
GRAPHICAL U S E R I N T E R F A C E S F O R T H E M A N A G E M E N T

O F S C I E N T I F I C E X P E R I M E N T S AND DATA *

Yannis E. Ioannidis* Miron Livny, Eben M. Haber
Computer Sciences Department, University of Wisconsin, Madison, W153706

{yannis,miron,haber } @cs.wisc.edu

1. INTRODUCTION

If one were to conduct a survey among researchers
from all sciences asking for the greatest challenges in
their particular discipline, one would expect very dif-
ferent answers from scientists of different backgrounds.
Although this is true in general, there is at least one issue
that is perceived as a major challenge in most disciplines:
experiment and data management. Managing the experi-
ment and the data produced throughout its life cycle has
become the bottleneck of many experimental studies. In
many cases, this significantly limits the scale of the
experiments. We have reached this conclusion from our
own experience with experimental computer science as
well as many discussions that we have had with scientists
from a wide range of experimental disciplines (Biotech-
nology, Genetics, Molecular Biology, Soil Sciences,
Space Sciences, and High Energy Physics). While some
scientists store data in hundreds of flat files or in the best
case under a simple relational database system, most of
them still use paper notebooks, which are clearly inade-
quate tools for large-scale experimentation.

In the past few years we have been involved in an
effort to build an experiment and data management sys-
tem that will capture the structure of data generated in
experimental scientific studies. The goal of the system is
to provide an integrated environment that will allow the
design and execution of experiments and the access to
scientific data to be done in ways that resemble the way
scientists interact among themselves using pencil and
paper. In this paper, we concentrate on the user interface
module of the system and describe our current effort to
design, develop, and test it.

The overall design of the system is motivated by a
common experiment life cycle that we have identified
from observations of how scientists in various disciplines
conduct experimental studies. A pictorial abstraction of
this life cycle is shown in Figure 1. It essentially consists
of various loops traversed by the scientist multiple times
in the course of a study. Some of the stage transitions
occur much more often than others, and this has been
captured in the figure by different types of lines.

f This research was partially supported by the University of
Wisconsin Graduate School Research Foundation.

The first author was also partially supported by the National
Science Foundation under PYI Grant IRI-9157368 and by grants from
DEC, HP, and AT&T.

Frequent stage Iransition
. • " Relatively rare stage transition

EXPERIMENT DESIGN

(a) Experiment life cycle

DATA ANALYSIS

 ,rmALiZAnON QUEST \ \
FOLLOW- REQUEST

(b) Data exploration (detail)
Figure 1: Life cycle of an experimental study.

The major stages of the life cycle (Figure la) are briefly
described below:

• Experiment Design: The dependent and indepen-
dent variables of the experiment as well as its
environment are defined. Essentially, this defines
the schema of the database in which the experiment
structure and the measured information will be
stored.

• Data Collection: Experiments are scheduled and
eventually performed collecting data.

• Data Exploration: The collected data is studied so
that conclusions can be drawn on the subject of the
experiment. More details on this stage are given in
Section 4.

Unlike cur~nt practice, our goal is to provide an
integrated environment to scientists that will feature a
uniform user interface that can be used to manage the
entire life cycle of an experimental study. The data
model and the user interface play the most important
roles in this effort, because the success of the entire sys-
tem depends to a large extent on them being intuitive to
scientists, whose expertise on computer systems may be
minimal.

S I G M O D R E C O R D , Vol . 21, No. 1, M a r c h 1992 47

In this paper, we describe the main aspects of the
user interface module of the system that we are develop-.
ing. We primarily focus on its features that are relevant
to the first stage of the life cycle of an experimental study
(experiment design). The greatest challenge posed in this
stage arises from the extremely high number of parame-
ters that must be captured. The schemas tend to be very
large and the objects that they represent quite complex.
Typical schemas may have several hundreds or even
thousands of object classes and a correspondingly high
number of semantic relationships between these classes.
Thus, there are many difficulties in presenting the schema
so that the scientist can grasp its overall structure while
also presenting pieces of the schema that temporarily
become the center of attention to the scientist. Not only
are these issues important in the experiment (schema)
design stage, but they also arise in later stages of the
experiment life cycle, e.g., in schema-based query
specification. In the next two sections, we describe our
current approach to overcoming these difficulties and an
example from an actual experiment in soil sciences. The
subsequent section contains our plans for addressing the
specific difficulties that arise in the remaining stages of
the experiment life cycle with respect to the user inter-
face.

The experiment and data management system that
we are building is based on the MOOSE data model [1].
Its salient features are described below, so that the exam-
ples shown later are meaningful. MOOSE is an object-
oriented data model supporting the notion of a class for
individual objects or collection objects, i.e., sets, mul-
tisets (bags), and arrays. Every MOOSE schema has a
straightforward directed graph representation whose
nodes represent the object classes. Relationships between
classes are captured by the graph arcs connecting the
appropriate nodes. MOOSE is similar to most semantic
and object-oriented data models in having two major
types of arcs: is-a arcs (denoted by dotted lines) and
part-of arcs (denoted by solid lines). In addition, two
more types of arcs are supported that capture specialized
relationships of collection objects. Collection-of arcs
(denoted by double solid lines) connect collection classes
to the classes of elements in the collections, e.g., from the
class of sets of X to the class of X. Array-index arcs
(denoted by dashed lines) connect array class nodes to the
collection node(s) indexing the arrays. Other interesting
features of MOOSE include two types of rules (to define
virtual attributes and virtual classes) and complex user-
defined structural constraints to control sharing among
objects. The query language of MOOSE is very similar
to SQL and has the flavor of other similar object-oriented
declarative languages.

There are several other efforts at research labora-
tories that are similar to the one described in this paper,
whose goal is to provide database support to scientific
data with advanced user interfaces. These include the

"Laboratory Notebook" effort in the Los Alamos
National Laboratory [3] and the "Chromosome Informa-
tion System" (CIS) database in LBL supported by the
SDT [2] and ERDRAW [5] design tools. In both cases,
when development is finished, the resulting products
would correspond to major advances in helping scientists
with their data management problems. The underlying
data model for both efforts is the relational or the
(extended) entity-relationship model.

2. THE GRAPHICAL USER INTERFACE

The user interface module of the system is imple-
mented using InterViews 3.0 over X11. The first subsec-
tion describes the overall design of the interface and the
second focuses on its experiment design tool, which is
already working.

2.1. General Design

The design of the interface has been shaped by two
of our previously mentioned goals for the project: (i) to
provide an integrated tool to be used in all stages of the
experiment life cycle, and (ii) to allow scientists to use
the system in a manner that is natural to them. These
have given the interface design its current form: a single
graphical tool with a wide range of functionality: The
interface is graphical in that the primary means of
interaction between the user and the database system is
manipulation of visual items through a mouse, pull down
menus, and push buttons. Given that MOOSE schemas
are directed graphs, the decision to develop a graphical
interface was natural, since visually manipulating such
graphs is clearly desirable. In addition, a graphical inter-
face allows the use of the schema as a template for query-
ing, so the user can see the relationships between dif-
ferent object classes during query specification. The
range of functionality of the interface includes schema
design, query specification, data entry and presentation,
and manipulation of query results. By using a single tool
for varied tasks, basic graphical manipulation operations,
e.g., cut, paste, and move, are shared by the different
parts of the system; the user only needs to learn them
once, and they work uniformly whether designing a
schema, querying, or viewing data.

The appearance of the user interface is not unusual:
it consists of one or more windows, each with a
display/work area in the middle, menus on top, tools and
mode selection buttons on the left, and help messages at
the bottom. Multiple windows may contain different
views of the same item, e.g., different regions of the same
schema, or different items altogether, e.g., a schema in
one window, a query in another, and a query result in a
third.

To fulfill its various functions, the interface is
divided into several different modules forming a hierar-
chy. The general modules used by all parts of the

48 S I G M O D R E C O R D , Vol. 21, No. 1, March 1992

interface are at the bottom of the hierarchy, while the
more specific tools are at the top (Figure 2). At the
lowest level of the interface is the InterViews toolkit,
used to drive the X-window display. The next level is the
Graphic Viewer, which is a set of tools for displaying
visual items and manipulating their appearance, e.g.,
move, select, copy, delete, paste, and change an item's
appearance (color, size, position in front or behind,
transparency-opaqueness, and alignment). Using the
screen capabilities of the Graphic Viewer are the Graph
Editor, which performs operations on graphs, and the
Data Editor, which allows a generalized way to view data
encapsulated in a visual item. Operations specific to
graph editing are creation, deletion, and setting default
types for nodes, arcs, and labels. The graph editor also
offers several special features that make the manipulation
of very large graphs easier, which are described in Sec-
tion 2.2. Using the Graph Editor is the Schema Editor,
which performs operations on the graph representations
of MOOSE schemas. Specific to schema editing are the
semantics for special types of nodes and arcs, testing a
schema for correctness, and moving schemas to and from
the database. Finally, there is the Query Manager, which
uses most of the other modules. It provides a graphical
interface for the user to specify requests to the underlying
database system and produces graphical output from
those requests. It consists of several subcomponents,
which correspond to the various forms of querying that
we envision.

MANAGER

QUERY MANAGER

INITIALIZATION I
QUERY

MANAGER

DATA
EDITOR

DATA
BROWSER

1
SCHEMA
EDITOR

1
GRAPH
EDITOR

GRAPHIC VIEWER - I

"i : : ! : : i
Figure 2: Architecture of the user interface.

In implementing this interface, several problems
need to be solved with respect to its communication with
the database system. The interface receives schemas and
database objects (as query results) from the database, and

sends schemas, newly entered database objects, and
queries to the rat,base. Different interface modules have
different requirements from such communicatious, e.g.,
the schema editor deals with schemas only, whereas the
query manager deals with schemas, queries, and data.
Hence, different management strategies must be
employed in the various interface modules. Since query
results may contain very large collections of database
objects, it is necessary to bring them to the interface in a
piece-meal fashion, bringing more from the database as
needed. The schema, however, is unique to each data-
base and used by most modules of the interface, so it
needs to be cached in an area that is common to all
modules.

One of the most challenging tasks in this effort is
identifying the appropriate internal representation of the
various types of information being communicated
between the database and the interface. There are two
main reasons for this: (i) the needs of the different inter-
face modules and the database are different, and (ii) the
information required to display a single item may vary
depending on its actual use or on its specific view shown
on the screen. The schema is a good example of both (i)
and (ii). In the database, it contains information not
needed by the interface, e.g., pointers to data objects. In
the schema editor, it contains information not needed by
the query manager and vice versa, e.g., when used for
database design attribute types are important, whereas
when used as a template for querying attribute values are
important. With respect to (ii), a schema may appear dif-
ferendy in multiple windows and thus require different
display information in each ease. The challenge with
respect to (i) is whether a single representation should be
chosen for the schema that will include all possible pieces
of information needed by any of the components of the
system or multiple ones should be devised together with a
mechanism to translate among them. The challenge with
respect to (ii) is to allow multiple sets of display informa-
tion to be associated simultaneously with a schema in a
persistent way in the database but also in a nonpersistent
way for its different transient views. Currently, we are at
a stage in our implementation where we are investigating
the appropriate answers to these challenges.

2.2. The Schema Editor

The focus of this subsection is the schema editor,
which is the only interface module that is needed for the
experiment design stage of the experiment life cycle. As
mentioned above, the main difficulties arise from the fact
that MOOSE schemas for scientific experiments can be
very large and can form an inscrutable maze of boxes and
fines on the screen. Therefore, we focus on the features
that have been included in the graph editor to make large
schemas more manageable. These are the following: (a)
allowing parts of the schema to be made invisible; (b)
collapsing subgraphs into single nodes; and (c) using

S I G M O D R E C O R D , Vol. 21, No. 1, March 1992 49

"reference" nodes to eliminate very long arcs.

The simplest approach to viewing overly large
schemas is to make portions of them invisible. Thus, dif-
ferent views of the schema can be created, with only
information that is of interest to the user being visible.
Selection of the parts of the graph that are made invisible
can be performed in one of two ways. The first one is
"manual" and requires that the user specifies each indivi-
dual piece of the graph that is to disappear. The second
one involves using some predefined, semantically richer
operations that take advantage of characteristic properties
of MOOSE schema graphs. Examples include making
invisible all attributes of a selected class, the part-of sub-
tree rooted at a selected class, or everything but the is-a
arcs and the classes connected to them. The reverse
operation of making unseen parts of the graph visible can
only be performed using predefined operations. All
operations used in the previous case can be used here as
well in reverse form. Additional examples include mak-
ing the whole graph visible or making visible everything
that is within some distance from a selected class.

Although advantageous most of the time, the sim-
plicity of hiding is sometimes limiting in that there are no
gradations or groupings among the invisible items; items
either are visible or not. Collapsing (or collectivizing)
some subgraph of the schema into a single group node
reduces the amount of visible information while imposing
some structure on the invisible parts of the graph. This is
very useful in encapsulating semantically meaningful
parts of the schema as a single node on the screen. A
group node can be named to indicate what part of the
schema it replaces and always has an asterisk before and
after its name (see Figure 4). All arcs connected to one
of the nodes being collapsed are changed to instead be
connected to the resulting group node. If more detail is
required, the group may either be expanded in place or
viewed and edited in a separate window. Collectivization
can be nested at arbitrary levels, and the same holds for
internal viewing of nested groups whether in place or in
separate windows.

Another major problem that arises in large graphs
representing complex schemas is that of very long arcs.
For example, if many portions of the schema need to be
connected with a single class, there are bound to be long
arcs stretching from one side of the graph to the other.
To avoid this, the schema editor provides reference
nodes, which are denoted by circles in MOOSE schemas
(see Figure 3). These are pairs of nodes that can be used
to break up arcs. One of them is drawn near the source of
the arc and the other near its destination. The original arc
is replaced by appropriate connections of the reference
nodes with the regular nodes that are respectively close to
them. By using reference nodes, any schema graph can
be made planar. As a way of recapturing the original arc,
one can select a reference node and the system instandy

moves the view in the screen to the other member of the
pair. Reference nodes can be named to indicate what the
remote destination of the original arc is. Thus, they act as
surrogates for a distant region of the schema: an arc con-
nected to a distant class can be attached to a local refer-
ence node instead.

3. A CASE STUDY

In this section, we report on a case study where we
exposed the schema editor described above to a "real"
user. Being firm believers in the value of user feedback
for interactive systems, right from the beginning of our
effort we tried to create a user community of researchers
who are not computer scientists and who would use the
graphical interface being developed. The benefits of such
interactions would flow in both directions: on the one
hand, the robustness and functionality of the system
would be tested and our understanding of the applications
needs would improve, so that the appropriate corrections
and enhancements could be made; on the other hand,
scientists would be able to take advantage of the capabili-
ties of the system to improve on their established
approach to experimentation. Prof. John Norman from
the Soil Sciences Department at the University of
Wisconsin is one member of the group of users that has
been formed. The main emphasis of his work is on simu-
lating the growth of plants based on various environmen-
tal, soil, and ecological parameters. His primary tool in
his studies is the Cupid model [4], which simulates the
necessary plant growth processes. It has been under
development for about 15 years. The program that imple-
ments the model is approximately 10,000 lines of Fortran
code and is being used by about a dozen laboratories in
the U.S. and abroad. In the past few months, Prof. Nor-
man has been using the schema editor that we have
developed to document the structure of the input and out-
put parameters of his model in the form of a MOOSE
schema. The background and experiences from this col-
laboration are described in the rest of this section.

The Cupid model represents an attempt to combine
knowledge from the disciplines of meteorology, soil phy-
sics, and plant physiology into a single manageable pack-
age. It defines collective plant-environment interactions
at the same level of detail for the entire system as the
respective disciplines have accomplished for selected
parts of the system. Thus, it provides a vehicle for com-
bining information from several disciplines to address
practical problems that no single discipline can accom-
modate. It has been used in numerous applications that
range from interpreting remotely sensed signatures of
vegetation from ground, aircraft, and satellite measure-
ments to predicting the influence of environmental factors
on productivity of agricultural and ecological systems.

The basic approach in this model is to parametefize
relevant processes at the spatial scale of a few

50 S IGMOD RECORD, Vol. 21, No. 1, March 1992

centimeters (leaf scale) and temporal scale of minutes to
an hour, and then integrate to larger Spatial SCales of hun-
dreds of meters (community of plants) and time scales of
weeks or months (seasonal scale). For example, meas-
urements are taken on representative leaves to obtain
values for parameters that are part of the input to the
model. From them the model can predict the response of
a plant community or crop for a season; these responses
usually cannot he measured directly.

A common belief about scientific databases is that
their schema is relatively small and simple and that the
challenge lies in the magnitude and complexity of the
data. Cupid is one of many examples that we have
encountered that invalidates the above. It simulates
numerous processes that are parameterized, and therefore
a large number of parameters need to be specified to
characterize its input and output. Some example parame-
ters are soil and plant conductive properties for heat and
water, radiative and convective properties of leaves, the
dependence of photosynthetic, respiratory, and transpira-
tion rates of leaves on environmental conditions, and
various soil and atmoSpheric boundary conditions. Typi-
cally about a hundred parameters are input to the model

for any specific application, whereas the output variables
number in the several hundreds.

By doing simulations under conditions that are not
normally encountered during field measurements, the real
benefit of models like Cupid is realized because insights
from the studied processes are not otherwise available.
However, with a hundred input parameters and several
hundred output variables, testing quickly produces a mass
of information that is extremely difficult to manage
without some organizational tools. Computing cycles are
not as limiting to progress as an efficient tool for coordi-
nating and organizing the hundreds of files that contain
input data or output results.

Our collaboration with Prof. Norman has showed
that the schema editor that we have developed can serve
as that tool. We have completed a schema for the input
part of the Cupid model, which is shown in Figure 3. It
contains more than 100 object classes. Although the
schema is in reality one connected component, reference
nodes are used heavily to make the picture manageable,
so its visual appearance has many components. It turns
out that the specific choice of connected components is
not arbitrary, but follows the higher level semantics of the

Figure 3: MOOSE schema for the Cupid input.

S I G M O D R E C O R D , Vol. 21, No. 1, March 1992 51

object classes in each component. To explain this better,
we have collectivized most (ff the nodes in that schema
into group nodes to obtain Figure 4. As one can see,
there are three main categories of object classes in the
schema, which essentially determine the components in
the graph: those of direct input to Cupid, those of auxili-
ary calculations, and those of measurement instruments.

The top (part-ot) subtree in Figure 4 shows the
Cupid input together with groups for the three main sub-
trees that comprise it. The three groups correspond to the
parameters that characterize the soil, the plant, and the
environment, respectively. Together they include all the
object classes that capture the structure of parameters that
are required by the Cupid model. In a real experiment,
the object instances that populate these classes are gen-
erated in one of three ways: (a) they can be directly
inserted by the user; (b) they can be the output of a calcu-
lation, that is another model that simulates some aspect of
the Cupid input, e.g., a model of the sun calculating radi-
ation levels on the earth surface; and (c) they can be gen-
erated by a measurement instrument. The middle two
unconnected nodes in Figure 4 are groups of object
classes of two types of calculations, those modeling the
soil and those modeling the environment. These have
their own inputs, while their output is connected to the
appropriate input object classes of Cupid (using the
mechanism of derived attributes). Finally, the bottom
(is-a) subtree in Figure 4 shows the instruments that can
be used for direct measurements together with groups for
the three main types of instruments (those for soil, plant,
and instrument again). For each different class of instru-
ments, the parameters that it can measure are connected
to the appropriate input object classes of Cupid. Thus,

[- so,,°~ • / . p,..,L, .l '~'~- E ,,.~,, i

l " Se41DataCalc " i

ESS?~-I

I" i I !
Figure 4: Condensed version of the MOOSE schema

for the Cupid input•

not only does the schema capture the structure of the
input for Cupid, but it also docurnents the relationship
between the Cupid model and the other auxiliary models
and measurement instruments.

Our work with the Cupid model has been yet
another example for the valuable feedback that an early
exposure of an interactive system to "real" users pro-
vides. A wide range of bugs of the schema editor were
revealed and various limitations of its early versions were
demonstrated. The whole exercise has provided us with
valuable experience about the needs of scientific experi-
ments and about the expectations of researchers that are
not computer scientists. The main challenge posed by the
Cupid model has been the large size of the schema. With
such a schema, the user must focus on a small part of it at
any given time. Realizing the above in the context of
Cupid has essentially determined the emphasis of our
work until now and has produced the techniques men-
tioned in Section 2, i.e., invisible parts of the schema,
node collectivization, and reference nodes.

In the other direction, Prof. Norman and his group
have benefited from the use of the schema editor as well.
We let him express this in his own terms. 'q'he main
benefit of the MOOSE schema of Cupid is a clear docu-
mentation of the input structure of the model. This is the
beginning of an orderly process for improving Cupid in at
least four ways: (1) The eventual storage of the input data
to Cupid in a database with the above structural organiza-
tion will help tremendously in organizing the complex
array of data combinations that are necessary for con-
ducting simulations. (2) The creation of an object-
oriented structure on Cupid data will permit other scien-
fists to understand, use in their research, and possibly
enhance with their own routines, portions of the model
ignoring the rest of it. Such an exchange, which is now
impossible, is essential if we are to simulate more com-
plex systems. A clear delineation of objects could have a
profound impact on the entire field of environmental
biophysics, which depends heavily on models that are
continually being rewritten. (3) The graphical representa-
tion of the MOOSE schema serves as a useful piece of
documentation for scientists who are using Cupid in their
research. (4) As a scientist, using a tool like the schema
editor is helping me to understand what objects exist in
the context of a soil-plant-atmosphere model."

4. LATER STAGES OF THE EXPERIMENT LIFE
CYCLE

In this section, we first complete the picture of the
experiment life cycle that we started in Section 1 by hav-
ing a more detailed look at the data exploration stage and
then briefly describe our future plans for the user inter-
face. As shown in Figure lb, a scientist is involved with
three types of operations in this stage: (i) posing initiali-
zation requests, which is a time consuming process since

52 S I G M O D R E C O R D , Vol. 21, No. 1, March 1992

the values of most parameters of the experiment must be
specified together with the information to be retrieved;
(ii) data analysis, where the collected data is further pro-
cessed to obtain meaningful summaries of it; and (iii)
posing follow-up requests, which are very similar to ear-
lier requests possibly using the answers of the latter as a
reference point. This type of request represents the most
common form of interaction in the course of a study.

One of the greatest challenges posed in the data
collection and exploration stages arises from the com-
plexity of the underlying objects. In both stages, complex
objects must be specified to the system either as part of
ordering a specific experiment or as part of posing a
request to the system (selection). This will be facilitated
by the use of the schema as a template for object
specification but is still quite hard since it must be done
graphically for a variety of object types, e.g., sets, charts,
other graphical renditions of scientific data, tables, and
graphs. The difficulty arises from the fact that each type
of object may have multiple natural graphical representa-
tions, many of which may be different from other object
types. One of our major goals is to identify a core set of
representations that capture a wide variety of object types
and to provide the means for specifying user-defined spe-
cialized representations for individual object types.
Another goal is to implement mechanisms for explicitly
or implicitly choosing among the various available
representations for an object.

A second major challenge posed in the above two
stages is the complexity of the relationships among
objects that are represented by paths in the schema graph.
The size of the schema makes the specification of these
relationships by path demarcation a very time-consuming
process. Allowing the specification of incomplete paths
(e.g., specifying only the two end-points) which are com-
pleted internally based on the schema structure is one of
our goals. The major problem that arises is resolving the
ambiguities that arise when multiple plausible path com-
pletions exist. We are currently studying several
mechanisms that could allow automatic disambiguafion in
many cases.

A third major challenge is specifically related to
posing follow-up requests. The scientist should be able to
use the results of previous requests as the means to make
further ones. The system must identify the request that
generated the previous results, modify it to reflect the
specified changes, and then use it in its modified form to
generate the requested data. In most cases, the difference
between the two queries will be in the value of very few
parameters. Maintaining the context of previous requests
and interpreting the new one based on it is our basic
approach to the problem. As before, ambiguities may
arise from these requests as well, so several disambigua-
fion mechanisms are under investigation.

5. CONCLUSIONS

We have described the overall structure of the user
interface module of the database system that we are
developing to provide support for the management of
scientific experiments and data. Focusing on the schema
editor of the interface, we have described its most impor-
tant features, which specifically address the issue of very
large schemas and how they can become more manage-
able. We have also presented a case study where soil
scientists have used the schema editor to capture the input
structure of their experiment with great success. What
we have discussed in this paper is only the beginning.
Several aspects of the interface are currently under inves-
tigation, primarily with respect to querying and the
interface-database communication. As before, this
current effort is driven by the goal of minimizing
knowledge and effort required by the scientist to use the
interface. The final outcome of this project, in the form
of a working system, will be made available again to
several scientists, who will be the final judges on the
practical value of our work.

Acknowledgements: We would like to thank Prof. John
Norman and his group for their willingness to use the
schema editor that we have developed and provide us
with valuable feedback on its problems and features. In
particular, we would like to thank Larry Murdock for his
patience with all the core dumps that he experienced and
all the bugs that he discovered.

6. REFERENCES
[1] Y.E. Ioannidis and M. Livny, "MOOSE: Modeling

Objects in a Simulation Environment", in Informa-
tion Processing 89, edited by G. X. Ritter, North
Holland, Amsterdam, The Netherlands, August
1989, pp. 821-826.

[2] V.M. Markowitz and W. Fang, "SDT - A Database
Schema Design and Translation Tool", Technical
Report LBL-27843, LBL, Berkeley, CA, May
1990.

[3] D. Nelson, "The Laboratory Notebook Technical
Manual", Technical Report LA-UR 88-1256, Los
Alamos National Laboratory, Los Alamos, NM,
March 1990.

[4] J.M. Norman and G. S. Campbell, "Application of
a Plant-Environment Model to Problems in Irriga-
tion", in Advances in Irrigation H, edited by D. I.
Hillel, Academic Press, New York, NY, 1983, pp.
155-188.

[5] E. Szeto and V. M. Markowitz, "ERDRAW - A
Graphical Schema Specification Tool", Technical
Report LBL-PUB-3084, LBL, Berkeley, CA,
October 1990.

S I G M O D R E C O R D , Vol. 21, No. 1, March 1992 53

