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1. INTRODUCTION 

If one were to conduct a survey among researchers 
from all sciences asking for the greatest challenges in 
their particular discipline, one would expect very dif- 
ferent answers from scientists of different backgrounds. 
Although this is true in general, there is at least one issue 
that is perceived as a major challenge in most disciplines: 
experiment and data management. Managing the experi- 
ment and the data produced throughout its life cycle has 
become the bottleneck of many experimental studies. In 
many cases, this significantly limits the scale of the 
experiments. We have reached this conclusion from our 
own experience with experimental computer science as 
well as many discussions that we have had with scientists 
from a wide range of experimental disciplines (Biotech- 
nology, Genetics, Molecular Biology, Soil Sciences, 
Space Sciences, and High Energy Physics). While some 
scientists store data in hundreds of flat files or in the best 
case under a simple relational database system, most of 
them still use paper notebooks, which are clearly inade- 
quate tools for large-scale experimentation. 

In the past few years we have been involved in an 
effort to build an experiment and data management sys- 
tem that will capture the structure of data generated in 
experimental scientific studies. The goal of the system is 
to provide an integrated environment that will allow the 
design and execution of experiments and the access to 
scientific data to be done in ways that resemble the way 
scientists interact among themselves using pencil and 
paper. In this paper, we concentrate on the user interface 
module of the system and describe our current effort to 
design, develop, and test it. 

The overall design of the system is motivated by a 
common experiment life cycle that we have identified 
from observations of how scientists in various disciplines 
conduct experimental studies. A pictorial abstraction of 
this life cycle is shown in Figure 1. It essentially consists 
of various loops traversed by the scientist multiple times 
in the course of a study. Some of the stage transitions 
occur much more often than others, and this has been 
captured in the figure by different types of lines. 
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Figure 1: Life cycle of an experimental study. 

The major stages of the life cycle (Figure la) are briefly 
described below: 

• Experiment Design: The dependent and indepen- 
dent variables of the experiment as well as its 
environment are defined. Essentially, this defines 
the schema of the database in which the experiment 
structure and the measured information will be 
stored. 

• Data Collection: Experiments are scheduled and 
eventually performed collecting data. 

• Data Exploration: The collected data is studied so 
that conclusions can be drawn on the subject of the 
experiment. More details on this stage are given in 
Section 4. 

Unlike cur~nt practice, our goal is to provide an 
integrated environment to scientists that will feature a 
uniform user interface that can be used to manage the 
entire life cycle of an experimental study. The data 
model and the user interface play the most important 
roles in this effort, because the success of the entire sys- 
tem depends to a large extent on them being intuitive to 
scientists, whose expertise on computer systems may be 
minimal. 
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In this paper, we describe the main aspects of the 
user interface module of the system that we are develop-. 
ing. We primarily focus on its features that are relevant 
to the first stage of the life cycle of an experimental study 
(experiment design). The greatest challenge posed in this 
stage arises from the extremely high number of parame- 
ters that must be captured. The schemas tend to be very 
large and the objects that they represent quite complex. 
Typical schemas may have several hundreds or even 
thousands of object classes and a correspondingly high 
number of semantic relationships between these classes. 
Thus, there are many difficulties in presenting the schema 
so that the scientist can grasp its overall structure while 
also presenting pieces of the schema that temporarily 
become the center of attention to the scientist. Not only 
are these issues important in the experiment (schema) 
design stage, but they also arise in later stages of the 
experiment life cycle, e.g., in schema-based query 
specification. In the next two sections, we describe our 
current approach to overcoming these difficulties and an 
example from an actual experiment in soil sciences. The 
subsequent section contains our plans for addressing the 
specific difficulties that arise in the remaining stages of 
the experiment life cycle with respect to the user inter- 
face. 

The experiment and data management system that 
we are building is based on the MOOSE data model [1]. 
Its salient features are described below, so that the exam- 
ples shown later are meaningful. MOOSE is an object- 
oriented data model supporting the notion of a class for 
individual objects or collection objects, i.e., sets, mul- 
tisets (bags), and arrays. Every MOOSE schema has a 
straightforward directed graph representation whose 
nodes represent the object classes. Relationships between 
classes are captured by the graph arcs connecting the 
appropriate nodes. MOOSE is similar to most semantic 
and object-oriented data models in having two major 
types of arcs: is-a arcs (denoted by dotted lines) and 
part-of arcs (denoted by solid lines). In addition, two 
more types of arcs are supported that capture specialized 
relationships of collection objects. Collection-of arcs 
(denoted by double solid lines) connect collection classes 
to the classes of elements in the collections, e.g., from the 
class of sets of X to the class of X. Array-index arcs 
(denoted by dashed lines) connect array class nodes to the 
collection node(s) indexing the arrays. Other interesting 
features of MOOSE include two types of rules (to define 
virtual attributes and virtual classes) and complex user- 
defined structural constraints to control sharing among 
objects. The query language of MOOSE is very similar 
to SQL and has the flavor of other similar object-oriented 
declarative languages. 

There are several other efforts at research labora- 
tories that are similar to the one described in this paper, 
whose goal is to provide database support to scientific 
data with advanced user interfaces. These include the 

"Laboratory Notebook" effort in the Los Alamos 
National Laboratory [3] and the "Chromosome Informa- 
tion System" (CIS) database in LBL supported by the 
SDT [2] and ERDRAW [5] design tools. In both cases, 
when development is finished, the resulting products 
would correspond to major advances in helping scientists 
with their data management problems. The underlying 
data model for both efforts is the relational or the 
(extended) entity-relationship model. 

2. THE GRAPHICAL USER INTERFACE 

The user interface module of the system is imple- 
mented using InterViews 3.0 over X11. The first subsec- 
tion describes the overall design of the interface and the 
second focuses on its experiment design tool, which is 
already working. 

2.1. General Design 

The design of the interface has been shaped by two 
of our previously mentioned goals for the project: (i) to 
provide an integrated tool to be used in all stages of the 
experiment life cycle, and (ii) to allow scientists to use 
the system in a manner that is natural to them. These 
have given the interface design its current form: a single 
graphical tool with a wide range of functionality: The 
interface is graphical in that the primary means of 
interaction between the user and the database system is 
manipulation of visual items through a mouse, pull down 
menus, and push buttons. Given that MOOSE schemas 
are directed graphs, the decision to develop a graphical 
interface was natural, since visually manipulating such 
graphs is clearly desirable. In addition, a graphical inter- 
face allows the use of the schema as a template for query- 
ing, so the user can see the relationships between dif- 
ferent object classes during query specification. The 
range of functionality of the interface includes schema 
design, query specification, data entry and presentation, 
and manipulation of query results. By using a single tool 
for varied tasks, basic graphical manipulation operations, 
e.g., cut, paste, and move, are shared by the different 
parts of the system; the user only needs to learn them 
once, and they work uniformly whether designing a 
schema, querying, or viewing data. 

The appearance of the user interface is not unusual: 
it consists of one or more windows, each with a 
display/work area in the middle, menus on top, tools and 
mode selection buttons on the left, and help messages at 
the bottom. Multiple windows may contain different 
views of the same item, e.g., different regions of the same 
schema, or different items altogether, e.g., a schema in 
one window, a query in another, and a query result in a 
third. 

To fulfill its various functions, the interface is 
divided into several different modules forming a hierar- 
chy. The general modules used by all parts of the 
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interface are at the bottom of the hierarchy, while the 
more specific tools are at the top (Figure 2). At the 
lowest level of the interface is the InterViews toolkit, 
used to drive the X-window display. The next level is the 
Graphic Viewer, which is a set of tools for displaying 
visual items and manipulating their appearance, e.g., 
move, select, copy, delete, paste, and change an item's 
appearance (color, size, position in front or behind, 
transparency-opaqueness, and alignment). Using the 
screen capabilities of the Graphic Viewer are the Graph 
Editor, which performs operations on graphs, and the 
Data Editor, which allows a generalized way to view data 
encapsulated in a visual item. Operations specific to 
graph editing are creation, deletion, and setting default 
types for nodes, arcs, and labels. The graph editor also 
offers several special features that make the manipulation 
of very large graphs easier, which are described in Sec- 
tion 2.2. Using the Graph Editor is the Schema Editor, 
which performs operations on the graph representations 
of MOOSE schemas. Specific to schema editing are the 
semantics for special types of nodes and arcs, testing a 
schema for correctness, and moving schemas to and from 
the database. Finally, there is the Query Manager, which 
uses most of the other modules. It provides a graphical 
interface for the user to specify requests to the underlying 
database system and produces graphical output from 
those requests. It consists of several subcomponents, 
which correspond to the various forms of querying that 
we envision. 
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QUERY MANAGER 

INITIALIZATION I 
QUERY 

MANAGER 

DATA 
EDITOR 
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BROWSER 

1 
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EDITOR 

1 
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EDITOR 
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Figure 2: Architecture of the user interface. 

In implementing this interface, several problems 
need to be solved with respect to its communication with 
the database system. The interface receives schemas and 
database objects (as query results) from the database, and 

sends schemas, newly entered database objects, and 
queries to the rat,base. Different interface modules have 
different requirements from such communicatious, e.g., 
the schema editor deals with schemas only, whereas the 
query manager deals with schemas, queries, and data. 
Hence, different management strategies must be 
employed in the various interface modules. Since query 
results may contain very large collections of database 
objects, it is necessary to bring them to the interface in a 
piece-meal fashion, bringing more from the database as 
needed. The schema, however, is unique to each data- 
base and used by most modules of the interface, so it 
needs to be cached in an area that is common to all 
modules. 

One of the most challenging tasks in this effort is 
identifying the appropriate internal representation of the 
various types of information being communicated 
between the database and the interface. There are two 
main reasons for this: (i) the needs of the different inter- 
face modules and the database are different, and (ii) the 
information required to display a single item may vary 
depending on its actual use or on its specific view shown 
on the screen. The schema is a good example of both (i) 
and (ii). In the database, it contains information not 
needed by the interface, e.g., pointers to data objects. In 
the schema editor, it contains information not needed by 
the query manager and vice versa, e.g., when used for 
database design attribute types are important, whereas 
when used as a template for querying attribute values are 
important. With respect to (ii), a schema may appear dif- 
ferendy in multiple windows and thus require different 
display information in each ease. The challenge with 
respect to (i) is whether a single representation should be 
chosen for the schema that will include all possible pieces 
of information needed by any of the components of the 
system or multiple ones should be devised together with a 
mechanism to translate among them. The challenge with 
respect to (ii) is to allow multiple sets of display informa- 
tion to be associated simultaneously with a schema in a 
persistent way in the database but also in a nonpersistent 
way for its different transient views. Currently, we are at 
a stage in our implementation where we are investigating 
the appropriate answers to these challenges. 

2.2. The Schema Editor 

The focus of this subsection is the schema editor, 
which is the only interface module that is needed for the 
experiment design stage of the experiment life cycle. As 
mentioned above, the main difficulties arise from the fact 
that MOOSE schemas for scientific experiments can be 
very large and can form an inscrutable maze of boxes and 
fines on the screen. Therefore, we focus on the features 
that have been included in the graph editor to make large 
schemas more manageable. These are the following: (a) 
allowing parts of the schema to be made invisible; (b) 
collapsing subgraphs into single nodes; and (c) using 
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"reference" nodes to eliminate very long arcs. 

The simplest approach to viewing overly large 
schemas is to make portions of them invisible. Thus, dif- 
ferent views of the schema can be created, with only 
information that is of interest to the user being visible. 
Selection of the parts of the graph that are made invisible 
can be performed in one of two ways. The first one is 
"manual" and requires that the user specifies each indivi- 
dual piece of the graph that is to disappear. The second 
one involves using some predefined, semantically richer 
operations that take advantage of characteristic properties 
of MOOSE schema graphs. Examples include making 
invisible all attributes of a selected class, the part-of sub- 
tree rooted at a selected class, or everything but the is-a 
arcs and the classes connected to them. The reverse 
operation of making unseen parts of the graph visible can 
only be performed using predefined operations. All 
operations used in the previous case can be used here as 
well in reverse form. Additional examples include mak- 
ing the whole graph visible or making visible everything 
that is within some distance from a selected class. 

Although advantageous most of the time, the sim- 
plicity of hiding is sometimes limiting in that there are no 
gradations or groupings among the invisible items; items 
either are visible or not. Collapsing (or collectivizing) 
some subgraph of the schema into a single group node 
reduces the amount of visible information while imposing 
some structure on the invisible parts of the graph. This is 
very useful in encapsulating semantically meaningful 
parts of the schema as a single node on the screen. A 
group node can be named to indicate what part of the 
schema it replaces and always has an asterisk before and 
after its name (see Figure 4). All arcs connected to one 
of the nodes being collapsed are changed to instead be 
connected to the resulting group node. If more detail is 
required, the group may either be expanded in place or 
viewed and edited in a separate window. Collectivization 
can be nested at arbitrary levels, and the same holds for 
internal viewing of nested groups whether in place or in 
separate windows. 

Another major problem that arises in large graphs 
representing complex schemas is that of very long arcs. 
For example, if many portions of the schema need to be 
connected with a single class, there are bound to be long 
arcs stretching from one side of the graph to the other. 
To avoid this, the schema editor provides reference 
nodes, which are denoted by circles in MOOSE schemas 
(see Figure 3). These are pairs of nodes that can be used 
to break up arcs. One of them is drawn near the source of 
the arc and the other near its destination. The original arc 
is replaced by appropriate connections of the reference 
nodes with the regular nodes that are respectively close to 
them. By using reference nodes, any schema graph can 
be made planar. As a way of recapturing the original arc, 
one can select a reference node and the system instandy 

moves the view in the screen to the other member of the 
pair. Reference nodes can be named to indicate what the 
remote destination of the original arc is. Thus, they act as 
surrogates for a distant region of the schema: an arc con- 
nected to a distant class can be attached to a local refer- 
ence node instead. 

3. A CASE STUDY 

In this section, we report on a case study where we 
exposed the schema editor described above to a "real" 
user. Being firm believers in the value of user feedback 
for interactive systems, right from the beginning of our 
effort we tried to create a user community of researchers 
who are not computer scientists and who would use the 
graphical interface being developed. The benefits of such 
interactions would flow in both directions: on the one 
hand, the robustness and functionality of the system 
would be tested and our understanding of the applications 
needs would improve, so that the appropriate corrections 
and enhancements could be made; on the other hand, 
scientists would be able to take advantage of the capabili- 
ties of the system to improve on their established 
approach to experimentation. Prof. John Norman from 
the Soil Sciences Department at the University of 
Wisconsin is one member of the group of users that has 
been formed. The main emphasis of his work is on simu- 
lating the growth of plants based on various environmen- 
tal, soil, and ecological parameters. His primary tool in 
his studies is the Cupid model [4], which simulates the 
necessary plant growth processes. It has been under 
development for about 15 years. The program that imple- 
ments the model is approximately 10,000 lines of Fortran 
code and is being used by about a dozen laboratories in 
the U.S. and abroad. In the past few months, Prof. Nor- 
man has been using the schema editor that we have 
developed to document the structure of the input and out- 
put parameters of his model in the form of a MOOSE 
schema. The background and experiences from this col- 
laboration are described in the rest of this section. 

The Cupid model represents an attempt to combine 
knowledge from the disciplines of meteorology, soil phy- 
sics, and plant physiology into a single manageable pack- 
age. It defines collective plant-environment interactions 
at the same level of detail for the entire system as the 
respective disciplines have accomplished for selected 
parts of the system. Thus, it provides a vehicle for com- 
bining information from several disciplines to address 
practical problems that no single discipline can accom- 
modate. It has been used in numerous applications that 
range from interpreting remotely sensed signatures of 
vegetation from ground, aircraft, and satellite measure- 
ments to predicting the influence of environmental factors 
on productivity of agricultural and ecological systems. 

The basic approach in this model is to parametefize 
relevant processes at the spatial scale of a few 
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centimeters (leaf scale) and temporal scale of minutes to 
an hour, and then integrate to larger Spatial SCales of hun- 
dreds of meters (community of plants) and time scales of 
weeks or months (seasonal scale). For example, meas- 
urements are taken on representative leaves to obtain 
values for parameters that are part of the input to the 
model. From them the model can predict the response of 
a plant community or crop for a season; these responses 
usually cannot he measured directly. 

A common belief about scientific databases is that 
their schema is relatively small and simple and that the 
challenge lies in the magnitude and complexity of the 
data. Cupid is one of many examples that we have 
encountered that invalidates the above. It simulates 
numerous processes that are parameterized, and therefore 
a large number of parameters need to be specified to 
characterize its input and output. Some example parame- 
ters are soil and plant conductive properties for heat and 
water, radiative and convective properties of leaves, the 
dependence of photosynthetic, respiratory, and transpira- 
tion rates of leaves on environmental conditions, and 
various soil and atmoSpheric boundary conditions. Typi- 
cally about a hundred parameters are input to the model 

for any specific application, whereas the output variables 
number in the several hundreds. 

By doing simulations under conditions that are not 
normally encountered during field measurements, the real 
benefit of models like Cupid is realized because insights 
from the studied processes are not otherwise available. 
However, with a hundred input parameters and several 
hundred output variables, testing quickly produces a mass 
of information that is extremely difficult to manage 
without some organizational tools. Computing cycles are 
not as limiting to progress as an efficient tool for coordi- 
nating and organizing the hundreds of files that contain 
input data or output results. 

Our collaboration with Prof. Norman has showed 
that the schema editor that we have developed can serve 
as that tool. We have completed a schema for the input 
part of the Cupid model, which is shown in Figure 3. It 
contains more than 100 object classes. Although the 
schema is in reality one connected component, reference 
nodes are used heavily to make the picture manageable, 
so its visual appearance has many components. It turns 
out that the specific choice of connected components is 
not arbitrary, but follows the higher level semantics of the 

Figure 3: MOOSE schema for the Cupid input. 
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object classes in each component. To explain this better, 
we have collectivized most (ff the nodes in that schema 
into group nodes to obtain Figure 4. As one can see, 
there are three main categories of object classes in the 
schema, which essentially determine the components in 
the graph: those of direct input to Cupid, those of auxili- 
ary calculations, and those of measurement instruments. 

The top (part-ot) subtree in Figure 4 shows the 
Cupid input together with groups for the three main sub- 
trees that comprise it. The three groups correspond to the 
parameters that characterize the soil, the plant, and the 
environment, respectively. Together they include all the 
object classes that capture the structure of parameters that 
are required by the Cupid model. In a real experiment, 
the object instances that populate these classes are gen- 
erated in one of three ways: (a) they can be directly 
inserted by the user; (b) they can be the output of a calcu- 
lation, that is another model that simulates some aspect of 
the Cupid input, e.g., a model of the sun calculating radi- 
ation levels on the earth surface; and (c) they can be gen- 
erated by a measurement instrument. The middle two 
unconnected nodes in Figure 4 are groups of object 
classes of two types of calculations, those modeling the 
soil and those modeling the environment. These have 
their own inputs, while their output is connected to the 
appropriate input object classes of Cupid (using the 
mechanism of derived attributes). Finally, the bottom 
(is-a) subtree in Figure 4 shows the instruments that can 
be used for direct measurements together with groups for 
the three main types of instruments (those for soil, plant, 
and instrument again). For each different class of instru- 
ments, the parameters that it can measure are connected 
to the appropriate input object classes of Cupid. Thus, 

[- so,,°~ • / .  p,..,L, .l '~'~- E ........ ,,.~,, i 
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Figure 4: Condensed version of the MOOSE schema 

for the Cupid input• 

not only does the schema capture the structure of the 
input for Cupid, but it also docurnents the relationship 
between the Cupid model and the other auxiliary models 
and measurement instruments. 

Our work with the Cupid model has been yet  
another example for the valuable feedback that an early 
exposure of an interactive system to "real" users pro- 
vides. A wide range of bugs of the schema editor were 
revealed and various limitations of its early versions were 
demonstrated. The whole exercise has provided us with 
valuable experience about the needs of scientific experi- 
ments and about the expectations of researchers that are 
not computer scientists. The main challenge posed by the 
Cupid model has been the large size of the schema. With 
such a schema, the user must  focus on a small part of it at 
any given time. Realizing the above in the context of 
Cupid has essentially determined the emphasis of our 
work until now and has produced the techniques men- 
tioned in Section 2, i.e., invisible parts of the schema, 
node collectivization, and reference nodes. 

In the other direction, Prof. Norman and his group 
have benefited from the use of the schema editor as well. 
We let him express this in his own terms. 'q'he main 
benefit of the MOOSE schema of Cupid is a clear docu- 
mentation of the input structure of the model. This is the 
beginning of an orderly process for improving Cupid in at 
least four ways: (1) The eventual storage of the input data 
to Cupid in a database with the above structural organiza- 
tion will help tremendously in organizing the complex 
array of data combinations that are necessary for con- 
ducting simulations. (2) The creation of an object- 
oriented structure on Cupid data will permit other scien- 
fists to understand, use in their research, and possibly 
enhance with their own routines, portions of the model 
ignoring the rest of it. Such an exchange, which is now 
impossible, is essential if we are to simulate more com- 
plex systems. A clear delineation of objects could have a 
profound impact on the entire field of environmental 
biophysics, which depends heavily on models that are 
continually being rewritten. (3) The graphical representa- 
tion of the MOOSE schema serves as a useful piece of 
documentation for scientists who are using Cupid in their 
research. (4) As a scientist, using a tool like the schema 
editor is helping me to understand what objects exist in 
the context of a soil-plant-atmosphere model." 

4. LATER STAGES OF THE EXPERIMENT LIFE 
CYCLE 

In this section, we first complete the picture of the 
experiment life cycle that we started in Section 1 by hav- 
ing a more detailed look at the data exploration stage and 
then briefly describe our future plans for the user inter- 
face. As shown in Figure lb, a scientist is involved with 
three types of operations in this stage: (i) posing initiali- 
zation requests, which is a time consuming process since 
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the values of most parameters of the experiment must be 
specified together with the information to be retrieved; 
(ii) data analysis, where the collected data is further pro- 
cessed to obtain meaningful summaries of it; and (iii) 
posing follow-up requests, which are very similar to ear- 
lier requests possibly using the answers of the latter as a 
reference point. This type of request represents the most 
common form of interaction in the course of a study. 

One of the greatest challenges posed in the data 
collection and exploration stages arises from the com- 
plexity of the underlying objects. In both stages, complex 
objects must be specified to the system either as part of 
ordering a specific experiment or as part of posing a 
request to the system (selection). This will be facilitated 
by the use of the schema as a template for object 
specification but is still quite hard since it must be done 
graphically for a variety of object types, e.g., sets, charts, 
other graphical renditions of scientific data, tables, and 
graphs. The difficulty arises from the fact that each type 
of object may have multiple natural graphical representa- 
tions, many of which may be different from other object 
types. One of our major goals is to identify a core set of 
representations that capture a wide variety of object types 
and to provide the means for specifying user-defined spe- 
cialized representations for individual object types. 
Another goal is to implement mechanisms for explicitly 
or implicitly choosing among the various available 
representations for an object. 

A second major challenge posed in the above two 
stages is the complexity of the relationships among 
objects that are represented by paths in the schema graph. 
The size of the schema makes the specification of these 
relationships by path demarcation a very time-consuming 
process. Allowing the specification of incomplete paths 
(e.g., specifying only the two end-points) which are com- 
pleted internally based on the schema structure is one of 
our goals. The major problem that arises is resolving the 
ambiguities that arise when multiple plausible path com- 
pletions exist. We are currently studying several 
mechanisms that could allow automatic disambiguafion in 
many cases. 

A third major challenge is specifically related to 
posing follow-up requests. The scientist should be able to 
use the results of previous requests as the means to make 
further ones. The system must identify the request that 
generated the previous results, modify it to reflect the 
specified changes, and then use it in its modified form to 
generate the requested data. In most cases, the difference 
between the two queries will be in the value of very few 
parameters. Maintaining the context of previous requests 
and interpreting the new one based on it is our basic 
approach to the problem. As before, ambiguities may 
arise from these requests as well, so several disambigua- 
fion mechanisms are under investigation. 

5. CONCLUSIONS 

We have described the overall structure of the user 
interface module of the database system that we are 
developing to provide support for the management of 
scientific experiments and data. Focusing on the schema 
editor of the interface, we have described its most impor- 
tant features, which specifically address the issue of very 
large schemas and how they can become more manage- 
able. We have also presented a case study where soil 
scientists have used the schema editor to capture the input 
structure of their experiment with great success. What 
we have discussed in this paper is only the beginning. 
Several aspects of the interface are currently under inves- 
tigation, primarily with respect to querying and the 
interface-database communication. As before, this 
current effort is driven by the goal of minimizing 
knowledge and effort required by the scientist to use the 
interface. The final outcome of this project, in the form 
of a working system, will be made available again to 
several scientists, who will be the final judges on the 
practical value of our work. 
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