmap Encoding Scheme
for Selection Queries

Chee-Yong Chan
Department of Computer Sciences
University of Wisconsin-Madison

cychan@cs.wisc.edu

Abstract

Bitmap indexes are useful in processing complex queries in
decision support systems, and they have been implemented
in several commercial database systems. A key design
parameter for bitmap indexes is the encoding scheme, which
determines the bits that are set to 1 in each bitmap in an
index. While the relative performance of the two existing
bitmap encoding schemes for simple selection queries of the
form “z)i < A 5 212” is known (specifically, one of the
encoding schemes is better for processing equality queries;
i.e., vr = 212, while the other is better for processing range
queries; i.e., vi < us), it remains an open question whether
these two encoding schemes are indeed optimal for their
respective query classes in the sense that there is no other
encoding scheme with better space-time tradeoff. In this
paper, we establish a number of optimality results for the
existing encoding schemes; in particular, we prove that
neither of the two known schemes is optimal for the class
of two-sided range queries. We also propose a new encoding
scheme and prove that it is optimal for that class. Finally, we
present an experimental study comparing the performance
of the new encoding scheme with that of the existing ones
as well as four hybrid encoding schemes for both simple
selection queries and the more general class of membership
queries of the form “A E {v~,vz, vk}“. These results
demonstrate that the new encoding scheme has an overall
better space-time performance than existing schemes.

* Partially supported by the National Science Founda-
tion under Grant IRI-9157368 (PYI Award) and the mem-
bers of the Wisconsin database group industrial affiliates
(www.cs.wisc.edu/~raghu/dbaffiliates.html).

t Author’s present address: Department of Informatics,
University of Athens, Hellas (Greece).

Permission to make digital or hard copies ofall or part ofthis work <<>I
personal or classroom use is granted without fix provided that copies
are not made or distribuled liw profit or commercial advantage and that
topics hear this n~lice and the full citation OII the iirst page. To copy
othcrwisc, to republish, to post on scrvcrs or to redistribute to lists.
requires prior specitic permission andior a fee.

SIGMOD ‘99 Philadelphia PA

Copyright ACM 1999 I-581 13-084-8/99/05...$5.00

Yannis E. Ioannidis* t
Department of Computer Sciences
University of Wisconsin-Madison

yannis@cs.wisc.edu

1 Introduction

A promising approach to process complex queries in
Decision Support Systems (DSS) is the use of bitmap
indexing [O’N87, OG95, O&97]. In a conventional B’-
tree index, each distinct attribute value v is associated
with a list of RIDS (called a RID-list) of all the records
associated with the attribute value v. The basic idea
of a bitmap index is to replace the RID-list with a bit
vector (bitmap), i.e., a bitmap index is essentially a
collection of bitmaps. The size of each bitmap is equal
to the cardinality of the indexed relation, and the it’ bit
corresponds to the ith record. In the simplest bitmap

‘th index design, the a bit of a bitmap associated with
value v is set to 1 if and only if the ith record has a
value v for the indexed attribute.

Bitmap indexes have been implemented in sev-
eral commercial DBMSs (IBM [Win99], Informix [Inf,
O’N97], Oracle [Jak97], RedBrick [Ede95], Sybase
[Ede95, Syb971). A major advantage of bitmap indexes
is that bitmap manipulations using bit-wise operators
(AND , OR, XOR, NOT) are very efficiently supported
by hardware. Furthermore, bitmap indexes are very
space-efficient, especially for attributes with low cardi-
nality.

A key design parameter for bitmap indexes is the
encoding scheme, which determines the set of attribute
values “represented” by each bitmap in an index, that is
the attribute values that set the corresponding records’
bits in a bitmap to 1. For example, in the simple design
mentioned earlier, the encoding scheme is such that the
bitmap associated with the value v represents v alone.
Previous studies [WLO+85, WLO+86, OQ97, CI98b]
have identified two basic bitmap encoding schemes:
Equality Encoding, which is the one mentioned above
and is efficient for equality queries (i.e., queries of the
form “A = v”), and Range Encoding, which is efficient
for one-sided range queries (i.e., queries of the form
“A 5 v” or “A 2 v”). However, the space-time
performance optimality’ of either of these encoding

‘Informally, an encoding scheme S is optimal for a query class
Q if there is no other encoding scheme with strictly better space-

215

schemes remains an open issue; that is, it is not known
whether or not there exists an encoding scheme with
strictly better space-time performance than equality
encoding for equality queries or range encoding for one-
sided range queries (and more generally for the class of
two-sided range queries of the form ‘%I 5 A 5 ~2”). In
addition, to the best of our knowledge, no earlier work
has examined the performance of bitmap indexes for the
more general class of membership queries (i.e., queries
of the form “A E {VI, ~2,. . . ,vk}“).

In this paper, we address these two issues and make
the following contributions:

We establish a number of optimality results for
existing encoding schemes; in particular, we prove
that neither of the two existing encoding schemes is
optimal for the class of two-sided range queries.

We propose a new encoding scheme, called Interval-
Encoding, and prove that it is optimal for both one-
sided and two-sided range queries.

We introduce an efficient query evaluation frame-
work for multi-component indexes that takes into
account the buffer size to avoid rescanning from disk
the same bitmaps.

We present the results of an experimental study
comparing the new encoding scheme with the ex-
isting ones as well as four hybrid encoding schemes
for both simple selection queries and the more
general class of :membership queries of the form
“A E {vl, ~2,. . . , uk}“. All encoding schemes have
been studied in both compressed and uncompressed
forms. The results of this study show that the in-
terval encoding scheme exhibits better space-time
overall for various query classes.

We conclude this section with some preliminaries.
Consider an attribute A of a relation R, where the
attribute cardinality is C. For simplicity and without
loss of generality, the domain of A is assumed to be
a set of consecutive integers from 0 to C - 1. Let B
be an individual bitmap of a bitmap index on A. For
notational convenience, we overload the symbol B so
that it indicates both the bitmap itself (i.e., a sequence
of O’s and l’s) and the set of attribute values in A that
correspond to its bits that are set to 1. This allows us to
use set operators and logical operators interchangeably.
The logical operators AND, OR, and XOR are denoted
by A, V, and @, respectively, while the complement of
B is denoted by B.

An interval query on attribute A is a query of the
form “Z 5 A < y” or “NOT (Z 5 A < y)” . An interval
query is an equality query if x = 9; it is a one-sided

time performance than S for Q.

range query if 5 = 0 or 9 = C - 1; and it is a two-
sided range query if 0 < x < y < C - 1. A one-
sided or two-sided range query is also called a range
query. We denote the class of equality queries, one-
sided range queries, two-sided range queries, and range
queries by EQ, lRQ, 2RQ and RQ, respectively. ‘We
refer to a query that belongs to the query class Q, where
Q E {EQ, lRQ,2RQ, RQ}, as a Q-query. Queries
of the form “A E {VI, 212,. . . , ~12)” are membership
queries.

The rest of this paper is organized as follows. A re-
view of related work is presented in Section 2. Sec-
tion 3 presents optimality results for the existing encod-
ing schemes. In Section 4, we introduce interval encod-
ing, which is an optimal encoding scheme for the class
of two-sided range queries. In Section 5, we consider the
evaluation of membership queries and propose four hy-
brid encoding schemes. Section 6 describes query evalu-
ation using multi-component bitmap indexes. Section 7
presents an experimental study comparing the various
encoding schemes for evaluating both interval as well as
membership queries. Finally, we summarize our results
in Section 8. The proofs of theoretical results are given
elsewhere [CI98a].

2 Previous Work

We first review the two existing bitmap encoding
schemes, equality encoding, denoted by E, and range
encoding, denoted by R. These schemes have been
described in several papers under different names
[WLO+85, WLO+86, OQ97, CI98b].

Equality encoding is the most fundamental and
common bitmap encoding scheme. It consists of C
bitmaps E = {EO, El,. . . , EC-l}, where each bitmap
E” = {v}~. (Recall the notational overload mentioned
earlier, where a bitmap may be seen as the set of
attribute values corresponding to its 1 bits.) For
example, consider Figure l(a) showing the projection
on an attribute A with cardinality C = 10 of a
1Zrecord relation. Figure l(b) shows the equality-
encoded bitmap index for the data in Figure 1 (a), where
each column represents an equality-encoded bitmap 1T
associated with an attribute value v. Evaluation of
interval queries using an equality-encoded bitmap indeex
proceeds as in Equation (1):

“VI 5 A 5 ~2” =
/

I

\;i Ei

i=vl

ifvz-vl+lI [PI,

0)

I VI-1 C-l

v
Ei v v Ei otherwise.

i=o i=v2+1

2For the case when C = 2, since El = 8, it suffices to store
just E”.

216

1
2
3
4
5
6
7
8
9
10
11
12

ra(R) Eg Es E7 E6 Es E4 E3 E= El E"
0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 10
0 0 0 0 0 0 010 0
0 10 0 0 0 0 0 0 0
0 0 0 0 0 0 010 0
10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 10 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0
0 0 0 10 0 0 0 0 0
0 0 0 0 0 10 0 0 0

R8 R' R6 R5 R4 R3 R2 R1 RQ
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0

c

Figure 1: Example of Existing Bitmap Indexes with C = 10. (a) Projection of Indexed Attribute (with duplicates
preserved). (b) Equality-Encoded Index. (c) Range-Encoded Index.

The range encoding scheme consists of (C - 1)
bitmaps R = {R”, R1, . . . , RCe2), where each bitmap
R” = [O,v]. Figure l(c) shows the range-encoded
bitmap index for the data in Figure l(a). Evaluation
of interval queries using a range-encoded bitmap index
proceeds as in Equation (2):

“Q 5 A 5 u2” =

I

R0 if 2)1 = 212 = 0,
R”’ @ RVl-1 ifO<vi =v2 <C-l,
RC-2 ifvr =vs=C-1,
p1-1 (2) if 0 < 01 < C - 1,~ = C - 1,
R”2 if 211 = 0,O 5 212 < C - 1,
R”2 @ R”‘-1 otherwise.

The collection of bitmaps in a bitmap index essen-
tially forms a two-dimensional bit matrix (e.g., Fig-
ure 1). The definition of a bitmap index emphasizes on
a column-wise view of this bit matrix: a bitmap index
is a collection of bitmaps, where each bitmap represents
a subset of the attribute’s domain values. However, by
focusing on a bitmap index row-wise, we observe that
each row is basically a representation of an attribute
value using some number of bits encoded in some way.
By varying the representation of the attribute values,
different bitmap index designs can be obtained.

Accordingly, in earlier work [CI98b], we have pro-
posed a two-dimensional framework to explore the de-
sign space of bitmap indexes for the class of equality
and range queries. By varying the options in each di-
mension, different bitmap index designs are obtained
with different space-time performance. The two orthog-
onal dimensions in our framework are (1) the bitmap
encoding scheme, and (2) the bitmap index decompo-
sition. The decomposition of a bitmap index is varied
by selecting a number representation scheme for the at-
tribute values. For example, consider an attribute with
cardinality C = 50. A value of 35 can be represented as
a single base-50 digit (i.e., 35 = 3550), or as two base-8

digits (i.e., 35 = 4s3s), and so on. In general, given a
sequence of integers < b,, &-I,. . . , br >, an attribute
value u can be decomposed into a sequence of n digits
v = 21,21,-l.. . v1 as follows:

zl=21, (Ebj) +...+v; [p) +...+vzbl+vl (3)

where each Vi is a base-bi digit (i.e., 0 5 ui < bi),
bn = r $1 J’

and bi 2 2, V 1 < i 5 n. Each

choice of h ‘and sequence < b,, b,-1, . . . , bl > gives a
different representation of attribute values and defines
a different n-component index. We refer to an index
formed by the sequence < b,, b,-1, . . . , bl > as a base-
< LL-l,.. . , bl > index. Figure 2 shows two base-
< 3,4 > indexes based on the same data set as in
Figure 1. We use the notation Bf to denote a bitmap
in the ith component associated with value j in an n-
component bitmap index, where 1 5 i < n, 0 < j < bi,
and bi is the base of the ith component. Note that the
evaluation equations (1) and (2) are directly applicable
on one-component indexes only (or equivalently on
individual components). A generalization of them to
multi-component indexes is discussed in Section 6.

Based on the above framework, designing a bitmap
index is essentially an optimization problem of identify-
ing a point in this two-dimensional space that exhibits
“optimal” space-time performance. The only somewhat
related piece of work that we are aware of is that of
Wu and Buchmann [WB98], who studied a rather dif-
ferent optimization problem for binary-encoded bitmap
indexes (i.e., in our framework terminology, equality-
encoded indexes with the maximum number of com-
ponents). In a binary-encoded bitmap index, each at-
tribute value is represented in binary form (i.e., with
[log:!(C)] bits, where C is the attribute cardinality);
so there are a total of [logs(C)] bitmaps in a binary-
encoded index. Given a set of membership queries S,

217

I

i!

3

4

5

6

7

8

9

10

1 I.

l:!
L

3

2

1

2

8

2

9

0

7

5

6

0x4+3
-d
0x4+2

-+
0x4+1

-
0x4+2

--
2x4+0

-
0x4+2

-
2x4+1

-
0x4+0

4
1x4+3

-

1x4+1
d
1x4+2

-
1 x4+0

-

0 0 1

0 0 1

0 01

0 0 1

1 0 0

0 01

1 0 0

0 0 1

010

0 1 0

0 1 0

0 1 0
L

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

010 0

0 0 1 0

0 0 0 1

10 0 0

0 0 1 0

0 1 0 0

0 0 0 1
)

i ’ I-

1 1

1 1

1 1

1 1

0 0

1 1

0 0

1 1

10

10

1 0

10

0 0 0

1 0 0

1 1 0

1 0 0

1 1 1

10 0

1 1 0

1 1 1

0 0 0

1 1 0

1 0 0

111

Cc)

Figure 2: Example of Base-< 3,4 > Indexes with C = 10 (a) Projection of Indexed Attribute (with duplica.tes
preserved). (b) Equality-Encoded Index. (c) Range-Encoded Index.

the optimization problem that Wu and Buchmann ad-
dressed is to find an assignment of binary representa-
tions for the C attribute values so that the number of
bitmap scans required to evaluate all the queries in S
is minimized. The authors have identified a sufficient
condition for this problem, but as pointed out by them,
the optimal solution might not always exist; further-
more, the complexity of their solution is an exponential
function of C and the number of queries in S.

3 Optimality Results for Existing
Encoding Schemes

While it is known that equality encoding is better than
range encoding for ecquality queries and vice-versa for
range queries, it remains an open question whether or
not there exist an encoding scheme that has better
space-time performance than these. In this section, we
examine the optimality of the two existing encoding
schemes, E and R, for the query classes EQ, lRQ,
2RQ, and RQ. The discussion refers to l-component
indexes, or equivalently, to individual components of
multi-component indexes, so that differences between
bitmap index designs are essentially differences between
their encoding schemes. The optimality definition could
easily be extended to include arbitrary index designs,

Let Time(S, C, Q) and Spuce(S, C) denote the time-
and space-cost of a bitmap encoding scheme S for
an attribute with ca.rdinality C and query class Q.
The time-efficiency is in terms of the expected number
of bitmap scans for evaluating a query in class Q,
and the space-efficiency is in terms of the number of
bitmaps stored. An encoding scheme S is complete

218

if it captures all information necessary to evaluate any
interval query, or equivalently, any query in class EQ. A
bitmap encoding scheme S is said to be optimal with
respect to C and Q if there exists no other complete
bitmap encoding scheme St such that

1. Time(S’, C, Q) 5 Time(S, C, Q) and

2. Space(S’, C) 5 Space(S, C) and

3. at least one of these inequalities is strict.

Figure 3: Space-Time Performance Field

Figure 3 illustrates the notion of optimality within a
space-time performance field for a universe of 12 bitmap
encoding schemes. Each point represents the space- and

time-cost of a distinct index (encoding scheme), with
the optimal and non-optimal indexes indicated by black
and white points, respectively. Note that there may be
many optimal indexes, as they may be incomparable
in terms of both time and space, i.e., for any pair of
optimal points, one of them strictly dominates the other
in terms of time and the opposite holds in terms of
space.

Given the above definition of optimality, Theorem 3.1
states several results for the existing encoding schemes.

Theorem 3.1 The following statements hold:

1. Range .encoding is optimal for EQ iff C < 5.

2. Range encoding is optimal for 1RQ for all C.

3. Range encoding is not optimal for 2RQ for any C.

4. Range encoding is optimal for RQ for all C3.

5. Equality encoding is optimal for EQ for all C.

6. Equality encoding is not optimal for lRQ, 2RQ, and
RQ for any C.

4 Interval Encoding Scheme
An interesting result of Theorem 3.1 is that neither
of the two existing encoding schemes is optimal for
the class of P-sided range queries. In this section, we
present a new encoding scheme called interval encoding,
denoted by Z, which is optimal for the query class 2RQ.
The intuition for the new encoding scheme is based on
range encoding. In range encoding, each bitmap Ri =
[0, i], and each 2RQ-query is evaluated by operating on
an appropriate pair of bitmaps: [z, y] = RY $ R”-l.
Figure 4(a) shows the set of values captured by each
bitmap in a range-encoded bitmap for C = 10.

The interval encoding scheme consists of [g] bitmaps
Z = {lO,~l,. . . ,~r+l-l}, where each bitmap 1j =
[j, j + m], and m = [$] - 1.4 Figure 5 shows
the interval-encoded bitmap index for the data in
Figure l(a). Evaluation of all interval queries using a
one-component interval-encoded bitmap index proceeds

3Note that R is optimal for the class of RQ queries although
it is not optimal for its subclass of 2RQ queries. This may seem
counterintuitive, but its quite plausible. For instance, imagine R
and another hypothetical encoding S as black points in Figure
3 for RQ queries, with R having better (expected) time and S
having better space. In the corresponding figure for 2RQ, the
space for both encodings remains the same of course and the time
for R increases (as 1RQ queries, which are its best, are removed);
assuming the time for S decreases so that it becomes better than
that for R, then the latter is completely dominated by S and is
no longer optimal.

4Another variant of the interval encoding scheme for the case
when C is odd is discussed elsewhere [CI%a].

as in Equations (4) to (6) for equality, one-sided range,
and two-sided range queries, respectively. &Mn,
evaluation using multi-component indexes is discussed
in Section 6.) Note that for one-sided range queries
where vi > 0 and us = C - 1, they are simply evaluated
in terms of Equation (5) by negating the result of the
evaluation of “A 5 2ri - 1”. Overall, we have obtained
an encoding scheme that has almost half the space of
range encoding, as shown in Figure 4(b), while still
guaranteeing at most a two-scan evaluation for any
query.

l II II
l

I*

8
7
6
5
4
3
2 I

1
0

RDR’leF?FPFP FPl?‘Fe IO I’ I* 13 14

(a) Range Encoding (b) interval Encoding

Figure 4: Range vs Interval Encoding, C = 10.

Z = {I”, I’, 12, 13, 14}, where

2
3
4
5
6
7
8
9
10
11
12

IO =
I1 =

;: 1
14 =

1 1 1 1 1

Cc)

Figure 5: Example of an Interval-Encoded Bitmap
Index with C = 10. (a) Definition of Interval-Encoded
Index for C = 10. (b) Projection of Indexed Attribute
(with duplicates preserved). (c) Interval-Encoded Index
for Data Set in (b).

219

“A = v” =

I0 if v = 0, m = 0, --
IO

I-

if v = 1, C = 2,
I’ if v = 1, C = 3,
I” A Iv+1 if v < m,

I” A I0
(4)

if v = m, m > 0, --
I”--” A p-m-1 if m < v < C - 1, m > 0,

(Irw” 10) ifv=C-1.

ForO<v<C-1,

ifv<m,
“A 5 v” = ifv=m, (5)

ifm<v<C-1.

For 0 < vi < 2)~ < C - 1,

%l 5 A 5 v2)’ =
if 112 < m,
if v2 = m,
if 212 < VI + m, 211 < 72,
if 212 = VI + m, VI < 12, (6)
if 212 > VI + m, 211 < m,

if 212 = v1 + m + 1, v1 = m, --
p2-m A Iv*-m-1 if v1 2 12.

4.1 Optimality of Interval Encoding
Scheme

The following theorem states several optimality results
for interval encoding.

Theorem 4.1 The following statements hold:

1. Interval-encoding is not optimal for EQ if C 2 14.

2. Interval-encoding is optimal for 1RQ for all C.

3. Interval-encoding is optimal for 2RQ for all C.

4. Interval-encoding is optimal for RQ for all C.

Table 1 summarizes the results of Theorem 4.1 together We now consider encoding schemes targeted for the
with those of Theorem 3.1 for ease of comparison. A more general class of membership queries of the form
,/ for (Q, 5’) means that encoding scheme 5’ is optimal
for query class Q; a x for (Q, S) means that encoding

“A E (211,212)...) Ok}“. A membership query is es-

scheme 5’ is not optimal for query class Q. An empty
sentially a collection of equality and range queries;

(Q,S) means that it is unknown whether or not the
specifically, each membership query can be uniquely e:x-

encoding scheme S is optimal for query class Q; this
pressed as a disjunction of a minimal number of equal-

case is implicitly pre.sent in the table for Q = EQ,
ity and range queries. For example, the membership

S = 1, and C < 14. Observe that interval encoding
query “A E {6,19,20,21,22,35}” can be rewritten as

appears to be optimal for the widest possible class of
“(A = 6) V (19 5 A 5 22) V (A = 35)“. We refer LO

queries.
the equality and range queries in a membership query
as its constituent queries. Clearly, encoding schemes for

Query Encoding Scheme
Class E I R z

EQ d JiffC<5 xifCL14.
1RQ x d J
2RQ x J
RQ x 7 J

Table 1: Optimality of Existing and New Encoding
Schemes.

4.2 Comparison of Basic Encoding Schem.es

Among the three basic encoding schemes, interval
encoding is the most space-efficient requiring about
half the number of bitmaps of the other two basic
schemes. Equality encoding is the most query-efficient
for equality queries but the least query-efficient :for
range queries. Range encoding is the most query-
efficient for one-sided range queries, and is equally
query-efficient as interval encoding for equality queries
as well as two-sided range queries.

For a new data record, the update-cost of an encoding
scheme can be measured in terms of the number of
bitmaps to be updated (to set the bits to 1). Equality
encoding is the most update-efficient requiring only
one bitmap update. Range encoding is the least
update-efficient requiring 1, 9, and C - 1 bitmap
updates, respectively, for the best, expected, and worst
cases. Interval encoding falls in between requiring 1,
f, and [$J bitmap updates, respectively, for the be;st,
expected, and worst cases. However, index updates
in DSS are typically batched and performed for a set
of updates rather than for a single update. In that
case, both the particular batching performed and the
precise distribution of the updated records on the disk
blocks become important. Studying the effect of these
parameters on the update-costs of the various encoding
schemes is beyond the scope of this paper and is left as
future work.

5 Hybrid Encoding Schemes for
Membership Queries

220

interval queries can also be applied to evaluate member-
ship queries. In this section, we propose four additional
hybrid encoding schemes that offer different space-time
tradeoffs. The first two hybrid schemes are based on the
two known encoding schemes (i.e., equality and range
encoding schemes), and the last two schemes are based
on equality and interval encoding schemes.

5.1 Equality-Range Encoding Scheme

The first hybrid scheme, equality-range encoding (de-
noted by ER), is simply a combination of the two known
encoding schemes; i.e., ER = & U R. The bitmaps R”
and Rch2 need not be physically materialized since by
definition, R” = ED and RcW2 = EC-l.

Equality and range constituent queries are evalu-
ated using equality- and range-encoded bitmaps, re-
spectively. Since equality encoding is the most time-
efficient scheme for equality queries, and range encod-
ing is the most time-efficient scheme for one-sided range
queries, we expect this hybrid scheme to do really well
time-wise for membership queries at the cost of about
twice the space requirement of the basic schemes.

5.2 OREO Encoding Scheme

The second hybrid encoding scheme, OREO encoding
scheme5 (denoted by O), offers a different approach
to complement the strengths of the two basic schemes
using the same amount of space as range encoding.

One obvious way to reduce the space requirement of
ER is to have only half its number of equality- and
range-encoded bitmaps; for example, for an attribute
with cardinality C, we can have an encoding scheme
that uses equality encoding for the first g values and
range encoding for the remaining $ values. However,
such a design suffers from a similar performance
problem as equality encoding for range query evaluation
when the range query falls on the “wrong” values (first
half of values in this example).

The OREO encoding scheme alleviates the above
problem by essentially interleaving equality- and range-
encoded bitmaps. For an attribute with cardinal-
ity C, OREO consists of (C - 1) bitmaps c3 =

{Ol, 02,. . . , Oc-l}, such that Oc-i = v Ei; and
i is even

for 1 5 i < C - 1, Oi = Ei-’ V Ei if i is even; other-
wise, Oi = Ri. Details on the design of OREO and its
evaluation expressions are given elsewhere [CISSa].

5.3 Equality-Interval Encoding Scheme

The third hybrid encoding scheme, equality-interval

encoding (denoted by EZ), is simply a combination of
both the equality and interval encoding schemes; i.e.,
&Z = & U Z. Note that &Z reduces to & when C 5 3.

50RE0 = Oscillating Range and Equality Organization.

Equality and range queries are evaluated using
equality- and interval-encoded bitmaps, respectively.
In terms of its space- and time-efficiency, EZ falls in
between the first two hybrid schemes: it is more time-
efficient than 0 and more space-efficient than ER.

5.4 Variant of Equality-Interval Encoding
Scheme

The final hybrid encoding scheme, denoted by &I*, is
a variant of EZ that requires about two-thirds of the
space of EZ without sacrificing its time-efficiency for
many queries. Its design is based on the observation
that bitmap 1’ = [0, [gj - I] is commonly accessed
for query evaluation. By combining pairs of equality-
encoded bitmaps E” and EY such that z 5 I$] -
1 < y, each equality query can be evaluated with
one such combined bitmap and IO. More precisely,
ET* = Z u (P1,P2,.. . ,PT}, where r = [VI and
Pi = Ei U Ei+m+l. Note that ET reduces to Z when
C 2 4. Thus, EZ” requires only ([$I+ [vl) bitmaps,
which is about two-thirds of the (C + [g]) bitmaps
required for EZ. The evaluation expressions using &Z*
are given elsewhere [CI98a].

6 Query Processing with
Multi-Component Indexes

So far, we have presented the various encoding schemes
and their evaluations assuming one-component indexes.
In this section, we explain how arbitrary membership
queries (and effectively, how individual interval queries
as well) are processed for the more general case of multi-
component indexes.

Query processing with multi-component indexes con-
sists of two phases: a query rewrite phase followed by a
query ewakation phase. The first phase transforms the
input query into a query evaluation graph, where each
internal node in the graph represents a logical operator
(AND, OR, NOT, XOR) and each leaf node represents
a bitmap. The second phase optimizes the execution
of the query evaluation graph by taking into account
the allocated buffer space to minimize input bitmap re-
scans and intermediate result replacements. The details
of each phase are explained in the following subsections.

We use n to denote the number of components in
a bitmap index with base < b,, b,,-1,. . . , bl >, and
wnw,-1 . . . v, to denote the digits of an attribute value
v decomposed using the base of the index as given by
Equation (3).

6.1 Query Rewrite Phase

This phase consists of the following 3 steps:

1. Membership Query Rewrite
First, if the input query is a membership query, it is
rewritten into a disjunction of a minimal number of

221

interval queries an example of this straightforward
rewrite was shown in Section 5.

2. Interval Query .Rewrite
Next, each predicate constant, in each interval query
is decomposed into n digits using the base of
the n-component index, and each interval query
is then rewritten into a more detailed expression
involving predicates at the digit-level. For example,
consider the interval query “A 5 85” and a base-<
10,lO > index. After decomposition of the predicate
constant, the query becomes “AzAl < 810510” and
is further rewritten as “(AZ 5 7) V [(AZ = 8) A
(Al < 511”. This rewrite step is a function of
both the query class (equality, one-sided range, two-
sided range) as well as the index’s encoding scheme;
details of this step are explained in Section 6.2.

3. Predicate-Level 12ewrite
Finally, based on the encoding scheme of the in-
dex, each predicate is rewritten into a bitmap-
level evaluation expression. Such evaluation ex-
pressions correspond to the one-component evalu-
ation expressions that we have already presented
along with each encoding scheme. Continuing with
the previous example, and assuming that the index
bitmap is equality-encoded (Equation (l)), the final
bitmap-level evaluation expression is “(E,8 V @)V
[E;A (E; VET V E1” V Ef)]“.

6.2 Interval Query Rewrite

This section elaborates on the interval query rewrite
step of the query rewrite phase; specifically, we explain
with examples how an interval query is rewritten for the
three interval query subclasses.

Equality Queries

An equality query is rewritten as a conjunction of n
equality predicates, one per index component. For
example, for a base-,< lO,lO, 10 > bitmap index, the
query “A = 357” is rewritten as “(A3 = 3) A (AZ =
5) A (A1 = 7)“.

In general, if EQ(i,j, w) denotes the evaluation of
“AjAj-1 . . . Ai = vjv,i-1 . . . vi”, where 1 5 i < j 5 n,
then

EQ(i,j, v) = A (Ak = vk).
k=i

(7)

Hence, the evaluation of an equality query “A = w” is
given by EQ(1, n, v).

One-Sided Range Queries

There are two basic alternatives for rewriting a one-
sided range query. For example, for a base-< 10,lO >
bitmap index, the query “A 5 57” can be rewritten

as either “(AZ 5 4) V [(Ax 5 5) A (A1 < 7)]” or
“(AZ 5 4) V [(AZ = 5) A (A1 5 7)]“. Both forms are
equivalent, and the choice is made based on whether
the index’s encoding scheme is more efficient for range
or equality queries: the first option is more efficient for
range encoding, while the second option is more efficient
for equality encoding.

In addition, to avoid unnecessary predicate evalua-
tions, the least significant digits in the predicate ‘con-
stant are dropped if they all have maximal values. For
example, for a base-< lO,lO, 10 > index, the query
“A < 499” will be simplified to “As 5 4” to avoid two
unnecessary predicate evaluations for the two least sig-
nificant digits. One-sided queries of the form “A 2 w”
are evaluated as “A < v - 1”) w > 0.

In general, if LE(k, V) and GE(k, w) denote the evalu-
ations “AkAk-1 . . . A1 5 ‘uk?&-1 . . .UI” and “AkAk-..I . . . Al
1 ‘uk’uk-1 . . . VI”, respectively, where 1 5 k 5 n, thsen

LE(k,v) =

1

(Ak 5 vk - 1) v if k > 1, Ok > 0,
(C-tk A L,!i?(k - 1, v))
Cuk A L,f?(k - 1, v) if k > 1, Vk = I), (8)
(Ak _< vk - 1) V LE(k - 1, V) if k > 1, Vk = ljk - 1,
& 5 vk if k = 1.

Hence, the evaluation of a one-sided range query
“A 5 20’ is given by LE(n, w), while GE(n,v) =
LE(n,v - 1). In the above, (Yk is either (AL = ‘&) or
(Ak 5 Vk) depending on the bitmap encoding scheme.
Furthermore, LE(n, v) = LE(n’,v) if 21,) < b,, and
zli = bi - 1 for 1 5 i < n’.

Two-Sided Range Queries

In general, two-sided range queries are evaluated as
a conjunction of two one-sided range queries. For
example, for a base-< 10, 10, 10,lO > index, the query
“4254 5 A 5 8015” is rewritten as “(A 2 4254) A (A 5
8015)“. To minimize bitmap operations, a prefix of
common most significant digits are evaluated as equality
queries. For example, the query “4326 5 A 5 4377” is
rewritten as “(Ad = 4)A(As = 3) A(26 5 AzAl 5 77)“.

Again, whenever there is a choice, the rewrite
step chooses predicates to match the strengths of the
encoding of the available indexes. Continuing on with
the previous example, for equality-encoded indexes, the
evaluation expression will be further refined into “(Ad =
4) A (A3 = 3) A ((3 5 A2 5 6) V [(AZ = 2) A (Al 2 6)]
V [(AZ = 7) A (A1 _< 7)] }“.

6.3 Query Evaluation Phase

In general, the bitmap evaluation expression generated
by the rewrite phase for a membership query is a not
a linear tree but an acyclic graph6. Optimizing the

6The evaluation graph simplifies to a linear tree when the
query is an equality or a one-sided range query and the index
is range- or interval-encoded.

222

query evaluation becomes a scheduling problem: for a
given allocation of buffer space, find the best bitmap
access and replacement schedule that minimizes both
the number of re-scans for input bitmaps as well as re-
scans for intermediate results that were replaced.

There are two simple query evaluation strategies that
represent the two extreme points in the solution space
with regards to their buffer space requirement. At one
extreme, we have a query-wise evaluation that evaluates
one constituent interval query at a time so that only
one intermediate result is maintained. This approach
requires the least amount of buffer space to run, but is
also expected to incur the highest number of bitmap re-
scans. At the other extreme, we have a component-wise
evaluation that evaluates all the constituent interval
queries one component at a time; that is, we first
evaluate all the predicates for the first digit, and then
proceed to evaluate all the predicates for the second
digit, and so on. The number of intermediate results
that needs to be maintained is (ni + 2ns), where ni
is the number of equality and one-sided range queries,
and n2 is the number of two-sided range queries. This
approach requires the largest amount of buffer space to
run, but does not incur any bitmap/intermediate result
re-scans, and therefore raises no scheduling problem.

For the purpose of our performance study (to be
described in the next section), we use the component-
wise evaluation strategy. We plan to look into efficient
heuristics for the scheduling problem as part of future
work.

7 Performance Study

This section presents experimental results comparing
the space-time performance of the various bitmap
encoding schemes for evaluating both interval as well
as membership queries. The experiments were run on a
200 MHz Intel Pentium Pro processor with 64 MB main
memory running Solaris X86 2.6. The indexes were
created using the Unix file system on a 2.1 GB Quantum
Fireball disk; the file system buffer was flushed before
each query was run.

Data Sets: The experiments were conducted using
synthetic data sets with over 6 million records. The
data sets are characterized by two parameters: the
attribute cardinality, denoted by C, and the attribute
value distribution. We created indexes with C values
of 50 and 200, and generated the attribute value
distribution using the Zipf distribution with values of
0,1,2 and 3 for its skew parameter z. Note that skew
increases with z, with z = 0 corresponding to the
uniform distribution. The data sets were generated
such that there was no correlation between the attribute
values and their frequencies.

Queries: We used 8 different query sets for the
experiments; each query set is characterized by two

parameters: the total number of interval queries in a
membership query, denoted by Nint, with Nint = 1,2,
and 5; and the number of equality queries among
these interval queries, denoted by Nequ, with Negzl =
0, [*I, and Nint. Ten queries were randomly
generated for each query set.

Indexes: The bitmap indexes were generated by
varying three parameters: the bitmap index encoding
scheme (E, R, 1, ER, 0, EZ, and &I*), the bitmap
index decomposition, and whether or not the index is
compressed. The bitmap compression algorithm used is
a byte-aligned run-length encoding scheme proposed by
Antoshenkov [Ant931 which is used in Oracle8 Database
Server [Jak97].

The space-efficiency of an index is in terms of the
disk space for storing all its bitmaps. The time-
efficiency of an index for a query set is in terms of
its average processing time over all 10 queries in the
query set; the processing time includes both disk I/O
time for reading bitmaps, as well as CPU time for
bitmap operations (including decompression time for
compressed bitmaps). As mentioned earlier, we used
the component-wise evaluation strategy; a buffer pool
size of 11 MB was adequate for our experiments. We
present results only for C = 50 as the results for C =
200 were similar. Also, we do not present any results for
hybrid encoding schemes, as they rarely offered a better
index than non-hybrid ones (occasionally such an index
had a slightly lower time at the expense of much higher
space).

7.1 Space-Efficiency and Compressibility of
Encoding Schemes

Figure 6 compares the space-efficiency and compress-
ibility of the various encoding schemes for the case
where C = 50 and z = 1. The comparison is in terms
of three different space ratios (the precise definitions
are given below) as a function of the number of index
components, n. Among all the bitmap indexes with the
same encoding and the same number of index compo-
nents, the index that yields the “best” space ratio (i.e.,
smallest ratio value) is plotted on each graph.

Figure 6(a) compares the space-efficiency of the
encoding schemes in terms of the ratio of the size
of the uncompressed form of an n-component index
to that of the uncompressed, one-component equality-
encoded index; the latter is used as the base case as it
corresponds to the simplest and most common bitmap
index design. As expected, for uncompressed indexes,
interval encoding is the most space-efficient and equality
encoding is the least space-efficient.

Figure 6(b) compares the compressibility of the
encoding schemes in terms of the ratio of the size of the
compressed version of an n-component index to that
of its uncompressed version. The graph shows that

223

1 Nuiber 3 Cimponks 6 1 2 3 4 5 6 1 2 3 4 5 6
of Index Number of Index Components Number of Index Components

(4 (b) (4
Figure 6: Space-Efficiency and Compressibility of Basic Encoding Schemes (C = 50, z = 1). The y-axis measures
the ratio of the space of two indexes. (a) Uncompressed Index to Uncompressed One-Component Equality-Encoded
Index. (b) Compressed Index to Uncompressed Index. (c) Compressed Index to Uncompressed One-Component
Equality-Encoded Index.

25

20

15

10

5

0

16

14

12

10

8

6

4

2 J
0 D&a 2 3 0 1 2 3 0 2 3

Skew, 2 Data Skew, z data Skew, z

(a) n = 1. (b) n = 2. (c) n = 5.

Figure 7: Effect of Data Skew on Space-Efficiency of Compressed Indexes (C = 50). Compares the Ratio of Space
of a Compressed n-Component Index to that of the Uncompressed One-Component Equality-Encoded Index.

equality encoding gives the best compressibility, while
interval encoding has the worst compressibility. This
result, which is consistent throughout our experiments,
is not surprising. Since each equality-encoded bitmap
represents only a single attribute value, equality-
encoded bitmaps are more “sparse” and are therefore
more amenable to the run-length encoding form of
compression. In contrast, each interval-encoded bitmap
represents half the values in the attribute domain; so
the bitmaps are less likely to have long runs of the
same bit value. Thus, although interval encoding is the
most space-efficient scheme in terms of the number of
bitmaps, it is the 1eas.t compressible scheme.

Figure 6(c) compares the effect of compression on
the space-efficiency of the encoding schemes in terms
of the ratio of the size of the compressed form of an
n-componem index to that of the uncompressed, one-
component equality-encoded index. The results show
that interval encoding is generally the most space-
efficient encoding schleme for compressed indexes as

well.
Figure 7 shows the effect of data skew on the

space-efficiency of compressed n-component indexes, for
n = 1,2, and 5. As the data skew increases, the
space-efficiency of compressed indexes improves for <all
encoding schemes, and the difference in space-efficiency
among the encoding schemes also decreases.

7.2 Space-Time Tradeoff of Encoding
Schemes

In this section, we compare the performance of the
encoding schemes in terms of their space-time tradeoffs.
For each basic encoding scheme S, we show only one ‘of
its uncompressed and compressed forms (labelled “3
and ‘Compressed S” , respectively), depending on which
one was in general dominant in terms of overall space-
time performance.

Figures 8 compares the space-time tradeoff of th.e
encoding schemes for C = 50 and z = 1; the graphs
on the same row (column) have the same value for

224

2. E-
R-
I-

1.5.

1.4 - E-
R-

1.2. --b I-+

l-

;i: 1.2. *WE

I-

0.8 .

0.6

0.4

0.2

07
0 5 10 15 20 25 30 35 40

Space(MB)

N - -0 equ

0 5 10 15 20 25 30 35 40
Space(MB)

N epu = p$q

*
CompressedE .+

i R-
I-

Figure 8: Comparison of Space-Time Tradeoff (C = 50, z = 1).

0 5 10 15 20 25 30 3.5 40
Space(MB)

N epu = Nint

Nint (N,,,). The results show that interval encoding
generally has the best space-time tradeoff except for
cases where Nepv = Nint in which equality encoding
is the winner, in the sense that the most time-
efficient equality-encoded index has rather low space
requirements as well.

Figure 9 compares the effect of data skew z on the
space-time tradeoff of the encoding schemes. The pro-
cessing time shown is the averaged timing over all
queries in all 8 query sets. The results show that
for low-to-medium-skew data (graphs (a) and (b)), un-
compressed indexes have better space-time performance
than compressed ones and interval encoding is the
overall winner, whereas for medium-to-high-skew data

(graphs (4 and Cd)), compressed indexes have better
space-time performance than uncompressed ones. The
benefit of using compression increases with data skew

because the bitmaps become more compressible, and
both the I/O cost as well as the decompression over-
head also become lower.

8 Conclusions

Bitmaps indexes appear to be an effective and effi-
cient structure to help with processing complex ad-
hoc queries. Most earlier studies and commercial in-
dex implementations have focused on one-component
indexes encoded using the equality or the range encod-
ing schemes, typically in compressed form. In this pa-
per, we have first demonstrated analytically that these
two encodings are not in general optimal for interval
queries. In pursuit of optimality, we have introduced
and studied interval encoding, which has been proven
optimal for all but equality selection queries, as well as
four other hybrid encodings. To deal with genera1 mem-

225

2.5
L

2.
I-

5
- 1.5. z

E
F

2.5

2

1.5

1

0.5

0

E-
R-
I-

2.5

2

1.5

1

0.5

- 0

9

b CompressedE 0

0
Compressed 7 '-0 ..'

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 14 16
Space(MB) Space(MB) Space(MB)

(a) z = 0. (b) z = 1. (c) z = 2.

-I

18

2.5

2

1.5

1

0.5

0

Figure 9: Effect of Data Skew on Space-Time Tradeoff (C = 50).

bership queries, we h.ave also devised a query processing
algorithm for multi-component indexes (independent of
encoding) that accesses each component once on behalf
of all subqueries of a query, thus minimizing bitmap res-
cans from disk. Finally, we have conducted an experi-
mental evaluation of all encoding schemes, in both com-
pressed and uncompressed forms, which has revealed
some interesting facts about their behavior: interval
encoding has the overall best space-time performance,
losing to equality encoding only on equality or equality-
rich membership queries; for low-to-medium-skew data,
uncompressed indexes have better space-time perfor-
mance than compressed ones and interval encoding is
the overall winner, whereas the situation is reversed for
medium-to-high-skew data.

References
[Ant931

[CI98a]

[CI98b]

[Ede95]

[Infl

[Jak97]

G. Antoshenkov. Byte Aligned Data Compres-
sion. U.S. .Patent No: 142640, October 1993.

C.Y. Chan and Y.E. Ioannidis. An Ef-
ficient Bitmap Encoding Scheme for Selec-
tion Queriies. Computer Sciences Depart-
ment, University of Wisconsin-Madison, 1998.
http://www.cs.wisc.edu/Ncychan/interval.ps.

C.Y. Chan and Y.E. Ioannidis. Bitmap Index
Design and1 Evaluation. In Proceedings of the
Intl. ACM SIGMOD Conference, pages 355-
366, Seattle, Washington, June 1998.

H. Edelstein. Faster Data Warehouses. Infor-
mation Week, pages 77-88, December 1995.

Informix Inc. Informix Decision Support In-
dexing for the Enterprise Data Warehouse.
http://www.informix.com/informix/corpinfo/-
zines/white.idx.htm.

H. Jakobsson. Bitmap Indexing in Or-
acle Data Warehousing. Database sem-
inar at Stanford University. http://www-
db.stanford.edu/dbseminax/Archive/Fall97/-
slides/oracle/, October 1997.

0

CompressedE '.
CompressetlR 'II--
Compressed1 +

1
Siace(hi)

4

(d) z = 3.

5

[OG95]

[O’N87]

[O’N97]

PQW

1Syb971

[WB981

[Win991

P. O’Neil and G. Graefe. Multi-Table Joins
Through Bitmapped Join Indices. ACM SIG-
MOD Record, pages 8-11, September 1995.

P. O’Neil. Model 204 Architecture and Per-
formance. In Proceedings of the 2nd Intema-
tional Workshop on High Performance Dansac-
tions Systems, pages 40-59, Asilomar, CA, 1987.
Springer-Verlag. In Lecture Notes in Computer
Science 359.

P. O’Neil. Informix Indexing Support for
Data Warehouses. Database Programming and
Design, 10(2):38-43, February 1997.

P. O’Neil and D. Quass. Improved Query F’er-
formance with Variant Indexes. In Proceedings
of the Intl. ACM SIGMOD Conference, pages
38-49, Tucson, Arizona, May 1997.

Sybase Inc. Sybase IQ Indexes. In Sybase
IQ Administration Guide, Sybase IQ Release
11.2 Collection, chapter 5. Sybase Inc., March
1997. http://sybooks.sybase.com/cgi-bin/nph-
dynaweb Jsiqll201 Jiq-admin Jl.toc.

M.C. Wu and A.P. Buchmann. Encoded Bitm.ap
Indexing for Data Warehouses. In Proceedings of
the Intl. Conference on Data Engineering, pages
220-230, Orlando, Florida, February 1998.

R. Winter. Indexing Goes a New Direction. .liz-
telligent Enterprise, 2(2):70-73, January 199!).

[WLOf85] H.K.T. Wong, H-F. Liu, F. Olken, D. Rotem,
and L. Wong. Bit Transposed Files. In
Proceedings of the Intl. Conference on Very
Large Data Bases, pages 448-457, Stockhokm,
1985.

PLO+861 H.K.T. Wong, J.Z. Li, F. Olken, D. Rotem, and
L. Wong. Bit Transposition for Very Large Sci-
entific and Statistical Databases. Algorithmica,
1(3):289-309, 1986.

226

